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Résumé

Mots clés : Transfert de matière, particule de catalyseur, réaction chimique,
nombre de Damkohler, nombre de Sherwood, Sharp Interface Method, simulation
numérique.

Nous avons étudié l’effet d’une réaction chimique sur le transfert de matière
pour des systèmes à deux phases sous écoulement. La phase continue est une phase
fluide et la phase dispersée est constituée de particules de catalyseur au sein des-
quelles une réaction chimique irréversible de premier ordre a lieu. Le soluté réactif
est transporté par l’écoulement externe de fluide et pénètre dans la particule par
diffusion, il se produit alors une réaction chimique qui consomme cette espèce. Nous
modélisons le problème par un couplage interne-externe des équations de bilan et
au moyen de deux conditions limites de raccordement : continuité de la concentra-
tion et équilibre des flux de masse à la surface des particules. Le cas d’une seule
sphère isolée est traitée en premier lieu de manière théorique et numérique. Nous
proposons un modèle pour prédire le coefficient de transfert de masse (nombre de
Sherwood «réactif») en tenant compte de la convection-diffusion externes et du
couplage diffusion-réaction internes. Nous validons le modèle en le comparant à des
simulations numériques directes pleinement résolues (DNS boundary-fitted) sur un
maillage adapté à la géométrie des particules. Pour la simulation de systèmes multi-
particules, nous mettons en œuvre une méthode d’interface «Sharp» pour traiter
les fronts raides de concentration. Nous validons la mise en œuvre de la méthode
sur des solutions analytiques existantes en cas de diffusion, de diffusion-réaction et
par comparaison avec des corrélations de convection-diffusion disponibles dans la
littérature. Dans le cas d’une réaction chimique en présence de convection-diffusion,
nous validons la méthode et nous évaluons sa précision en comparant avec les si-
mulations pleinement résolues de référence. Ensuite, nous étudions le problème de
l’écoulement et du transfert autour de trois sphères alignées soumis à une réaction
chimique interne. Nous proposons un modèle de nombre de Sherwood «réactif» en
complément d’une prédiction de transfert pour chaque sphère disponible dans la
littérature. Nous validons le modèle par comparaison avec des simulations numé-
riques directes pour une large gamme de paramètres adimensionels. Ensuite, nous
étudions la configuration du lit fixe de particules de catalyseur. Nous modélisons
le profil de concentration moyenne, en tenant compte de la réaction chimique dans
le lit et les profils de concentration moyenne surfacique et volumique des parti-
cules. Nous introduisons un modèle pour le nombre de Sherwood «réactif» qui
est comparé à des simulations numériques pour en évaluer les limites de validité.
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Abstract

Keywords : Mass transfer, Catalyst particle, Chemical reaction, Damkohler
number, Sherwood number, Sharp Interface Method, Numerical simulation.

We studied the effect of a first order irreversible chemical reaction on mass
transfer for two-phase flow systems in which the continuous phase is a fluid and
the dispersed phase consists in catalyst spherical particles. The reactive solute is
transported by the fluid flow and penetrates through the particle surface by diffu-
sion. The chemical reaction takes place within the bulk of the particle. We handle
the problem by coupling mass balance equations for internal-external transfer with
two boundary conditions : continuity of concentration and mass flux at the par-
ticle surface. We start with the case of a single isolated sphere. We propose a
model to predict mass transfer coefficient (‘reactive’ Sherwood number) accoun-
ting for the external convection-diffusion along with internal diffusion-reaction.
We validate the model through comparison with fully resolved Direct Numerical
Simulations (DNS) performed by means of a boundary-fitted mesh method. For
the simulation of multi-particle systems, we implemented a Sharp Interface Me-
thod to handle strong concentration gradients. We validate the implementation of
the method thoroughly thanks to comparison with existing analytical solutions
in case of diffusion, diffusion-reaction and by comparison with previously esta-
blished correlations for convection-diffusion mass transfer. In case of convection-
diffusion-reaction, we validate the method and we evaluate its accuracy through
comparisons with single particle simulations based on the boundary-fitted me-
thod. Later, we study the problem of three aligned-interacting spheres with in-
ternal chemical reaction. We propose a ‘reactive’ Sherwood number model based
on a known non-reactive prediction of mass transfer for each sphere. We validate
the model by comparison with direct numerical simulations for a wide range of
dimensionless parameters. Then, we study the configuration of a fixed bed of cata-
lyst particles. We model the cup-mixing concentration profile, accounting for che-
mical reaction within the bed, and the mean surface and volume concentration
profiles of the particles. We introduce a model for ‘reactive’ Sherwood number
that accounts for the solid volume fraction, in addition to the aforementioned ef-
fects. We compare the model to numerical simulations to evaluate its limitations.
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1 Context

The interactions of solid and fluid phases are prominent through a wide range
of industrial and energetic engineering applications, where the two phases interact
and diverse complex physical and chemical phenomena occur between them. The
interactions are present in, but not limited to, the following systems:

In Fluid Catalytic Cracking (FCC) systems [Shah et al., 2018], which are
operated in petrochemical refineries to treat heavy crude oil compounds to break
them into desirable lighter products [Abul-Hamayel, 2003]. Different modes of in-
teractions can take place in these processes, such as adsorption and diffusion [Song
et al., 2007] in zeolite crystals through molecules exchange at the zeolite-matrix in-
terface, and diffusion in the meso and macro-pores of the matrix [Qin et al., 2015],
where chemical reaction takes place in the form of heterogeneously catalyzed gas or
liquid reaction, within the catalyst particles.

In Biomass gasification [Bridgwater, 1995, Turn et al., 1998], and biomass
complete combustion [Baxter, 1993] processes, which are prospectively considered
to be a sustainable alternative for fossil fuel [Naik et al., 2010] through extracting
liquid bio-fuel from abundant organic bio-substances. These processes comprise
most of solid-fluid interaction complexities, where gas diffusion takes place from
fluid bulk phase to solid particle, then chemical reaction takes place within the
particle.

1



Part I. Introduction

In catalytic converters, which are post-treatment facilities used to treat ex-
haust gases resulting from internal imperfect combustion engines in automotive
vehicles [Islam et al., 2018]. These systems incorporate physical and chemical cou-
pled phenomena resulting from gas flow through a porous catalytic medium [Ozhan
et al., 2014].

On the other hand, solid-fluid interactions are present in many other applica-
tions such as heavy-oil or bitumen extraction [Shokrlu and Babadagli, 2014]. Heated
metal particles can alter the usage of expensive technology to heat reservoirs, such
as steam injection that requires costly infrastructure, hot air injection [Dunn et al.,
1989], electric/electro-magnetic methods [Mutyala et al., 2010] or flow improvers
[Li et al., 2016]. The bitumen viscosity can rather be decreased through heat trans-
fer between heated metal particles and the viscous oil [Hamedi Shokrlu et al., 2010].

Catalytic cracking processes, biomass gasification, or combustion, are usually
operated at the industrial scale by means of two different types of reactors. The
first type involves a network of fixed solid particles forming a porous medium with
high solid volume fraction, through which the fluid flows. This system is called a
‘fixed’ bed reactor [Lu and Nikrityuk, 2018, Lemos et al., 2018]. The second type is
when gas flows through particles of lower solid volume fraction and particles move,
the particles’ movement is termed as ‘fluidization’ [Kunii and Levenspiel, 2013] and
the system is referred to as a ‘fluidized’ bed reactor [Yaghoobi-Khankhajeh et al.,
2018, Wenzel et al., 2018].

The process modeling, operation, maintenance and optimization within these
reactors require an advanced comprehension of their physical and chemical phe-
nomena coupling. The challenges that impede the complete comprehension of these
systems fall into two parts. The first part is the existence of multi-length scales
[Radl et al., 2018], the smallest scale is at the particle level, which is an order of
mm and the largest scale is an order of meters. We expect that the large scale be-
havior of the system is affected by the small scale interactions. The second challenge
arises from the complex coupling among many physical and chemical phenomena.
A comprehensive example of these complexities is a catalytic fluidized bed reactor
[Bizon, 2017]. In this system, a gas enters with an imposed uniform inlet veloc-
ity, concentration and temperature. Momentum transfer [Kraft et al., 2018] occurs
when fluid moves the solid particles maintaining them in a ‘fluidized state’. Mass
transfer [Voncken et al., 2018] occurs through chemical species diffusion and adsorp-
tion within the catalyst particles, where exothermic chemical reactions [Li et al.,
2018] take place. Heat transfer [Bellan et al., 2018] occurs through the whole sys-
tem, that is highly affected by the temperature distribution and has a direct impact
on the reaction rate. The three mentioned phenomena interact with each other and
this is referred to as ‘phenomena coupling’. Understanding these systems has been
a central objective for decades by means of experimental and numerical studies to
probe phenomena coupling in particle-laden flows. Gunn [1978] was a pioneer with
his experimental study to quantify heat or mass transfer within fixed and fluidized
bed reactors. He introduced a correlation for the Nusselt number. Running exper-
imental setups along with simplified analytical studies was the only research path

1 Context 2



Part I. Introduction

for decades, before the emergence of large supercomputers of increasing capacity
over time, that enables one to perform Particle Resolved (PR) or Direct Numerical
(DN) Simulations (PR/DNS) to simulate these systems. PRS has arisen as a pow-
erful tool that is able to provide local-reliable information about the interactions
at the particle scale. However, systems which can be fully resolved through PRS
can comprise thousands, or up to tens of thousand of particles only. Exceeding this
number of particles is still unaffordable in terms of computational cost. Because
of that, larger scale numerical models have been developed to meet the demand to
consider a bigger number of particles. Although it is able to treat a large num-
ber of particles, the large-scale ‘meso’ models suffer from inaccuracy as the local
interactions at the particle level are unresolved. An approach that links the micro
and meso scale models has been adopted in order to take the advantage of the fully
resolved-reliable information provided at the micro scale to boost the meso scale
models through providing the missing-unresolved information at the particle scale,
by means of closure laws or correlations. The approach is referred to in literature
as the multi-scale approach, and it has been previously detailed by [van der Hoef
et al., 2008]. In this context, [Deen et al., 2014] and [Sun et al., 2015] introduced
correlations for the heat transfer Nusselt number based on fitting with PRS data
sets. In both studies, a comparison with the pioneering work of Gunn [1978] was
performed. The Nusselt number correlations established for heat transfer can alter-
nately be used for mass transfer, as Sherwood number correlations, in the so called
mass transfer controlled or diffusion limited systems. In this case the reaction rate
is infinite with respect to diffusion. Apart from systems where an infinite reaction
is prominent, the Sherwood number correlations are invalid and modeling efforts
are required to account for the effect of chemical reaction on mass transfer through
these systems, which is the aim of this work.

1.1 Objectives and synthesis

We aim in this work at studying the effect of a first order irreversible reaction
on mass transfer in systems composed of two fluid-solid phases, where chemical
species diffuse from fluid bulk to solid spherical catalyst particles which undergo an
internal chemical reaction. The study necessitates solving the convection-diffusion-
reaction equation in both phases. Our numerical platform PeliGRIFF is originally
based on the Distributed Lagrange Multiplier- Fictitious Domain method that is
suited to treat particulate flows dynamics. This necessitates the implementation of
a numerical model that is able to solve the required equations in both phases. The
method must be able to handle sharp gradients at solid-fluid interface. The Sharp
Interface Method is chosen to be implemented in our in-house code.

The objectives of this work can briefly be summarized as follows:

— The implementation of a Sharp Interface Method, and its complete paral-
lelization to be able to treat multi-particle systems. The method must be
able to solve accurately the convection-diffusion-reaction equation in both
solid and fluid phases. The validation of the implemented method is done
against analytical solutions and existing correlations in cases of diffusion and
convection-diffusion, respectively. In case of convection-diffusion-reaction, an-

1 Context 3
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alytical solutions or previously established correlations are unavailable to be
used for comparison and validation. We used a boundary fitted mesh method
that fully resolves boundary layers to perform direct comparison between the
two methods in order to validate and assess the accuracy of Sharp Interface
Method.

— The establishment of a physical model that couples the external convection-
diffusion with the internal diffusion-reaction for a ‘single’ particle system is
required, before addressing complex multi-particle systems. The model de-
pends on four parameters, the Reynolds number Re, the Schmidt number Sc,
the Damkohler number Da, and the diffusion coefficient ratio between solid
and fluid phases γ. The model is validated by means of direct numerical sim-
ulations issued from the boundary fitted method. The single particle system
is used for direct comparison between the two numerical methods, the Sharp
Interface and boundary fitted mesh method.

— The thoroughly validated Sharp Interface Method has been used to study
multi-particle systems. An extension of the single particle physical model has
been proposed for a system of three aligned interacting particles experiencing
an external convection with diffusion.

— Systems composed of multiple-particles have been studied and a new physical
model that describes mass transfer of the system in the presence of chemical
reaction is established. The model for a single and three spheres is extended
and this time it accounts for the solid volume fraction αs in addition to the
aforementioned four dimensionless numbers. The model is validated with
numerical simulations.

As a complement to this Part(I), we give an overview on applications involving
chemical reactions. We briefly describe our numerical platform PeliGRIFF and the
multi-scale approach. Then, we give a quick review on mass transfer for a single
catalyst particle undergoing a first order irreversible reaction.

In Part (II), we study the single particle system and we present a physical model
with its complete validation through boundary fitted direct numerical simulations.

In Part (III), we implement a Sharp Interface Method and we couple it to the
DLM-FD Method. We present a series of validation tests and we compare the
method to reliable simulations of a boundary fitted mesh method that fully resolves
boundary layers. We then study a system of three interacting particles under forced
convective-diffusive stream coupled with an internal diffusion-reaction. We extend
the established model for a single particle to three particles system. We validate
the model by means of direct numerical simulation.

In Part (IV), we extend the established model for single and three particles to a
network of fixed catalyst particles. We compare the model to numerical simulations
and we show and discuss its limits. In Part(V), we give our concluding remarks and
perspectives.

1 Context 4



Part I. Introduction

1.2 Applications involving chemical reaction

Fluid Catalytic Cracking

Cracking is a process of breaking long-chain heavy crude oil molecules, derived
from atmospheric distillation and vacuum fractionators [Dupain et al., 2006], into
lighter products, that can be used to produce gasoline and diesel fuel engines. Crack-
ing process can be achieved without catalyst at high pressure and temperature, or
with catalyst at lower temperature. Fluidized catalytic cracking processes, are able
to produce fuels with lower benzene content, which is environmentally preferable
because benzene is considered as a toxic material able to cause acute and chronic
poisoning [Verma and Tombe, 2002]. Benzene undergoes an incomplete combustion,
discharged into atmosphere and induces harmful effects on human body [Wang et al.,
2018]. FCC units are operated worldwide and they provide 45% of the total car
fuel consumption [Jarullah et al., 2017]. FCC system consists of three main parts:
Preheating system, riser, and generator. As a process, feedstock is firstly preheated
using heat exchangers up to 300-350 ◦C. Then, it gets atomized in the riser by
means of atomization nozzles. Feedstock injection process determines 60-70% of
the cracking reactions yield [Chen et al., 2016b], as desirable atomization nozzles
may insure fast and uniform contact between feedstock and catalyst particles [Chen
et al., 2016a]. Meanwhile, catalyst particles are being heated in the generator up
to temperature 600 ◦C [Chang et al., 2014].

Figure I.1: Schematic diagram of a Fluid Catalytic Cracking system [Fernandes et al.,
2012].

Catalyst particles enter the riser and gets in contact with vaporised hydrocar-
bons through fluidization. During this contact, hydrocarbon feedstock gets heated
by the catalyst particles, which are providing heat for the endothermic reaction.
The catalyst residence time in the riser ranges from 2 to 10 seconds [Alvarez-Castro
et al., 2015], during which chemical reaction takes place in vapor phase and conver-
sion occurs. Carbon deposit deactivates gradually the catalyst during its residence
in riser, through coating the active sites and blocking the pores [Singh and Gbord-
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Part I. Introduction

zoe, 2017]. After, catalyst particles are separated by means of cyclones and pumped
through regenerator for regeneration process. In generator, air enters the system
where coke deposits are burned providing heat to catalyst particles. Then, regen-
erated catalyst is sent back to the riser. Many parameters can directly affect the
efficiency of a FCC process. Hydrodynamic performance of the riser [John et al.,
2018], catalyst-to-oil (CTO) ratio, catalyst properties and partial pressures.

Biomass gasification processes

Biomass gasification [Baruah and Baruah, 2014] is the process of biomass con-
version into gaseous fuel through heating it in a gasified medium such as air, oxygen,
steam, or their mixture. Distinguished from combustion [Sahu et al., 2014], gasi-
fication converts the intrinsic chemical energy of the carbon in the biomass into a
flammable gas. During biomass gasification, its feedstock is promptly heated up
and de-volatilized, forming tar, permanent gas, and solid char. Then, the tar and
solid char undergo cracking, oxidization, and reduction to form gaseous products
as the final products. Mainly, these products consist of carbon monoxide, carbon
dioxide, methane, hydrogen, water vapor, and some light hydrocarbons, known as
syngas which can be used to power gas engines and gas turbines or as a chemical
feedstock to produce high rank fuels, such as liquid fuels, hydrogen, and carbon
containing chemicals [Yang and Chen, 2014]. Chemical reactions take place in the
gasification process are basically thermal biomass cracking [Wurzenberger et al.,
2002] incorporating the partial and complete reactions, water gas shift and metha-
nation reaction. For char gasification and water shift reaction, high temperatures
are favorable to produce more H2 and CO. When the gas yield is above 80% and
the gas contains no excess tar, no nitrogen and no methane, the gasification process
is considered as an ideal process. Achieving the high gas yield with low tar content
is still the problem limiting the dependence on the biomass usage. Tar removal is a
complex technical problem that has to be taken in consideration when developing
gasifiers. The formed tar during pyrolysis processes experiences cracking, condens-
ing and reformation. During cracking, tar is converted from mixed oxygenates to
larger polycyclic aromatic hydrocarbon at temperature ranges from 400oC to more
than 900o C. Dolomite catalysts, alkali metal and alkali earth metal are used for
catalytic cracking of tar.

Biomass gasification processes are of two types, steam and CO2 gasification.
Steam gasification [Zhang et al., 2015] is more rapid than the CO2 gasification and
is more used in industrial applications. The carbon steam gasification is given by
the following equation:

C +H2O ⇆ CO +H2 ∆H = 118.5 kJ mol−1 (I.1)

The reaction is endothermic and usually occurs at temperature in the range of
800o − 1200o C in the presence of H2O. The influence of operating conditions on
the kinetics requires more comprehension to design and operate the gasifiers because
reaction kinetics depend strongly on the operating temperature, particle size, steam
or CO2 partial pressure.

1 Context 6
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(a) (b)

Figure I.2: Schematic diagram of gasification systems. a) Steam fixed bed reactor
[Kaewpanha et al., 2014]. b) Entrained fluidized bed reactor [Tremel and Spliethoff,
2013]

The CO2 gasification reaction [Jeremiáš et al., 2018] or Boudouard reaction is
given by the following equation:

C + CO2 ⇆ 2CO ∆H = 159.9 kJ mol−1 (I.2)

Both reactions (I.1) and (I.2) are reversible. The high temperature and low pres-
sure favor the production of hydrogen and carbon monoxide whereas high pressure
favors carbon dioxide formation [Roddy and Manson-Whitton, 2012]. The oper-
ating conditions, pressure and temperature, affect the gas products at the gasifier
exit as well as the steady state equilibrium. High pressure and temperature push
the reaction toward the equilibrium state whereas low temperature slows down the
tendency toward equilibrium.

The design of gasifier or its selection depends on the feedstock material and the
desired output product. Gasification processes can be carried out in a fixed bed
reactor shown in Fig. I.2-a, fluidized bed, or an entrained flow gasifier shown in
Fig. I.2-b. Gasification processes are of two types, low temperature < 1000 ◦C and
high temperature > 1200 ◦C. Produced products at low temperature have half the
energy in the gas stream whereas the rest half is in the methane and the tar. At
high temperature, methane and tar formation are formed. Ash melting temperature
is taken into consideration during the process, the adequate temperatures are either
below the softening point (agglomeration) or above slagging temperature (melting)
where the tar removal is straightforward. Complex phenomena are prominent in
biomass gasification and combustion, strong mass transfer due to heterogeneous re-
actions alters the particle size, referred to as shrinkage. The hydrodynamic behavior
of the systems gets affected due to particle shrinkage, that has a direct impact on
drag force, and thus, on mass and heat transfer.

1 Context 7
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2 PeliGRIFF and the multiscale approach

Peligriff Wachs [2011a], the Parallel Efficient LIbrary for GRains In Fluid
Flows , is a numerical research code developed to treat particulate flows from

moderate to high concentration through direct numerical simulation (DNS). These
flows are prominent in a wide range of industrial applications and they are still
partially understood even for simple particles geometries. Their complexity stems
from the interaction between different scales, the smallest at the particle level, to the
largest at the whole flow scale. The interaction between the solid and fluid phases
needs to be accounted for once the solid volume fraction exceeds a specific value
due to the induced effect by the solid phase on the flow structure. Along with their
effect on the flow, the solid particles collision needs to be taken into consideration
which necessitates the use of a contact law or model to handle particle-particle
collisions. In PeliGRIFF, a micro/meso approach has been developed to treat these
flows.

2.1 The multiscale approach

Multi-scale interactions in particulate flows are prominent in fluidized/fixed bed
reactors which are widely used in chemical/petro chemical, environmental, and
energetic engineering applications where the size of bed can be of the order of
meters and the size of the fluidized particle is of the order of mm. The design and
optimization of these beds require a better understanding of their momentum, mass
and heat transfer. Experimental pilot-scale reactors can be used to do preliminary
tests to understand and optimize their design. However, the use of experiments
needs repetitive trials which is time consuming and thereby an expensive procedure.

   

Solar system, meso-scale Universe, macro-scale 

  

Earth, micro scale 

Figure I.3: The multi-scale approach, Earth: mostly all details are resolved - Solar
system: less details are known - Universe: less and less details are known

Numerical simulations can be used to understand and help to optimize/design these
beds and to understand the phenomena related to the effective gas-particle interac-
tion, the drag force, as well as the particle-particle or particle-wall interaction, the
collision. Large scale interactions (cluster formation) can be influenced by small
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scale interactions (collisions, short range hydrodynamic force and torque) which
represent a prime difficulty preventing from the use of a single numerical method
to simulate the whole system from the largest to the smallest flow scales. In a
way, this is partly due to the inability to perform fully resolved simulation of the
industrial scale reactors [van der Hoef et al., 2008]. As a consequence, different
models have been developed at different length and time scales with different levels
of details, keeping the choice between highly resolved small systems and partially
resolved large systems. An approach, called the multi-scale approach is being used
to simulate these systems. The method consists of 3 scales, the micro scale at which
the particle contains a few grid points per diameter and the whole interaction with
fluid, i.e, to the velocity and the pressure fields around it are resolved. The sec-
ond scale is the meso scale, at which the size of the grid is an order of magnitude
larger than the particle diameter. The macro scale, is the largest scale where real
systems can be simulated, and it is generally based on the Euler-Euler approach,
or Multi Fluid Model (MFM). The spirit of the multi-scale approach is that the
fully resolved systems accounting for all the important effects are used to find new
correlations and closure laws which can be used at larger length scales to repre-
sent interactions effectively. The representation of the important interactions is not
guaranteed through correlations based on micro scale, however, they are still able
to describe the main characteristics of the flow in many cases.

2.2 The DLM/FD Method: Micro-Scale

Micro-scale flows are simulated in PeliGRIFF using the Distributed Lagrange
Multiplier/Fictitious Domain method (DLM/FD), to resolve the solid/fluid in-
teractions along with the Discrete Element Method (DEM) for the solid-solid in-
teractions. The DLM/FD Method, firstly presented by Glowinski et al. [2001],
combines the particle and fluid equations of motion into a single, weak, and gen-
eral equation of motion called total momentum equation. It can be applied to any
fluid-particle system. The combined equations are derived through the combined
velocity space incorporating the rigid body motion (no-slip) on the particle.

• Governing equations:
The equations are non-dimensionlized by taking L∗

c for length, U∗
c for velocity and

T = L∗
c/U

∗
c for time. For pressure ρ∗

fU
∗2 and ρ∗

fU
∗2/Lc for the lagrange multiplier

of the rigid body motion, with ρ∗
f is the fluid density.

The combined momentum equation:

∫

Ω

(
∂u

∂t
+ u∇ · u

)
·νdx−

∫

Ω
p∇ · νdx+

1
Rec

∫

Ω
∇u : ∇ν+

∫

p(t)
λ · νdx = 0,∀ν ∈ ν0(Ω)

(I.3)

(ρr − 1)

[
Vp

(
dU

dt
− Fr

g⋆

g⋆

)
· V +

(
Ip
dω

dt
+ ω ∧ Ip · ω

)
· ξ
]

−
∑

j

(Fc)j · V −

∑

j

(Fc)j · ξ ×Rj −
∫

p(t)
λ · (V + ξ × r)dx = 0,∀V ∈ R

d, ξ ∈ R
ď

(I.4)
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∫

P (t)
α · u − (U + ω × r)dx = 0, ∀ α ∈ Λ(t) (I.5)

where Ω is a bounded domain ∈ R
d, d ∈ [2, 3] and ∂Ω its boundary. Dirichlet

boundary conditions are assumed on the boundary ∂Ω for the fluid velocity field.
Continuity equation:

−
∫

Ω
q∇ · udx = 0, ∀ q ∈ p0(Ω) (I.6)

where u ∈ ν∂Ω(Ω) denotes the fluid velocity vector, p ∈ P (Ω) the pressure, λ ∈ Λ(t)
the velocity distributed langrange multiplier, U ∈ R

d the particle translational
velocity vector, ω ∈ R

d the particle angular velocity vector, d the number of nonzero
components of ω. (ν, q,α,V , ζ) the test functions for (u,p,λ,U ,ω), respectively.
Fc ∈ R

d the contact forces, R ∈ R
d the vector between paticle gravity center and

the contact point, r the position vector with respect to particle gravity center,
Vp = M∗/(ρ∗

sL
∗d
c ) ∈ R the dimensionless particle volume, M∗ the particle mass,

Ip = I∗
p/(ρ

∗
sL

∗(d+2)
c ) ∈ R

d×d the dimensionless particle inertia tensor, ρ∗
s ∈ R the

particle density, g∗ the gravity acceleration and g∗ ∈ R the gravity acceleration
magnitude. Where the introduced functional spaces are defined as the following

ν0(Ω) = {ν ∈ H1(Ω)d|ν = 0 on ∂Ω} (I.7)

ν∂Ω(Ω) = {ν ∈ H1(Ω)d|ν = u∂Ω on ∂Ω} (I.8)

P (Ω) =

{
q ∈ L2(Ω)|

∫

Ω
qdx = 0

}
(I.9)

Λ(t) = H1(t)(P (t))d (I.10)

The Reynolds number, Froude number and the density ratio are defined as :

Rec =
ρ⋆U⋆

cL
⋆
c

η⋆
(I.11) Frc =

g⋆L⋆
c

U⋆
c

2 (I.12) ρr =
ρ⋆

s

ρ⋆
f

(I.13)
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3 Mass transfer through a single catalyst particle

Mass transport is a physical phenomenon that occurs when mass gets trans-
ported from one location to another under the effect of a driving force, e.g., concen-
tration gradient or fluid flow. Mass transfer is prominent in a wide range of chemical
engineering applications such as Adsorption [Hou and Hughes, 2002, Tatlıer et al.,
1999], Absorption [Chilton and Colburn, 1934, Qi and Cussler, 1985], Distillation
[Schofield et al., 1987, Qtaishat et al., 2008], Drying Plumb et al. [1985], Hernandez
et al. [2000], Precipitation [Reuvers et al., 1987, Boom et al., 1994], and many other
applications that comprise diffusion, convection and reaction. The rate at which the
material gets transported from one phase to another, under concentration gradient,
is referred to as mass transfer coefficient [Seader et al., 2011]. For a spherical par-
ticle with an initial concentration CA, diffusing in a medium of fluid with an initial
concentration CA,fluid, we can relate the mass transfer coefficient, the effective mass
transfer area Sparticle, the driving force (CA,p −CA,fluid), and the mass transfer rate,
dNA,particle/dt, by the following equation [Kunii and Levenspiel, 2013]:

− 1
Sparticle

dNA,particle

dt
= kd,p(CA,p − CA,fluid) (I.14)

For a single particle of initial concentration CA = C0,particle, immersed in a domain
with fluid at rest, of different concentration Cfluid = C0,f luid < C0,particle, pure diffu-
sion takes place. When the fluid around the particle flows, the material diffused by
the particle gets convected by the moving fluid. The mass transport by the move-
ment of fluid is called convection. In the presence of chemical reactions, diffusion
occurs in the fluid film surrounding the particle, then, through its pores, forming
an active catalyst site. Based on conservation laws, mass transfer can be described
mathematically in case of chemical reaction, for a volume element in the fluid film
surrounding the particle, as follows:

(NiSi)in + ri∆V = (NiSi)out +
dni

dt
(I.15)

Where Ni is the flux density, ri is the generation rate, S is the surface area, ni is
the amount of material in the volume element ∆V . In case of a catalytic system,
ni is the concentration in the fluid, expressed as ǫ∆V ci, where ǫ is the voidage. By
taking ∆((NiSi)in/out) = (NiSiin −NiSi)out, dividing by ∆V , and ∆V tending to 0,
we obtain the following equation:

ǫ
dci

dt
= −dNi

dr
+ ri (I.16)

For a spherical particle, S = 4πr2, dV = 4πr2dr. At steady state, dci/dt = 0,
leading to the following equation:

d2ci

dr2
+

2
r

dci

dr
= − ri

Ds

(I.17)

In the above equation Ds is considered to be constant inside the catalyst particle.
The equation is valid in case of a first order reaction and can be transformed to
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a Bessel differential equation by taking c = rci [Murzin and Salmi, 2005], and it
writes as follows:

d2c

dr2
− γ2c = 0 (I.18)

where γ2 = φ2/r2
p, φ is the Thiele modulus [Thiele, 1939], expressed in (I.19) and

represents the reaction to diffusion rate. Low Thiele modulus corresponds to reac-
tion limited or kinetics controlled system, and high Thiele modulus corresponds to
diffusion limited or mass transfer controlled system.

φ = dp

√
k

Ds

(I.19)

Using boundary conditions c = c0|r=rp
and dc/dr = 0|r=0, the solution of (I.18) can

be written as (I.20) and it represents the concentration profile inside the particle:

C(x) =
sinh(φx/2)
xsinh(φ/2)

(I.20)

with x = r/dp. The flux density at the surface of the particle can be derived through
the following equation:

Ns = −Ds
dc

dr

∣∣∣∣∣
r=rp

(I.21)

Where Ds is the effective diffusion coefficient, used because the diffusional cross
section is smaller than the geometric cross section, and due to the irregular pore
structure of the particle, or tortuosity τ . For a molecule diffusing into a particle
through its surface, the tortuosity can be described as the ratio of path length L′,
covered by the molecule divided by the initial length L, if there were no deviations,
τ = L/L′. The effective diffusion coefficient is defined as:

Ds =
ǫDf

τ
(I.22)

Thus, in case of reaction taking place inside the particle, the flux at the surface can
be evaluated by deriving (I.20) at x = 1 (r=R). It can be written as follows:

Ns = − DsCs

sinh(φ/2)


(φ/2)cosh(φ/2) − sinh(φ/2)


 (I.23)

Catalyst particles attain lower reaction rates than bulk rates due to diffusion
limitation. The ratio of reaction rate inside the catalyst particle to the reaction
rate that would be obtained if there was no diffusion limitation is referred to as an
effectiveness factor. This factor can be evaluated by considering the ratio of the
total molar flux and the molar N ′ that would be obtained in the absence of diffusion
limitation:

η =
NsSp

rsV
(I.24)
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B 

(a) Illustration of tortuosity concept (b) Pores inside a porous particle Dey
et al. [2013]

Figure I.4: Tortuosity, L′ is the path length (blue line) traveled by a molecule moving
from point A to point B due to deviations caused by the curved pore structure, τ = L′/L.

Using (I.23), (I.20), and (I.24), the effectiveness factor can be written as:

η =
6
φ

(
1

tanh(φ/2)
− 1
φ/2

)
(I.25)

When diffusion rate is limited compared to reaction rate, i.e. high Thiele modulus,
(I.25) has an asymptotic limit 6/φ. The higher the Thiele modulus is, the steeper
the concentration profile inside the particle, and the lower the effectiveness factor.
Fig. I.5 shows the dependence of concentration profile as well as effectiveness fac-
tor on the Thiele modulus. The concentration profile is expressed in (I.20) and it
describes the concentration variation along the particle diameter.

Mass transfer can be quantified by means of some dimensionless numbers which
help to understand the coupled effects of diffusion, convection and reaction. In
systems incorporating convection and diffusion, convective to diffusive mass transfer
rates can be represented, for a single particle, by the Sherwood number:

Sh =
kdp

Df

(I.26)
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Figure I.5: Variation of concentration profile and effectiveness factor as function of
Thiele modulus

Where k is the mass transfer coefficient, dp is the particle diameter, and Df

is the bulk diffusion coefficient. For pure diffusion, and in an infinite domain, the
Sherwood number has an analytical solution Sh = 2. In the presence of convection,
there is no analytical solution. The Sherwood number can be estimated by empir-
ical correlations that have been previously established through experimental and
numerical studies, such as the Ranz-Marshell correlation Ranz et al. [1952], (I.27),
and Frossling correlation (I.28):

Sh = 2 + 0.6Re
1

2Sc
1

3 , 0 ≤ Re ≤ 200 , 0 ≤ Sc ≤ 2.5 (I.27)

Sh = 2 + 0.552Re
1

2Sc
1

3 , 0 ≤ Re ≤ 800 , 0 ≤ Sc ≤ 2.7 (I.28)

Another correlation has been numerically established by [Feng and Michaelides,
2000] for the problem of single particle heat transfer. The effect of the variation of
the Peclet number, Reynolds number with Nusselt number (the Sherwood number
for mass transfer) has been derived from DNS data. The correlation is valid in the
range of 0 ≤ Re ≤ 2000 and 0 ≤ Pe ≤ 1000.

Sh = 0.922 + Pe1/3 + 0.1Re1/3Pe1/3 (I.29)

In the previous correlations, Sc is the Schmidt number and it represents the
viscous diffusive rate to the molecular diffusive rate, (I.30).

Sc =
µ

ρDf

(I.30)

µ is the fluid viscosity and ρ its density. Along with (I.30) and (I.31), the Peclet
number which measures the advective transport rate to the diffusive transport rate,
can be defined as follows:

Re =
ρudp

µ
(I.31) Pe = ReSc =

dpu

Df

(I.32)
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The presence of convection is associated with a boundary layer surrounding the
particle. The boundary layer is a layer where velocity magnitude is less than the
bulk due to friction or no slip condition, u = 0 at the particle surface. The ratio of
the thickness of mass boundary layer δm to hydrodynamic boundary δ layer scales
as:

δm

δ
= Sc−1/3 (I.33)

In systems where solid particle is undergoing an internal diffusion-reaction cou-
pled with an external convection-diffusion, three regimes might be predominant. (i)
When the reaction rate is very slow compared to diffusion rate, the particle surface
concentration approaches that of bulk, and the system is said to be kinetics con-
trolled. (ii) When the reaction rate is infinite compared to diffusion, the surface
concentration of the particle approaches zero, and the system is mass transfer con-
trolled. (iii) When the reaction rate is high but finite, the surface concentration is
unknown and the system is neither mass transfer nor kinetics controlled. Estab-
lished correlations for Sherwood number are able to describe mass transfer in case
where no chemical reaction is taking place in the solid particle, or, in case where an
infinite reaction is taking place. In this case the system is analogous to that of heat
transfer and only external effects in the system need to be accounted for. In the
other cases, the internal and external effects need to be taken in account through
an external-internal coupling, which is the aim of this work.
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Un moment de patience dans un
moment de colère empêche mille
moments de regrets.

Ali Bin Abi Talib

A moment of patience in a moment
of anger prevents a thousand
moments of regret.

Ali Bin Abi Talib

3 Mass transfer through a single catalyst particle





Part II

Mass transfer from a single
particle in a fluid flow coupled
with internal diffusion and
chemical reaction

This chapter has been submitted to Chemical Engineering Science and it is in
revision process.
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a IFP Énergies Nouvelles, Fluid Mechanics Department, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize, France
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Abstract
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We study mass transfer towards a solid spherical catalyst particle experiencing a first order irreversible

reaction coupled to an external laminar flow. Internal chemical reaction and convective-diffusive mass

transfer in the surrounding fluid flow are coupled by concentration and flux boundary conditions at the

particle surface. Through this coupling, the mean particle surface and volume concentrations are pre-

dicted and the internal/external Sherwood numbers are obtained. We investigate the interplay between

convection, diffusion, and reaction by direct numerical simulations (DNS) and establish a model for the

mass transfer coefficient accounting for diffusion and internal first-order chemical reaction. We derive

an equivalent “reactive Sherwood number” that quantifies mass transfer in the system through general

mass balance or using the classic additivity rule. The model is numerically validated by DNS over a wide

range of Reynolds and Schmidt numbers and Thiele modulus. Finally, we also test the unsteady response

of the model. The model predicts the evolution of the mean volume concentration for a particle placed

in a steady convective-diffusive stream. Predictions of the unsteady model are shown to be in very good

agreement with DNS results.
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Part II. Mass transfer from a single particle in a fluid flow coupled with internal
diffusion and chemical reaction

1 Introduction

1.1 Industrial context

Interactions of solid and fluid phases are prominent in a wide range of industrial-
chemical engineering applications of energy or raw material transformation. While
the two phases are in contact, mass transfer occurs between them. In petrochemical
processes, fluid-solid interactions occur in fluidized and fixed bed reactors that are
used for catalytic cracking of large scale basic compounds into desirable molecules,
that can be used as fuel for engines (Jarullah et al. [2017]). Different modes of
mass transfer take place in these systems. When a liquid or a gas flows through
a randomly stacked batch of solid-catalytic particles, referred to as a fixed bed, or
through fine catalytic particles maintained in a fluidized state, referred to as a flu-
idized bed, adsorption and diffusion in zeolite material occur. Molecules exchange
takes place at the zeolite-matrix interface and diffusion in meso and macro-pores.
In these systems, reactants are usually transferred from the continuous “bulk" phase
to the dispersed phase where a chemical reaction takes place in the form of a het-
erogeneously catalyzed gas or liquid reaction (Rossetti [2017]), within the catalyst
particles. Biomass gasification processes also represent an active engineering field
for solid-fluid interactions. These processes aim at extracting liquid bio-fuel from
abundant organic material through pyrolysis. They are usually operated in flu-
idized bed gasifiers (Ismail et al. [2017] & Neves et al. [2017]) or fixed bed gasifiers
(Baruah et al. [2017] & Mikulandrić et al. [2016]) where solid biomass particles
undergo complex mass transfer enhanced by chemical reaction, coupled to heat
transfer and hydrodynamics. The strong mass transfer experienced by the solid
particle is associated with conversion that occurs through phase change leading to
severe particle deformations. The same interactions are encountered in many other
industrial applications. Modeling the interaction between solid and fluid phases,
and the interplay among fluid flow, heat and mass transfer with chemical reac-
tion, is of tremendous importance for the design, operation and optimization of all
the aforementioned industrial operating systems. Investigating mass transfer co-
efficients between the dispersed solid phase and the continuous fluid phase at the
particle scale, referred to as micro-scale, where the interplay between the two phases
is fully resolved, helps to propose closure laws which can be used to improve the
accuracy of large scale models through multi-scale analysis.

1.2 Literature overview

Many studies have been carried out to analyze and model coupling phenomena
in particulate flow systems. For dilute regimes, (Ranz et al. [1952], Clift et al. [2005],
Whitaker [1972]) and more recently (Feng and Michaelides [2000]) have carried out
studies to characterize the coupling of mass/heat transfer with hydrodynamics for a
single spherical particle. This configuration is characterized by the Reynolds num-
ber for the flow regime and the Schmidt number (ratio of momentum to molecular
diffusion coefficients). They established correlations for the Sherwood number in
diffusive-convective regimes in the absence of chemical reaction for an isolated parti-
cle. For dense regimes, (Gunn [1978]) measured the heat transfer coefficient within
a fixed bed of particles including the effect of the particulate volume concentration.
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(Piché et al. [2001]) and (Wakao and Funazkri [1978]) investigated mass transfer
coefficients in packed beds for different applications.
There has also been a considerable interest in systems incorporating chemical re-
action. (Sherwood and Wei [1957]) studied experimentally the mass transfer in
two-phase flow in the presence of slow irreversible reaction. (Ruckenstein et al.
[1971]) studied unsteady mass transfer with chemical reaction and deduced analyti-
cal expressions for transient and steady state average Sherwood numbers for bubbles
and drops. This has been extended to the case of a rising bubble under creeping
flow assumptions (Pigeonneau et al. [2014]). (Losey et al. [2001]) measured mass
transfer coefficient for gas-liquid absorption in the presence of chemical reaction for
a packed-bed reactor loaded with catalytic particles. (Kleinman and Reed [1995])
proposed a theoretical prediction of the Sherwood number for coupled interphase
mass transfer undergoing a first order reaction in the diffusive regime. For a solid
spherical particle experiencing first order irreversible reaction in a fluid flow, (Juncu
[2001] and Juncu [2002]) investigated the unsteady conjugate mass transfer under
creeping flow assumption. The effect of Henry’s law and diffusion coefficient ratio
on the Sherwood number were investigated when the chemical reaction is occurring
either in the dispersed or continuous phases. [Lu et al., 2018] employed an Immersed
Boundary Method (IBM) to study mass transfer with a first order irreversible sur-
face chemical reaction and applied it to a single stationary sphere under forced
convection. The external mass transfer coefficients were numerically computed and
compared to those derived from the empirical correlation of Frössling. [Wehinger
et al., 2017] also performed numerical simulations for a single catalyst sphere with
three pore models with different complexities: instantaneous diffusion, effectiveness
factor approach and three dimensional reaction-diffusion where chemical reaction
takes place only within a boundary layer at the particle surface. In [Partopour
and Dixon, 2017b], a computational approach for the reconstruction and evalua-
tion of the micro-scale catalytic structure is employed to perform a pore-resolved
simulations coupled with the flow simulations. [Dierich et al., 2018] introduced a
numerical method to track the interface of reacting char particle in gasification pro-
cesses. [Dixon et al., 2010] modeled transport and reaction within catalyst particles
coupled to external 3D flow configuration in packed tubes. Through this method,
3D temperature and species fields were obtained. [Bohn et al., 2012] studied gas-
solid reactions by means of a lattice Boltzmann method. Effectiveness factor for
diffusion-reaction within a single particle was compared to analytical solutions and
the shrinkage of single particle was quantitatively compared experiments.

In this paper, our efforts are devoted to the coupling of a first order irreversible
reaction taking place within a solid catalyst particle experiencing internal diffu-
sion and placed in a flow stream (external convection and diffusion). In order to
fully understand the interplay between convection, diffusion and chemical reaction
we have carried out fully coupled direct numerical simulations to validate a model
which predicts the evolution of the Sherwood number accounting for all transport
phenomena. The paper is organized as follows. First, we investigate the diffusive
regime and then include external convection. The prediction of the mass transfer
coefficient is validated through numerical simulations over a wide range of dimen-
sionless parameters. Finally, the model is tested under unsteady conditions.
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2 Diffusive regime

2.1 Internal diffusion and reaction

We consider a porous catalyst spherical bead of diameter d∗
p = 2r∗

p, effective
diffusivity D∗

s within the particle, and effective reactivity k∗
s . Please note that di-

mensional quantities are distinguished from dimensionless quantities by a "*" super-
script. A reactant is being transferred from the surrounding fluid phase to the solid
phase, where it undergoes a first order irreversible reaction. We use the term effec-
tive for the molecular diffusion and reaction constant of the kinetics because these
quantities are related to the internal microstructure of the porous media (porosity,
tortuosity and specific area for the catalytic reaction). We assume that this can
be approximated by a continuous model in which the effective diffusion coefficient
is typically ten to hundred times lower than in unconfined environment (diffusion
coefficient is D∗

f outside the particle). The constant k∗
s of a first-order irreversible

chemical reaction is also assumed constant due to homogeneous distribution of the
specific area within the porous media experiencing the catalytic reaction. The par-
ticle is immersed in an unbounded quiescent fluid of density ρ∗

f and viscosity µ∗
f .

Based on these assumptions, we can write the balance equation for the reactant of
molar concentration C∗ in the solid phase :

∂C∗

∂t∗
= D∗

s∇2C∗ − k∗
sC

∗ (II.1)

At steady state, the concentration profile inside the catalyst particle can be
found by integrating (II.1) and using two boundary conditions, shortly summarized
: C∗ = C∗

s |r∗=r∗

p
and dC∗/dr∗ = 0|r∗=0. The solution is available in transport

phenomena textbooks such as [Bird et al., 2015]:

Cr =
C∗

C∗
s

=
sinh(φr)

2r sinh(φ/2)
(II.2)

where r = r∗/d∗
p is the dimensionless radial position, C∗

s the surface concentra-

tion, and φ = d∗
p

√
k∗

s

D∗
s

is the Thiele modulus.

The dimensional mass flux density at the particle surface r∗ = r∗
p can be found

by deriving (II.2) with respect to r∗ and inserting it in (II.3):

N∗
S = −D∗

s

dC∗

dr∗

∣∣∣∣∣
r∗=r∗

p

= −D∗
sC

∗
s

d∗
p


 φ

tanh(φ/2)
− 2


 (II.3)

The effectiveness factor η (II.4) for a catalyst particle is defined as the internal
rate of reaction inside the particle, to the rate that would be attained if there were
no internal transfer limitations. For a catalyst bead of given surface concentration
C∗

s , the effectiveness factor is:

η =
6
φ


 1
tanh(φ/2)

− 2
φ


 (II.4)
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2.2 Particle surface concentration with external diffusion

Assuming a purely diffusive regime, mass transfer in the fluid phase is governed
by the following equation:

∂C∗

∂t∗
= D∗

f∇2C∗ (II.5)

The concentration profile in the fluid phase can be found through integrating
(II.5), at steady state, with two Dirichlet boundary conditions, C∗|r∗=r∗

p
= C∗

s and
C∗|r=∞ = C∗

∞. We aim in this section at finding the particle surface concentration
at steady state. Once the surface concentration is known, the external concentration
gradient between the particle surface and the bulk can be found. Also, the mean
volume concentration of the particle can be evaluated, which will then permit to
evaluate the internal and external Sherwood numbers as a measure of dimensionless
mass transfer.

The external diffusive problem can be coupled to the internal diffusive-reactive
problem through two boundary conditions at the solid-fluid interface : (i) conti-
nuity of mass flux and (ii) continuity of concentration. At steady state, a balance
is reached between diffusion from the fluid phase and consumption due to internal
reaction in the solid particle, resulting in a specific (unknown) concentration Cs at
the particle surface. The flux density within the fluid film surrounding the particle
can be written as:

N∗
f = k∗

f (C∗
s − C∗

∞) (II.6)

which is equal to the flux density through the solid surface (II.3), yielding:

k∗
f (C∗

s − C∗
∞) = −D∗

s

C∗
s

d∗
p


 φ

tanh(φ/2)
− 2


 (II.7)

k∗
f represents the mass transfer coefficient in the fluid phase which can be ob-

tained from the Sherwood number Sh = k∗
fd

∗
p/D

∗
f . Then we can determine the

surface concentration as:

C∗
s =

C∗
∞

1 + 1
Bi

(
φ/2

tanh(φ/2)
− 1

) (II.8)

where Bi = k∗
fd

∗
p/2D

∗
s is the mass transfer Biot number. The external mass

transfer coefficient k∗
f = 2D∗

f/d
∗
p defined in (II.6) is obtained analytically from

Fick’s law applied to the steady profile of external diffusion in an infinite domain,

C∗(r) = (C∗
s − C∗

∞)
r∗

p

r∗
+ C∗

∞. For this configuration, the surface concentration is

prescribed analytically as follows :

C∗
s =

C∗
∞

1 + γ
(

φ/2
tanh(φ/2)

− 1
) (II.9)
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which explicitly depends on the kinetics of the chemical reaction. The dimen-
sionless numbers governing the problem, in the absence of convection in fluid phase,

are the Thiele modulus φ and the diffusion coefficient ratio γ =
D∗

s

D∗
f

.

2.3 General model including convection effects

When the particle is experiencing an external-convective stream, no analytical
solution can be deduced for the surface concentration due to the inhomogeneity of
the velocity and concentration fields. Similarly to the diffusion-reaction problem
presented in the first case, where the Sherwood number was evaluated analytically,
it will be instead evaluated from one of the correlations established for convective-
diffusive problems by (Feng and Michaelides [2000], Whitaker [1972] and Ranz et al.
[1952]). According to this, the mean surface concentration C∗

s can be obtained.
In a general case, the molar flux towards the particle surface (II.6) can be written

as:

N∗
f = Sh

D∗
f

d∗
p

(C∗
s − C∗

∞) (II.10)

which under steady state conditions is equal to the consumption rate in the particle

N∗
f = −d∗

p

6
ηk∗

sC
∗
s (II.11)

where η is the effectiveness factor (II.4). The internal reaction changes only the
concentration gradient inside the particle, and thus, does not change the value of
the external Sherwood number. We assume that the concentration over the particle
surface is equal to its average C∗

s .
This gives the general expression for the surface concentration

C∗
s =

C∗
∞

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

) (II.12)

and the molar flux
N∗

f =
−C∗

∞
d∗

p

D∗

f
Sh

+ 6
d∗

pηk∗

s

(II.13)

where the Sherwood number Sh is a function of the Reynolds number Re =
ρ∗

fu
∗
refd

∗
p/µ

∗
f and the Schmidt number Sc = µ∗

f/ρ
∗
fD

∗
f , and u∗

ref is a characteristic
velocity scale. Sh is equal to 2 for pure diffusion in the fluid recovering (II.9).

3 Transfer/Reaction in presence of a fluid flow

3.1 Numerical simulations

We define the full flow domain as Ω, the part of Ω occupied by the solid particle
as P and the part of Ω occupied by the fluid as Ω\P . The whole numerical problem
involves solving the Navier-Stokes equations (II.14) and (II.15) under the no-slip
boundary condition at the particle surface r∗ = r∗

p together with the mass balance
equations in the solid (II.16) and in the fluid (II.17) submitted to the continuity
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of the concentration and the continuity of the mass flux at the particle surface ∂P
defined by r∗ = r∗

p, i.e., C∗
r∗+

p
= C∗

r∗−

p
and −D∗

f
dC∗

dr∗
|r∗+

p
= −D∗

s
dC∗

dr∗
|r∗−

p
, respectively.

A uniform flow u∗
in = u∗

ref and a constant concentration are imposed at the inlet of
the domain. The free-stream and symmetry conditions simply state that the normal
velocity, the tangential stress, and the mass flux are zero on the boundary under
consideration. The outflow condition allows the flow to leave the domain without
significantly perturbing the computed field.

∇ · u∗ = 0 , in Ω\P (II.14)

ρ∗
f

Du∗

Dt∗
= −∇p∗ + µ∇2u∗, in Ω\P (II.15)

∂C∗

∂t∗
= D∗

s∇2C∗ − k∗
sC

∗, inP (II.16)

∂C∗

∂t∗
+ u∗ · ∇C∗ = D∗

f∇2C∗, in Ω\P (II.17)

First, the Navier-Stokes equations are solved to reach steady state for the desired
Reynolds number. Then equations (II.16)-(II.17) only are solved to determine the
temporal evolution of the concentration. Starting from the initial conditions C∗ = 0
in the particle and C∗ = C∗

∞ in the fluid, the conjugate problem is solved using the
JADIM code developed in our group.

The basic numerical methods used in this code have been thoroughly described
by (Magnaudet et al. [1995] and Calmet and Magnaudet [1997]). Consequently they
will be only quickly summarized here. The JADIM code solves the incompressible
Navier-Stokes equations and the concentration equation in general orthogonal curvi-
linear coordinates. Equations are integrated in space using a finite volume method
in which advective and diffusive terms are evaluated with second-order centered
schemes. The solution is advanced in time by means of a three-step Runge-Kutta
time-stepping procedure where the nonlinear terms are computed explicitly while
the diffusive terms are treated using the semi-implicit Crank-Nicholson algorithm.
Incompressibility is satisfied after the third intermediate time step by solving a Pois-
son equation for an auxiliary potential from which the true pressure is deduced. The
complete algorithm is second order accurate in both space and time.

The orthogonal mesh grid used in the present work is presented in Fig. II.1.
The orthogonal axi-symmetric mapping is obtained by using the streamlines and
the equipotential lines of the potential flow around a circular cylinder. The mesh
is stretched in order to enforce at least four points in the external mass boundary
layer thickness that scales as Pe−1/3 (Pe = Re.Sc is the Peclet number). Simula-
tions are carried out under a 2D axi-symmetric configuration which reproduces the
geometry of a spherical particle. The fluid computational domain is limited by the
particle surface and by external boundaries on which inflow, free stream, axial sym-
metry, and outflow boundary conditions are imposed, respectively. The equations
are solved inside the particle over a polar mesh adjusted to the fluid mesh at the
particle surface. The internal mass boundary layer thickness gets thinner when the
kinetics of the chemical reaction increases. The mesh is then refined following the
scaling of the internal boundary layer as φ−1. At least four grid points stand within
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the internal boundary layer in order to compute properly the interface gradient of
concentration. A particle of radius rp is placed in domain with a spatial extension
of at least r∗

∞ = 100r∗
p, so that the assumption of infinite domain is physically valid.

Figure II.1: Domain geometry and mesh grid

Validation of internal diffusion-reaction

The numerical method has been validated in case of diffusion-reaction inside the
particle. The surface concentration has been fixed, C∗

s = 1, and the concentration
profiles have been compared at steady state to those of the analytical solution for
different values of Thiele moduli, representing slow, intermediate, and fast reaction
rates. The numerical results show a very good agreement in Fig. II.2 with the
analytical solution, (II.2).
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Figure II.2: Concentration profiles: comparison of simulations with analytical solution
for different Thiele moduli. Analytical solution is represented by continuous lines and
numerical simulations is represented by markers. Black line and black filled circles corre-
spond to φ2 = 40. Red line and open red pentagons correspond to φ2 = 4 · 102. Blue line
and opened circles correspond to φ2 = 4 · 103.

Validation of external convection-diffusion

The numerical method is firstly validated through the comparison of computed
Sherwood numbers with existing correlations in a convective-diffusive problem with-
out reaction. A spherical particle is placed at the center of a 2D axi-symmetric do-
main, Fig. II.1, of dimensions L∗

x = L∗
y = L∗

z = 100r∗
p. A constant inlet velocity is

imposed with constant concentration C∗
∞ = 0 and a constant concentration C∗

s = 1

is imposed at the particle surface. The Sherwood number Sh =
k∗

fd
∗
p

D∗
f

is evaluated

at steady state and compared with the reference correlations for Reynolds numbers
ranging from diffusive regime to Re = 200. We chose the highest value of Re = 200
so that the flow remains 2D axi-symmetric. Beyond this regime, we would need
to verify the validity of the model with 3D simulations. Our computed Sherwood
numbers are in a very good agreement with those of (Feng and Michaelides [2000])
and are shown in Fig. II.3.
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Figure II.3: Sherwood number comparison with previous references for Schmidt number
Sc = 1. Numerical results are represented by filled blue circles. The blue continuous line
stands for the correlation of (Feng and Michaelides [2000]), doted line for the correlation
of (Ranz et al. [1952]), dashed-doted line for the correlation of (Whitaker [1972]) and
dashed line for the correlation of (Clift et al. [2005]).

Diffusion-Reaction: Internal/External coupling

The analytical solution for the mean surface concentration found in (II.9) is
compared to the simulation results. In a finite domain, the concentration profile in
the fluid phase can be found through integrating (II.5), at steady state, with two
Dirichlet boundary conditions, C∗ = C∗

s |r∗=r∗

p
and C∗ = C∗

∞|r∗=r∗

B
. The concentra-

tion profile due to diffusion in a bounded spherical domain of radius r∗
B, (II.18), is

used to determined the mass transfer coefficient and the particle surface concentra-
tion.

C∗(r∗) =
r∗

pr
∗
B

(r∗
p − r∗

B)r
(C∗

∞ − C∗
s ) +

C∗
s r

∗
p − C∗

∞r
∗
B

r∗
p − r∗

B

(II.18)

To validate our numerical simulations, we use the surface concentration C∗
s pro-

vided by (II.9). We compare the dimensionless concentration profiles in the particle,
i.e., (II.2) and in the fluid phase, i.e., (II.18) to our computed profiles. We consider
two different cases. In the first case, we set the Thiele modulus to φ = 20 and the
diffusion ratio to γ = 10 and plot analytical and computed solutions in Fig. II.4.
In the second case, we set the Thiele modulus to φ = 20 and the diffusion ratio
to γ = 0.1 and plot analytical and computed solutions in Fig. II.5. A very good
agreement has been obtained between the analytical predictions and the numerical
simulations.
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Figure II.4: Concentration profile as function of dimensionless radius for γ = 10 and
φ = 20. Inset stands for a zoom on the particle surface (r∗/r∗

p = 1). Particle interface is
represented by vertical dashed-doted line, analytical solution corresponds to continuous
line and numerical solution to open circles.

Figure II.5: Concentration profile as function of dimensionless radius for γ = 0.1 and
φ = 20. Inset stands for a zoom on the particle surface (r∗/r∗

p = 1). Particle interface is
represented by vertical dashed-doted line, analytical solution corresponds to continuous
line and numerical solution by open circles.

Then, we vary the Thiele modulus φ from 0 to 40 and we plot the surface con-
centration for Re = 0 corresponding to external diffusion only (Sh = 2) in Fig. II.6.
Our computed results show again a very good agreement with the analytical pre-
diction.
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Figure II.6: Surface concentration as function of Thiele modulus at steady state in the
diffusive regime. Continuous line and black circles correspond to analytical solution and
simulation results respectively.

3.2 Fully coupled model and simulations

In this section the hydrodynamics is added to the problem and the particle ex-
periences external convection with a uniform inlet velocity as sketched in Fig. II.7,
i.e., at Reynolds number Re 6= 0.

The problem is treated as two coupled systems: an external problem involving
convection-diffusion and an internal problem involving diffusion-reaction. In this
case, the problem is governed by the following four dimensionless numbers: the
Thiele modulus φ and the diffusion coefficient ratio γ for diffusion-reaction, and the
Reynolds number Re and the Schmidt Sc for convection-diffusion.

The ranges of dimensional physical parameters generally encountered in gas-
solid and liquid-solid industrial applications are summarized in Table(II.1). Liquids
are typically hydrocarbons such as Heptane, Decane, or Hexadecane. Gases are a
mixture of hydrogen gas and hydrocarbons. According to this table, the correspond-
ing ranges of dimensionless numbers are: γ ∈ [0.01, 1], φ ∈ [0.02, 6], Re ∈ [0, 200],
and Sc ∈ [1, 1000].

Parameter Catalyst particle Liquid Gas
D∗ (m2s−1) 10−6 − 10−10 ∼ 10−9 10−6 − 10−5

r∗
p (mm) 1 − 5 − −
k∗

s (s−1) 10−6 − 10 − −
u∗

f (cm s−1) − 1 − 2 0.2 − 20
µ∗

f (mPa s) − 0.386 − 0.92 ∼ 0.9
ρ∗

f (kg m−3) − 695 − 770 ∼ 100

Table II.1: Physical properties of industrial gas-solid and liquid-solid reactive particulate
systems.
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Figure II.7: Schematic diagram of the flow configuration and physical properties. The
numerical domain size is L∗

x × L∗
y = 100r∗

p × 100r∗
p.

In this case, fluid flows with an imposed inlet concentration and reacts within
the catalyst particle.

(a) φ = 2, Re = 100, Sc = 1 and γ = 10.

(b) φ = 6, Re = 100, Sc = 1 and γ = 10.

(c) φ = 200, Re = 100, Sc = 1 and γ = 10.

Figure II.8: Concentration spatial distribution for a) slow reaction b) intermediate, and
c) fast reactions at Reynolds number Re = 100.

According to reaction kinetics, three regimes can be identified as follows.
1) If the reaction rate is sufficiently slow compared to the diffusion rate (φ ≪ 1),
the concentration at the catalyst particle surface is the same as the inlet fluid con-
centration. This regime is referred to as reaction limited.
2) When the reaction rate is extremely fast (φ ≫ 1) compared to diffusion rate,
the catalyst surface concentration approaches zero and the process is controlled by
mass transfer resistance.
3) The third regime is when none of the two previous regimes is predominant and
the catalyst surface concentration is unknown. The aim of our work is to propose a
model covering the three regimes. The model for the prediction of the mean surface
concentration is presented in (II.12) and compared to numerical simulations to test
the validity of the range of physical parameters listed in Table(II.1).

The external Sherwood number is evaluated from the correlation of Feng and
Michaelides [2000] given in (II.19). This correlation corresponds to a purely mass
transfer controlled system and is valid for Peclet and Reynolds numbers above 10.
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It exhibits the best agreement with our numerical results for convective-diffusive
mass transfer as shown in Fig. II.3. Note that for a convection free, i.e., purely
diffusive, problem the solution is analytical as the external Sherwood number has
an exact value 2 which unfortunately is not the limit of the correlation towards low
Peclet and Reynolds numbers.

Sh = 0.922 + Pe1/3 + 0.1Re1/3Pe1/3 (II.19)

In the presence of chemical reaction, the mean surface concentration C∗
s has been

numerically evaluated according to (II.20) and computed results are compared with
the model.

C∗
s =

1
2

π∫

0

C∗(r∗ = r∗
p, θ) sin(θ)dθ (II.20)

First, we set the Schmidt number to Sc = 1 and the diffusion coefficient ratio to
γ = 0.1. We plot in Fig. II.9 the mean surface concentration as a function of the
Reynolds number from 20 to 200 for 3 values of the Thiele modulus φ = 60, φ =
200 and φ = 6·104. Second, we set the Schmidt number to Sc = 10 and the diffusion
coefficient ratio to γ = 0.1. We plot in Fig. II.10 the mean surface concentration
as a function of the Reynolds number from 20 to 200 for 3 values of the Thiele
modulus φ = 200, φ = 632 and φ = 2 ·104. In all cases, the surface concentration is
observed to be decreasing with the increase of Thiele modulus at constant Reynolds
number and increasing with the increase of the Reynolds number at constant Thiele
modulus. In general, our computed results match well our proposed model (II.12).

Figure II.9: Mean surface concentration as function of Reynolds number at steady state,
Sc = 1, γ = 0.1 and three Thiele moduli. Case 1, φ = 60, model represented by dashed-
doted line and simulations by blue disks. Case 2, φ = 200, model represented by red line
and simulations by red triangles. Case 3, φ = 6 · 104, model represented by dashed-doted
green line and simulations by green squares. The error bars correspond to minimum and
maximum concentration values along θ.
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Figure II.10: Mean surface concentration as function of Reynolds number at steady
state, Sc = 10, γ = 0.1 and 3 Thiele moduli. Case 1, φ = 200, model represented by
dashed-doted line and simulations by blue disks. Case 2, φ = 632, model represented
by red line and simulations by red triangles. Case 3, φ = 2 · 104, model represented by
dashed-doted green line and simulations by green squares. The error bars correspond to
minimum and maximum concentration values along θ.

(a) (b) (c) (d) (e)

Figure II.11: Spatial distribution of concentration at Reynolds number Re = 100,
Sc = 10 and γ = 0.1 for different Thiele moduli. a) φ = 2, b) φ = 20, c) φ = 200, d)
φ = 632 and e) φ = 2 · 104.

The spatial distributions of concentration are shown in Fig. II.11 for four Thiele
moduli. a) represents a slow reaction rate or kinetics limited system with φ = 2. e)
represents a mass transfer controlled system for Thiele modulus φ = 2 · 104, b), c)
and d) represent a system that is neither reaction nor mass transfer controlled.
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Figure II.12: Surface concentration variation along the arc length at Reynolds number
Re = 100, Sc = 10 and γ = 0.1 for different Thiele moduli. Case A, φ = 2 represented
by continuous line and right triangles. Case B, φ = 20 represented by continuous line
and left triangles. Case C, φ = 200 represented by continuous line and squares. Case
D, φ = 632, represented by continuous line and circles. Case E φ = 2 · 104, represented
by continuous line and up-down triangles. Horizontal dashed doted lines correspond to
mean surface concentration C∗

s and vertical dashed line locates the separation angle θs of
the wake streamlines.

The concentration profiles along the arc length have been plotted in Fig. II.12.
In case A, the surface concentration is constant and is equal to that of inlet fluid. In
case E, the surface concentration is also constant and it approaches zero. In cases
B, C and D the systems are neither controlled by kinetics nor by mass transfer and
the surface concentration is non-uniform and attains a minimum near the separa-
tion angle θs of the wake. These spatial variations of the surface concentration may
induce non-uniformity of the local mass flux. We investigate the variations of the
local dimensionless flux 2π ∂C

∂r
r2sin(θ)dθ along the arc length θ. In Fig. II.13, the

local flux has been normalized by its average for the cases A, C and E of Fig. II.12.
For case A, the concentration gradient normal to the particle surface is almost
constant while the surface concentration is equal to the bulk concentration. The
local flux of mass follows the variation of the sine function corresponding to local
element of surface (zero at the poles and maximum in the equatorial plane). For
cases C and E, the gradient of concentration varies along θ in combination with
the elementary surface yielding non-monotonous variation of the local mass flux.
Mass flux is enhanced in the region of strong effect of convection (between π/4 in
the front of the particle and the equatorial plane) while chemical reaction yields
lower concentration at the rear of the particle. This can be observed in Fig. II.12.
All those non-uniformities of concentration and mass flux distributions cancel out
yielding good accuracy of our simple modeling based on uniform surface concentra-
tion. This is supported by Fig. II.14 showing that the concentration profiles for
any angle within the particle is very close to the analytic Thiele profile when the
concentration is made dimensionless by the local surface concentration C∗

s (θ).
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Figure II.13: Local dimensionless mass flux along the arc length at Reynolds number
Re = 100, Sc = 10 and γ = 0.1 for different Thiele moduli. Case A, φ = 2 represented
by red line. Case C, φ = 200 represented by blue line. Case E, φ = 2 · 104 represented by
green line.

(a) (b) (c)

Figure II.14: Concentration profiles Cr inside the particle normalized by the local
surface concentration for different angles θ for the three cases that correspond to Re = 100,
Sc = 10 and γ = 0.1 for different Thiele moduli. a) corresponds to Case B, φ = 20. b)
corresponds to Case C, φ = 200. c) corresponds to Case E, φ = 2 · 104.

We focus now on the mean volume concentration within the particle which can
be determined numerically by integrating the spatial distribution of concentration:

C∗
v =

6
πd∗3

p

∫ 2π

0

∫ π

0

∫ r∗

p

0
C(r∗, θ)sin(θ)r∗2dϕdθdr∗ (II.21)

When the mean surface concentration C∗
s is known, the mean volume concen-

tration can be evaluated analytically as:

C∗
v = ηC∗

s =
6C∗

s

φ

(
1

tanh(φ/2)
− 2
φ

)
(II.22)
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C∗
s is estimated by the model (II.12) and therefore the mean volume concentration

can be written as follows:

C∗
v =

3C∗
∞

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

)
(

2
φtanh(φ/2)

− 4
φ2

)
(II.23)

The molar flux towards the particle at steady state is balanced by internal
reaction. We can define the factor of enhancement in (II.24) that measures the
effect of the chemical reaction to a reference case without any resistance to transfer.
This factor for a catalyst particle is defined as the internal rate of reaction inside the
particle, to the rate that would be attained with a particle at uniform concentration
C∗

∞ corresponding to maximum consumption rate. For a reactive catalyst particle
experiencing an external convective-diffusive stream, the enhancement factor can
be expressed as:

Ẽ =
∫ 2π

0

∫ π
0

∫ r∗

p

0 −k∗
sC

∗(r∗, θ)sin(θ)r∗2dϕdθdr∗

−k∗
s

πd∗3
p

6
C∗

∞

=
3(φ/2 − tanh(φ/2))

φ2

4
tanh(φ/2)

[
1 +

2γ
Sh

(
φ/2

tanh(φ/2)
− 1

)]

(II.24)

Depending on reaction kinetics, the enhancement factor has two asymptotic
limits. For very slow reaction, i.e φ ≪ 1, the process is kinetics controlled and the
catalyst surface concentration is equal to fluid inlet concentration, therefore Ẽ → 1.
For fast reaction, i.e φ ≫ 1, the process is limited by mass transfer and the surface
concentration approaches zero, in this case Ẽ → 1/(1 + γφ2

6Sh
) which is lower than

one and may be very small for φ2γ/Sh ≫ 1.

Figure II.15: Enhancement factor as function of Reynolds number at steady state,
Sc = 1, γ = 0.1 and 3 Thiele moduli. Case 1, φ = 60, model represented by dashed-doted
line and simulations by blue disks. Case 2, φ = 200, model represented by red line and
simulations by red triangles. Case 3, φ = 6 ·104 model represented by dashed-doted green
line and simulations by green squares.
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Figure II.16: Enhancement factor as function of Reynolds number at steady state,
Sc = 10, γ = 0.1 and 3 Thiele moduli. Case 1, φ = 200, model represented by dashed-
doted line and simulations by blue disks. Case 2, φ = 632, model represented by red line
and simulations by red triangles. Case 3, φ = 6 · 104 model represented by dashed-doted
green line and simulations by green squares.

We compare the enhancement factor Ẽ = η
C∗

s

C∗
∞

=
C∗

v

C∗
∞

from the numerical

simulations to the predictions of the model. The results shown in Fig. II.15 and
Fig. II.16 correspond to cases presented for mean surface concentration in Fig. II.9
and Fig. II.10, respectively. A slight overestimation of the model occurs at high
Reynolds number and Sc = 10.

4 Transient evolution

4.1 Unsteady mass balance

The aim of our work is to establish a model for a mass transfer coefficient which
accounts for the effect of a first order irreversible reaction along with convection
and diffusion. The model depends on mean volume concentration instead of mean
surface concentration, and can be used as a closure law in meso-scale simulations
such as DEM-CFD, where mean quantities are known at particle scale. In the DEM-
CFD framework, the particle concentration is a Lagrangian quantity the evolution of
which is integrated over time along the trajectory. Therefore, there is no resolution
of the interior of the particle assuming homogeneous concentration. The purpose
of our model is indeed to account for internal mass diffusion and reaction due
to the coupling of internal and external transport phenomena corresponding to
non-uniform concentration distributions that can not be resolved in DEM-CFD
(particles are much smaller than the mesh cells). Thus, the mass flux balance is
expressed as:

πd∗3
p

6
dC∗

v

dt∗
= −4πr∗2

p h
∗(C∗

v − C∗
∞) − πd∗3

p

6
ksC∗

v (II.25)
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Mass conservation yields

4πr∗2
p h

∗(C∗
v − C∗

∞) = 4πr∗2
p k

∗
f (C∗

s − C∗
∞) (II.26)

where k∗
f is the external mass transfer coefficient referring to concentration dif-

ference ∆C∗ = (C∗
s − C∗

∞), and h∗ is the overall mass transfer coefficient that
accounts for internal and external effects and refers to the mean catalyst particle
concentration, ∆C∗ = (C∗

v −C∗
∞). Thus, the mass transfer coefficient including the

effect of chemical reaction can be obtained as:

h∗ = k∗
f

∆C∗

∆C∗
= k∗

f

1 − Ẽ/η

1 − Ẽ
(II.27)

which can be written in a dimensionless form as an effective Sherwood number

S̃h =
h∗d∗

p

D∗
f

.

Substituting the effectiveness and enhancement factors, S̃h(Re, Sc, φ, γ) can be
written as:

S̃h(Re, Sc, φ, γ) =
Sh(Re, Sc)

Sh(Re, Sc)
2γ

[
tanh(φ/2)

φ/2 − tanh(φ/2)
− 12
φ2

]
+ 1

(II.28)

This is equivalent to the additivity rule, i.e., the summation of the resistances
to transfer:

1
S̃h

=
1

2γ

[
tanh(φ/2)

φ/2 − tanh(φ/2)
− 12
φ2

]
+

1
Sh

(II.29)

The model presented in (II.29) has two asymptotic limits. For very fast reaction,
i.e when Thiele modulus φ → ∞, the term

[
tanh(φ/2)

φ/2−tanh(φ/2)
− 12

φ2

]
→ 0 and therefore

S̃h → Sh. In this case the system is controlled by mass transfer. For very slow
reaction, i.e Thiele modulus φ → 0, the term

[
tanh(φ/2)

φ/2−tanh(φ/2)
− 12

φ2

]
→ ∞ yielding

S̃h → 0 . In this case, mass transfer is controlled by internal reaction kinetics.
Between the asymptotic regimes, the system is neither mass transfer nor kinetics
controlled. Numerical simulations have been performed and S̃h has been calculated
numerically according to (II.30) to be compared to our model given by (II.28).

S̃hsim =
d∗

p

2(C∗
∞ − C∗

v )

∫ π

0

(
∂C∗(r∗, θ)

∂r∗

)

r∗=r∗

p

sin(θ)dθ (II.30)

We present two sets of simulation to validate the model. In set 1, we set Sc = 1,
γ = 0.1, consider three Thiele moduli : [φ = 60, Case 1], [φ = 200, Case 2] and
[φ = 6 · 104, Case 3], and vary Re from 20 to 200. In set 2, we set Sc = 10, γ = 0.1,
consider three Thiele moduli : [φ = 200, Case 1], [φ = 632, Case 2] and [φ = 2 · 104,
Case 3], and vary Re from 20 to 200. Computed results from sets 1 and 2 are plotted
in Fig. II.17 and Fig. II.18, respectively. They show a very good agreement with
the predictions of our model.
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Figure II.17: S̃h as function of Reynolds number at steady state, Sc = 1, γ = 0.1 and
three Thiele moduli. Case 1, φ = 60, model represented by red dashed-doted line and
simulation results by disks. Case 2, φ = 200, model represented by blue continuous line
and simulation results by squares. Case 3, φ = 6 · 104, model represented by red dashed
line and simulation results by triangles. The + markers correspond to the correlation of
(Feng and Michaelides [2000]).

Figure II.18: S̃h as function of Reynolds number at steady state, Sc = 10, γ = 0.1 and
three Thiele moduli . Case 1, φ = 200, model represented by red dashed-doted line and
simulation results by disks. Case 2, φ = 632, model represented by blue continuous line
and simulation results by squares. Case 3, φ = 2 · 104, model represented by red dashed
line and simulation results by triangles. The + markers correspond to the correlation of
(Feng and Michaelides [2000]).

4.2 Transient evolution of catalyst bead concentration

We consider here a particle of mean initial volume concentration C∗
v (t∗ = 0) = 0,

placed in a steady stream of uniform concentration C∗
∞. A first order reaction

is taking place within the particle. The temporal evolution of the mean volume
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concentration within the particle is described by (II.25), which can be written in a
dimensionless form as follows:

dCv

dt
= −(Cv − 1) − ksCv (II.31)

with Cv = C∗
v/C

∗
∞ and ks = k∗

sd
∗
p/6h

∗. At steady state,
dC

dt
= 0, which yields

the mean volume concentration as:

Cf =

(
1 +

k∗
sd

∗
p

6h∗

)−1

=

(
1 +

γφ2

6S̃h

)−1

(II.32)

Cf is equal to the mean volume concentration found by the steady balance in
(II.23) normalized by C∞. The analytic solution of (II.31) is:

Cv(t) = Cf

(
1 − exp

(−t
Cf

))
(II.33)

where t = t∗/τ ∗ is the dimensionless time and τ ∗ = d∗
p/6h

∗ with h∗ = S̃hD∗
f/d

∗
p

is the mass transfer coefficient given by (II.28).

We compare the unsteady predictions of the model to computed results through
two sets of simulations (each of them at a fixed Reynolds number). In set 1, we
set Re = 200, Sc = 10, γ = 0.1 and vary φ from 0.6 to 20. We plot the results in
Fig. II.19. In set 2, we set Re = 100, Sc = 1, γ = 0.1 and vary φ from 0.88 to
28.2. We plot the results in Fig. II.20. The model has shown its ability to predict
the characteristic time of the mean concentration evolution and a good agreement
has been observed between the model and the numerical simulations, although
we assumed the mass transfer rate to be constant. The transient model allows to
estimate the time needed for a catalyst bead to reach its steady mean concentration.
Typically, the characteristic time is less than a second for a gas-solid system and
around tens of seconds for liquid-solid systems.
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Figure II.19: Temporal evolution of the dimensionless mean volume concentration,
model comparison with simulation for Re = 200, Sc = 10, γ = 0.1 and four Thiele
moduli. Model represented by dashed and simulation by continuous lines, respectively.
Case1, φ = 0.6 - black color. Case 2, φ = 2 - blue color. Case 3, φ = 6 - red color. Case
4, φ = 20 - green color.

Figure II.20: Temporal evolution of the dimensionless mean volume concentration,
model comparison with simulation for Re = 100, Sc = 1, γ = 0.1 and four Thiele moduli.
Model represented by dashed and simulation by continuous lines, respectively. Case1,
φ = 0.88 - black color. Case 2, φ = 2.8 - blue color. Case 3, φ = 8.8 - red color. Case 4,
φ = 28.2 - green color.

5 Conclusion and future work

We investigated mass transfer for a system composed of an isolated solid spher-
ical catalyst particle placed within a fluid stream. Reactant diffuses from the fluid
phase to the solid phase where a first order irreversible chemical reaction takes place.
The problem is treated by coupling external convection-diffusion in the fluid phase
to diffusion-reaction in the solid phase through appropriate boundary conditions,
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namely continuity of concentration and continuity of flux at the particle interface.
We solved the whole problem in two ways: (i) through boundary fitted numerical
simulations of the full set of equations and (ii) through a simple semi-analytical
approach that couples a correlation for the external transfer to an analytical solu-
tion of the internal diffusion-reaction equation. The interplay between the different
transport phenomena can be quantified through an effective Sherwood number as-
suming steady state. The prediction of this effective Sherwood number in such
systems has a key role in terms of modeling while it allows to estimate the equilib-
rium internal mean concentration of the particle without using the determination
of the surface concentration (unknown in such situations).

The model has been validated step by step. To start with, a diffusion-reaction
problem has been considered in the absence of convection in the fluid phase. In this
case, the external Sherwood number has an analytical solution Sh = 2. This allows
to find the analytical solution for the surface concentration at steady state and to
test the accuracy of our numerical simulations. Then, the particle was exposed to
an external fluid stream with an inlet concentration C∞. In this case, the mean
surface concentration has been modeled using a classical correlation for the mass
transfer coefficient. Our model was compared with numerical simulations over a
wide range of dimensionless parameters. Both mean surface and mean volume con-
centrations predicted by our model showed a satisfactory agreement with numerical
simulation results. This satisfactory agreement also support that notion that the
assumptions of the model are appropriate.

An expression for the mass tranfer coefficient that accounts for internal and
external effects in the system has been proposed, via general mass balance for the
system and equivalently using additivity rule of resistances to mass transfer. It has
also been validated through comparison with numerical simulations. The major re-
sult of our study is that our simple model based on decoupled treatment of internal
and external mass transfer gives very accurate results. The asymptotic limits of
the model have been analyzed and are in accordance with general expectations for
slow and fast reaction rates. Finally, the unsteady response on the system has been
tested. A model that predicts the time evolution of the mean volume concentration
has been established. It is in a very good agreement with unsteady simulations
results.

Possible extensions of this model are as follows. To be useful for engineering
applications, such model should include the effect of neighboring particles corre-
sponding to situations at higher solid volume fraction as a fixed bed or a fluidized
bed. The effect of the particle volume fraction can be investigated with a particle-
resolved numerical approach that solves both internal and external mass balances
either with a boundary fitted mesh (Partopour and Dixon [2017a]) or with an im-
mersed boundary/ghost fluid method (Shao et al. [2012]). Another extension of
our work is to address more complex chemical reactions as, e.g., different reaction
kinetics, second order reactions or multiple reactions with additional species.
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Abstract
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Thiele modulus.

We suggest a reactive Sherwood number model for convective mass transfer around reactive particles in a

dilute regime. The model is constructed with a simple external-internal coupling and is validated with Particle-

Resolved Simulation (PRS). The PRS of reactive particle-fluid systems requires numerical methods able to

handle efficiently sharp gradients of concentration and potential discontinuities of gradient concentrations at

the fluid-particle interface. To simulate mass transfer from reactive catalyst beads immersed in a fluid flow, we

coupled the Sharp Interface Method (SIM) to a Distributed Lagrange Multiplier/Fictious Domain (DLM/FD)

two-phase flow solver. The accuracy of the numerical method is evaluated by comparison to analytic solutions

and to generic test cases fully resolved by boundary fitted simulations. A previous theoretical model that

couples the internal diffusion-reaction problem with the external advection-diffusion mass transfer in the fluid

phase is extended to the configuration of three aligned spherical particles representative of a dilute particle-laden

flow. Predictions of surface concentration, mass transfer coefficient and chemical effectiveness factor of catalyst

particles are validated by DLM-FD/SIM simulations. It is shown that the model captures properly the effect

of an internal first order chemical reaction on the overall respective reactive Sherwood number of each sphere

depending on their relative positions. The proposed correlation for the reactive Sherwood number is based

on an existing non-reactive Sherwood number correlation. The model can be later used in Euler/Lagrange or

Euler/Euler modelling of dilute reactive particle-laden flows.

Graphical Abstract

(a) Re = 50, γ = 0.1, Sc = 1 and φ2
= 40

(b) Re = 50, γ = 0.1, Sc = 1 and φ2
= 200

(c) Re = 50, γ = 0.1, Sc = 1 and φ2
= ∞
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1 Introduction

Systems involving interactions of a dispersed solid phase with a continuous fluid
phase through momentum, heat and mass transfer are ubiquitous in a wide range
of industrial and energetic processes. A classical process in the chemical enginering
industry is catalytic cracking in a reactor. If the dispersed solid phase, commonly
referred to as particles, is fixed in the reactor, the system is known as a fixed bed
and the flow is relevant of the flow through a porous medium represented by the
network of randomly stacked catalytic particles [Furuta et al., 2006]. If particles
are mobile, the system is known as a fluidized bed [Gidaspow, 1994, Montero et al.,
2018]. In both reactors, the fluid enters the system with an imposed concentra-
tion of reactants and reactants are transferred from fluid phase bulk to catalytic
particles bulk through diffusion, where chemical reactions take place in the form of
heterogeneously catalyzed gas or liquid reaction. The modeling, operation, design
and optimization of these systems necessitate an advanced comprehension of the
coupling among the dominant transfer phenomena, namely momentum, heat, and
mass transfer, that are usually associated to the presence of chemical reactions.
For decades, operating experimental setups and deriving simplified analytical so-
lutions were the two only ways to improve the comprehension of these systems.
With the emergence of robust, accurate and computationally efficient numerical
approaches/methods, we can complement and extend our comprehension with, e.g.,
reliable information about the micro-scale interactions in these systems that are not
accessible through experiments or theory.

Over the past two decades, diverse Computational Fluid Dynamics (CFD) ap-
proaches/methods for the simulation of systems involving fluid/solid interactions
have been developed. Combined to the increasing power of supercomputers that
now enables one to perform Direct Numerical Simulations (DNS) at the scale of
particles, CFD tools are now capable of supplying reliable and high quality detailed
data in the flow. In this class of highly resolved CFD methods, Particle Resolved
Simulation (PRS) has arisen as a mature method able to provide reliable local infor-
mation about momentum, heat and mass transfer at the particle scale in particulate
flows (Sun et al. [2016] among many others). PRS methods can be classified into
two categories:

The first category comprises body-fitted mesh methods. The advantage of this
type of method relies on the ease to enforce boundary conditions at the particle
surface, i.e., at the fluid/particle interface. This technique has been used to investi-
gate transport properties in a bed made of multiple fixed particles by Romkes et al.
[2003], Augier et al. [2010a] and convective heat/mass transfer over a single particle
by Feng and Michaelides [2000]. It has also been employed for moving particles by
Hu et al. [2001] and moving boundaries by Duarte et al. [2004].

The second category comprises fixed mesh methods. The challenge of this type
of method is the difficulty in enforcing the correct boundary conditions at the par-
ticle surface while the main advantage is the use of a regular cartesian grid. The
Immersed Boundary Method (IBM) uses Lagrangian markers at the particle surface
to impose boundary conditions and introduces an additional forcing term [Uhlmann,
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2005]. Xia et al. [2014] applied IBM to study convective heat/mass transfer over a
single particle. IBM was also used to evaluate the heat transfer Nusselt number in
dense particulate flow systems by Deen et al. [2014] and Sun et al. [2015]. Both stud-
ies compared their results to the pioneering experimental work of Gunn [1978] and
proposed corrections of Gunn’s correlation based on their data sets. Recently, IBM
has been used by Lu et al. [2018] to examine mass transfer in particulate flows with
surface reaction. The Lattice Boltzmann Method (LBM) is another computational
method that uses a fixed mesh. LBM has also been applied to particulate flows with
heat transfer by Khiabani et al. [2010] and Kruggel-Emden et al. [2016]. Unlike
conventional discretization schemes that solve the classical conservation equations,
LBM solves convection-collision steps of probability density functions. Finally, the
Distributed Lagrange Multiplier / Fictitious Domain Method (DLM/FD), firstly
introduced by Glowinski et al. [2001], combines the particle and fluid equations of
motion into a single, weak, and general equation of motion called combined momen-
tum equation. The combined equations are derived through the combined velocity
space incorporating the rigid body motion (no-slip) in the particle. The DLM/FD
method has been extended to treat heat/mass transfer by Yu et al. [2006], Dan and
Wachs [2010] and Wachs [2011b].

Apart from Yu et al. [2006] that considered diffusion inside particles, the common
feature of the aforementioned fixed-mesh methods is that they solve the convection-
diffusion equation by enforcing a uniform temperature (or concentration) in the
whole solid particle volume. This type of method is inadequate for the treatment of
systems where temperature/concentration gradients are prominent within the parti-
cle. In this case, the convection-diffusion (or convection-diffusion-reaction) equation
must be solved in both domains, i.e., in the solid domain and in the fluid domain.
Augier et al. [2010b] used a Volume of Fluid method (VOF) to study the efficiency
of partially-wetted stacked catalyst particles. Catalyst efficiency was studied for
different particles shapes as a function of Thiele modulus. Haroun et al. [2010]
employed a VOF method to study interfacial-reactive mass transfer in two-phase
flows. Although efficient, the VOF method necessitates a highly refined mesh at in-
terfaces in order to accurately enforce the correct boundary conditions, which may
render, for a fixed Cartesian mesh, the method computationally inefficient due to
the huge computational cost. The main drawback of the VOF method is that it is
not capturing discontinuities.

The Sharp Interface Method (SIM), also referred to as Ghost Fluid Method
(GFM), is a fixed-mesh numerical method used to accurately capture boundary
conditions with discontinuities along embedded interfaces [Shi et al., 2011]. In the
SIM, jump conditions are incorporated in the discretization of the differential opera-
tors on the Cartesian grid in the vicinity of the interface. SIM was firstly introduced
by Fedkiw et al. [1999] and employed to impose boundary conditions at a contact
discontinuity in the inviscid Euler equations. SIM was later extended to treat more
general discontinuities by Liu et al. [2000]. In their work, Liu et al. [2000] developed
a version of SIM to address the problem of inhomogeneous Poisson equation in the
presence of interfaces. The method is easy to implement in three dimensions and
the matrix associated to the discrete Laplacian operator remains symmetric, allow-
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ing to use ‘black box’ scientific libraries to solve the corresponding linear system.
Gibou et al. [2002] considered the Poisson equation with a non-uniform coefficient
and Dirichlet boundary conditions on an irregular domain and showed that a sec-
ond order accuracy can be obtained with a simple discretization scheme that also
preserves the matrix symmetry. Udaykumar and Mao [2002] and Gibou et al. [2003]
employed the SIM to track the evolution of solidification fronts in the presence of
heat and solute transport in the dendritic solidification of aqueous salt solutions.
Kang et al. [2000] extended the SIM to treat multiphase incompressible flows in-
cluding effects of viscosity, surface tension and gravity and applied the method to
two-phase water-air mixtures. Marella et al. [2005] used a SIM to simulate im-
mersed boundary problems while Liu et al. [2005] simulated droplet interactions
with objects of different shapes using a SIM that accounts for surface tension and
viscosity jumps. Kapahi et al. [2013] used a modified SIM to treat interfaces of
embedded objects, with an application to shock-wave particulate flows. Finally, to
end this non-exhaustive list of SIM-related works, Shao et al. [2012] combined the
SIM with a Fictitious Domain method to simulate heat transfer in particulate flows
with heat diffusion inside particles.

PRS is very powerful to supply high quality data inside the flow but is still
limited to up to a few thousands, at best a few tens of thousands, of particles
due to the large computing cost of these simulations. Finely resolved simulations
as PRS can easily comprise hundreds of millions, and even a few billions, of grid
cells, that represent highly challenging parallel computing problems, whether on
multi-CPU or the emerging GPU/multi-GPU technology. Thereby, from a mod-
elling viewpoint, there has been a sustained appeal to combine these particle-scale
models to larger scale models, namely Euler/Lagrange at the so-called meso scale
and Eulere/Euler at the so-called macro scale. The conceptual features of a fully
integrated multi-scale modeling of particle-laden flows is comprehensively described
by Deen et al. [2014]. The vast majority of the multi-scale approaches suggested in
the field of particle-laden flows assume a bottom-up strategy or phrased in a more
emphatic way an upwards cascade of knowledge. In short, what is learnt through
highly resolved simulations at the micro scale on small representative systems is
meant to be transferred to higher scale models and to contribute to a deeper under-
standing of the particle-laden flow dynamics. Among the assorted ways to transfer
knowledge, the most popular way has undoubtedly been over the last 15 years to
enhance existing correlations for dimensionless numbers representative of momen-
tum, heat or mass transfer. Among many others, Deen et al. [2014] and Sun et al.
[2015] suggested corrections to enhance the Nusselt number correlation suggested
by Gunn [1978] 30 years earlier. Our objective in this paper follows the same line,
i.e., to suggest a new correlation or to enhance an existing correlation derived from
micro scale PRS that can be later used in meso scale Euler/Lagrange and macro
scale Euler/Euler modelling.

In the present study, we combine a Fictitious Domain method and a first or-
der Sharp Interface method to investigate mass transfer in particulate flows in the
presence of a first order reaction inside particles. The 3D simulation results sup-
plied by this computational Method in a flow configuration representative of dilute
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particle-laden flows are used to assess the validity of a reactive Sherwood number
correlation that we already suggested for the case of a single sphere in an unbounded
domain in Sulaiman et al. [2018a] and that we revisit later in this work. We intend
to show that a reactive Sherwood number correlation can be constructed based on
simple external-internal coupling. The obtained model relies on any non-reactive
Sherwood number correlation available in the literature and is deemed to perform
well. The rest of the paper is organized as follows. We shortly summarized in
Section 1 the equations and the corresponding dimensionless numbers governing
the problem. Section 3 elaborates on the features of our numerical method that
combines a DLM/FD method to compute the flow field and a SIM to compute
the chemical species concentration field. Then, we present in Section 4 a series of
validation tests of growing complexity involving a single sphere. We start with diffu-
sion, then move on with diffusion-reaction, convection-diffusion, and finally consider
convection-diffusion-reaction. In the last case, and due to the lack of analytical so-
lutions and previously established correlations to compare our numerical results to,
we perform a comparison between SIM and a body-fitted method that fully resolves
the interface to investigate the efficiency of our SIM method and determine its lim-
its of validity in terms of range of dimensionless parameters considered and grid
size, through a series of convergence tests. We also show, through comparison in a
diffusion-reaction case, the advantage of SIM over VOF. Finally, and this is the core
of this work, we investigate in Section 5 the problem of three interacting spheres,
firstly presented by Ramachandran et al. [1989] for heat transfer without diffusion
and chemical reaction inside the spheres, with mass transfer coupled to diffusion
and chemical reaction inside the spheres. We test our reactive Sherwood number
correlation on this configuration. The validity of the model and the steps forward
in extending/improving our reactive Sherwood number correlation are discussed in
Section 6.

2 Governing equations

We aim at solving the time-dependent and incompressible flow of a Newtonian
fluid past multiple fixed obstacles with mass transfer between the fluid and the
solid obstacles. We define the full flow domain as Ω, the part of Ω occupied by the
solid obstacles as P and the part of Ω occupied by the fluid as Ω\P . The prob-
lem is governed by the following conservation equations: fluid mass conservation,
fluid momentum conservation and chemical species conservation. Here we assume
a single chemical species C at a low concentration in the fluid such that it does
not affect the constant density and viscosity of the fluid. Dimensional quantities
are distinguished from dimensionless quantities by a "*" superscript. We denote
u∗ the fluid velocity, p∗ the fluid pressure, C∗

f the chemical species concentration
in the fluid and C∗

s the chemical species concentration in the solid. The chemical
species is assumed to undergo a first order reaction in the solid obstacles. With
appropriate initial conditions in Ω on (u∗, C∗

f , C
∗
s ) and boundary conditions on ∂Ω,

the boundary of Ω, on u∗ (and potentially on p∗), the set of conservation equations
together with fluid/solid interface conditions is written as follows:
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in the fluid

ρ∗
f

(
∂u∗

∂t∗
+ (u∗ · ∇)u∗

)
− η∗∇2u∗ + ∇p∗ = 0, (III.1)

∇ · u∗ = 0, (III.2)
∂C∗

f

∂t∗
+ u∗ · ∇C∗

f − ∇ · (D∗
f∇C∗

f ) = 0, (III.3)

where ρ∗
f denotes the fluid density, η∗ the fluid viscosity and D∗

f the chemical species
diffusion coefficient in the fluid.
in the solid

u∗ = 0, (III.4)
∂C∗

s

∂t∗
− ∇ · (D∗

s∇C∗
s ) = −k∗

sC
∗
s , (III.5)

where D∗
s denotes chemical species effective diffusion coefficient in the solid and k∗

s

the effective first order reaction constant in the solid.
at the fluid/solid interface ∂P

u∗ = 0, (III.6)

C∗
s = C∗

f , (III.7)

−D∗
s

∂C∗
s

∂n
= −D∗

f

∂C∗
f

∂n
, (III.8)

where n denotes the unit normal vector at the fluid/solid interface.

Governing equations are made dimensionless by introducing a characteristic
length L∗

c , a characteristic velocity U∗
c and a characteristic convective time T ∗

c =
L∗

c/U
∗
c . In the various problems examined thereafter, solid obstacles are spheres,

hence an obvious choice for L∗
c is the particle diameter d∗

p. When the problem is not
purely diffusive, an obvious choice for U∗

c is the far field inlet velocity U∗
in. Also,

by normalizing the chemical species concentration between 0 and 1 and introduc-
ing the chemical species diffusion coefficient ratio γ = D∗

s

D∗

f

, conservation equations

(III.3) and (III.5) together with interface conditions (III.7)-(III.8), i.e., continuity of
chemical species concentration and continuity of chemical species normal flux, can
be recast into a single dimensionless conservation equation for the chemical species
C with appropriate no jump conditions at the fluid/solid interface on the chemical
species concentration and on its normal flux. The set of dimensionless equations
eventually reads as follows:

∂u

∂t
+ (u · ∇)u − 1

Re
∇2u + ∇p = 0 in Ω\P, (III.9)

∇ · u = 0 in Ω\P, (III.10)

u = 0 in P ∪ ∂P, (III.11)

∂C

∂t
+ u · ∇C − ∇ ·

(
h(γ)
Pe

∇C
)

+
h(γ)g(φ2)

Pe
C = 0 in Ω,

[C]∂P = 0 ,

[
h(γ)

∂C

∂n

]

∂P

= 0,
(III.12)
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where [ ]∂P represents the jump condition across the fluid/solid interface. The di-
mensionless numbers introduced above are defined as follows:

— Reynolds number: Re =
ρ∗

fU
∗
cL

∗
c

η∗
,

— Peclet number: Pe =
U∗

cL
∗
c

D∗
f

,

— Damkohler number: Da = φ2 =
k∗

sL
∗2
c

D∗
s

where φ =
√
Da is the Thiele modulus, and the functions h(γ) and g(φ2) are

simple Heavyside-like functions defined as:

h(γ) =





1 in Ω\P,
γ in P.

g(φ2) =





0 in Ω\P,
φ2 in P.

As usual, we can also introduce a Schmidt number Sc =
η∗

ρ∗
fD

∗
f

such that Pe =

Re · Sc. Hence the flow is equivalently characterized by the pair (Re, Pe) or the
pair (Re, Sc).

3 Numerical Model

The chemical species problem is one-way coupled only to the fluid problem
through the velocity field u. At each discrete time tn+1, n > 0 being the time index
and t0 being the initial time, we solve the full problem as a sequence of the fluid
problem followed by the chemical species problem using the computed velocity field
un+1. The solution algorithm is hence of the 1st order in time weak coupling type.
In the next subsections, we shortly elaborate on the strategy adopted to solve each
sub-problem.

3.1 Solution to the fluid problem: flow around fixed obsta-
cles

We use our well validated Finite Volume/Staggered Grid-DLM/FD solver im-
plemented in our in-house code PeliGRIFF. The whole method is fully detailed in
Wachs et al. [2015], Rahmani and Wachs [2014] for freely moving particles and in
Dorai et al. [2015] for fixed obstacles and was pionneered by Glowinski et al. [1999]
in a Finite Element context. To summarize, we use a cartesian structured mesh
of constant grid size around obstacles, we solve the fluid conservation equations
(III.9)-(III.10) everywhere in the domain (not only in Ω\P but in the entire Ω)
and we enforce the rigid body motion (motionless in the particular case of the ap-
plication treated in this paper) in the region (filled with fictitious fluid) occupied
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by the obstacles and represented by (III.11) using a distributed Lagrange multi-
plier field. Our Finite Volume/Staggered Grid-DLM/FD method also involves an
implicit solution of the resulting DLM/FD saddle-point problem by a Uzawa al-
gorithm, a collocation-point method to discretize the solid obstacles on the fluid
mesh and a second-order interpolation of the fluid velocity at the particle boundary
[Wachs et al., 2015, Rahmani and Wachs, 2014, Dorai et al., 2015]. In our Finite
Volume/Staggered Grid discretization method, the diffusive term is discretized with
a 2nd order accurate centered scheme while the advective term is discretized with
a 2nd order accurate TVD (Total Variation Diminishing)/Superbee limiter scheme.
Finally, the diffusive term is treated implicitly in time with a 2nd order Crank-
Nicholson scheme while the advective term is treated explicitly in time with a 2nd
order Adams-Bashforth scheme. The strength of our method is that it does not
require any kind of hydrodynamic radius calibration (see Wachs et al. [2015] for
more detail about the problem of hydrodynamic radius calibration). The overall
spatial accuracy of the discretization scheme is however not fully 2nd order due
to the non-boundary fitted feature of the mesh around the solid obstacles. The
dimensionless mesh size ∆x is related to the number of points per sphere diameter
through Np = 1/∆x.

The solution algorithm for the fluid problem is of the 1st order operator-splitting
type and comprises two stages as follows: A classical L2-projection scheme for the
solution of the Navier & Stokes problem: find un+1/2 and pn+1 such that

ũ − un

∆t
− 1

2Re
∇2ũ = −∇pn+1 +

1
2Re

∇2un

− 1
2

(
3un · ∇un − un−1 · ∇un−1

)
− λn,

(III.13)

∇2ψ =
1

∆t
∇ · ũ ,

∂ψ

∂n
= 0 or ψ = 0 on ∂Ω, (III.14)

un+1/2 = ũ − ∆t∇ψ,

pn+1 = pn + ψ − ∆t
2Re

∇2ψ.
(III.15)

A fictitious domain problem: find un+1 and λn+1 such that

un+1 − un+1/2

∆t
+ λn+1 = λn, (III.16)

un+1 = 0 in P. (III.17)

where ũ, λ, ψ and ∆t denote the non divergence-free predicted fluid velocity vector,
DLM/FD Lagrange multiplier to relax the constraint (III.17), pseudo-pressure field
and time step, respectively.

3.2 Solution to the chemical species problem: Sharp Inter-
face method

The conservation equation in problem (III.12) is discretized in time with a 1st
order scheme. The diffusive term is treated implicitly in time with a 1st order
Backward Euler scheme and the advective term is discretized explicitly in time with
a 2nd order Adams-Bashforth scheme. Since the reactive term is linear with C, it
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can be easily treated implicitly too. The discrete in time version of the conservation
equation in problem (III.12) reads as follows:

Cn+1 − Cn

∆t
− ∇ ·

(
h(γ)
Pe

∇Cn+1

)
+
h(γ)g(φ2)

Pe
Cn+1 =

−1
2

(
3un+1 · ∇Cn − un · ∇Cn−1

) (III.18)

The primary difficulty in the spatial discretization of (III.18) is how to discretize the
diffusive operator on a non-boundary fitted mesh and to account for the continuity
of C and of its normal flux across the fluid/solid interface through the 2 no jump

conditions [C]∂P = 0 and

[
h(γ)

∂C

∂n

]

∂P

= 0, respectively. This is achieved with a

Sharp Interface Method [Fedkiw et al., 1999, Liu et al., 2000, Shao et al., 2012]. We
use the original version suggested by Fedkiw et al. [1999]. The method is only 1st
order accurate in space but is discontinuity capturing and easy to implement. The
core of the method is to incorporate the jump conditions into the discrete in space
diffusive term. The other terms in (III.18) are discretized in a classical way. Since
the method is well established, we simply shortly summarized its construction in
1D and the extension to 3D suggested by Shao et al. [2012] in the special case of
spherical solid bodies.

Description of the Sharp Interface Method in one dimension

To ease notation, let’s rewrite h(γ)
P e

as β. β is hence a diffusion coefficient with
a discontinuity across the fluid/solid interface. We shortly elaborate below on the
discretization of the diffusive term ∇ · (β∇C) in 1D, i.e., (βCx)x, with x = ∂

∂x
.

We consider general jump conditions on C and on its flux defined at the interface
∂P as:

[
C
]

∂P
= C+

∂P − C−
∂P = a∂P (III.19)

[
βCx

]
∂P

=
(
βCx

)+

∂P
−
(
βCx

)−

∂P
= b∂P (III.20)

where Ω− denotes the part of the domain on one side of the interface (e.g., Ω− =
Ω\P is the fluid domain) and Ω+ denotes the part of the domain on the other side
of the interface (e.g., Ω+ = P is the solid domain). We assume that the 1D space
is discretized uniformly with a constant grid size ∆x and that the interface ∂P lies
between two grid points i ∈ Ω− and i+ 1 ∈ Ω+. Following Fedkiw et al. [1999], Liu
et al. [2000], the diffusive term (βCx)x for point i is discretized in a Finite Difference
fashion as follows:
(
βCx

)
x

=

1
∆x


β̂


Ci+1 − Ci

∆x


− β−


Ci − Ci−1

∆x




− β̂a∂P

∆x2
− β̂b∂P (1 − ζ)

β+∆x
(III.21)

where the coefficient β̂ is calculated as follows:

β̂ =
β+β−

β+ζ + β−(1 − ζ)
(III.22)
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and ζ is the cell fraction, calculated through the level set function χ based on the
interface location.

ζ =
|χi|

|χi| + |χi+1|
(III.23)

In our case, we have neither a jump for C nor for its flux βCx, which translates
into a∂P = 0 and b∂P = 0, so (III.21) simplifies to:

(
βCx

)
x

=
1

∆x


β̂


Ci+1 − Ci

∆x


− β−


Ci − Ci−1

∆x




 (III.24)

Extension to three dimensions

The discretization of the diffusive term ∇ · (β∇C) in the vicinity of an interface
∂P in 3D is a bit trickier as jump conditions exist only for C and its normal flux
[βCn]∂P = 0, but nothing is specified about the tangential flux across ∂P . Liu et al.
[2000] suggested a dimension by dimension application of the 1D discretization
method that we adopt here. However, Liu et al. [2000] also emphasized that a
simple projection of the normal flux jump condition on the cartesian coordinate
axis leads to the right jump condition in the normal direction but also imposes
an artificial and essentially physically wrong additional condition on the tangential
flux across ∂P of the form [βCt]∂P = 0, while the right physical condition is simply
[Ct]∂P = 0.

Since our solid obstacles are all spheres, we follow the approach suggested by
Shao et al. [2012] that involves changing coordinates from cartesian to spherical
and writing the jump conditions in cartesian coordinates as a function of the jump
conditions in spherical coordinates in a way that the right jump conditions are
imposed.

Cartesian and spherical coordinate systems are related to each other through:

x = rsin(θ)cos(ϕ) (III.25)

y = rsin(θ)sin(ϕ) (III.26)

z = rcos(θ) (III.27)

with θ ∈ [0, 2π] and ϕ ∈ [−π/2,+π/2]. The gradient of C in the cartesian coor-
dinate system is related to the gradient of C in the spherical coordinate system
through:

Cx = Crsin(θ)cos(ϕ) + Ctθ
cos(θ)cos(ϕ) − Ctϕ

sin(ϕ) (III.28)

Cy = Crsin(θ)sin(ϕ) + Ctθ
cos(θ)sin(ϕ) + Ctϕ

cos(θ) (III.29)

Cz = Crcos(ϕ) − Ctϕ
sin(ϕ) (III.30)

where tθ is the unit tangential vector in the θ direction and tϕ is the unit tangen-
tial vector in the ϕ direction. Obviously on a sphere surface we have Cr = Cn.
Multiplying the above equations by β we can write the jump conditions in the
cartesian directions x, y and z as a function of the jump conditions in the normal
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and tangential directions as:

[βCx]∂P = [βCn]∂P sin(θ)cos(ϕ) + [βCtθ
]∂P cos(θ)cos(ϕ)

− [βCtϕ
]∂P sin(θ)

(III.31)

[βCy]∂P = [βCn]∂P sin(θ)sin(ϕ) + [βCtθ
]∂P cos(θ)sin(ϕ)

+ [βCtϕ
]∂P cos(θ)

(III.32)

[βCz]∂P = [βCn]∂P cos(ϕ) − [βCtθ
]∂P sin(ϕ) (III.33)

In our problem, we have [C]∂P = 0, [βCn]∂P = 0, [Ctθ
] = 0 and [Ctϕ

] = 0. However,
[βCtθ

]∂P = [β]∂PCtθ
and [βCtϕ

]∂P = [β]∂PCtϕ
are non zero because [β]∂P 6= 0, i.e.,

the diffusion coefficient β is discontinuous across the interface ∂P . To calculate these
2 terms, we need to calculate the tangential derivatives Ctθ

and Ctϕ
at the particle

surface. At the discrete level, these 2 tangential derivatives are approximated for
each point on the particle surface using a central difference scheme that involves
the values of C at two adjacent points. As C is not known at the time level tn+1,
we use C from the previous time level, i.e., tn, to compute Ctθ

and Ctϕ
as suggested

by Shao et al. [2012]. Eventually, the 3 jump conditions (III.31)-(III.33) are added
to the right hand side of the conservation equation as in a 1D case.

4 Validations

We verify here our implementation of the SIM and assess its capability to resolve
the different flow problems we are interested in. We perform a step by step vali-
dation of the computed solution in problems of growing complexity. For diffusion
and diffusion-reaction problems, we compare our SIM results to existing analytical
solutions. For convection-diffusion problems, we compare our SIM results to exist-
ing correlations. Finally, for convection-diffusion-reaction problems, there does not
exist any correlation or analytical solution, to the best of our knowledge. For this
reason, we compare our SIM results to results computed with a boundary-fitted
method with local mesh refinement that fully resolves the gradients at the particle
interface. We test the limitations of SIM for a wide range of dimensionless numbers.
In all the cases examined from now on, we are interested in the steady state solution
only. However, the steady state solution is computed by our transient algorithm
as the solution obtained when time derivatives are negligibly small. All transient
computations are run with ∆t = 10−3.

4.1 Pure diffusion in a finite domain

Steady state diffusion from a single particle

The first validation test is performed in a purely diffusive regime. A spherical
particle of radius r∗

p is placed at the center of a cubic domain Ω = L∗
x × L∗

y × L∗
z

and a zero concentration Cs = 0 is imposed at the particle boundary and inside the
particle. This condition is enforced through an infinitely fast reaction φ2 → ∞ and
a large diffusion coefficient ratio γ that makes the problem mass transfer controlled.
A fixed concentration C∞ is imposed at the boundary ∂Ω of the domain so that the
concentration difference (or driving force) is constant. When the problem is posed
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Figure III.1: Steady state diffusion from a single particle in a finite domain Lx = Ly =
Lz = 10: spatial convergence of the error on the Sherwood number computed with SIM
compared to the analytical solution.

in a spherical domain Ω of finite radius r∗
∞

, we can solve the 1D problem and derive
an expression for the Sherwood number (see Appendix 7 for the details) as follows:

Sh =
k∗d∗

p

D∗
f

=
2r∗

∞

r∗
∞

− r∗
p

(III.34)

where k∗ denotes the mass transfer coefficient defined as:

k∗ =
D∗

f

4πr∗2
p (C∞ − Cs)

∫
π/2

−π/2

∫
2π

0

∂C(r∗)
∂r∗

∣∣∣∣∣
r∗=r∗

p

r∗2
p sin(θ)dϕdθ (III.35)

We set the dimensionless box size to Lx = Ly = Lz = 10. The particle di-
mensionless radius is rp = 0.5. The analytical value of the Sherwood number in
a spherical domain of finite radius r

∞
= 5 is Shan = 20/9 = 2.22. We assume

that this solution is a good approximation of the solution posed in a cubic domain
Lx = Ly = Lz = 2r

∞
. We examine the convergence of the method by computing

Sh as a function of the grid size ∆x = 1/Np. We then compute the relative error
with respect to Shan as ǫ = Sh(Np)−Shan

Shan
and plot the convergence of ǫ with Np in

Fig. III.1. The solution follows an expected first order spatial convergence. In this
test, the error originates from two contributions. The first contribution is related
to the spatial discretization of the problem and the contribution we are interested
in. The second contribution is due to the fact that the analytical solution is derived
in a spherical domain and compared to the computed solution in a cubic box. For
the range of Np considered, it is clear in Fig. III.1 that the second contribution
is negligible and that provided r

∞
= Lx/2 is chosen large enough, the analytical

solution in a spherical domain does not differ much from the solution in a cubic
domain.

4 Validations 57



Part III. Three interacting spheres in a row : coupling mass transfer and
chemical reaction

Steady state diffusion from a single particle in a gradient of concentration

We test our SIM in another diffusive configuration previously examined by Shao
et al. [2012]. A solid particle of diffusion coefficient D∗

s is immersed at the center of
a cubic domain Ω = L∗

x ×L∗
y ×L∗

z of fluid at rest of diffusion coefficient D∗
f . Dirichlet

boundary conditions C = C1 = 1 at the top wall and C = C2 = 0 at the bottom wall
are imposed to generate a concentration gradient in the z direction. Zero normal
flux boundary conditions are imposed on the 4 lateral walls. The average Sherwood
number corresponding to the flux through a horizontal xy plane is defined as:

Sh =
L∗

z

C2 − C1

· 1
L∗

xL
∗
y

∫ L∗

x

0

∫ L∗

y

0

(
∂C

∂z∗

)
dy∗dx∗ (III.36)

The average Sherwood number can be analytically predicted based on the anal-
ogy with Maxwell-Garnett electric conductivity [Maxwell et al., 2005] as:

Sh = 1 +
3α(γ − 1)
γ + 2

(III.37)

where α is the solid volume fraction. Following Shao et al. [2012], we simulate two
cases with two different solid volume fractions. We keep the dimensional box size
constant to L∗

x = L∗
y = L∗

z = 10mm and vary the solid volume fraction α through
selecting 2 different particle radii r∗

p = 1.25mm and r∗
p = 2mm, i.e., r∗

p/L
∗
x = 0.125

and r∗
p/L

∗
x = 0.2, respectively. We select the diffusion ratio γ to span the interval

[10−2, 102]. For each value of γ we compute the average Sherwood number and
compare its value to the theoretical prediction and the numerical results of Shao
et al. [2012]. Fig. III.2 exhibits a very satisfactory agreement of our results with
both the analytical prediction and numerical results of Shao et al. [2012]. We
compute an additional case for r∗

p = 1.5mm, i.e., r∗
p/L

∗
x = 0.15, and plot the

convergence towards the analytical solution in Fig. III.3 for the three solid volume
fractions corresponding to r∗

p/L
∗
x = 0.1, 0.15, 0.2. As expected, a first order spatial

convergence is obtained. The error is shown to increase with the increase of α. The
concentration contours in a xz vertical cut plane containing the sphere center are
illustrated in Fig. III.4 for the case of r∗

p/L
∗
x = 0.2 and γ = 0.1.

4.2 Steady state internal diffusion and chemical reaction in
a single particle

We consider a spherical porous catalyst particle of diameter d∗
p and diffusion co-

efficient D∗
s immersed at the center of a cubic domain Ω = L∗

x×L∗
y×L∗

z. The particle
is assumed to undergo a first order chemical reaction controlled by a constant k∗

s

such that the chemical species concentration C inside the particle satisfies (III.5).
If the surface concentration denoted Cs is known and assumed to be constant over
the sphere surface, the problem becomes 1D in space and we can easily write the
steady state solution of (III.5) as follows:

C(r) = Cs
sinh(φr)

2r sinh(φ/2)
(III.38)
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Figure III.2: Steady state diffusion from a single particle in a gradient of concentration:
comparison of average Sherwood number computed with SIM to the analytical solution
and to the previous study of Shao et al. [2012]. Case 1, r∗

p/L∗
x = 0.2: continuous black

line corresponds to the analytical solution, open triangles correspond to the results of
Shao et al. [2012], and disks correspond to our simulation results. Case 2, r∗

p/L∗
x = 0.125:

dashed black line corresponds to the analytical solution, open squares correspond to the
results of Shao et al. [2012] and triangles correspond to our simulation results.
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Figure III.3: Steady state diffusion from a single particle in a gradient of concentration:
spatial convergence of the relative error on the average Sherwood number computed with
SIM. Triangles correspond to r∗

p/L∗
x = 0.1, disks correspond to r∗

p/L∗
x = 0.125, and squares

correspond r∗
p/L∗

x = 0.2.
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Figure III.4: Steady state diffusion from a single particle in a gradient of concentration:
concentration iso-countours for r∗

p/L∗
x = 0.2 and γ = 0.1 in a 3D view (left) and in a xz

vertical cut plane containing the sphere center (right).
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where as usual r = r∗/d∗
p is the dimensionless radial position and φ = d∗

p

√
k∗

s

D∗
s

is

the Thiele modulus. The derivation of (III.38) can be found in many textbooks.

Dirichlet boundary conditions C = 1 are imposed on the 6 walls of the cubic
domain. We impose Cs = 1 through an infinitely large diffusion coefficient D∗

f

in fluid phase, i.e., γ is chosen asymptotically small. The domain size does not
matter here and only needs to be chosen dimensionlessly larger than 1. We compare
our SIM concentration profile inside the particle to the analytical solution (III.38)
in Fig. III.5 for Np = 20. The agreement is once again very satisfactory. The
numerical method is capable of capturing the steep concentration gradients at the
particle surface even for a modest resolution. The corresponding concentration iso-
countours are shown in Fig. III.6 for Np = 80.

−0.5 0 0.5

r

0

0.5

1.0

C

Figure III.5: Internal diffusion and chemical reaction in a single particle: comparison of
concentration profiles computed with SIM to analytical profiles for different Thiele moduli.
Lines correspond to analytical solutions and markers correspond to our simulation results.
Red line and red circles for φ2 = 1.6. Black doted line and open triangles for φ2 = 160.
Blue line and open squares for φ2 = 16000.
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(a) φ2 = 1.6

(b) φ2 = 160

(c) φ2 = 16000

Figure III.6: Internal diffusion and chemical reaction in a single particle: concentration
iso-surfaces inside the particle for different reaction rates.

Based on the concentration profile, the effectiveness factor η for a catalyst par-
ticle can be defined as the ratio of the overall internal reaction rate in the particle
to the reaction rate that can be attained in the absence of diffusion limitations. For
a spherical catalyst particle with a fixed surface concentration Cs, we have:

η =

∫ 2π

0

∫+π/2

−π/2

∫ r∗

p

0
−k∗

sC(r∗)sin(θ)r∗2dϕdθdr∗

−k∗
s

4π
3
r∗3

p Cs

=
Cv

Cs

=
6
φ


 1
tanh(φ/2)

− 2
φ




(III.39)
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where C(r∗) = Cs

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
is the Thiele concentration profile given by (III.38)

in a dimensional form for a given surface concentration Cs and Cv is the average
volume concentration in the particle.

Depending on reaction kinetics and assuming, e.g., γ ∈ [10−2, 102], i.e., γ is not
asymptotically small/large, the effectiveness factor η exhibits two asymptotic lim-
its. When the reaction rate is very low compared to diffusion, φ ≪ 1, the system
is controlled by kinetics and the catalyst surface concentration Cs is equal to fluid
concentration, and so η → 1. When the reaction rate is high compared to diffusion,
i.e. φ ≫ 1, the system is limited by diffusion and the surface concentration Cs

approaches zero, therefore η → 6/φ.

In the following test, we once again impose Cs = 1 through an asymptotically
small γ. We vary the Thiele modulus φ in the range [0.2, 120] by varying the reaction
rate constant k∗

s . For each value of φ, we calculate numerically the effectiveness
factor η and examine the spatial convergence of the solution computed with our SIM
and a standard VOF method. Hence we compute SIM solutions for Np = 10, 40, 80
and VOF solutions for Np = 40, 80. Fig. III.7 shows η as a function of φ for
Np = 10, 80 with SIM and Np = 40 with VOF. Results obtained with SIM and VOF
are further compared to each other and to the analytical solution in Fig. III.8 and
Fig. III.9 for various values of φ and Np. We can make the 3 following comments:
(ii) both methods show a first order spatial convergence, (ii) VOF with a grid size
4 times smaller than SIM gives approximately the same computed solution, and
(iii) when Np = 80, SIM predictions are very close to the analytical solution with
a slightly growing deviation for φ > 20. The superior accuracy of the solution
computed with SIM compared to that computed with VOF is further emphasized
in Fig. III.8 where we plot the error to the analytical solution as a function of φ
for Np = 80. Finally, Fig. III.9 also highlights that fact that the magnitude of the
error increases with increasing φ in relation to the concentration gradients becoming
steeper in the vicinity of the particle surface as φ increases, i.e., the internal mass
boundary layer gets thinner as φ increases.

4.3 Steady state convection-diffusion in the flow past a sin-
gle sphere: external mass transfer problem

We now validate our SIM in the case of external mass transfer in the flow past
a spherical solid particle in an unbounded domain. A spherical particle is placed
in a box of size Lx × Ly × Lz = 5 × 5 × 15. The fluid enters the flow domain on
the left boundary with an imposed fluid velocity u = (0, 0, 1) and a concentration
C = C∞ = 1. The particle is centered in the x and y directions. Periodic boundary
conditions are imposed in x and y directions while a classical outflow boundary
condition ∂u

∂z
= ∂C

∂z
= 0 and p = pref = 0 is imposed at the outlet boundary.

Fig. III.10 illustrates the flow configuration in a xz cut plane containing the sphere
center. The concentration C in the particle is imposed to 0 by selecting an extremely
large value of φ. The problem is hence controlled by Sc and Re.

To illustrate that our SIM predicts the right external mass transfer, we set
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Figure III.7: Internal diffusion and chemical reaction in a single particle: comparison of
effectiveness factor computed with VOF and SIM as a function of φ. Red color corresponds
to VOF obtained with Np = 40 and green color corresponds to SIM obtained with Np =
10. Blue color corresponds to SIM with Np = 80 and black line corresponds to the
analytical solution.
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Figure III.8: Internal diffusion and chemical reaction in a single particle: relative error
on the effectiveness factor as a function of φ for Np = 80. Red color corresponds to VOF
and blue color corresponds to SIM.
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Figure III.9: Internal diffusion and chemical reaction in a single particle: spatial con-
vergence of relative error on effectiveness factor computed with SIM and VOF for various
Thiele moduli: φ = 1.2, blue triangles with SIM, φ = 12, red disks with SIM, φ = 20,
black filled pentagons with SIM, black open pentagons with VOF, φ = 120, green squares
with SIM.
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Figure III.10: Geometric configuration for the problem of steady state convection-
diffusion in the flow past a single sphere with or without reaction inside the particle: view
in a xz cut plane containing the sphere center (Simulation domain is 5d∗

p × 5d∗
p × 15d∗

p).
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Figure III.11: Steady state convection-diffusion in the flow past a single sphere: com-
parison of computed Sherwood number with literature correlations at Sc = 1. Our SIM
results are represented by circles while correlations are as follows: red line for Feng and
Michaelides [2000], black line for Ranz et al. [1952], green-doted line for Whitaker [1972]
and blue-dashed line for Clift et al. [2005].

Sc = 1 and vary Re in the range [0, 200]. We compute the steady state Sherwood
number Sh for Np = 80 and compare its value to literature correlations as, e.g.,
the correlation of Feng and Michaelides [2000], in Fig. III.11. Overall, we observe
a very satisfactory agreement between our SIM results and literature correlations.

4.4 Steady state convection-diffusion in the flow past a sin-
gle reactive sphere: external-internal mass transfer

We now consider a similar problem to the one in Section 4.3 but with a first
order reaction inside the particle. To validate our SIM, we compare the results
computed with our SIM to results supplied by a highly accurate boundary fitted
method implemented in the JADIM code. JADIM solves the same system of equa-
tions (III.9)-(III.12) but with a different discretization scheme in space and in time.
The high accuracy of solutions computed with JADIM derives both from its bound-
ary fitted spatial discretization scheme and the ability to locally refine the mesh in
both the internal and external mass boundary layers.

The numerical methods used in JADIM have been thoroughly described by Mag-
naudet et al. [1995] and Calmet and Magnaudet [1997]. Consequently they are only
quickly summarized here. The JADIM code solves the incompressible Navier-Stokes
equations and the concentration equation in general orthogonal curvilinear coordi-
nates which are boundary fitted to the particle surface. Equations are integrated in
space using a finite volume method in which advective and diffusive terms are evalu-
ated with second-order accurate centered schemes. The solution is advanced in time
by means of a three-step Runge-Kutta time-stepping procedure in which advective
terms are computed explicitly while diffusive terms are treated by a semi-implicit
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Figure III.12: Comparison of the finest meshes used by JADIM (boundary fitted) and
SIM (cartesian grid).

Crank-Nicholson scheme. Incompressibility is satisfied after the third intermediate
time step by solving a Poisson equation for an auxiliary potential from which the
true pressure is deduced, similarly to (III.13)-(III.15). The complete algorithm is
second order accurate in both space and time.

The mesh grid used in the present work is sketched in Fig. III.12. The orthogo-
nal axisymmetric mapping is obtained by using the streamlines and the equipoten-
tial lines of the potential flow around a circular cylinder. The mesh is stretched in
order to have at least four points in the external mass boundary layer that scales
as Pe−1/3. Simulations are performed in a 2D axisymmetric configuration which
reproduces the geometry of a spherical particle. The fluid computational domain
is limited by the particle surface and by external boundaries on which inflow, free
stream, axial symmetry, and outflow boundary conditions are imposed. The equa-
tions are solved inside the particle over a polar mesh adjusted to the fluid mesh at
the particle surface. The internal mass boundary layer thickness reduces when the
kinetics of the chemical reaction, i.e., φ, increases. The mesh inside the particle
is thus refined close to the particle surface following the scaling of the boundary
layer as φ−1. At least four grid points stand within the internal boundary layer
in order to compute properly the internal concentration gradient at the particle
surface. A particle of radius r∗

p is placed in a domain with a spatial extension of at
least r∗

∞ = 100r∗
p, so that the assumption of infinite domain is physically valid.

All simulations are performed with Np = 80 unless spatial convergence is in-
vestigated. The used DLM-FD simulation domain is 5 × 5 × 15. We set γ = 10,
φ = 2 and Sc = 1 and vary Re in the range [0, 200]. Our SIM results plotted in
Fig. III.13 agree well with the JADIM results and the model for the mean sur-
face concentration Cs suggested in Sulaiman et al. [2018a]. Fig. III.13 shows that
the mean surface concentration Cs increases with the increase of Re. Then we
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set γ = 10, φ = 150 and Sc = 1 and vary φ in the range [0, 40]. Once again a
good agreement between our SIM results, the JADIM results and the model for the
mean surface concentration Cs suggested in Sulaiman et al. [2018a] is highlighted
in Fig. III.14, with a small deviation of our SIM results from the JADIM results
and the model predictions that grows as φ increases due to the internal boundary
layer getting thinner as 1/φ.

We now compare concentration profiles computed with our SIM and JADIM.
We set γ = 10, Re = 10, and Sc = 1, select two Thiele moduli φ = 4 and φ = 10
and plot the concentration profile obtained with each method in Fig. III.15. The
agreement is visually very good. The actual error between SIM and JADIM (not
shown here for the sake of conciseness) increases for φ = 10 compared to φ = 4, in
line with what we observe for Cs. We run another set of simulations with γ = 10,
φ = 10, Sc = 1 and two Reynolds numbers Re = 10 and Re = 100. Concentration
profiles plotted in Fig. III.16 once again in a cross-section normal to the inlet flow,
corresponding to θ = 90. They highlight a satisfactory agreement between our SIM
results and the JADIM results. The error between SIM and JADIM (not shown here
for the sake of conciseness) only mildly increases with Re. The numerical accuracy
is consequently mostly controlled by the internal mass boundary layer thickness.

Finally, we examine the spatial convergence of the SIM computed solution to the
JADIM reference solution. We set γ = 0.1, φ2 = 40 and Re = 150, select Sc = 0.1,
Sc = 1 and Sc = 10 and Np in the range [10, 80]. We then compute and plot the
error ǫ on the mean surface concentration Cs between SIM and JADIM. Fig. III.17
shows that ǫ increases slightly only with the increase of Sc. This behavior is similar
to the behavior of the solution with increasing Re at constant φ, that shows that
ǫ is mainly controlled by the reaction rate and the internal mass boundary layer
thickness. To investigate the effect of the reaction rate on the solution, we perform
a final set of simulations with γ = 0.1, Sc = 10, Re = 150 and φ2 varying in the
range [40, 4000]. Fig. III.18 reveals that ǫ increases significantly with the increase
of φ2. For φ2 = 40, even a mesh resolution Np = 20 is sufficient to supply a com-
puted solution with a relative error of 3%. At φ2 = 200, a grid resolution Np = 60
is needed to reach the same accuracy. For φ2 = 400, a grid resolution with more
than Np = 80 is needed to reach an accuracy corresponding to a relative error of
less than 4%. And finally at φ2 = 4000, even the finest grid resolution considered
here Np = 80 supplies a computed solution that is still 11% off from the reference
solution.

5 Interacting Spheres

We examine here the external forced convection-diffusion on a sequence of inter-
acting spheres undergoing an internal first order irreversible chemical reaction. The
non-reactive problem without diffusion inside solid bodies was firstly introduced by
[Ramachandran et al., 1989] for heat transfer. As in Section 4, we are interested
in the steady state solution only and all transient computations leading to steady
state are run with ∆t = 10−3. Ramachandran et al. [1989] suggested empirical
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Figure III.13: Steady state convection-diffusion in the flow past a single reactive sphere:
comparison of the mean surface concentration Cs at φ = 2, γ = 10 and Sc = 1 as a
function of Re, computed with SIM (red squares), computed with JADIM (black disks),
and predicted by the model of Sulaiman et al. [2018a] (black line).
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Figure III.14: Steady state convection-diffusion in the flow past a single reactive sphere:
comparison of mean surface concentration Cs at Re = 150, γ = 10 and Sc = 1 as a
function of φ, computed with SIM (red squares), computed with JADIM (black disks),
and predicted by the model of Sulaiman et al. [2018a] (black line).

5 Interacting Spheres 69



Part III. Three interacting spheres in a row : coupling mass transfer and
chemical reaction

0.0 0.5 1.0 1.5 2.0 2.5

r

0.0

0.2

0.4

0.6

0.8

1.0

C

Figure III.15: Steady state convection-diffusion in the flow past a single reactive sphere:
comparison of concentration profile in the direction normal to the flow (θ = 90), at
Re = 10, γ = 10 and Sc = 1 for two Thiele moduli: φ = 4, red color, and φ = 10, blue
color. Continuous line correspond to JADIM and markers correspond to SIM.
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Figure III.16: Steady state convection-diffusion in the flow past a single reactive sphere:
comparison of concentration profile in the direction normal to the flow (θ = 90), for φ = 4,
γ = 10 and Sc = 1 and two Reynolds numbers: Re = 100, red color, and Re = 10, blue
color. Continuous lines correspond to JADIM and markers correspond to SIM.
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Figure III.17: Steady state convection-diffusion in the flow past a single reactive sphere:
spatial convergence of relative error on mean surface concentration Cs computed with SIM
at Re = 150, φ2 = 40, and γ = 0.1 for Sc = 0.1, red disks, Sc = 1, black triangles, and
Sc = 10, black open circles.
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Figure III.18: Steady state convection-diffusion in the flow past a single reactive sphere:
spatial convergence of relative error on mean surface concentration Cs computed with
SIM at Re = 150, Sc = 10, and γ = 0.1 for φ2 = 40, red disks, φ2 = 200, blue triangles,
φ2 = 400, green squares, and φ2 = 4000, black open circles.
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Figure III.19: Geometric configuration for the problem of steady state convection-
diffusion in the flow past 3 aligned reactive spheres: view in a xz cut plane containing
the sphere center (Simulation domain is 5d∗

p × 5d∗
p × 15d∗

p).

corrective terms to relate the non-reactive Sherwood number of a single sphere to
the non-reactive Sherwood numbers of interacting spheres. The corrective terms ac-
count for separation distances effect between the particles. The aim of this work is
to include the effect of a chemical reaction inside the solid bodies and to introduce,
based on internal-external coupling, a model for the reactive Sherwood number for
each particle, that accounts for the effects of diffusion, convection, and reaction.
We aim at extending the model we suggested for a single sphere in [Sulaiman et al.,
2018a] to more concentrated particle-laden flows and consider the flow configura-
tion investigated here as a proper toy model for mass transfer with reaction in
dilute particle-laden flows. The core aspect of our model is that it is possible to
construct a reactive Sherwood number formula based on an existing non-reactive
Sherwood number formula. We show thereafter that this approach is still valid in
dilute particle-laden systems experiencing hydrodynamic interactions.

5.1 Problem definition

We consider a system composed of three aligned spherical catalyst particles along
z in a box of size Lx ×Ly ×Lz = 5×5×15. The fluid enters the flow domain on the
left boundary with an imposed fluid velocity u = (0, 0, 1) and concentration C = 1.
The three particles are centered in the x and y directions. Periodic boundary
conditions are imposed in x and y directions while a classical outflow boundary
condition ∂u

∂z
= ∂C

∂z
= 0 and p = pref = 0 is imposed at the outlet boundary. The

separation distances between the first and second particles and between the second
and third particles are d12 and d23, respectively, as shown in Fig. III.19. The
problem is controlled by the Reynolds number Re, the Schmidt number Sc, the
diffusion coefficient ratio γ and the Damkohler φ2. All computations are performed
with Np = 70.

We approach the problem through the external-internal coupling based on the
continuity of C and of its normal flux at the fluid/solid interface ∂P . The normal
flux density at the particle surface in the solid phase N∗

s,∂P is given by:

N∗
s,∂P = −D∗

s

dC

dr∗

∣∣∣∣∣
r∗=r∗

p

(III.40)

The concentration profile in the solid phase is given by (III.38). Calculating the
radial derivative at r∗ = r∗

p (or r = 0.5), the flux in the solid phase can be written as:
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N∗
s,∂P = −D∗

sCs

d∗
p


 φ

tanh(φ/2)
− 2


 (III.41)

The normal flux density at the particle surface in the fluid phase N∗
f,∂P can be

written as:
N∗

f,∂P = −k∗
f (Cs − C∞) (III.42)

where k∗
f is the external mass transfer coefficient in the fluid phase, analytically

unknown in case of external convection. The continuity of the normal flux at ∂P ,
i.e., N∗

s,∂P = N∗
f,∂P , leads to:

k∗
f (Cs − C∞) = D∗

s

Cs

d∗
p


 φ

tanh(φ/2)
− 2


 (III.43)

And we can hence deduce the expression of the surface concentration Cs:

Cs =
C∞

1 + D∗

s

d∗

pk∗

f

(
φ

tanh(φ/2)
− 2

) (III.44)

In order to determine Cs, we need to evaluate the external mass transfer coeffi-
cient k∗

f . Here, we assume that the internal problem is only affecting the external
problem through the concentration gradient. Thus, the external Sherwood num-
ber is assumed independent of the reaction rate. We hence evaluate the external
mass transfer coefficient from the external Sherwood number Sh, i.e., a non-reactive
Sherwood number, as k∗

f = Sh D∗
f/d

∗
p. Then, any appropriate empirical correlation

available in the literature for Sh can be used. For instance in [Sulaiman et al.,
2018a], we used for a single sphere the correlation defined by Feng and Michaelides
[2000]:

Sh = 0.922 +Re1/3Sc1/3 + 0.1Re2/3Sc1/3 (III.45)

For a series of three interacting spheres, Ramachandran et al. [1989] suggested
to account for the interactions between the spheres through corrective coefficients
for the Sherwood number of each of the three spheres. These corrective coefficients,
mainly empirical, are established based on computational data, and related to the
correlation for a single sphere. The individual Sherwood number reads:

Shj = Sh · βj j = 1, 2, 3 (III.46)

where j is the sphere number and the βj , j = 1, 2, 3 are the empirical corrective
terms defined by Ramachandran et al. [1989] as:

β1 = 0.9555Sc0.0276Re0.0108d
0.113/[1+1.5ln(10P e)]
12 e−0.02113/d23 (III.47)

β2 = 1 − 0.0697(1 + ln(Re))0.767[1 + ln(10ReSc)]0.095d23
−0.13

− 4.807(1 + ln(Re))0.012d−5.28
12 (III.48)

β3 = 1 − 0.532Sc−0.019Re0.032e−0.0146/d12


 1
d23




3.044/[1+1.1ln(10P e)]

(III.49)
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The average surface concentration Cs,j for sphere j with corresponding Sherwood
number Shj, can be written as follows:

Cs,j =
C∞

1 + 2γ
Shj

(
φ/2

tanh(φ/2)
− 1

) j = 1, 2, 3 (III.50)

The formulation of a ‘reactive’ Sherwood number that accounts for convection,
diffusion and reaction is based on two concentration gradients instead of a single
concentration gradient in the external non-reactive case. The first gradient is the
external gradient involving (Cs − C∞) and the second gradient is the internal gra-
dient involving (Cv −Cs), where Cv is the mean volume concentration of C in each
sphere. To derive an expression for Cv, we integrate the 1D concentration profile
given by (III.38), assuming Cs is a function of the position on the sphere and the
radial dependence is still reasonably valid, over the particle volume as

Cv ≃ 3
4πr∗3

p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗

p

0
Cs(ϕ, θ)

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
sin(θ)r∗2dϕdθdr∗ (III.51)

and further approximate this integral as:

Cv ≃ 3Cs

4πr∗3
p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗

p

0

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
sin(θ)r∗2dϕdθdr∗

=
6Cs

φ

(
1

tanh(φ/2)
− 2
φ

) (III.52)

Cs is estimated by model (III.50) and we eventually obtain an expression for the
mean volume concentration Cv,j for sphere j that reads as follows:

Cv,j =
6C∞

1 + 2γ
Shj

(
φ/2

tanh(φ/2)
− 1

)
(

1
φtanh(φ/2)

− 2
φ2

)
j = 1, 2, 3 (III.53)

The conjugate mass transfer problem is formulated with the additivity rule. The
additivity rule states that the overall resistance to mass transfer in the system is the
sum of two resistances. The resistance is related to the inverse of the mass transfer
coefficients. We hence define the 2 Sherwood numbers as:

internal Sherwood number Shin

Shin =
N∗

s,∂P d
∗
p

D∗
s(Cs − Cv)

=
k∗

ind
∗
p

D∗
s

(III.54)

where k∗
in is the internal mass transfer coefficient.

external Sherwood number Sh

Sh =
N∗

f,∂P d
∗
p

D∗
f (C∞ − Cs)

=
k∗

fd
∗
p

D∗
f

(III.55)

We now introduce the total mass transfer coefficient k̃∗ and write the additivity
rule as:

1
k̃∗

=
1
k∗

in

+
1
k∗

f

(III.56)
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(III.56) can be reformulated in terms of Sherwood numbers. Introducing the reactive

(i.e. total) Sherwood number S̃h =
k̃∗d∗

p

D∗
f

, we get:

1

S̃h
=

1
γShin

+
1
Sh

(III.57)

Finally, using the continuity of the flux density at ∂P , we can obtain Shin as a
function of Sh, inert this in (III.57) and after some simple algebra get the following
expression:

S̃h = Sh
C∞ − Cs

C∞ − Cv

= Sh
∆Cs

∆Cv

(III.58)

with ∆Cs = C∞ − Cv and ∆Cv = C∞ − Cs. Finally, using (III.50) and (III.52), we
establish the expression of the reactive Sherwood number S̃h of each sphere as:

S̃hj(Re, Sc, φ, γ) =
Shj(Re, Sc)

Shj(Re, Sc)
2γ

[
tanh(φ/2)

φ/2 − tanh(φ/2)
− 12
φ2

]
+ 1

j = 1, 2, 3 (III.59)

Shj(Re, Sc) in the above expression is the individual Sherwood number for a sphere
j in the convective-diffusive problem (without reaction) where the particle in-
ternal concentration is uniform, and the mass transfer is only controlled by the
Reynolds number Re and the Schmidt number Sc. The ‘reactive’ Sherwood num-
ber, S̃hj(Re, Sc, φ, γ), also depends on the Damkohler number Da = φ2 and the
diffusion coefficient ratio γ, in addition to the first two dimensionless numbers for
convection-diffusion. III.59 can further be written in an explicit form:

1

S̃hj

=
1

2γ

[
tanh(φ/2)

φ/2 − tanh(φ/2)
− 12
φ2

]
+

1
Shj

(III.60)

III.60 has two asymptotic limits. When the reaction rate is very fast, i.e., the
Thiele modulus φ → ∞, the term

[
tanh(φ/2)

φ/2−tanh(φ/2)
− 12

φ2

]
→ 0 and so S̃hj → Shj.

In this case the system is limited by diffusion, i.e., controlled by mass transfer.
When the reaction rate is very slow, i.e. the Thiele modulus φ → 0, the term[

tanh(φ)
φ−tanh(φ)

− 3
φ2

]
→ ∞, S̃hj → 0. In this case the system is controlled by internal

reaction kinetics.

5.2 Model validation

We examine here how the model performs in the 3-aligned sphere configuration
by spanning ranges of the 4 governing dimensionless numbers Re, Sc, γ and φ2, as
well as assorted interparticle distances. The mean surface concentration Cs, given
by (III.50), is the main unknown in the problem. Therefore, we primarily assess the
validity of our proposed model by comparing Cs as computed by our DLM/FD-SIM
numerical method to Cs as predicted by our model.

We vary the dimensionless parameters in the ranges: Re ∈ [0, 100], φ2 ∈ [0,∞],
Sc ∈ [0.5, 10] and γ ∈ [10−2, 102] and select the following three different geometric
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configurations:

— d12 = 4 and d23 = 2,

— d12 = 2 and d23 = 4,

— d12 = 2 and d23 = 2.

We first examine the influence of the geometric configuration. To do this, we
set Re = 50, γ = 0.1, and Sc = 1 and keep them constant while we vary the
Damkohler number φ2 in the range [0, 400] and compare our model to our nu-
merical results for the three geometric configurations A, B, and C in Fig. III.20,
Fig. III.21 and Fig. III.22, respectively. Overall, Cs as predicted by the model show
a good agreement with computed Cs for the three geometric cases. Essentially, the
error increases with the increase of φ2 as the internal concentration boundary layer
thickness decreases with the increase of φ2 as 1/φ. However, the inter-particle dis-
tances have literally no impact on the magnitude of the differences between model
predictions and numerical results. Even in configuration C where the 3 particles are
the closest to each other, no significant difference is visible between Fig. III.22, and
Figs. III.20 and III.21. For the 3 configurations, the system is still dilute enough
such that the first sphere behaves similarly, and quite close to a single isolated
sphere.

From now on, we consider the geometric configuration A in the rest of this sub-
section. We fix Re = 50, Sc = 1, and φ2 = 40 and we vary the diffusion ratio
γ in the range [10−2, 102]. Once again, we compute numerically the mean surface
concentration Cs and we compare it to the value predicted by the model for the
three particles in Fig. III.23. Results show again a good agreement between model
predictions and numerical results.

Finally, we examine the influence of Sc. To do this, we fix Re = 50, γ = 0.1,
and φ2 = 40 and we vary Sc ∈ [0.5, 10], which consequently varies Pe ∈ [25, 500].
Computed Cs is compared to Cs predicted by the model for the three particles in
Fig. III.24. The agreement is deemed to be satisfactory.

We now plot Cs as a function of Re ∈ [0, 100] and φ2 ∈ [0,∞] per particle
for γ = 0.1 and Sc = 1. Computed values and values predicted by the model
are compared in Fig. III.25 for the first sphere, Fig. III.26 for the second sphere
and Fig. III.27 for the third sphere. We also compare the mean volume concen-
tration Cv in Fig. III.28 for the first sphere, Fig. III.29 for the second sphere and
Fig. III.30 for the third sphere. In general, the agreement between computed values
and values predicted by the model is once again deemed to be satisfactory. The
Damkohler number φ2 has the most significant impact on the observed difference
between computed values and model predictions. For φ2 < 200, the agreement in
very satisfactory for all spheres and the observed difference is very small. Then
for larger φ2 > 200, the observed difference, though still limited, increases with φ2.
The maximum difference of the order of 10% is attained for φ2 = 4000. As pointed
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out in the above, this trend is related to the internal concentration boundary layer
that decreases with the increase of the Thiele modulus as 1/φ. The same comments
apply to the plots of the reactive Sherwood numbers given by (III.59) for the 3
spheres in Fig. III.31 for the first sphere, Fig. III.32 for the second sphere and
Fig. III.33 for the third sphere.

— The observed differences between computed values of Cs, Cv or S̃h and the
values of the same quantities predicted by the model have 3 sources:

— approximations and assumptions adopted to derive the model,

— not fully converged in space computed solutions for large values of φ2,

correlations proposed for the coefficients βj by Ramachandran et al. [1989]
and established by a least square regression with a maximum error of 2.5%
for β1, 4.6% for β2 and 10% for β3.

In the case of the 3 aligned spheres, the equivalent solid volume fraction around the
spheres is low and the system is representative of a dilute regime. The interactions
between the 3 spherical obstacles, both in terms of momentum and mass transfer,
are limited, though far from negligible. As a result, the chemical concentration does
not vary much along each sphere surface as shown in Fig. III.34. Consequently,
the approximations (III.51)-(III.52) to calculate the mean volume concentration,
i.e., assuming that C is a function of the radial coordinate only and Cs(θ, φ) does
not vary too much around Cs, are valid. The model is assumed to perform well in
this flow configuration and this range of dimensionless parameters. So we believe
that source 1 does not contribution much to the observed differences. The increase
of the observed differences as a function of the Damkolher number φ2 is certainly
a sign that for high φ2, Np = 70 points per diameter might not yet be enough to
yield fully spatially converged computed solutions as the internal boundary layer is
getting thinner with the increase of φ2, as suggested by Fig. III.7 and Fig. III.14.
Source 2 is thereby a significant contribution to the observed differences at high
φ2. Finally, the magnitude of the error on the coefficients βj as reported by Ra-
machandran et al. [1989] is of the same order as the observed differences, so we
cannot rule out the contribution of source 3. Overall, the model performs well.
The difference between computed values and model predictions increases with the
Damkohler number φ but is capped to 10% in the range of dimensionless parameters
investigated.
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Figure III.20: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs as a function of φ2 in configuration A at Re = 50,
Sc = 1 and γ = 0.1. Lines correspond to model and markers correspond to SIM. Red
color corresponds to first sphere, blue color to second sphere and green color corresponds
to third sphere.
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Figure III.21: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs as a function of φ2 in configuration B at Re = 50,
Sc = 1 and γ = 0.1. Lines correspond to model and markers correspond to SIM. Red
color corresponds to first sphere, blue color to second sphere and green color corresponds
to third sphere.
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Figure III.22: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs as a function of φ2 in configuration C at Re = 50,
Sc = 1 and γ = 0.1. Lines correspond to model and markers correspond to SIM. Red
color corresponds to first sphere, blue color to second sphere and green color corresponds
to third sphere.

Figure III.23: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs as a function of γ in configuration A at Re = 50,
Sc = 1 and φ2 = 40. Lines correspond to model and markers correspond to SIM. Red
color corresponds to first sphere, blue color to second sphere and green color corresponds
to third sphere.
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Figure III.24: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs as a function of Sc in configuration A at φ2 = 40,
Re = 50 and γ = 0.1. Lines correspond to model and markers correspond to SIM. Red
color corresponds to first sphere, blue color to second sphere and green color corresponds
to third sphere.

Figure III.25: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs of sphere 1 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.
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Figure III.26: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs of sphere 2 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.

Figure III.27: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean surface concentration Cs of sphere 3 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.
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Figure III.28: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean volume concentration Cv of sphere 1 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.

Figure III.29: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean volume concentration Cv of sphere 2 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.
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Figure III.30: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: mean volume concentration Cv of sphere 3 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200 and green color
corresponds to φ2 = 4000.

Figure III.31: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: reactive Sherwood number S̃h of sphere 1 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200, green color
correspond to φ2 = 4000 and black color corresponds to φ2 = ∞.

5 Interacting Spheres 83



Part III. Three interacting spheres in a row : coupling mass transfer and
chemical reaction

Figure III.32: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: reactive Sherwood number S̃h of sphere 2 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200, green color
corresponds to φ2 = 4000 and black color corresponds to φ2 = ∞.

Figure III.33: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: reactive Sherwood number S̃h of sphere 3 as a function of Re in configuration A
at γ = 0.1 and Sc = 1. Lines correspond to model and markers correspond to numerical
simulation. Red color corresponds to φ2 = 40, blue color to φ2 = 200, green color
corresponds to φ2 = 4000 and black color corresponds to φ2 = ∞.

6 Discussion and perspectives

We presented a numerical framework that couples a Sharp Interface Method
(SIM) for the convection-diffusion-reaction conservation equation of the chemical
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species to a DLM/FD method to solve the incompressible Navier-Stokes equations
with fixed obstacles. We presented multiple validation tests of growing complexity
to ensure that our implementation of our DLM/FD-SIM method supplies computed
solution with the expected accuracy. We have shown through various convergence
tests, comparisons to analytical solutions, comparisons to correlations and com-
parisons to body-fitted simulations that our numerical tool indeed supplies reliable
computed solutions. We then used our numerical tool to examine the problem of
convective-diffusive mass transfer in the flow past 3 reactive spheres.

The primary objective of the work was to show that a reactive Sherwood number
correlation can be constructed in a dilute system on the basis on a simple external-
internal coupling and the additivity rule, in a similar way as we constructed a
reactive Sherwood number correlation for a single isolated sphere in Sulaiman et al.
[2018a]. Model predictions show a satisfactory agreement with our DLM/FD-SIM
numerical results for wide ranges of the 4 governing parameters in the problem of
convective-diffusive mass transfer in the flow past 3 reactive spheres. We consider
this problem as an adequate toy model of a dilute particle-laden system experi-
encing hydrodynamic interactions. The strength of our reactive Sherwood number
correlation is that it is based on any existing non-reactive Sherwood number corre-
lation. Here we used the non-reactive Sherwood number correlations of Feng and
Michaelides [2000] and Ramachandran et al. [1989], but this is not mandatory.

The ultimate objective is to extend the suggested reactive Sherwood number
correlation to denser regime and eventually to use it in larger scale numerical mod-
els as Euler/Lagrange and Euler/Euler modelling of reactive particle-laden flows.
This can be achieved in 2 complementary ways. The former way involves investigat-
ing pairwise interactions in terms of reactive mass transfer. A model system would
be the flow past 2 spheres not aligned with the flow and then investigate not only
the effect of the inter-particle distance but also of the relative angular position of
the 2 particles, in a similar way to Akiki et al. [2017] for momentum transfer. The
latter way involves computing the flow through a random array of reactive spheres
up to a high solid volume fraction αs close to packing, as illustrated in Fig. III.35.
This would require large computing resources to span all parameter ranges but is
feasible as our code is fully parallel and can run on large supercomputers with a
satisfactory scalability. This work is currently under way.
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(a) φ2 = 40

(b) φ2 = 200

(c) φ2 = ∞
Figure III.34: Steady state convection-diffusion in the flow past 3 aligned reactive
spheres: concentration iso-surfaces in configuration A at Re = 50, γ = 0.1, Sc = 1 and
different φ2.

(a) φ2 = 40 (b) φ2 = 200 (c) φ2 = ∞

Figure III.35: Concentration iso-surfaces in the the flow through a random array of
spheres at Re = 25, γ = 0.1, Sc = 1, αs = 0.5 and different Damkohler numbers φ2.
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7 Appendices

Derivation of the diffusive Sherwood number in a finite spher-
ical domain

We consider a sphere of radius r∗
p at concentration C = Cs|r∗=r∗

p
at the center

of a spherical domain of radius r∗ = r∗
∞ filled with a quiescent fluid of diffusion

coefficient D∗
f . At steady state, the concentration distribution C in the fluid is

governed by:
D∗

f∇2C = 0 (III.61)

(III.61) can easily be integrated with the two Dirichlet boundary conditions C =
Cs|r∗=r∗

p
and C = C∞|r∗=r∗

∞

. The solution, i.e., the concentration profile C(r∗) in
the fluid phase, reads:

C(r∗) =
r∗

pr
∗
∞

(r∗
p − r∗

∞

)r∗
(C

∞
− Cs) +

Csr
∗
p − C

∞
r∗

∞

r∗
p − r∗

∞

(III.62)

The mass transfer coefficient k∗ can be calculated through the calculation of the
total flux through the sphere surface as:

k∗ =
D∗

f

4πr∗2
p (C∞ − Cs)

∫ 2π

0

∫ +π/2

−π/2

∂C(r∗)
∂r∗

∣∣∣∣∣
r∗=r∗

p

r∗2
p sin(θ)dϕdθ (III.63)

Substituting (III.62) into (III.63), the diffusive Sherwood number in a finite

spherical domain Sh =
k∗d∗

p

D∗
f

can be written as:

Sh =
k∗d∗

p

D∗
f

=
2r∗

∞

r∗
∞

− r∗
p

(III.64)

For an infinite domain, i.e., when r∗
∞ → ∞, Sh → 2. For a spherical domain of

finite size, Sh is larger than 2 and its value can be calculated by (III.64).
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This chapter will be submitted to Chemical Engineering Science and its content
is subject to modification.
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Abstract

Keywords: Mass transfer, Catalyst particle, Chemical reaction, Damkohler
number, Sherwood number, Sharp Interface Method, Numerical modeling.

In [Sulaiman et al., 2018a] we introduced a model for a ‘reactive’ Sherwood
number for a single particle immersed in a convective-diffusive fluid stream. The
model accounts for the effects of external convection-diffusion along with a first
order internal reaction with an internal diffusion. In [Sulaiman et al., 2018b] we ex-
tended the model for a system of three aligned interacting spheres. In this study, we
investigate the effect of chemical reaction through a network of reactive catalyst par-
ticles. We use a coupled Sharp Interface / Discrete Lagrange Multiplier-Fictitious
Domain Method (SIM-DLM/FD), thoroughly validated in our previous study, to
treat particulate flow systems involving convection-diffusion in fluid phase and in-
ternal diffusion-reaction in a network of solid spherical catalyst particles. We handle
the problem through internal-external coupling by means of concentration and flux
continuities as boundary conditions. We present a model that predicts cup-mixing
concentration profile as well as the mean surface and volume concentration profiles
of the particles. We present a model for the ‘reactive’ Sherwood number that de-
pends on 5 parameters: The Reynolds number Re, the Schmidt number Sc, the
Damkohler number Da, the internal-external diffusion coefficient ratio γ and the
solid volume fraction αs. We validate the model through Direct Numerical Simu-
lation (DNS) for a wide range of the aforementioned dimensionless parameters, we
show and discuss its limitations.

Graphical Abstract

(a) (b) (c)

Figure IV.1: Concentration iso-contours at Re = 25, γ = 0.1, αs = 0.3 and different
Damkohler numbers. a) Da = 40, b) Da = 200 and c) Da = ∞

90



Part IV. Mass transfer coupled with chemical reaction through a random array of
fixed particles in a fluid flow

1 Introduction

Systems composed of two interacting solid and fluid phases are relevant for in-
dustrial processes operated in the domain of energy conversion. Catalytic fixed
bed reactors [Wehinger et al., 2015] and fluidized bed reactors [Gao et al., 2008]
are widely used in petrochemical processes for catalytic cracking of long chain hy-
drocarbons, to break them into lighter products that can be used to run engines.
Biomass catalytic co-pyrolysis processes [Zhang et al., 2018], Biomass gasification
[Bridgwater, 1995, Turn et al., 1998], and Biomass complete combustion [Baxter,
1993], are processes operated to extract liquid bio-fuel from organic substances. In
the aforementioned systems, fluid flows through a network of solid particles where
many physical phenomena take place, such as heat, mass and momentum trans-
fer. The advanced comprehension of these systems is of tremendous importance for
their design, operation, maintenance and process optimization. The comprehension
is still incomplete due to the coupling among many physical phenomena. Usually,
chemical reactions take place in these systems to enhance mass transfer, associated
with heat transfer due to endothermic/exothermic reactions, whereas momentum
transfer drives flow involved in convection phenomenon.

Investigating coupling phenomena in particulate flows can be achieved by means
of Particle-Resolved Direct Numerical Simulations (PR-DNS) that fully resolve lo-
cal interactions between the two phases. Indeed, the emergence of supercomputers
with their increasing computational capacity over time has encouraged scientists to
develop numerical methods to simulate systems by solving their momentum, mass
and heat balance equations at the level of the particle. DNS is able, so far, to simu-
late particulate flow systems consisting of thousands of particles and provide reliable
information about their heat, mass and momentum transfer at particle scale [Sun
et al., 2016]. Although efficient, DNS is still incapable of simulating industrial scale
systems that contain billions of particles. The DEM-CFD methods are computa-
tional fluid dynamics models, that solve the averaged equations of the momentum,
mass and heat balance. The advantage of these methods is that they can treat a
bigger number of particles, but without resolving the local interaction details at
the particle scale. The local interactions in these models are accounted for through
closure laws, such as the Nusselt number correlations for heat transfer, Sherwood
number for mass transfer, and Drag coefficient for momentum transfer [Deen et al.,
2014]. These correlations are used as closure laws to provide the unresolved local
information, at the particle scale. Thus, DNS can be used to establish correlations
incorporating the local interaction effects and these correlations can later be used
to enhance the DEM-CFD model. This approach is referred to as the ‘multi-scale’
approach [van der Hoef et al., 2004].

Many DNS methods are available in literature and can be employed to simulate
particulate flow problems. The fixed mesh methods that use a regular cartesian grid
are commonly used for the treatment of problems involving moving particles. The
main advantage behind the choice of these methods is that computational methods
have a very good scalability on supercomputers. Their disadvantage lies in the dif-
ficulty of imposing the correct boundary conditions at particles surface.
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The Immersed Boundary Method (IBM) [Uhlmann, 2005], is a fixed mesh com-
putational method, that imposes boundary conditions at the particle surface by
means of Lagrangian markers. This method has been applied by Xia et al. [2014]
to study convective heat/mass transfer for a single particle. IBM was also used
to evaluate the heat transfer Nusselt number in dense particulate flow systems by
Deen et al. [2014] and Sun et al. [2015]. More recently, Lu et al. [2018] employed an
IBM to study mass transfer with a first order irreversible surface chemical reaction
and applied it to a single stationary sphere under forced convection. The Lattice
Boltzmann Method (LBM) is also a fixed mesh computational method. LBM solves
convection-collision steps of probability density functions instead of solving classical
conservation equation. It has been employed to simulate particulate flows with heat
transfer by Khiabani et al. [2010] and Kruggel-Emden et al. [2016]. [Derksen, 2014]
employed LBM to study mass transfer through fixed and fluidized beds of particles.
[Bohn et al., 2012] studied gas-solid diffusion-reaction within a single particle by
means of LBM. The Distributed Lagrange Multiplier / Fictitious Domain Method
(DLM/FD), firstly introduced by Glowinski et al. [2001], combines the particle and
fluid equations of motion into a single, weak, and general equation of motion called
combined momentum equation, also uses a fixed cartesien mesh. The combined
equations are derived through the combined velocity space incorporating the rigid
body motion (no-slip) in the particle. The DLM/FD method has been employed to
simulate heat/mass transfer by Yu et al. [2006], Dan and Wachs [2010] and Wachs
[2011b].

The Sharp Interface Method (SIM), or as alternatively referred to, the Ghost
Fluid Method (GFM), is a fixed-mesh computational method employed to accu-
rately enforce boundary conditions with discontinuities along embedded interfaces
[Shi et al., 2011], where jump conditions are incorporated in the discretization of the
differential operators on the Cartesian grid in the vicinity of the interface. SIM was
firstly introduced by Fedkiw et al. [1999] and employed to impose boundary con-
ditions at a contact discontinuity in the inviscid Euler equations. Udaykumar and
Mao [2002] and Gibou et al. [2003] used SIM to study the evolution of solidification
fronts with heat transfer and solute transport in dendritic solidification. Kang et al.
[2000] extended SIM to treat multiphase incompressible flows including effects of
viscosity, surface tension and gravity and applied the method to two-phase water-
air mixtures. Shao et al. [2012] combined SIM with a Fictitious Domain method to
simulate heat transfer in particulate flows with heat diffusion inside particles.

In this study, we investigate the effect of a first order irreversible chemical re-
action on mass transfer. The reaction takes place within a network of catalyst
particles through which a fluid with an imposed inlet concentration flows. For an
infinite reaction rate, the system is said to be a ‘Mass transfer’ controlled and the
problem is analogous to heat transfer problems with temperature imposed at the
particle surface, previously studied by [Sun et al., 2016, Deen et al., 2014, Tavassoli
et al., 2013] and [Gunn, 1978]. The analogy with heat transfer fails when the reac-
tion rate is finite and the system is not ‘Mass transfer’ controlled. In this case, the
Sherwood number correlations established for heat transfer are no more capable of
describing the physics of the system. According to reaction kinetics, one of the three
following regimes can predominate. When the reaction rate is very slow compared
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to diffusion, the surface concentration of the particles is equal to the bulk concen-
tration and the regime is said to be kinetics controlled. When the reaction rate
is infinitely fast compared to diffusion rate, the surface concentration approaches
zero and the system is controlled by mass transfer (diffusion limited). In between
the two mentioned cases, the system is neither mass transfer nor kinetics controlled
and the catalyst surface concentration is unknown. The main aim of this study is
to establish a Sherwood number model that covers the three kinetic regimes and
accounts for the effects of convection-diffusion, reaction and solid volume fraction
within a fixed a bed of particles.

Governing equations and numerical model

Governing equations and numerical model have been described in detail in
Part(III), sections 2 and 3.

2 Problem definition and Geometry

We consider the geometric configuration depicted in Fig. IV.2. The domain
dimensions are x = y = 6 and z = 16. Particles are randomly distributed in the
packing region x ∈ [0, 6] , y ∈ [0, 6] and z ∈]4, 12[. The sub-regions z ∈ [0, 4] and
z ∈ [12, 16] have been left free of particles. The fluid enters the flow domain on
the left boundary with an imposed fluid velocity u = (0, 0, 1) and a concentration
C = C∞ = 1. Periodic boundary conditions are imposed in x and y directions
while a classical outflow boundary condition ∂u

∂z
= ∂C

∂z
= 0 and p = pref = 0 is

imposed at the outlet boundary. Solid phase is considered as catalyst particles with
internal effective diffusivity D∗

s , effective reactivity k∗
s and diameter d∗

p. The solid
volume fraction αs is chosen such that αs ∈ [0.1, 0.5]. Up to αs = 0.3, particles are
randomly distributed through uniform random seeding of non-overlapping spheres.
For αs > 0.3, particles are initially distributed at solid volume fraction αsi = 0.25,
with particles diameter dpi < dp. Then, particles radius is expanded. During
expansion, particles undergo multiple collisions before they reach the final diameter
dp, that satisfies the desired value αs. Particle-particle contact is handled with
Grains3D granular solver. Five independent random particle seeding will be used
in mass transfer simulation.
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Geometry and particles distribution

Figure IV.2: Used geometric configuration. αs = 0.3.

2.1 Sherwood number in mass transfer controlled system

The classic prediction of mass transfer in a two-phase fluid-solid reactor (cata-
lyst particles undergoing an internal diffusion-reaction, associated with an external
convection-diffusion) is to decouple the internal and external transfer in the system.
Then the two separated problems can be coupled at the solid-fluid interface, through
concentration and flux continuities. Therefore, the external Sherwood number can
be assumed to be constant and unaffected by the internal chemical reaction. Based
on this assumption, the external mass transfer coefficient can be utilized, in addition
to the boundary conditions, to couple the internal-external coupling. As a first step,
we evaluate the reference Sherwood number in mass transfer controlled system, i.e
Da = ∞ or an infinite reaction rate. The system in this case is analogous to heat
transfer problem with particles at fixed temperature. We define the cup-mixing, or
flow-averaged concentration as :

C(z) =

∫ ∫
Sf
uz(x, y, z)C(x, y, z)dxdy
∫ ∫

Sf
uz(x, y, z)dxdy

(IV.1)

with Sf the cross-section area of the fluid and uz the fluid velocity component
along the z direction. The balance equation for the cup-mixing concentration in
the system along the z direction can be written as follows:

dC(z)
dz

+ ξ(C(z) − Cs) = 0 (IV.2)

where Cs is the particle concentration and ξ is a measure of external mass
transfer, defined as ξ = 6αsSh

P e
. Hence, the concentration profile along the z direction

in the bed is solution of (IV.2) and can be written as:

C(z) = (C∞ − Cs)exp(−ξz) + Cs (IV.3)

In the above equation the value of ξ can be determined through the fitting with
concentration profile obtained numerically. αs and Pe being fixed, the value of ξ ob-
tained by the fitting determines the value of the Sherwood number from simulations.
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We have performed a set of simulations at constant Sc = 1 and Re ∈ [0, 100].
We considered two solid volume fractions αs = 0.1 and αs = 0.3. The particle sur-
face concentration is fixed to zero by setting k∗

s = ∞ or (Da = ∞). We calculate
Sh through the fitting with the 1D model (IV.2). For each (Re, Sc, αs) we take
the average of Sh resulting from 5 different random configurations. The numerical
spatial resolution in this case is set to Nd = 24 and simulations are performed at
CFL < 0.25. We compare the Sherwood number obtained from our simulations
with the previously established correlations of [Sun et al., 2016], [Deen et al., 2014]
and [Gunn, 1978] in Fig. IV.3. Our results show an over estimate of the correlations
of [Deen et al., 2014] and [Sun et al., 2016] for both αs = 0.1 and αs = 0.3. The
results at αs = 0.3 are closer to both correlations than those at αs = 0.1. In both
cases the results under estimate the correlation of [Gunn, 1978], (IV.4).

Sh = (7−10αf +5α2
f )(1+0.7Re0.2Sc1/3)+(1.33−2.4αf +1.2α2

f )Re0.7Sc1/3 (IV.4)

It is remarkable that with the increase of Re, the results get closer to those
of [Gunn, 1978] for both αs. Similar study was carried out by Euzenat [2017] on
heat transfer through fixed beds of particles and compared the Nusselt number with
previous correlations.

Figure IV.3: Comparison of Sherwood number for external mass transfer with previous
correlations.

3 Effect of chemical reaction

Now we consider a system where a finite chemical reaction takes place, i.e.
0 < Da < ∞. We recall important results from the single particle system (for a
particle undergoing a first order reaction placed in a fluid stream). The particle
mean surface concentration can be written as:
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Cs =
C∞

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

) (IV.5)

The mean volume concentration of the particle is the integration of the concen-
tration profile given in (IV.6):

C(r∗) = Cs

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
(IV.6)

Cv ≃ 3
4πr∗3

p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗

p

0
Cs(φ, θ)

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
sin(θ)r∗2dϕdθdr∗ (IV.7)

and the integral can further be approximated as:

Cv ≃ 3Cs

4πr∗3
p

∫ 2π

0

∫ +π/2

−π/2

∫ r∗

p

0

r∗
p sinh(φr∗)
r∗ sinh(φr∗

p)
sin(θ)r∗2dϕdθdr∗

=
6
φ

(
1

tanh(φ)
− 2
φ

)
Cs

(IV.8)

where Cs is the mean surface concentration is a constant given by (IV.5). The mean
volume concentration Cv for a single sphere can finally be written as follows:

Cv =
3C∞

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

)
(

2
φtanh(φ/2)

− 4
φ2

)
= δσC∞ (IV.9)

with Sh, is the particle external Sherwood number. This assumption was vali-
dated in [Sulaiman et al., 2018a] for the single particle case, and for three aligned
particles in [Sulaiman et al., 2018b]. In the previous cases, the particle Sh was
known and it was evaluated through previously established correlations, such as
[Feng and Michaelides, 2000] for a single particle. For the case of multiple-particle
system, the individual Sh is unknown. In addition, the bulk concentration C∞ that
is constant in cases of single and three aligned particles, is variable along the z di-
rection for a network of particles due to the consumption of the bulk concentration.
Thus, the mean surface concentration of the particles’ needs to be predicted along
z in order to be able to calculate the internal and external concentration gradients.
The problem can be solved through the additivity rule. The rule states that the
total resistance to mass transfer in the system can be considered as a sum of two
resistances in series. The first resistance is the inverse of the internal mass transfer
coefficient k∗

in, solid phase, and the second is the external coefficient k∗
f within the

fluid phase. The total mass transfer coefficient k̃∗, via the additivity rule, writes as:

1
k̃∗

=
1
k∗

in

+
1
k∗

f

(IV.10)

We consequently introduce the two Sherwood numbers as:
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— internal Sherwood number Shin

Shin =
N∗

s,∂P d
∗
p

D∗
s(Cs − Cv)

=
k∗

ind
∗
p

D∗
s

(IV.11)

— external Sherwood number Sh

Sh =
N∗

f,∂P d
∗
p

D∗
f (C∞ − Cs)

=
k∗

fd
∗
p

D∗
f

(IV.12)

(IV.10) can be reformulated in terms of Sherwood numbers. Introducing the

total Sherwood number of the system S̃h =
k̃∗d∗

p

D∗
f

, we get:

1

S̃h
=

1
γShin

+
1

Sh
(IV.13)

The expression of S̃h can be written as function of Sh, ∆Cs = C∞ − Cs and
∆Cv = C∞ −Cv, using the continuity of the flux density at ∂P , it reads as follows:

S̃h = Sh
C∞ − Cs

C∞ − Cv

= Sh
∆Cs

∆Cv

(IV.14)

Using (IV.5) and (IV.8), the reactive Sherwood number S̃h of a sphere can be
written as:

S̃h(Re, Sc, φ, γ) =
Sh(Re, Sc)

Sh(Re, Sc)
2γ

[
tanh(φ/2)

φ/2 − tanh(φ/2)
− 12
φ2

]
+ 1

(IV.15)

accounting for external mass transfer and internal chemical reaction.

3.1 Multiple-particle system

We will approach the problem using the analogy with the single particle system
(IV.5). The key point of the problem is to predict the internal and external con-
centration differences. The first is the external gradient ∆Cs(z) = C(z) − Cs(z),
the gradient between the bulk cup-mixing and mean particle surface concentration.
The second is ∆Cv(z) = C(z)−Cv(z), through which the internal gradient between
the mean surface and mean volume concentration. We consider the averaged over 5
different sets of randomly distributed particles. We assume that the mean surface
concentration of the particles at z can be approximated as :

Cs(z) =
C(z)

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

) (IV.16)

We will call hereafter, the concentration drop between the cup-mixing and the
mean surface concentration of the particles as δ :
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δ = Cs(z)/C(z) =
1

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

) (IV.17)

with Sh the external Sherwood number that can be determined from mass trans-
fer controlled system. In single particle system it was evaluated through existing
correlations such as [Feng and Michaelides, 2000] and for a bed of particles it can
be evaluated through correlations of [Gunn, 1978] or [Deen et al., 2014].

The equation describing the cup-mixing concentration profile along the z direc-
tion, taking into account the variation of the particle surface concentration along
z, becomes:

dC(z)
dz

+ ξ

(
C(z) − Cs(z)

)
= 0 (IV.18)

Taking into account the assumption made in (IV.16), the equation can further
be written as:

dC(z)
dz

+ ξ(1 − δ)C(z) = 0 (IV.19)

The cup-mixing concentration profile, accounting for the evolution of the particle
concentration as function of z is the solution of the above equation, and it writes
as follows:

C(z) = C∞exp(−ξ(1 − δ)z) (IV.20)

Note that we assumed δ to be constant, 0 < δ < 1. For very slow reaction,
i.e Da ≪ 1, δ → 1. For very fast reaction i.e Da → ∞, δ → 0 and (IV.20) is
equivalent to (IV.3). ξ is the external mass transfer coefficient that is assumed to
be independent of reaction rate.
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Figure IV.4: Concentration distribution along the bed. Continuous lines correspond
to cup-mixing concentration. Disks correspond to mean surface concentration Cs and
squares correspond to mean volume concentration Cv. Different colors correspond to the
five different solid particles random distributions. The dimensionless parameters are fixed
to Re = 10, Da = 50, Sc = 1, γ = 0.1.

Figure IV.5: Concentration distribution along the bed. Green continuous line cor-
responds to cup-mixing concentration, red line corresponds to average of mean surface
concentration and blue line to average of mean volume concentration. Disks correspond
to mean surface concentration Cs and squares correspond to mean volume concentration
Cv. Red vertical arrow corresponds to ∆Cs(z) = C(z) − Cs(z), black bar corresponds to
∆Cv(z) = C(z) − Cv(z). The internal concentration differences are represented by the
green vertical arrow.

Before going further with the assumption, we need to verify that the external
mass transfer coefficient is independent of Da. To do so, we re-write (IV.18) in the
following form:
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ξ = − 1
(C(z) − Cs(z))

dC(z)
dz

(IV.21)

We compute ξ numerically for two cases. Case 1, αs = 0.1, Re = 50, Sc = 10
and γ = 0.1. Case 2, αs = 0.3, Re = 10, Sc = 10 and γ = 0.1. In each case we
consider three values of Da. Da = 40, Da = 200, and Da = ∞. We compare
the results in Fig. IV.6 for the two cases. Fig. IV.6 shows that ξ is constant as
function of z and Da.

Figure IV.6: Comparison of external mass transfer coefficient for different Da. Red color
corresponds to Da = 40, blue color corresponds to Da = 200 and green color corresponds
to Da = ∞. The dimensionless parameters are fixed to : a) Re = 50, Sc = 10, αs = 0.1,
and γ = 0.1. b) Re = 10, Sc = 10, αs = 0.3, and γ = 0.1.

Now, the mean volume concentration profile along z in the bed, can be deduced
from (IV.8) and (IV.16) as:

Cv = C(z)δσ =
3C(z)

1 + 2γ
Sh

(
φ/2

tanh(φ/2)
− 1

)
(

2
φtanh(φ/2)

− 4
φ2

)
(IV.22)

with σ writes as follows :

σ = 3

(
2

φtanh(φ/2)
− 4
φ2

)
(IV.23)

Thus, the cup-mixing concentration profile, the mean surface concentration and
the mean volume concentration are prescribed in the bed along z by (IV.20), (IV.16)
and (IV.22), respectively. The total transfer in the bed, can be accounted for
through the ‘reactive’ Sherwood number :

S̃h = Sh
C(z) − Cs(z)
C(z) − Cv(z)

= Sh
∆Cs(z)
∆Cv(z)

(IV.24)

The model proposed in (IV.24) can be compared to direct numerical simulations.
The model is supposed to predict the concentration profiles along the bed, and
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consequently the concentration differences ∆Cs(z) = C(z) − Cs(z) and ∆Cv(z) =
C(z) − Cv(z). (IV.24) can be simplified to:

S̃h =
C(z) − Cs(z)
C(z) − Cv(z)

Sh =

(
1 − δ

)

(
1 − δσ

)Sh = λSh (IV.25)

The constant λ depends on the diffusion coefficient ratio γ, the reaction rate
(Da) and the external Sherwood number that depends on Sc, Re and αs. We
calculate λ numerically to verify if it is constant along z. λ shows to be constant
and it attains higher value at higher Da. Note that when Da → ∞, λ → 1 and
S̃h → Sh.

Figure IV.7: Evolution of the λ factor. At top figures (a and b) correspond to Sc = 1
and bottom figures (c and d) correspond to Sc = 10. Left figures (a and c) correspond
to Da = 40 and right figures (b and d) correspond to Da = 200. Here the dimensionless
parameters are fixed to αs = 0.1, Re = 50, and γ = 0.1.

4 Model validation and discussion

We perform DLM/FD-SIM numerical simulations to validate the model we pro-
posed. We choose a spatial numerical resolution of Nx = 40 points per particle
diameter, according to the convergence tests performed in [Sulaiman et al., 2018b].
For γ = 0.1, the numerical error on the surface concentration for the highest Da
is less than 5%. All simulations were carried out with a CFL < 0.25 and they
are fully converged in time. We test the model validity and dependence on the 5
dimensionless parameters in the following ranges:

— αs ∈ [0.1, 0.5]
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— Re ∈ [1, 50]

— Sc ∈ [1, 10]

— Da ∈ [40,∞]

— γ ∈ [10−2, 10]

For particle volume concentration, we consider three values αs = 0.1, αs = 0.3
and αs = 0.5, i.e, From semi-dilute to dense regime. We consider the following set
of test cases for validation:

— Case A , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 1. We vary Da such that
Da = [40, 200].

— Case B , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 1. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.8.

— Case C , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case D , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.9.

— Case E , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 50. We vary Da such
that Da = [40, 200].

— Case F , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 50. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.10.

— Case H , we fix γ = 0.1, αs = 0.3, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case I , we fix γ = 0.1, αs = 0.3, Sc = 10 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.11.

— Case J , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 1. We vary Da such that
Da = [40, 200].

— Case K , we fix γ = 0.1, αs = 0.5, Sc = 10 and Re = 1. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.12.

— Case L , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case M , we fix γ = 0.1, αs = 0.5, Sc = 5 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.13.

— Case N , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 25. We vary Da such
that Da = [40, 200].

— Case O , we fix γ = 0.1, αs = 0.5, Sc = 10 and Re = 25. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.14.

— Case P , we fix αs = 0.1, Sc = 10, Re = 50 and Da = 200. We vary γ such
that γ = [10−2, 10−1, 1, 10]. Results comparison is shown in Fig. IV.15.
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— Case A , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 1. We vary Da such that
Da = [40, 200].

— Case B , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 1. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.8.

In case A, we compare the models for the concentration profiles C(z), Cs(z),
and Cv(z), corresponding to (IV.20), (IV.16) and (IV.22), respectively, at low Re,
low αs and low Sc. We only vary Da. Then, in case B, the value of Sc is increased
from 1 to 10, with respect to case A, which leads to higher Peclet number. The
comparison is shown in Fig. IV.8 for the two cases. The model compares well with
numerical simulations with a lower agreement when Sc = 10 and Da = 200, corre-
sponding to thin external and internal boundary layers.

Figure IV.8: Comparison with numerical simulations for αs = 0.1, Re = 1, and γ = 0.1.
Red color corresponds to C(z), blue color correspond to Cs(z) and green color corresponds
to Cv. Continuous lines stand for simulations and markers stand for model. (a) and (b)
correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c) correspond to
Da = 40 and (b) and (d) correspond to Da = 200.

— Case C , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case D , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.9.

In cases C and D, and with respect to cases A and B, we only increase the value
of Re from 1 to 10. The comparison is shown in Fig. IV.9. The results show a
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very good agreement between the model and simulations. Concentration profiles
decrease with a lower slope along the bed. This is due to the increase of convective
effects induced by an increase of Re.

Figure IV.9: Comparison with numerical simulations for αs = 0.1, Re = 10, and γ = 0.1.
Red color corresponds to C(z), blue color correspond to Cs(z) and green color corresponds
to Cv. Continuous lines stand for simulations and markers stand for model. (a) and (b)
correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c) correspond to
Da = 40 and (b) and (d) correspond to Da = 200.

— Case E , we fix γ = 0.1, αs = 0.1, Sc = 1 and Re = 50. We vary Da such
that Da = [40, 200].

— Case F , we fix γ = 0.1, αs = 0.1, Sc = 10 and Re = 50. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.10.

In cases E and F, and with respect to cases C and D, we only increase the value
of Re from 10 to 50. The comparison is shown in Fig. IV.10. The results show
a very good agreement between model and simulations. Concentration profiles de-
crease with a lower slope along the bed than cases A,B,C and D. This is due to
the increase of convective effects induced by the increase of Re at constant reaction
rate and constant solid volume fraction.
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Figure IV.10: Comparison with numerical simulations for αs = 0.1, Re = 50, and
γ = 0.1. Red color corresponds to C(z), blue color correspond to Cs(z) and green color
corresponds to Cv. Continuous lines stand for simulations and markers stand for model.
(a) and (b) correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c)
correspond to Da = 40 and (b) and (d) correspond to Da = 200.

— Case H , we fix γ = 0.1, αs = 0.3, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case I , we fix γ = 0.1, αs = 0.3, Sc = 10 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.11.

In cases H and I, and with respect to cases C and D, we only increase the solid
volume fraction αs from 0.1 to 0.3. The comparison is shown in Fig. IV.11. The
results show a good agreement between model and simulations for Sc = 1, whereas
the agreement gets better for Sc = 10. The physical explanation of this observation
is that when the convective effects increase, the particle surface concentration gets
more uniform, and so, the assumption made in (IV.17) is more valid. Indeed, for
some particles in the bed, neighbor particles induce heterogeneity to its surrounding
concentration field. The increase of Re or Sc (or Pe) enhances the uniformity of
the concentration field. Assuming Pe → ∞, the concentration field around the
particle will be uniform and equal to the inlet concentration C∞. Concentration
profiles decrease with a lower slope along the bed than the cases C and D. This is
due to the increase of number of particles per volume of reactor and consequently
the total surface area available for chemical reaction in the system that induces
more consumption of the chemical species.
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Figure IV.11: Model comparison with numerical simulations for αs = 0.3, Re = 10,
and γ = 0.1. Red color corresponds to C(z), blue color correspond to Cs(z) and green
color corresponds to Cv. Continuous lines stand for simulations and markers stand for
model. (a) and (b) correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c)
correspond to Da = 40 and (b) and (d) correspond to Da = 200.

— Case J , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 1. We vary Da such that
Da = [40, 200].

— Case K , we fix γ = 0.1, αs = 0.5, Sc = 10 and Re = 1. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.12.

In cases J and K, and with respect to cases A and B, we only increase the solid
volume fraction αs from 0.1 to 0.5. The comparison is shown in Fig. IV.12. The
results show a satisfactory agreement between model and simulations for both cases
Sc = 1 and Sc = 10. However, model predictions are better for cases A and B.
When solid volume fraction increases, the particle surface concentration gets less
uniform because the surrounding concentration field is more heterogeneous. When
more neighboring particles are present, the concentration field is strongly disturbed,
and so, the assumption made in (IV.17) is less and less valid. Concentration pro-
files show a steeper slope along the bed than the cases A and B. This is due to the
increase of number of particles and consequently an increase of the consumption
rate of the solute.
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Figure IV.12: Comparison with numerical simulations for αs = 0.5, Re = 1, and
γ = 0.1. Red color corresponds to C(z), blue color correspond to Cs(z) and green color
corresponds to Cv. Continuous lines stand for simulations and markers stand for model.
(a) and (b) correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c)
correspond to Da = 40 and (b) and (d) correspond to Da = 200.

— Case L , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 10. We vary Da such
that Da = [40, 200].

— Case M , we fix γ = 0.1, αs = 0.5, Sc = 5 and Re = 10. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.13.

In cases L and M, and with respect to cases J and K, we only increase Re from
1 to 10, with a single difference, Sc is 5 in case M instead of 10. The comparison
is shown in Fig. IV.13. The results show a good agreement between model and
simulations for both cases Sc = 1 and Sc = 5. However, model predictions are
better than in the cases J and K. At a constant solid volume fraction, the particles’
surface concentration gets more uniform when the convective effects increase. The
increase of the convective effects enhances the homogeneity of surrounding concen-
tration field and decreases the disturbance induced by neighboring particles. Hence,
the assumption made in (IV.17) is more valid. Concentration profiles have a lower
slope along the bed than the cases J and K. This is due to the increase of convective
supply of chemical species to the particles surface at a constant consumption rate.
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Figure IV.13: Comparison with numerical simulations for αs = 0.5, Re = 10, and
γ = 0.1. Red color corresponds to C(z), blue color correspond to Cs(z) and green color
corresponds to Cv. Continuous lines stand for simulations and markers stand for model.
(a) and (b) correspond to Sc = 1, (c) and (d) correspond to Sc = 5, (a) and (c) correspond
to Da = 40 and (b) and (d) correspond to Da = 200.

— Case N , we fix γ = 0.1, αs = 0.5, Sc = 1 and Re = 25. We vary Da such
that Da = [40, 200].

— Case O , we fix γ = 0.1, αs = 0.5, Sc = 10 and Re = 25. We vary Da such
that Da = [40, 200]. Results comparison is shown in Fig. IV.14.

In cases N and O, and with respect to cases L and M, we only increase Re from
10 to 25, with a single difference, Sc is 10 instead of 5. The comparison is shown in
Fig. IV.14. The results show a good agreement between model and simulations for
both cases Sc = 1 and Sc = 5. However, model predictions are almost similar for
those in the cases L and M. Increasing convective effects does not show an impor-
tant impact on the agreement between model and simulations. In all cases where
αs = 0.5, the model agrees less with numerical simulations. This is, probably, due
the fact that the assumptions are less valid at high solid volume fraction. Particles
may experience, in this case, strong spatial concentration variations over their sur-
faces due the disturbance effects induced by neighboring particles. Limitation of
the proposed model is expected in this case.
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Figure IV.14: Comparison with numerical simulations for αs = 0.5, Re = 25, and
γ = 0.1. Red color corresponds to C(z), blue color correspond to Cs(z) and green color
corresponds to Cv. Continuous lines stand for simulations and markers stand for model.
(a) and (b) correspond to Sc = 1, (c) and (d) correspond to Sc = 10, (a) and (c)
correspond to Da = 40 and (b) and (d) correspond to Da = 200.

— Case P , we fix αs = 0.1, Sc = 10, Re = 50 and Da = 200. We vary γ such
that γ = [10−2, 10−1, 1, 10]. Results comparison is shown in Fig. IV.15.

Finally, in case P, we vary the diffusion coefficient ratio γ (γ = 0.1 kept con-
stant in all the previous simulations). For this case, we fix Re = 50, Da = 40,
Sc = 10, and αs = 0.1. We compare model and simulations for four values of γ :
10−2, 10−1, 1, and 10. The results comparison is shown in Fig. IV.15. For γ = 10−2

the model is in full agreement with simulations. The agreement stays very good
when γ is increased to 10−1. For γ = 1, the numerical results show a big deviation
from model, the difference between model and simulations gets bigger for γ = 10.
Increasing the diffusion coefficient ratio γ at a constant Da decreases the surface
concentration of the particles. In fact, decreasing the bulk diffusion coefficient de-
creases the supply of chemical species to particles, at a constant consumption rate
due to reaction. This fact is in-line with what takes place when we decrease Re
or Sc. Mathematically, tending γ or φ to ∞ in (IV.16) has the same effect. In
both cases the particle concentration tends to zero. The increase of Da increases
significantly the numerical error, as the concentration gradient at the interface gets
steeper, and so a higher numerical resolution is required to accurately capture the
correct boundary conditions. Thus, we refer the discrepancy between the model
and simulations when we increase γ to the numerical spatial resolution.
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Figure IV.15: Comparison with numerical simulations for αs = 0.1, Re = 50, and
Da = 40. Red color corresponds to C(z), blue color correspond to Cs(z) and green color
corresponds to Cv. Continuous lines stand for simulations and markers stand for model.
(a) corresponds to γ = 0.01, (b) corresponds to γ = 0.1, (c) corresponds to γ = 1 and (d)
corresponds to γ = 10.

In order to illustrate this fact, we arbitrarily select a few particles in the bed
and we plot their internal concentration profiles for γ = 10−2, γ = 1 and γ = 10
in Fig. IV.16. The particles location in the bed is shown in Fig. IV.15. Regard-
less their positions in the bed, particles show approximately a similar concentration
profile for the same γ. However, when γ increases, the surface concentration sig-
nificantly decreases with an increase of the gradient between the surface and bulk
concentrations. This explains the increase of the numerical error and thus the model
cannot be tested in this case as the simulations are not well-spatially resolved. The
concentration iso-contours of the presented case are shown in Fig. IV.18. They
clearly show the decrease of the particle concentration with the increase of γ. This
observation is similar to what we can see in Fig. IV.17, where we compared the
concentration iso-contours for another case at Re = 25, γ = 0.1, Sc = 10, αs = 0.3
and many Da. We show in Fig. IV.19 the concentration iso-surfaces for αs = 0.1,
γ = 0.1 and Sc = 1. In (a), (b) and (c), we increase Re from 1, to 10 and 50
respectively, at a constant Da. The concentration increases with the increase of
Re. As previously pointed-out, the increase of Re increases the convective effects
and the supply at a constant consumption rate of the chemical species. In (c), (f),
and (i), Re is fixed to 50. The reaction rate is increased through Da, from 40, to
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200 and ∞. The particles concentration as well as the global concentration in the
bed decrease with increase of Da. At a constant supply rate through convection
and mass diffusion, the consumption of the chemical species due to reaction has
been increased.

Figure IV.16: (Right) concentration profiles comparison for arbitrary selected particles
in the bed (left). Vertical dashed line represents particle interface with fluid. Continuous
lines correspond to γ = 10−2, dashed lines correspond to γ = 10−1 and dotted lines
correspond to γ = 10. Red, blue, green, magenta, and black colors correspond to red,
blue, green, magenta, and black spheres, receptively.

(a) (b) (c)

Figure IV.17: Concentration contours at Re = 25, γ = 0.1, αs = 0.3 and different
Damkohler numbers. a) Da = 40, b) Da = 200 and c) Da = ∞
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(a) γ = 0.01 (b) γ = 1 (c) γ = 10

Figure IV.18: Concentration contours at Re = 50, Sc = 10, Da = 40 ,αs = 0.1,
γ = 10−2, 1, 10.
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(a) Re = 1, Da = 40 (b) Re = 10, Da = 40 (c) Re = 50, Da = 40

(d) Re = 1, Da = 200 (e) Re = 10, Da = 200 (f) Re = 50, Da = 200

(g) Re = 1, Da = ∞ (h) Re = 10, Da = ∞ (i) Re = 50, Da = ∞

Figure IV.19: Concentration iso-surfaces for Sc = 1 and γ = 0.1 and αs = 0.1.
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Reactive Sherwood number

We compare the model of reactive Sherwood number S̃h presented in (IV.25)
with numerical simulations for two cases αs = 0.1 and αs = 0.5. For each case we
consider Da = 40, Da = 200 and Da = ∞. For the first dilute case, the results
are shown in Fig. IV.20. In the first case, the model compares well with numerical
simulations. For the second dense case, model compares worse than the first case
with numerical simulations. This difference is expected as for αs = 0.5, the model
showed some discrepancies for the prediction of the mean surface and volume con-
centration profiles.

(a) αs = 0.1 (b) αs = 0.5

Figure IV.20: Model comparison with numerical simulations for Sc = 10. (a) corre-
sponds to αs = 0.1, and (b) corresponds to αs = 0.5. Blue color corresponds to Da = 40,
red color corresponds to Da = 200 and black color corresponds to Da = ∞. Continuous
lines represent simulations and markers represent model.

5 Conclusion

The effect of a first order irreversible chemical reaction within a network of cata-
lyst particles has been studied. The cup-mixing concentration as well as the means
surface and mean volume concentration profiles have been obtained from simula-
tions and the concentration gradients between bulk, particle surface and particle
volume have been compared to our model. The results of the model have been com-
pared to direct numerical simulations and according to its behavior the following
conclusions are drawn :

— At constant Re, Sc, Da, and γ, the lower the solid volume fraction, the better
the agreement between model and numerical simulations.

— At constant αs, Da and γ, the higher the Pe = Re × Sc , the better the
agreement between model and numerical simulations.

The validity of the model showed to be highly affected by the spatial homogene-
ity of the surrounding concentration field. At a low solid volume fraction, the flow
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field tends to that around an isolated particle, and thus the assumptions are likely
to be valid. At the same low solid volume fraction, as Pe increases, the more the
system becomes similar to that of isolated particles and bulk concentration tends
to be equal to inlet concentration. This is due to the fact that convective effects
increase at a constant consumption rate of the chemical reaction.

At a constant Pe, when solid volume fraction increases, the heterogeneity in the
system becomes prominent, and the concentration field surrounding a particle is dis-
turbed. The disturbance of the concentration field affects directly the concentration
profiles inside the particle as well as its mean surface and volume concentrations.
Even at a high solid volume fraction, when Re increases, the chemical species supply
to the system increases at a constant consumption rate due to reaction. Assuming
a strong flow rate, particles in the system will experience a uniform concentration
field that has a value equal to that of inlet concentration, and the model prediction
is supposed to behave similarly to that of single isolated particle. The limitation of
the model can probably be further treated mathematically by taking in account the
effect of disturbance induced by neighbor particles, through creating kernels that
are capable of predicting the correct mean surface and volume concentrations of the
particles even at a high solid volume fraction.
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1 Conclusion

The carried out work aimed at investigating the effect of a first order irreversible
chemical reaction on mass transfer for systems composed of two phases. Dispersed
phase consists in fixed catalyst particles and continuous phase is a fluid through
which chemical species get transported by mass, momentum diffusion and con-
vection. Chemical species diffuse from fluid to solid particles where diffusion and
reaction take place. The problem is handled by means of external-internal coupling
by virtue of flux and concentration continuities as boundary conditions at particle
interface. The performed coupling depends on the decoupling of the external and
internal Sherwood numbers, where the external mass transfer coefficient is evaluated
through the external-known Sherwood number that is considered to be independent
of reaction rate, which is the milestone of our modeling strategy.

In the first part, we started with the simplest system that has not been yet ad-
dressed in literature, the system of a single particle in a forced convective-diffusive
fluid stream where a first order irreversible reaction is taking place along with diffu-
sion all over the particle volume. In such a system, the internal Sherwood number
is dependent on reaction rate that significantly affects the concentration gradient
between the particle surface and volume. Thus, we firstly aimed at determining the
mean surface concentration of the particle through which the mean volume concen-
tration can be deduced thanks to the analytical solution of the 1-D concentration
profile within the catalyst particle (Thiele problem). Here we considered that the
particle’s surface concentration does not experience an important spatial variation,
and consequently the concentration profiles inside the particle can still be predicted
by the 1-D solution of the Thiele problem. We carried out a set of direct numerical
simulations using a body-fitted mesh method that fully resolves the internal and
external boundary layers to assess the validity of the proposed model over a wide
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range of dimensionless parameters. The model showed to be capable of predict-
ing the mean surface and mean volume concentration, although the external mass
transfer coefficient in the model is evaluated through an empirical correlation avail-
able in literature, previously established in mass transfer regime (infinite reaction
rate). Subsequently, an overall Sherwood number, hereafter called ‘reactive’ Sher-
wood number has been established based on general mass balance and re-obtained
through additivity rule. The reactive Sherwood number compared very well with
numerical simulations. The unsteady response of the model is then tested. It has
shown to be able to predict the temporal evolution of the mean volume concentra-
tion of the particle.

In the second part, we aimed at the extension of the model to multi-particle
systems. To do so, we implemented a Sharp Interface Method that accurately
captures gradients at solid boundaries in our in-house code. The method’s imple-
mentation as well as its capability and limits have been assessed by comparison
with analytical solutions and existing empirical correlations in literature in cases of
diffusion-reaction and convection-diffusion, respectively. In case of chemical reac-
tion coupled with an external convection-diffusion, the method has been validated
against the boundary-fitted mesh code that has been previously used in the first
part. The mean surface concentration has been compared for the case of a sin-
gle particle for a wide range of dimensionless parameters. Convergence tests have
been performed by taking the boundary-fitted code as a reference solution to probe
the limitations of the method. Concentration profiles between the boundary-fitted
and Sharp Interface Method have been compared in cases of convection-diffusion-
reaction and they showed a very good agreement. Before addressing a complex
network of particles, we studied the problem of three aligned interacting spheres
with chemical reaction. A physical model for reactive Sherwood number for each
sphere has been presented. The model uses the same boundary conditions of the
single particle case and the external mass transfer coefficient of each particle is eval-
uated through the individual-external Sherwood numbers that have been previously
presented in literature for non-reactive particles. The new model has been thor-
oughly validated by a long set of simulations and it showed a very good agreement.
The assumption of the 1-D model made in the first part of the study showed to be
valid even for three particles as long as the individual-external Sherwood number is
known and the value of the mean external mass transfer coefficient can be correctly
predicted. The validity of this assumption, here, is essentially dependent on the
fact that even in the system of three interacting spheres, the concentration field
surrounding the particles stays uniform and the bulk concentration is equal to that
of inlet concentration. Thus, the validity of the proposed model needs to be assessed
in problems incorporating multi-particles of high solid fraction where each particle
is surrounded by neighbor particles that disturb its surrounding concentration field.

In the last part, a fixed bed of particles has been studied. The system possesses
three main differences with the previous two systems. The bulk concentration in
this case is variable along the bed height in the main flow direction, the particles’
mean surface and volume concentrations significantly vary along the bed height,
and the flow field surrounding a particle is disturbed by the other neighbor par-
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ticles undergoing reaction and consuming chemical species. The same coupling
strategy has been adopted here. The cup-mixing concentration as well as the mean
surface and mean volume concentration profiles have been predicted, and thus, the
concentration gradients between bulk, particles surface and volume are predicted.
The reactive Sherwood number is shown analytically to be a function of both gra-
dients that are expressed in terms of 5 dimensionless parameters. The model has
been compared to direct numerical simulations and according to its behavior the
following remarks are concluded :

— At constant Re, Sc, Da, and γ, the lower the solid volume fraction, the better
the agreement between model and numerical simulations.

— At constant αs, Da and γ, the higher the Pe = Re × Sc , the better the
agreement between model and numerical simulations.

The validity of the model is highly affected by the uniformity of the surrounding
concentration field. At a low solid volume fraction, particles behavior tends to that
of an isolated particle, and thus the assumptions adopted are likely to be valid. At
the same low solid volume fraction, the more Pe increases, the more the system
is similar to that of isolated particles and bulk concentration tends to be equal to
that of inlet concentration. This is due to the fact that convective effects are being
increased at a constant consumption rate due to chemical reaction.

At a constant Pe, the more the solid volume fraction increases, the more the
heterogeneity in the system is prominent, and the more the concentration field sur-
rounding a particle is disturbed. The disturbance of the concentration field affects
directly the concentration profiles inside the particle as well as its mean surface and
volume concentrations. Even at a high solid volume fraction, when Re increases,
the chemical species transport to the system increases at a constant consumption
rate due to reaction. The more Re increases, the more the concentration field is
uniform and the more the assumption is valid. Assuming an infinite flow rate, par-
ticles in the system will experience a uniform concentration field that has a value
equal to that of inlet concentration, and the model prediction is supposed to behave
as that of single isolated particle.

2 Perspectives

The model showed limitations at high solid volume fraction, when convective
effects are low and concentration field is disturbed. This limitation of the model
is to be probably further treated mathematically by taking in account the effect
of disturbance induced by neighbor particles, through predicting the correct mean
surface and volume concentrations of the particles.

The objective of the established models is twofold. i) A tool that can be used by
engineers for quick estimation of mass transfer coefficients in reactor design and ii)
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as a closure law for partially resolved numerical models (DEM-CFD) where infor-
mation about local interactions at particle scale is unresolved. It is of major interest
to assess the validity of the established model as a closure law these systems and
to perform a comparison between fully resolved simulations (DNS-micro scale) and
partially resolved simulations (DEM-meso scale).

The carried out work addressed systems involving spherical particles. Catalyst
particles’ shapes vary in industrial applications from spherical to convex and non-
convex shapes. Modeling efforts in future work are to be devoted towards the
comprehension of systems composed of complex particles shapes, analytically, and
numerically. The numerical validation of the analytical models would require the
extension of the implemented Sharp Interface Method to non-spherical particles
to be able to simulate systems comprising complex shapes. Creating correlations
would allow engineers to attain efficient tools to estimate mass transfer coefficient
and help them to optimize their reactor design. As a closure law, these models
would allow to simulate meso scale systems that comprise big number of particles.
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Appendixes

1 The granular flow solver : Grains3D

The discrete numerical methods simulating the individual grain movement are
important tools to study the behavior of granular flows. These methods permit
to numerically access some variables which are difficult to access experimentally,
such as the forces exerted on grains, their contact distribution and the stress and
deformation tensors. In spite of the ever increasing computational capacity, these
methods are still costly and they are facing problems when the number of parti-
cles is large. The Discrete Element Method (DEM), firstly presented by Cundall
and Strack Cundall and Strack [1979], has been widely used to simulate granular
flows. Due to its success and simplicity through treating complex granular mecha-
nisms, DEM simulates particle-particle interactions at particle scale, which permits
to track the particles motion and their packing as a whole. The method has been
successfully used examine various granular problems such as rotating drum, vibrat-
ing screen, mixing process, screw conveyor. DEM is implemented in our platform
and was used to simulate granular spherical particles, non-spherical convex particles
and non-spherical and non-convex particle [Wachs et al., 2012], [Rakotonirina and
Wachs, 2018] and [Rakotonirina et al., 2018].

— Governing equations:
The particles motion is calculated by applying Newton’s second law to each
particle i, i ∈ [0, N−1] where N is the total number of particles. The velocity
vector ν of a rigid particle can be expressed as the sum of translational and
rotational terms, ν = U +ω∧R. Where U , ω and R represent the particle’s
translational velocity, angular velocity and the position vector, respectively.
The translational motion of a particle of index i is represented by eq(VI.1)
whereas the rotational motion is expressed by eq(VI.2).

Mi
dU
dt

= Fi (VI.1) Ji
dωi

dt
+ ωi∧Jiωi = Mi (VI.2)

Where Mi, ωi, Ji, Fi, Mi are the particle’s mass, angular velocity, inertia
tensor, sum of all forces, and sum of torques applied on particle i, respectively.
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The linear position xi and angular position θi are obtained by integrating the
two classical kinematics equations (VI.3) and (VI.4), respectively.

dxi

dt
= Ui (VI.3)

dθi

dt
= ωi (VI.4)

Only contact forces and gravity are acting on the particle. Thus, the Fi and
Mi can be written as eq(VI.5) and eq(VI.6) respectively:

Fi = Mig +
N−1∑

j=0,j 6=i

Fij

(VI.5)

Mi =
N−1∑

j=0,j 6=i

Rj∧Fij

(VI.6)

Where Ri is a vector pointing from the center of mass of particle i to the
contact point with particle j. The ωi∧Jiωi term cancels out in the case of 2D
systems as well as the 3D cases exhibiting some specific symmetry properties
as, e.g, a sphere or a cube. Usually, this term cannot be dropped due to
the fact that the inertia tensor Ji defined in a global space-fixed coordinate
system varies with θ. Two coordinate systems are used to overcome this is-
sue, the first is the global one which is independent of the particle and the
second, the body-fixed to the particle, translates and rotates with it. The
inertia tensor is calculated in the fixed body-fixed coordinate system which
is stored as reference configuration and rotations from this reference to the
current configuration provides the current tensor of inertia of the particle.
For 3 dimensional arbitrary shapes, quaternions have been used to represent
rotations to avoid the singularities which can be induced by Euler angles at
angles 0 and π. Quaternions are non-singular under any arbitrary rotation,
easy to work with, and can be renormalized in case of cumulative error. The
angular displacements of the rigid particles are limited in DEM simulations
over a time step due the small time step magnitude required by the explicit
time integration of the governing equations and the short contact duration.

— Numerical integration:
Numerical Integration in preformed through a second-order accurate scheme is
employed combining low computational cost with acceptable accuracy and low
complexity. Eq(VI.1), eq(VI.2), eq(VI.3) and eq(VI.4) have been integrated
using Adams-Bashforth scheme employed in Džiugys and Peters [2001] and
Sundaram and Collins [1996]. Only the translational equations are detailed
here, the same applies for the angular equations. The particles collision are
detected with a GJK algorithm. For spherical particles, the contact of two
spheres can be determined by computing the distance between the particles
center of mass, if the distance is less r1 + r2, then the particles are in contact.
If the distance is bigger than r1 +r2 then the particles are not in contact. The
determination of contact requires defining the normal and tangent vectors
at the contact point. For a sphere, the normal vector points out from the
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particle’s center of mass to the one of other particle which is in contact. For
convex non-spherical shapes, the definition is more complex, the reader is
referred to Wachs et al. [2012].

U (t+ ∆t) = U (t) +
∆t
2M

(3F (t) − F (t− ∆t)) (VI.7)

x(t+ ∆t) = x(t) +
∆t
2

(3U (t) − U (t− ∆t)) (VI.8)

The leap-frog Verlet scheme, eq(VI.9) and eq(VI.10), can also be employed to
integrate the system of equations. It worth mentioning that in both schemes,
evaluating the contact forces is required only once at each time step, which is
the costly part of the method.

U (t+ ∆t/2) = U (t− ∆t/2) +
F (t)

M
∆t (VI.9)

x(t+ ∆t) = x(t) + U (t+ ∆t/2)∆t (VI.10)

— Contact forces:
The chosen contact model adopts a simple classical Hook-like elastic model.
The collision force is a combination of Hookean elastic restoring force, eq(VI.11),
a viscous dynamic force in the normal direction to account for the dissipative
aspect of the contact, eq(VI.12), where kn is normal contact stiffness, δij is the
overlapping distance between particles i, j and nc the unit normal vector at
the contact point, γn is the dissipative normal friction coefficient, mij = MiMj

Mi+Mj

is the reduced mass of the particles i and j and Urn is the normal relative
velocity between them.

Fij,el = knδijnc (VI.11)
Fij,dn = −2γnmijUrn (VI.12)

The tangential force is expressed in eq(VI.13), and its dissipative frictional
term in eq(VI.14), where the γt is the dissipative tangential friction coefficient,
Urt is the tangential relative velocity between the particles i and j and tc is
the unit tangential vector at the contact point. The tangential force is limited
by the Coulomb frictional force calculated with Coulombs dynamic frictional
coefficient µc.

Fij,t = min{µc|Fel|, |Fdt|}tc (VI.13) Fdt = −2γnmijUrt (VI.14)
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The resultant force acting on the particle is the sum of all the tangential and
normal contributions and can be written as eq(VI.15):

Fij = Fij,el + Fij,dn + Fij,t (VI.15) Mrolling,ij = −kms|F n
ij |Rij

ωij

|ωij|
(VI.16)

The rolling moment, eq(VI.16), is added in the case of spherical particles to
the total torque of particle i during its contact with particle j, kms is the
rolling friction coefficient, F n

ij = Fijnc, Rij = RiRj

Ri+Rj
is the reduced radius,

ωij = ωi − ωj is the relative angular velocity.
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Figure VI.1: Forces acting on the contact point of particle i with particle j. δij is the
overlapping distance Džiugys and Peters [2001].

— DEM time step:
The required time step to integrate the system of equations has to be taken less
than the collision duration between two particles Tc, expressed in eq(VI.17),
and can be approximated by the collision of two particles of same radius R in
a zero gravity space with a relative colliding velocity v0 using Newton’s second
law, see Wachs et al. [2012] and Džiugys and Peters [2001] for the governing
equation. Generally, the time step is taken in the interval [Tc/50, Tc/10] in
order to integrate contact properly .

Tc =
π√

ω2
0 − γ2

n

(VI.17)

2 The DEM-CFD Method: Meso-Scale

Meso-scale interactions are accounted for in PeliGRIFF through a DEM-CFD
model. This model lies at an intermediate level of resolution between the Particle
Resolved models and the Two Fluid Model. Particle size, density and other physical
properties can be taken into account. The particle-particle treatment with DEM
model is detailed in Section 1 The available computing power and algorithms enable
us to simulate systems containing up to O(108) particles, which is equivalent to a
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lab-scale reactors. The fluid phase of the DEM model can be described by the
locally phase-averaged equations firstly presented by Anderson and Jackson [1967],
the continuity equation is written as:

∂ρǫ

∂t
+

∂

∂xi

(ǫui) = 0 (VI.18)

The fluid motion is described through :

∂

∂t
(ǫui) +

∂

∂xi

(ǫuiuj) = − ǫ

ρg

∂p

∂xi

+ fpf
(VI.19)

where ρ is the density, ǫ the void fraction, p the pressure and fpf
the force exerted

by the particles on the fluid and it is given by the following equation:

fpf
= β(vpf

− uf )/ρ (VI.20)

β is a void fraction dependent coefficient. The particles motion is considered as
weakly affected by the other particle when β > 0.8. When the void fraction is less
than 0.8 , β can be found from Ergun equation for a packed bed [Tsuji et al., 1993].

β =





1 − ǫ

dsǫ2
+


150

(1 − ǫ)µ
ds

+ 1.75ρǫ| ~Vs − ~u|

 if ǫ ≤ 0.8

3
4
CD

| ~Vs − ~u|ρ(1 − ǫ)
ds

ǫ−2.7 if ǫ > 0.8

CD =





24(1 + 0.15Re0.687)/Re if Re < 1000

0.43 if Re > 1000

Where ds is the particle diameter, µ the dynamic viscosity, ~Vs is the particle velocity
and Re is the Reynolds number, expressed as :

Re = |~V − ~u|ρǫds/µ (VI.21)

Closure laws can be developed at the micro-scale from particle resolved simulations
and correlations representing the effective particle-fluid interactions can be used to
improve the meso-scale description.
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