
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22441

Official URL

DOI : https://doi.org/10.1109/HPCS.2018.00050

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Motie, Yassine and Belghache, Elhadi and Nketsa,
Alexandre and Georgé, Jean-Pierre Interoperability based Dynamic Data
Mediation using Adaptive Multi-Agent Systems for Co-Simulation. (2018)
In: 16th International Conference on High Performance Computing and
Simulation (HPCS 2018), 16 July 2018 - 20 July 2018 (Orléans, France).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/228207202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Yassine Motie

LAAS-IRIT, University of Toulouse

Toulouse, France

Yassine.Motie@irit.fr

Elhadi Belghache

IRIT, University of Toulouse

Toulouse, France

Elhadi.Belghache@irit.fr

Alexandre Nketsa

LAAS-CNRS

Toulouse, France

Alex@laas.fr

Jean-Pierre Georgé

IRIT, University of Toulouse

Toulouse, France

Jean-Pierre.George@irit.fr

Abstract—A co-simulation is the coupling of several simulation
tools where each one handles part of a modular problem which
allows each designer to interact with the complex system in order
to retain its business expertise and continue to use its own digital
tools. For this co-simulation to work, the ability to exchange data
between the tools in meaningful ways, known as Interoperability,
is required.

This paper describes the design of such interoperability based
on the FMI (Functional Mock up Interface) standard and a
dynamic data mediation using adaptive multi-agent systems for
a co-simulation. It is currently being applied in neOCampus, the
ambient campus of the University of Toulouse III - Paul Sabatier.

Index Terms—Interoperability; Mediation; Co-Simulation;
Adaptive Multi-Agent Systems;

I. INTRODUCTION

A co-simulation is a set of interacting simulation units,

each one needs Input data and produces Output data. A

simulation unit is the composition of a simulator (solver) with

a dynamic system (model of a real environment characterized

by a state and a notion of evolution rules). The outputs of a

simulation unit might be the inputs of others. The progress

of the simulated time in each simulation unit is controlled by

an orchestrator, called also a master algorithm. This last one,

based upon a co-simulation scenario, moves data from outputs

to inputs. Therefore, the matching process between the inputs

and outputs is difficult especially in open cyberphysical envi-

ronments where components1 join and leave the co-simulation

on the fly, like in the neOCampus operation of the University

of Toulouse III - Paul Sabatier [1].

[2] described a new co-simulation framework interoper-

ability based FMI (Functional Mock up Interface) standard

for the structural interoperability part and data mediation for

semantic interoperability part. In this work, we propose a

dynamic mediation for adaptation of the data which allows

to go further towards the development of global and open

simulation environment. The idea is to take advantage of the

self-adaptation and openness capability of Adaptive Multi-

Agent Systems (AMAS) through DREAM [3] and AMOEBA

1A component is an autonomous deployment entity which encapsulates the
software code showing only its interfaces

[4] (see section III) which need no knowledge about the data

and their application field.

The paper is organized as follows, firstly we present the

interface used to reach a structural interoperability, then the

Collective Artificial Intelligence used to achieve a semantic

interoperability, in order to build our co-simulation framework.

We continue with the application of the latter neOCampus

operation and give a conclusion and future work.

II. STRUCTURAL INTEROPERABILITY OF THE

COMPONENTS

A. Interoperability

Interoperability can be defined as the ability of two or more

entities to communicate and cooperate despite differences in

the implementation language, the execution environment, or

the model abstraction [5]. Two types of interoperability have

been distinguished, process-oriented interoperability that

aims to adapt software code using overload and dynamic link

mechanisms, and data-oriented (or object-oriented) interop-

erability, which aims to adapt data (by coercion mechanism).

We focused on the last one, which leads us to distinguish two

main levels of interoperability. The structural one, which is

discussed in this part, is supported by middleware architects

and vendors who are trying to establish different interopera-

tional standards. The substantive (or semantic) interoperability

(contents meaning) that makes our components understand

each other correctly and co-simulate effectively.

Among the different standards of simulation interoperabil-

ity, the two most well known are HLA (High-Level Architec-

ture) and FMI. In HLA federate (components) are connected to

a central Run-Time Infrastructure (RTI). In FMI, components

are FMUs (Functional Mock up Unit) and a master must be

written to transfer data between FMUs and order the execution

of a time step. To avoid the obligation imposed in HLA to use

RTI libraries from the same provider and usually of the same

version in order for applications to interoperate, we chose

the standard FMI [6]. FMI uses a master-slave architecture

as a simulation interoperability standard. FMI is a standard

which minimizes the customization of the exported model. It

is an independent tool that facilitates the exchange of models

Interoperability based Dynamic Data Mediation
using Adaptive Multi-Agent Systems

for Co-Simulation

between different tools and which therefore reduces the effort

of integration by proposing approaches that are specific to it.

B. FMI Functional Mockup Interface

FMI is a standard interface for the solution of coupled time

dependent systems, consisting of continuous or discrete time

subsystems. It provides interfaces between master and slaves

and addresses both data exchange and algorithmic problems.

Simple and sophisticated master algorithms are supported.

However, the master algorithm itself is not part of FMI for

co-simulation and has to be defined [7] [8]. FMI supports

different working modes, particularly: (1) model exchange

(when a modeling environment can generate C code of a

dynamic system model that can be utilized by other modeling

and simulation environments), and (2) co-simulation (when an

interface standard is provided for coupling simulation tools in

a co-simulation environment)

The use of FMI can be summarized in 4 steps:

• The design step: The package of the model of simulation

in one component FMU embedding the modeling, and

transformation (publication of the FMU which contains

a xml file and the model code or its file). The main

challenge is to fill-up the gap between the semantics

of FMI and the semantics of the source formalism of

the various calculation models (state machines, discrete

event, data flow or timed automata) [9].

• The composition step: The model of the subsystem

is joined to the complex system by establishing the

connection graph of the simulation components.

• The deployment step: The FMUs are made available to

the slave simulators. This can be made offline (manually

by the user) or online (automatically by the master and

where the user specifies in which network the instances

of the FMUs are transferred).

• The simulation step: The master is responsible for the

life cycle of FMUs instances during the execution of the

simulation.

C. Co-Simulation Steps

In our previous work [2] we designed a co-simulation

framework interoperability performing a co-simulation based

on a black box component approach. We defined communi-

cation ports and guaranteed the possibility of connection by

respecting data types and the direction of the ports following

the FMI standard. We designed a mediation approach to

ensure the unambiguous information exchange. We noticed

that the semantic interoperability based on mediation was

integrated to our framework in an ad-hoc way. This took a

heavy work investment as each component needed a hand-

made encapsulated mediator.

We now want to automate this process using DreAMoeba,

the extension of DREAM2 with AMOEBA3 (see III-C), as a

black box component in the co-simulation framework, which

2DREAM stands for Dynamic data Relation Extraction using Adaptive
Multi-agent system

3”AMOEBA” stands for Agnostic MOdEl Builder by self-Adaptation

is able to link dynamically correlated inputs and outputs and

hence to continuously adapt the structural interoperability and

carry out the semantical one.

In the next section, we present both DREAM and AMOEBA

two collective artificial intelligence based tools.

III. COLLECTIVE ARTIFICIAL INTELLIGENCE FOR

SEMANTIC INTEROPERABILITY

In this section, we present the tools used to achieve our new

semantic interoperability and the theory behind them.

A. Adaptive Multi-Agent Systems Theory

Both DREAM and AMOEBA rely on a bio-inspired col-

lective artificial intelligence (Adaptive Multi-Agent Systems),

defined as follows:

1) Multi-Agent Systems: A Multi-Agent System (MAS)

[10] is defined as a system composed of autonomous agents

which pursue individual objectives and which interact in a

common environment to solve a common task. The autonomy

of an agent is a fundamental characteristic: an agent is capable

of reacting to its environment and acts from its own decision,

relying only on a limited and localized knowledge of the

environment, using a set of skills and tools.

2) Self-Adaptive Multi-Agent Systems: A self-Adaptive

Multi-Agent System (AMAS) is a MAS able to adapt itself:

adjust itself, organize itself, heal itself, etc. [11] to remain in

a well-functioning state after a perturbation. It relies on the

fact that the agents do not follow a global directive towards

the solving of the problem but collectively build this solving.

This produces an emergent [12] problem solving process.

B. Dynamic Data Relation Extraction using AMAS

DREAM2 [3] is an adaptive multi-agent system that extracts

relations between data streams, on the fly, based on their

dynamics correlation. DREAM is able to find data streams that

evolve in the same way, even if there is a time delay between

them, thanks to a new correlation metric called Dynamics

Correlation, which allows to study (perceive and evaluate) data

dynamics4 by combining a conventional statistical analytics

tool and a new physical analytics tool.

the statistical analytics tool is an incremental version of

Pearson’s correlation coefficient r [13], defined as follows:

r(A,B) =

∑n

i=1(aibi)− nĀB̄

nσAσB

(III.1)

Āi =
Si

i
with Si = Si−1 +Ai, S0 = 0 (III.2)

σAi
=

Qi

i
− Ā2

i with Qi = Qi−1 +A2
i , Q0 = 0 (III.3)

Where,

- A,B are two variables (data features).

- X̄ is the mean of X .

- σX is the standard deviation of X .

- n is the number of data points (values).

4Dynamics means the behavior or the evolution, in other words changes
occurring over time

The new physical analytics tool, called Phase Space Simi-

larity metric, is a comparison between two data streams dy-

namics (evolution) using their dynamics abstraction, the Phase

Space. This metric is given with the following equations:

(psxAi
, psyAi

) = (Ai −Ai−1, Ai+1 −Ai) (III.4)

PSA = {(psxAi
, psyAi

), ∀i ∈ [1, n− 1]} (III.5)

LPSD(Ai, Bi) = e−0.5(
√
|psxAi

−psxBi
|−
√
|psyAi

−psyBi
|)

2

(III.6)

LPSS(Ai, Bi,m) =

∑i

j=i−m+1 LPSD(Aj , Bj)
2

m
,m ≥ 1 (III.7)

The Dynamics Correlation metric is combination of the two

previous metrics according to the following procedure:

Algorithm 1: Dynamics Correlation

1 if LPSS2 ≥ 0.7 and Partial r2 ≥ 0.01 then

2 return Max(LPSS2, r2); //it is a true Dynamics

Correlation

3 if LPSS2 ≥ 0.7 and Partial r2 < 0.01 then

4 return -1; //it is a false Dynamics Correlation

5 if LPSS2 ≥ 0.7 and Partial r2 ≥ 0.01 then

6 return 0; //it is not a Dynamics Correlation

For a system of n inputs, it takes
n(n−1)

2 calls of the

dynamics correlation tool to examine all the possible relations,

which corresponds to a temporal complexity of O(n2) if

computed sequentially or a spatial complexity if computed in

the same time, in either ways, this high complexity prevents

the system to scale up.

Thence, for the sake of designing a component that pro-

duces a dynamic graph model of the data relations on the

fly, DREAM incorporates the dynamics correlation into an

AMAS to focus only on the most probably correlated data

and therefore reduces the computing power and the time to

find all the data relations.

C. Agnostic MOdEl Builder by self-Adaptation

AMOEBA3 [4] is composed of agents that build an agnostic

(without knowledge of the meaning) model of AMOEBA

inputs, or ”percepts”, on the fly. These agents, called contexts,

can be summarized as sets of percepts data ranges wherein

each data point from one percept range corresponds to the

data in all the other percept ranges (see figure1-a). All the

context agents constitute a mapping of co-occurring data in the

whole data space (see figure1-b). Moreover, a context agent

has a confidence proportional to its percepts data co-occurring

frequency.

We use AMOEBA, as an unsupervised learner5, to provide

a data translation function (described in IV-B). Consequently,

the more inputs and data AMOEBA gets the higher is the

5Learns by itself without an expert telling the correctness of the learning
result (feedback)

Fig. 1: An example of AMOEBA context agents. (a) A

context agent and its inputs ranges. (b) The mapping of a

two dimensional data spaces (graphical representation of the

context agents)

confidence in the model accuracy. This translation function

provided by AMOEBA insures the semantical interoperability

of the data dynamically correlated by DREAM. This process

is explained in the next section.

IV. DYNAMIC DATA MEDIATION

In our previous work, we set up an individual mediator

for each component, using a context mediation, to make the

subsystems understand each others data. However, the creation

and maintenance of such mediation model, as a standard used

by all the subsystems, requires considerable amount of time

and efforts. This mediation model leads to define three types

of integration rules:

1) constraint rules that reduce the objects to be considered

according to predicates,

2) merge rules that aggregate instances of classes of similar,

3) and join rules that combine information from multiple object

classes based on one or more common properties.

We distinguished two types of mediation:

1) Schema mediation which provides better extensibility and

often better scalability (object interfaces, rule-based lan-

guage).

2) Context mediation seeks to discover data that is semantically

close, it is able to locate and adapt information to ensure

complete transparency. We can therefore take advantage

of the robustness of the mediation schema approach and

combine it with the semantic approximation techniques of

context mediation. This semantic mediation will be used

to correlate, aggregate and dispatch data with respect to

the control that we want to enforce on data produced or

consumed.

Therefore, we extend our co-simulation framework with

a new component for dynamic data mediation, called

”DreAMoeba” (see figure 2), operating as follows:

1) Use DREAM to link the subsystems dynamically, each link

is described with an (Output, Input) couple (IV-A).

Fig. 2: Co-simulation Architecture using DreAMoeba mediator

2) For each data couple query, use AMOEBA to translate the

data form Output to Input (IV-B).

A. Dynamic Subsystem-to-Subsystem Graph Model

A Subsystem-to-Subsystem Graph Model (SSGM) is a con-

nection graph between the subsystems, encapsulated in FMUs,

which displays their communications bridges and therefore

describes which outputs from one subsystem are connected

to the inputs of another.

When one wants to start a co-simulation, he has to describe

manually SSGM at the composition step. This is a hard and

time consuming task considering, in the one hand, that it

requires some expert-domain knowledge about the data and,

in the other hand, when dealing with real large cyberphysical

environments the number of available data is high. Moreover,

once this SSGM is established, it can’t be modified during

the simulation step for the sake of an interactive and dynamic

integration of a new subsystem. This requires a shut down

of the system and then an update of the SSGM with new

subsystems and finally a restart of the co-simulation.

Hereafter, we describe how the use of DREAM can reduce,

and ultimately get ride of, the human interaction with the co-

simulation framework. For a better understanding, we virtually

split DREAM’s behavior in two.

1) Initialization Behavior: All the salves inputs and outputs

(figure 3-a) are considered as input data streams for DREAM

which builds the dynamics correlations graph for the data

streams (figure 3-b). In addition, we extend DREAM’s agents

with a filtering behavior in order to discard the links (dynamics

correlations) between the data streams of the same subsystem

and links between data streams of the same type (input-input,

output-output), because such links are irrelevant to build a

subsystem-to-subsystem graph model (figure 3-b). Besides, we

leave to the users the choice, if desired, of a specific subsystem

to which they want to link, resulting in the subsystem-to-

subsystem graph model (figure 3-c).

2) Nominal Behavior: DREAM is able to handle large

amounts of data streams leading to a huge number of links and

consequently to ({output1, output2. . . outputN}-input) couples.

In such situations, where one input can be linked to several

outputs, DREAM keeps only the strongest link (link with the

highest Dynamics Correlation metric value). As you can see in

figure 3, the input InB3 is linked with OutA2, OutB1, OutC1

and OutC2. However, DREAM discards (OutB1-InB3) because

they are of the same subsystem B. Moreover, DREAM discards

(OutA2-InB3) and (OutC2-InB3) as they are weaker than

(OutC1-InB3) regarding their Dynamics Correlation strengths.

In addition, DREAM is self-adaptive to its environment (see

III-B). In other words, it can update the SSGM on-the-fly. This

continuous adaptation allows our co-simulation framework to

cope with changes occurring in the cyberphysical environment.

These changes are:

• the evolution of the existing subsystems inputs and outputs.

DREAM removes links between inputs and outputs of

different subsystems that are not dynamically correlated

anymore and links the newly dynamically correlated ones.

• the arrival of new subsystems. DREAM provides, for the

new subsystems, links with existing subsystems and re-

places previous links with stronger ones, if found.

• and most importantly, the departure of an already present

subsystem in the co-simulation. In this case, DREAM finds,

if they exist, other relations to replace the links destroyed

by the subsystem departure from the co-simulation.

B. Data Translation using AMOEBA

By virtue of its genericity6, DREAM doesn’t process high-

level semantics i.e. it doesn’t handle the meaning of the data

like temperature, luminosity, CO2, energy consumption, etc.

Hence, it finds heterogeneous links (luminosity-temperature,

humidity-CO2. . .) which is problematic knowing that data can

have different domains and different semantics.

6Ability to be applied on any application domain data

Fig. 3: Example of Subsystem-to-Subsystem Graph Model

building with DREAM.

Thus, we combine DREAM with a second self-adaptive

artificial intelligence, called ”AMOEBA” (see III-C), able

to act as a translator between heterogeneous data couples

(Output, Input). This translator is a matching function between

the Output data and the most probable Input data. Ideally, we

would have a homogeneous mapping of the data space such

that there are context agents, with only one data point per

each percept (AMOEBA input) range, that cover all the data

space. However in cyberphysical environments some data are

missing or noisy, which leads to heterogeneous mapping with

overlapping context agents of different sizes (see figure1-b).

Therefore, AMOEBA has to reduce the set of the contexts

that map the Output data, using if needed, the other percepts

data and their confidence, then producing the Input data by

returning the mean value of all the remaining context Input

ranges, as follows:

C. Model Calibration

As we described it in subsection IV-A, DREAM continu-

ously updates the links of the SSGM in order to keep only the

best ones. These updates are more frequent during DREAM’s

initialization phase until it stabilizes. For this reason, we need

a model calibration phase to generate a first more stable

SSGM before introducing the subsystems in the co-simulation.

Algorithm 2: Contexts based Translation Function

1 Contexts set = {all the available context agents that

map the data space and have a percept data range

containing the Output data} ;

2 if ‖Contexts set‖ > 1 then

3 Contexts set = {the context agents in

Contexts set that have at least one another

percept, besides Output, data range containing the

data available in the co-simulation bus at this step

of co-simulation} ;

4 if ‖Contexts set‖ > 1 then

5 for each context in Contexts set do

6 if the context confidence is low then

7 Contexts set =
Contexts set− {context};

8 Input data range = {} ;

9 for each context in Contexts set do

10 Input data range = Input data range∪
{context Input data range} ;

11 return the mean value of Input data range ;

Similarly, AMOEBA requires a calibration in order to provide

a translator model used for the dynamic data mediation.

This model calibration, can be seen as the training of a

machine learner. Thus, we need a database containing, for

each subsystem, the data used by its input and provided by

its outputs during a test run, to generate a first SSGM and

translator model then start the co-simulation with them.

V. NEOCAMPUS USE CASE

We took the neOCampus operation [1] as use case because

it’s considered as a smart city where several data streams

come from heterogeneous sensors placed inside and outside

the buildings (CO2, temperature, humidity, luminosity, human

presence, energy and fluid consumption, ...). It’s also a com-

plex system as each expert interacts with data differently using

a specific field within simulation to design the campus of the

future, that eases campus users life, reduces the ecological

impact by controlling energy and fluids consumption.

A. Different Simulators Used

We took as example some simulators using different kinds

of data. One, implemented in Matlab Simulink, works on

reducing the energetic consumption using a black box neural

network heat pump model and ensuring a comfortable desired

temperature in the rooms by heating and cooling when it

is necessary. It requires from sensors the Electric power

(Kw) and the indoor temperature and provides the optimal

temperature with a specific time step.

Another, implemented with the Powersims toolbox of

simulink [14] using Maximum Power Point Tracking makes it

possible to follow the maximum power point of a non-linear

electric generator. It requires the values of the Photovoltaic

current and the voltage and provides a Converter control

setpoint

Another, implemented in Cooja Contiki7 [15], which al-

lows large and small networks of Contiki nodes to be sim-

ulated in order to evaluate the performances (energy, delays)

of IoT networks, using the protocol CCN (Content Centric

Networking) applied on a network of sensors. This simulator,

developed in C++ under linux OS, requires interest (requests

sent by users containing the name of the data such as the

temperature) and provides the value of this data.

As the collection of sensors data is stored in a NoSQL

database (mongodb), we use them as a training set for

DreAMoeba which is a java simulation made to mediate

data. It requires data provided from the other components

to make correlations and translations then, provides the right

dynamically linked data couples, as described in section IV

and illustrated with a use case scenario (see V-C). We have

also built a knowledge base from sensors data that provides

real-time data and relationship between them in order to build

later an ontology on which to map the data provided.

B. Co-simulation engine

The design approach of neOCampus is necessarily scalable

and adaptive, which directs our work towards the development

of global and open simulation environment. As we said before,

we adopted the component approach and described the general

FMI’s way of working II-B. This last follows a master-slave

architecture, and we mentioned that:

• a master algorithm needs to be defined in order to syn-

chronize the simulation of all subsystems and to proceed in

communication steps,

• the data exchange between subsystems is connected via

MPI, TCP/IP, Sockets,

• the mapping between outputs to inputs has to be initialized.

We used CosiMate (a co-simulation environment), as in [2],

to save the efforts of dealing with synchronization between our

subsystems (avoiding the definition of a master algorithm).

To perform this integration, CosiMate provides libraries to

make the customization easier. The libraries contain (1) I/O

ports compiled and described for the simulator/language used.

(2) I/O ports description. This description depends on the

environment in which the ports are to be used: for example,

a header file for C/C++ language is provided.

CosiMate provides synchronization methods that take into

account the different behaviors of the languages and the

simulators used. Thus, when a simulation is performed on a

network, CosiMate considers the intrinsic constraints of the

communication medium. CosiMate self-adapts to the network

configuration, offering a co-simulation based on a multi-

client multi-server to avoid unnecessary communications be-

tween simulators instantiating local routers for each computer

in the co-simulation. Thereby, Cosimate manages access to

the co-simulation bus, used in this distributed model as a

7an operating system for networked, memory-constrained systems with a
focus on low-power wireless Internet of Things devices

communication protocol. It coordinates the data by the bus

controller. It also handles the integration of time [16] which is

different between embedded software systems, hardware and

the surrounding environment.

In our case and according to the different simulators

mentioned previously, we constructed an FMU’s component

for each one either by using FMI toolbox like for MAT-

LAB/Simulink, or a wrapper using FMI Library from Modelon

for the simulator using Contiki. We made it easy to connect

all the simulators knowing that for example, Simulink is

supported by Cosimate but Contiki is not. However, the

CosiMate FMI connector can load and run all FMI models

compatible with FMI 1.0/2.0 for the co-simulation mode. As

we said before, each of our FMU files is a zip file that contains

a file named modelDescription.xml and one or more platform-

dependent shared libraries. The XML files are used to describe

how a model running in a simulation environment is connected

to the CosiMate bus. We should mention that CosiMate

allows execution in the native simulation environment, users

can easily work in their familiar environment controlling,

debugging, and monitoring simulations as if they are running

in a stand alone mode integration. We can also use remote

procedure: if the model is to be run on a remote machine.

The CosiMate Spy tool is used to monitor and control the

co-simulation components and processes. It acts as a reader

of the CosiMate bus without modifying data exchanges or

simulations synchronization during the co-simulation.

C. DreAMoeba Mediator

One of the problems encountered is the mediation part,

since we want to achieve a semantic interoperability we used

DreAMoeba (see IV). In order to grasp how it works, let’s

take the following neOCampus co-simulation environment:

• a room equipped with several sensors (luminosity, humidity,

co2, presence detection, heaters energy consumption).

• Matlab Simulink (see V-A) for optimizing the temperature

and electric power consumption in the room.

As described in IV-C, we first calibrate DreAMoeba, which

leads to discover the (room luminosity, Matlab Simulink tem-

perature input) and (room heaters energy consumption, Matlab

Simulink electric power input) couples. The latter couple is

quite understandable since its Output and Input are about the

same entity, the electric power used for heating the room.

However, the former is less understandable considering, at first

glance, their semantic dissimilarity. Nonetheless, DreAMoeba

analyses the data deeper than what human hypothesis allow

by studying their dynamics correlation mainly through their

phase spaces8. So, as you can see in figure 4 the two phase

spaces are similar, meaning the luminosity and the temperature

behave fairly in the same way.

The data translation (IV-B) insured by AMOEBA for the

(room luminosity, Matlab Simulink temperature input) is de-

scribed in example algorithm 3.

8Representations that exhibit the evolution behavior of each data stream

Fig. 4: Luminosity and temperature data recorded by neO-

Campus sensors during one week.

Algorithm 3: Example of the data translation on the

toy neOCampus use case

1 if Luminosity ≥ 20 then

2 AMOEBA returns a unique temperature as a result

of the homogeneous mapping of the data space

when Luminosity ≥ 20.;
3 In other words, each Luminosity data ≥ 20

corresponds to a single temperature data ;

4 if Luminosity < 20 then

5 Several temperatures are possible and according

to the data translation function (IV-B) AMOEBA

return the mean temperature ;

For the sake of a more accurate translation, we add to

AMOEBA one or more new percepts from the data Outputs

available in the co-simulation environment. For example, by

adding only the humidity percept to AMOEBA, it creates a

third dimension to the data space, which allows AMOEBA to

reduce the number of contexts that cover the temperature

data and thus AMOEBA returns only one temperature data.

To sum up, the more AMOEBA has percepts the higher

is the data space dimension, that leads to less overlapping

context agents and in consequence the more accurate is the

data mediation.

VI. CONCLUSION AND FUTURE WORK

Our architecture has been implemented and our modeling

works well: we took as example the 4 simulators and used

FMI for co-simulation in order to generate a slaves FMUs

and solve the structural problems. Our DreAMoeba component

which is used to ensure the mediation, in order to achieve

the semantic interoperability, was encapsulated using JavaFMI.

It is necessary to mention that our framework allows the

integration of all types of simulators, knowing that Cosimate

allows the co-simulation between FMI and also non-FMI

models. Simulators which are not supported by Cosimate are

wrapped as an FMUs components in order to plug them to

our cosimate bus.

DREAM, as a black box, offers openness and self-healing

features (make new connections and replace lost connections

on the fly) to our co-simulation framework when combined

with an self-adaptive data translator will provide autonomous

semantic interoperability.

Furthermore, these new features, without taking into account

the semantic aspect through the data translation, can be applied

independently to improve the current tools relying on FMI

by (semi-)automatize the linking process between the slaves

inputs and outputs. Moreover we would like, as future work,

to approach semantic interoperability using ontology for the

comparison purposes

VII. ACKNOWLEDGEMENT

We thank the Occitanie Region and the neOCampus oper-

ation [1], which provided the funding and the testing ground

in order to achieve this work.

REFERENCES

[1] M.-P. Gleizes, J. Boes, B. Lartigue, and F. Thiébolt, “neocampus: A
demonstrator of connected, innovative, intelligent and sustainable cam-
pus,” in International Conference on Intelligent Interactive Multimedia

Systems and Services. Springer, 2017, pp. 482–491.
[2] Y. Motie, A. Nketsa, and P. Truillet, “A co-simulation framework

interoperability for Neo-campus project (regular paper),” in European

Simulation and Modelling Conference (ESM), Lisbon, 25/10/2017-

27/10/2017. EUROSIS, 2017.
[3] E. Belghache, J.-P. Georgé, and M.-P. Gleizes, “DREAM: Dynamic data

Relation Extraction using Adaptive Multi-agent systems (regular paper),”
in IEEE International Conference on Digital Information Management

(ICDIM). IEEE, 2017.
[4] N. Verstaevel, J. Boes, J. Nigon, D. D’Amico, and M.-P. Gleizes, “Life-

long Machine Learning with Adaptive Multi-Agent Systems (regular
paper),” in International Conference on Agents and Artificial Intelligence

(ICAART), vol. 2. SciTePress, 2017, pp. 275–286.
[5] H. Kohar, P. Wegner, and L. Smit, “System for setting ambient param-

eters,” Sep. 10 1996, uS Patent 5,554,979.
[6] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Jung-

hanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel et al., “The
functional mockup interface for tool independent exchange of simulation
models,” in Proceedings of the 8th International Modelica Conference;

March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063.
Linköping University Electronic Press, 2011, pp. 105–114.

[7] M. Consortium et al., “Functional mock-up interface for co-simulation,”
Accessed March, vol. 1, p. 2013, 2010.

[8] O. Enge-Rosenblatt, C. Clauß, A. Schneider, and P. Schneider, “Func-
tional digital mock-up and the functional mock-up interface-two comple-
mentary approaches for a comprehensive investigation of heterogeneous
systems,” in Proceedings of the 8th International Modelica Conference;

March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063.
Linköping University Electronic Press, 2011, pp. 748–755.

[9] S. Tripakis, “Bridging the semantic gap between heterogeneous model-
ing formalisms and fmi,” in Embedded Computer Systems: Architectures,

Modeling, and Simulation (SAMOS). IEEE, 2015, pp. 60–69.
[10] G. Weiß, Multiagent Systems, A modern Approach to Distributed Arti-

ficial Systems. MIT Press, 1999.
[11] G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos, Self-

organising Software: From Natural to Artificial Adaptation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011.

[12] P. A. Corning, “The re-emergence of emergence, and the causal role of
synergy in emergent evolution,” Synthese, vol. 185, no. 2, pp. 295–317,
Mar. 2012, wOS:000303530600009.

[13] B. E. Cooper, “Correlation and Function Fitting,” in Statistics for

Experimentalists. Elsevier, May 2014, pp. 206–212.
[14] S. Khader, A. Hadad, and A. A. Abu-Aisheh, “The application of psim

& matlab/simulink in power electronics courses,” in Global Engineering

Education Conference (EDUCON). IEEE, 2011, pp. 118–121.
[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and

flexible operating system for tiny networked sensors,” in Local Computer

Networks. IEEE, 2004, pp. 455–462.
[16] S. Yoo and K. Choi, “Optimistic timed hw-sw cosimulation,” in in Proc.

of APCHDL’97. Citeseer, 1997.

