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POLITICS ON TWITTER: A PANORAMA 4

TWITTER

» One of the biggest social media worldwide
» 2018: 336 million monthly active users

» Majority of data is public and easily
accessible
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» One of the biggest social media worldwide
» 2018: 336 million monthly active users

» Majority of data is public and easily
accessible

Twitter Revolution: How the Arab |
Spring Was Helped By Social
Media

By Saleem Kassim | July 3, 2012 R ¥ &
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POLITICS ON TWITTER: A PANORAMA

TWITTER

» One of the biggest social media worldwide
» 2018: 336 million monthly active users

» Majority of data is public and easily
accessible

In presidential campaign, Twitter was a powerful
political tool

Twitter reports 1 billion election-related tweets since August 2015

O60DOOCO

By Sharon Gaudin
Senior Writer, Computerworld | NOV 8, 2016 11:32 AM PT
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TWITTER

» One of the biggest social media worldwide
» 2018: 336 million monthly active users

» Majority of data is public and easily
accessible

"Twitter has emerged as the single most powerful
“socioscope” available to social scientists for collecting fine-
grained time-stamped records of human behavior and social

interaction at the level of individual events."
(Golder & Macy, 2014)
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POLITICAL STANCES?

@ - @ Internet

Social positioning of a person, a thoughtful positioning,
justified by a set of values and beliefs, put in relation with the
other existing points of view on the given subject.

Moree,
A m
- ).

National
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POLITICAL STANCES?

» Twitter data has important limits:
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» Twitter data has important limits:
» Hardly quantifiable quality

» Limited depth in terms of arguments

» 280 (140) characters

@ RevOpiD-2018 07/09/18

OPHELIE FRAISIER



POLITICS ON TWITTER: A PANORAMA 6

POLITICAL STANCES?

» Twitter data has important limits:
» Hardly quantifiable quality

» Limited depth in terms of arguments
» 280 (140) characters

» "Difficult" interactions
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POLITICAL STANCES?

‘ Donald J. Trump ©* @realDon... - 21 h -«

1 1 : He- Congratulations to Danny Tarkanian on

» Twitter data has important limits: e bl GOP oy i vt
Danny worked hard an got a great result.

Looking good in November!
Q 4649 17 143k Q 718K <

» Hardly quantifiable quality

» Limited depth in terms of arguments ' ikl Smith

@kennahgramma

En réponse a @realDonaldTrump
» 280 (140) characters Learn. To. Spell.

» "Difficult" interactions
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PU LITI CAL STAN C ES? Hillary Clinton & @Hilla... - 09 nov. 16
L

"To all the little girls watching...never
doubt that you are valuable and powerful
& deserving of every chance &

» Twitter data has important limits: opportunity in the world-
Q 871K 1A 676K Q) 13M <

» Hardly quantifiable quality lg Chris Mccammant @CMcc... - 27 mai -
‘ What's Bill up to?
» Limited depth in terms of arguments O N2 Q6 <
= Drew Woods
» 280 (140) characters @;D:weywOodz

En réponse a @CMccammant et @HillaryClinton

Chasing skirts at the senior
center.

» "Difficult" interactions

OPHELIE FRAISIER
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PU LITI CAL STAN C ES? Hillary Clinton © @Hilla... - 09 nov. 16
o

"To all the little girls watching...never
doubt that you are valuable and powerful
& deserving of every chance &

» Twitter data has important limits: opportunity in the world-
Q 871K 1A 676K Q) 13M <

it I Chris Mccammant @CMcc... - 27 mai
» Hardly quantifiable quality @ Chria Mocarmmer
» Limited depth in terms of arguments O N2 Q6 <

= Drew Woods
» 280 (140) characters @DeweyWoodz

En réponse a @CMccammant et @HillaryClinton

Chasing skirts at the senior
center.

» "Difficult" interactions

How relevant is it to use this data to study
complex political topics?
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POLITICAL STANCES?

» Public opinion characteristics according to Allport (1937):
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POLITICAL STANCES?

» Public opinion characteristics according to Allport (1937):

» Verbalisations produced by many profiles on subjects important to
them

» Subjects rooted in common culture

» Other profiles may react to these topics without necessarily being in
direct contact
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» Other profiles may react to these topics without necessarily being in
direct contact

» Aware that their behaviour can enable them to reach a goal
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POLITICAL STANCES?

» Public opinion characteristics according to Allport (1937):

» Verbalisations produced by many profiles on subjects important to
them

» Subjects rooted in common culture

» Other profiles may react to these topics without necessarily being in
direct contact

» Aware that their behaviour can enable them to reach a goal

» Component of interpersonal conflict when different stances

= Twitter can be an useful medium for studying stances
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HOMOPHILY

» "Homophily is the principle that a contact between similar
people occurs at a higher rate than among dissimilar people.
[...]

Homophily implies that distance in terms of social
characteristics translates into network distance, the number of
relationships through which a piece of information must travel

to connect two individuals." (g>

(McPherson et al ., 2001)

in,
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HOMOPHILY

» "Homophily is the principle that a contact between similar
people occurs at a higher rate than among dissimilar people.
[...]

Homophily implies that distance in terms of social
characteristics translates into network distance, the number of
relationships through which a piece of information must travel

to connect two individuals." (g>

(McPherson et al ., 2001)

in,

» Can lead to "echo chambers"
(Sunstein, 2009)
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INFLUENCE OF RETWEETS

11 European Commission [l a retweeté
~.+. Jean-Claude Juncker =~ @JunckerElU - 3 h v
& | am convening an informal working meeting on migration and asylum issues in

Brussels on Sunday, in order to work with a group of Heads of State or
Government of Member States interested in finding European solutions ahead of
the upcoming #EUCO. #MigrationEU

» Retweet largely used

» Action of sharing a tweet

» One of the most important interaction on the platform
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INFLUENCE OF RETWEETS

11 European Commission [l a retweeté
~.+. Jean-Claude Juncker =~ @JunckerElU - 3 h v
& | am convening an informal working meeting on migration and asylum issues in

Brussels on Sunday, in order to work with a group of Heads of State or
Government of Member States interested in finding European solutions ahead of
the upcoming #EUCO. #MigrationEU

» Retweet largely used

» Action of sharing a tweet

» One of the most important interaction on the platform

» Motivations for retweeting (voyd et al., 2010):

» To publicly agree with someone

» To validate others’ thoughts

OPHELIE FRAISIER




POLITICS ON TWITTER: A PANORAMA

OBSERVED ON VARIOUS POLITICAL LANDSCAPES %
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Estimated Ideology of Author

/ Highest level of polarization (Barbera et al, 2015)
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OBSERVED ON VARIOUS POLITICAL LANDSCAPES

» 2010 US midterm elections » Secular vs Islamist
(Conover etal, 2011) " polarization in Egypt

Retweet network == (Weber et al, 2013)

Retweet network

93% right-leaning profiles

S 17

W1y Ly i
¥

Color = cluster
assigment

- Secularists
Center

@ RevOpiD-2018

80% left-leaning profiles
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OBSERVED ON VARIOUS POLITICAL LANDSCAPES

» 2017 French presidential election (Fraisier et al, 2018) ‘ '

Retweet network Mention network

Average number of retweets by profile: Average number of mentions by profile:
* Intra-party: 149 * Intra-party: 281
* Inter-party: 4 * Inter-party: 14
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Detect profiles' political stance based on their activity
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Detect profiles' political stance based on their activity

@ Global political stance
Political parties

Conservatives vs Liberals

Left vs Right
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AIM

» Detect profiles' political stance based on their activity

@ » Global political stance

» Political parties
» Conservatives vs Liberals

» Left vs Right

» Specific political stance

» Political figure » Gun control
» Abortion » LGBT rights
» Climate change » Immigration

v

» Feminism Israeli-palestinian conflict
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16

BASED ON TWEETS' TEXTUAL CONTENT
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BASED ON TWEETS' TEXTUAL CONTENT

2 Supervised mOdGIS (Naive Bayes & SVM) (Mohammad et al., 2017; Conover et al,
2011)
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BASED ON TWEETS' TEXTUAL CONTENT

2 Supervised mOdGIS (Naive Bayes & SVM) (Mohammad et al., 2017; Conover et al,
2011)

» n-grams, hashtags, punctuation, capitalization, emoticons, ...
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2 Supervised mOdGIS (Naive Bayes & SVM) (Mohammad et al., 2017; Conover et al,
2011)
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» Sentiment lexicon
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BASED ON TWEETS' TEXTUAL CONTENT

2 Supervised mOdGIS (Naive Bayes & SVM) (Mohammad et al., 2017; Conover et al,
2011)

» n-grams, hashtags, punctuation, capitalization, emoticons, ...

» Sentiment lexicon

» Unsupervised method to reduce the need for annotated data
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BASED ON TWEETS' TEXTUAL CONTENT

2 Supervised mOdGIS (Naive Bayes & SVM) (Mohammad et al., 2017; Conover et al,
2011)

» n-grams, hashtags, punctuation, capitalization, emoticons, ...

» Sentiment lexicon

» Unsupervised method to reduce the need for annotated data

» Topic modeling (Fang etal., 2015)
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BASED ON TWEETS' TEXTUAL CONTENT

2 Supervised mOdGIS (Naive BayeS & SVM) (Mohammad et al., 2017; Conover et al,
2011)

» n-grams, hashtags, punctuation, capitalization, emoticons, ...

» Sentiment lexicon

» Unsupervised method to reduce the need for annotated data
» Topic modeling (Fang etal., 2015)

» Poisson's law modeling of the discourse (Boireau, 2014)

@ RevOpiD-2018 07/09/18

OPHELIE FRAISIER



POLITICS ON TWITTER: A PANORAMA

17

BASED ON PROFILES SOCIAL INTERACTIONS
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BASED ON PROFILES SOCIAL INTERACTIONS

» Retweet network
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BASED ON PROFILES SOCIAL INTERACTIONS

» Retweet network

» Label propagation (conoveretal, 2011)
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17

BASED ON PROFILES SOCIAL INTERACTIONS

» Retweet network
» Label propagation (conoveretal, 2011)

4 Community detection (Cherepnalkoski
& Mozetic, 2015; Guerrero-Solé, 2017)
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BASED ON PROFILES SOCIAL INTERACTIONS

8D
» Retweet network
. 401
4 Label propagatlon (Conover et al., 2011) i
. ° i}
» Community detection (Cherepnalkoski e e
& Mozetic, 2015; Guerrero-Solé, 2017) Tgme 5, Coimisfion ok e J coiamsites. &) politiesl Bioupsm dbe

core network, Differeni colors indicate the § political groups in the EP.
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BASED ON PROFILES SOCIAL INTERACTIONS

8D
» Retweet network -
. 401
4 Label propagatlon (Conover et al., 2011) N
. . )
» Community detection (Cherepnalkoski UTEEE Y ST 10 68
& Mozetic, 2015; Guerrero-Solé, 2017) Figure 4. Composition of the 9 communities by political groups in the

core network, Differeni colors indicate the § political groups in the EP.

» Friends / Followers network
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BASED ON PROFILES SOCIAL INTERACTIONS

8D
» Retweet network -
. 401
4 Label propagatlon (Conover et al., 2011) N
. . )
» Community detection (Cherepnalkoski UTEEE Y ST 10 68
& Mozetic, 2015; Guerrero-Solé, 2017) Figure 4. Composition of the 9 communities by political groups in the

core network, Differeni colors indicate the § political groups in the EP.

» Friends / Followers network

» Bayesian modeling (Barbers, 2015)
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BASED ON PROFILES SOCIAL INTERACTIONS

BOf

» Retweet network

GO

407

» Label propagation (Conover et al., 2011) el |

L)

0 | Nk S Jeay il M o ety

» Community detection (Cherepnalkoski

; . _ 4 Figure 4, Composition of the 9 communities by poliical groups in the
& Mozetic, 2015; Guerrero-Solé, 2017) core network, Different colors indicate the 8 political groups in the EP

» Friends / Followers network

. deli Senate |
» Bayesian modeling (Barbers, 2015) Ry 08
» Use of friends interests (volkova et al., 2016) R%HFH " R
R
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17

BASED ON PROFILES SOCIAL INTERACTIONS

» Retweet network

4 Label propagation (Conover et al., 2011)

BOf

GO

407

201

L]

» Community detection (Cherepnalkoski et
& Mozetic, 2015; Guerrero-Solé, 2017)

» Friends / Followers network

Figure 4, Composition of the 9 communities by poliical groups in the
core network., Different colors indicate the & political groups in the EP

. . Senate |
» Bayesian modeling (Barbers, 2015) —_
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BASED ON TEXT AND SOCIAL INTERACTIONS
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BASED ON TEXT AND SOCIAL INTERACTIONS

G-
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BASED ON TEXT AND SOCIAL INTERACTIONS

G-

» Topic modeling taking into account tweets and social graph
(Thonet et al., 2017)
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BASED ON TEXT AND SOCIAL INTERACTIONS

G-

» Topic modeling taking into account tweets and social graph
(Thonet et al., 2017)

» SVM trained on tweets and social graph (Magdy etal., 2016)
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BASED ON TEXT AND SOCIAL INTERACTIONS
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BASED ON TEXT AND SOCIAL INTERACTIONS
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BASED ON TEXT AND SOCIAL INTERACTIONS

» Consistence between tweets and retweets
(Wong et al., 2016)
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BASED ON TEXT AND SOCIAL INTERACTIONS

» Consistence between tweets and retweets
(Wong et al., 2016)

» Supervised classification with possible

corrections from social graph (Pennacchiotti &
Popescu, 2011)
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BASED ON TEXT AND SOCIAL INTERACTIONS

» Consistence between tweets and retweets
(Wong et al., 2016)

» Supervised classification with possible

corrections from social graph (Pennacchiotti &
Popescu, 2011)

» Supervised classification on text followed by
propagation on social graph (Rabelo et al., 2012)
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BASED ON TEXT AND SOCIAL INTERACTIONS

» Consistence between tweets and retweets
(Wong et al., 2016)

» Supervised classification with possible

corrections from social graph (Pennacchiotti &
Popescu, 2011)

» Supervised classification on text followed by
propagation on social graph (Rabelo et al., 2012)

» Social graph for a portion of tweets followed
by supervised classification (rRajadesingan & Liu, 2014)
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BASED ON TEXT AND SOCIAL INTERACTIONS

» Consistence between tweets and retweets
(Wong et al., 2016)

» Supervised classification with possible

corrections from social graph (Pennacchiotti &
Popescu, 2011)

» Supervised classification on text followed by

propagation on social graph (Rabelo et al., 2012)

» Social graph for a portion of tweets followed
by supervised classification (rRajadesingan & Liu, 2014)

@ seedusers | Label trainingjit% N-grams Iabeh_afi_}

- = Propagation classifier | tweets

@ RevOpiD-2018 07/09/18

OPHELIE FRAISIER



ELECTION PREDICTION

| @ RevOpiD-2018 07/09/18

OPHELIE FRAISIER



POLITICS ON TWITTER: A PANORAMA 21

MULTIPLES ATTEMPTS

(O'Connor et al. 2010)

2008 £= US presidential election
(Gayo-Avello 2011)

(Tumasjan et al. 2010)

2009 M German federal election
(Jungherr etal. 2011)

(Metaxas et al. 2011)

2010 £= US elections in various states
(Livhe etal. 2011)

' Irish general election (Bermingham & Smeaton, 2011)
2011 @ Singaporean general election (Skoric et al., 2012)
: Dutch senate election (Sang & Bos, 2012)
2013 [9 Pakistani general election (Razzaq et al., 2014)

2015 @ Venezuelan parliamentary election (Castro etal., 2017)
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POLITICS ON TWITTER: A PANORAMA

MULTIPLES ATTEMPTS

.Good predictions & better than traditional polls

Volume of tweets

.- Sentiment analysis

Other

(O'Connor et al. 2010)

2008 £= US presidential election
(Gayo-Avello 2011)

(Tumasjan et al. 2010)

2009 M German federal election
(Jungherr etal. 2011)

(Metaxas et al. 2011)

2010 £= US elections in various states
(Livhe etal. 2011)

' Irish general election (Bermingham & Smeaton, 2011)
2011 @ Singaporean general election (Skoric et al., 2012)
: Dutch senate election (Sang & Bos, 2012) .
2013 [9 Pakistani general election (Razzaq et al., 2014) .

2015 @ Venezuelan parliamentary election (Castro etal., 2017)
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BUT...

» Highly dependant on data collection
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» Highly dependant on data collection

» Rarely takes into account bias in Twitter data

» Demographics bias
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BUT...

» Highly dependant on data collection

» Rarely takes into account bias in Twitter data
» Demographics bias
» Vocal minority vs silent majority

» Data purity questionable

» Not all collected profiles eligible to vote

» For the time being, not better than traditional polls
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COMMUNICATIONS OF GUN POLICY ORGANIZATIONS
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INVOLVEMENT IN OCCUPY WALL STREET €=
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ITALIAN INTRA-PARTY POLITICS '

P (Ceron, 2017)

PCO members who actually became ministers
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COALITIONS IN THE EUROPEAN PARLIAMENT e

P (Cherepnalkosk, 2016)

Co-voting agreement within Average retweets within and
and between political groups between political groups

B GuE-NGL  Greens-EFA[|EPP  EFDD [lINI

L B ALDE B ecr [ Enc

@ RevOpiD-2018 07/09/18

OPHELIE FRAISIER



POLITICS ON TWITTER: A PANORAMA 29

DETECTION OF SOCIAL UNREST

» Social unrest: public expression of discontent, including public
protest that does not threaten the regime’s hold on power, and/or
sporadic but low-level violence.

= |dentifying tweets relevant to social unrest (mishler et al., 2017)

= |dentifying unstable countries based on tweets (rRaja et al., 2016)
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* Large body of work on Twitter and
politics
* Various tasks

* Diversity of subjects, after being
focused on US politics for some time

* Known limits
* Need for caution when extrapolating

* Importance of quantitative &
qualitative analysis
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