

UNIVERSITI TEKNOLOGI MARA

ACTIVE LOAD AND LOSS ALLOCATION IN TRANSMISSION LINE VIA IMPROVED CUCKOO SEARCH OPTIMIZATION TECHNIQUE

NUR ATIQAH BINTI ABDUL RAHMAN

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

September 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non – academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Nur Atiqah Binti Abdul Rahman

Student I.D. No. : 2011575287

Programme : Master of Science (EE780)

Faculty : Electrical Engineering

Thesis Title : Active Load and Loss Allocation in

Transmission Line via Improved

Cuckoo Search Optimization Technique

Signature of Student :

Date : September 2014

ABSTRACT

The introduction of deregulation in transmission system has given the opportunity for the end user to choose the supplier. This has brought the importance of active load and loss allocation in transmission line. Due to the nonlinear character of power flow, it is crucial to allocate the losses and active load. Thus, this research has proposed a novel technique to allocate both active load and losses in transmission line using a newly developed Improved Cuckoo Search (ICS) Optimization Technique. In addition, a new objective function has also been proposed in this research to improve the accuracy of the power allocation. The active load and transmission loss allocation have been treated as an optimization problem. In this research, IEEE 5-Bus, Ward-Hale 6-Bus, IEEE 30-Bus and also IEEE 57- Bus systems are used as test systems and a comparative study is conducted with Cuckoo Search (CS) technique and also Genetic Algorithm (GA) technique. In addition, the proposed method with the new objective function is also tested in line outage and load increase conditions. The results are compared in terms of accuracy of the allocation, computational time and also the consistency. From the results and comparative study, the proposed new technique offers an accurate allocation of power among the market participants. Hence, they will be charged fairly for their transmission cost as required in a deregulated power system.

TABLE OF CONTENTS

		Page
CO	NFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION		iii
ABS	ABSTRACT ACKNOWLEDGEMENTS	
AC		
TAI	TABLE OF CONTENTS	
LIST OF TABLES		viii
LIST OF FIGURES		xiii
LIS	LIST OF ABBREVIATIONS	
CH.	APTER ONE: INTRODUCTION	1
1.1	Background Studies	1
1.2	Problem Statements	3
1.3	Objectives Of The Research	3
1.4	Scope And Limitations Of Research	4
1.5	Significances Of Research	4
1.6	Structure Of Thesis	5
СН	APTER TWO: LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Real Power Flow And Loss Allocation In Transmission Line	6
2.3	Applications Of Nature-Inspired Metaheuristic Algorithms In Real Power	Flow
	And Loss Allocation	9
2.4	Cuckoo Search Algorithm	10
2.5	Cauchy Distribution Based On Mutation Technique	11
2.6	Chapter Conclusion	12
СН	APTER THREE: RESEARCH METHDOLOGY	14
3.1	Introduction	14
3.2	Overall Research Methodology	14
3.3	Development Of Improved Cuckoo Search Algorithm For Power Allocati	on

	Technique	17
3.4	The Development Of Objective Function	23
3.5	Implementation Of Cs And Ics In Active Load And Loss Allocation	25
3.6	Chapter Conclusion	29
CH	APTER FOUR: RESULT AND DISCUSSION	30
4.1	Introduction	30
4.2	Normal Condition	30
	4.2.1 IEEE 5 Bus System	30
	4.2.2 Ward Hale 6 Bus System	39
	4.2.3 IEEE 30 Bus System	48
	4.2.4 IEEE 57 Bus System	61
4.3	Line Outage Condition	65
4.4	Load Increase Condition	71
	4.4.1 Condition 1: Increment of Q Load	71
	4.4.2 Condition 2: Increment of P Load	77
	4.4.3 Condition 3: Increment of P and Q Load	83
4.5	Chapter Conclusion	90
CII	APTER FIVE: OVERALL CONCLUSION AND RECOMMENDATION	
CH		
	FOR FUTURE RESEARCH	92
	Conclusion	92
5.2	Recommendation For Future Research	94
RE	FERENCES	95
ΑIJ	AUTHOR'S PROFILE	