TRAINING CENTER for Community Programs

in coordination with the Office of Community Programs, Center for Urban and Regional Affairs

MFT * TTT
THE MAYA CALENDAR:
A NATIVE AMERICAN
CURRICULUM UNIT FOR
MIDDLE AND HIGH SCHOOL
NATAM VIII

University of Minnesota

MFT * THT
THE MAYA CALENDAR:
A NATIVE AMERICAN
CURRICULUM UNIT FOR
MIDDLE AND HIGH SCHOOL
NATAM VIII
THE MAYA CALENDAR:A NATIVE AMERICANCURRICULUM UNIT FORMIDDLE AND HIGH SCHOOLNATAM VIII
by
Edgar A. Torguson
Series Coordinators:
Arthur M. Harkins, College of Education
I. Karon Sherarts, CURA
G. William Craig, General College
Richard G. Woods, CURA
Charles R. Bruning, College of Education
Training Center forCommunity Programsin coordination with
Office of Community Programs
Center for Urban and Regional Affairs
Training of Teacher Trainers Program,College of Education
Minnesota Federation of TeachersUniversity of MinnesotaMinneapolis, MinnesotaJuly, 1970

THE MAYA CALENDAR:
A NATIVE AMERICAN
CURRICULUM UNIT FOR
MIDDLE AND HIGH SCHOOL
NATAM VIII

USOE
July, 1970
OEC-0-8-080147-2805

This is a section of the Final Report of the National Study of American Indian Education, which has been funded by the United States Office of Education.

The work reported here is part of a large University of Minnesota project, which has been financed from several sources.

A Note on the NATAM Curriculum Series

This curriculum unit was prepared by a Minnesota scho@l teacher. The teacher has recently completed a University course (H.Ed. 111) on Indian education offered through the College of Education and the General Extension Division during the Spring Quarter, 1970. The course, greatly strengthened by the active participation of the Indian Upward Bound Program at the University of Minnesota, grows out of an attempt to deal with certain problems noted in the University of Minnesota aspects of the National Study of American Indian Education.

We believe this unit to be of possible value to Minnesota school teachers. We offer it as an example of what one teacher can do, after minimal preparation, toward developing curriculum materials on a "solo" basis for personal classroom use.

Efforts of this kind are obviously not professional in the strictest sense. Yet they do offer Minnesota teachers with some immediately useable materials, written by their colleagues as the latter develop expertise within a new area of personal interest and growing competence. In this sense, the NATAM Curriculum Series offers the chance to provide a needed service and to test a staff development model.

We solicit your comments on any aspect of this series.

TABLE OF CONTENTS

The Number System 1
The Calendar. 3
A Maya Calendar and Julian Calendar With Long Count Date, Julian Date, and Year-Bearer. 7
Sources 12
Bibliography 14

THE MAYA CALENDAR
 The Number System

The system of numerical operations used currently by most people in the United States is the decimal system. It is based on ten digits, zero through nine inclusive. Ten is a natural base because of the ten digits on one's two hands.

The decimal system depends upon position and place value horizontally to determine the number. For example, the number 5,493 consists of:

\[

\]

The digit 3 is in the ones' position, the digit 9 is in the tens'. position, the digit 4 is in the hundreds' position, and the digit 5 is in the thousands' position.

10^{3}	10^{2}	10^{1}	10^{0}
5	4	9	3

A number system can be formulated on any base number. The Maya Indians developed a number system that is vigesimal. This system, based on twenty, probably was developed by natives who went barefoot and were constantly exposed to twenty digits on hands and feet. The vigesimal system used by the Maya Indians had three digits: dot, bar, and zero. 1

The vigesimal system depends upon position and place value vertically to determine the number. ${ }^{2}$

$$
\begin{aligned}
& 204=16000 \text { (Cabal) } \\
& 20^{3}=8000 \text { (Pic) } \\
& 20^{2}=400 \text { (Bak) } \\
& 20^{1}=20 \text { (Kal) } \\
& 20^{0}=1 \text { (Hun) }
\end{aligned}
$$

The lower position is the unit or ones' value. When nineteen ones have been placed in the lower position and when the addition of one more is required, a mark is placed in the twenties' position, the nineteen marks are removed and a zero is placed in the ones' position designating the completion within that position. When nineteen marks in the twenties' position have been made and one more twenty is added, a mark is placed in the four hundreds' position, the nineteen marks in the twenties' position are removed, and a zero placed in the twenties' position shows completion within that position. The same procedure follows for larger numbers.

A dot (•) represents one, a bar(-) represents five, and zero () represents completion within a position. ${ }^{3}$ Combinations of bars and dots can represent a number up to and including nineteen in any position.

$$
\begin{aligned}
& \underline{\cdots}= 13 \text { times } 400 \text { or } 5200 \\
& \underline{\underline{\mu}}= 14 \text { times } 20 \text { or } 280 \\
&=13 \text { times } 1 \text { or } \frac{13}{5493} \\
& \text { Total }
\end{aligned}
$$

The number zero was invented by the Mayas in the New World independently and previous to the invention of zero by the Hindus. Mayas invented the zero about the time of the birth of Christ; the Hindus didn't use zero until the years between the 6 th and 9 th centuries, A.D. 4

The vertical position of the vigesimal notation permits simple addition.

Roman numerals used by the 01d World are more complicated to use- and certainly cannot be generally added.

The Mayas had developed astronomy to a high degree in the first century A.D. indicating that their number system was also highly developed. ${ }^{5}$

The Calendar

Since the Mayas used a vigesimal system, it is logical to conclude that their year should consist of 400 days. The Mayas probably used the vigesimal system until it became too confusing and had to be abandoned.

The Maya calendar was developed to a high degree of accuracy through astronomical observations and continuous recordings and mathematical calculations covering many hundreds of years. ${ }^{6}$

The Maya calendar had 20 day names similar to our Monday, Tuesday, etc. The 20 day names show the influence of the vigesimal system. The day names were: Imix, Ik, Akbal, Kan, Chiuhan, Cimi, Manik, Lamat, Muluc, Oi, Chuen, Eb , Ben, Ix, Meu, Cib, Caban, Eznab, Cauac, and Ahau. 7 These day names had thirteen day numbers in series like our weeks and ran on year after year. The year had 28 of these thirteen-day weeks plus one day. 8 The day with which a new year began was called its year-bearer. Only four of the twenty days work out to be year-bearers. They are Kan, Muluc, Ix, and Cauac. 9

The Mayas were very superstitious. They believed the kind of year to follow was based on the god of the day name. Kan is the maize god; Muluc, the rain god; Ix and Cauac were malevolent and disastrous. 10

The calendar had eighteen months of 20 days each. The Maya word for man was uinak (20 digits) while the word for month (20 days) was uinal. 11 Eighteen months of 20 days each would make the year consist of 360 days. To compensate for this, five supplementary days were added at the end. The 18 month names were: Pop, Uo, Zip, Zota, Tzec, Xul, Yaxkin, Mol, Chen, Yax, Zac, Ceh, Mac, Kankin, Muan, Pax, Kayab, Comhre, plus the five-day Uayeb. 12

The structure of twenty day names and thirteen day numbers mathematically yields each day name only four possible month days to fall upon. 13

Every Maya date was expressed by two numbers and two names. For example, in 4 Ahau 8 Cumhu, and 4 Ahau could correspond to Sunday and the 8 Cumhu to July 15.14

Our calendar is designed so that a day name and day number could be the same within a few-month period. If the day name, day number and month name of the Maya calendar are given, 18980 distinct, different combinations are used and any one combination will not repeat for 18980 days. This 52 -year period is referred to as a Calendar Round. ${ }^{15}$ Thus 4 Ahau will not fall on 8 Cumhu for 52 years.

The Mayas did not recognize the 365 day year but rather a "tun" which was 360 days plus a five-day religious and ceremonial celebration. ${ }^{16}$

The unit "tun" was not very large, so two larger units were devised based on the vigesimal system. The next larger unit was the "katun" (twenty tuns), and then the cycle or "baktun" (twenty katuns). 17

The priests of the Mayas had many functions. One of these was the recording of a katun. Four large receptacles were used. Into the first jar a pebble a day was placed recording the kins. When twenty pebbles were in the first jar, a larger or a colored stone was placed in the second jar recording the uinals. When eighteen pebbles were placed in the second jar, these were removed and a still larger stone or a different colored stone was placed in the third jar recording tuns. When there were twenty stones in the third jar, one large stone was placed in the fourth jar recording one katun -- twenty tuns or 7200 days.

The priests were then to take each stone out one by one in order, giving the stone a day number and day name. To make sure that the priests did not lose a stone they were disrobed while counting the 7200 days. ${ }^{18}$

A katun would always end on day Ahau. If a katun ended on 11 Ahau, it was called katun 11. For each successive katun, the Ahau number dropped by two. Thus the katuns would be named in this sequence: 11 Ahau, 9 Ahau, 7 Ahau, t Ahau, 3 Ahau, 1 Ahau, 12 Ahau, 10 Ahau, 8 Ahau, 6 Ahau, 4 Ahau, 2 Ahau, 13 Ahau, and start over again with 11 Ahau. ${ }^{19}$ Each katun covers 20 tuns; therefore, thirteen katuns cover about 260 years for the katun cycle. Katun 11 Ahau or simply Katun 11 would recur every 13 katuns (about 260 years; 256 years is more accurate because one tun is 360 days). ${ }^{20}$

Maya priests used the katun and katun cycle for prophecy in several ways. Mayas believed that the world would come to an end some day, but that destruction would come at the end of a katun. 21 Priests would also look up a past katun to predict what a future katun would be like. They thought history would repeat itself every 260 years. If katun 7 were starting, they would look up the records of katun 7 two hundred sixty years ago. Out of the 13 katuns for a cycle, only the prophecies for three were good. ${ }^{22}$

In Maya records, it is sometimes difficult to tell which 260 year period was indicated as only the day number and day name were written. 23

The Mayas were not without another unit for their unique system of fixing time. The long Count was used in the Maya era to fix time from the beginning. A date which was not fixed in the Long Count was simply a date in a calendar round which recurred every 52 years. The Long Count gives the cycles, katuns, tuns, uinals, and kins. For example, 9-10-6-5-9 means 9 cycles, 10 kautns, 6 tuns, 5 uinals, and 9 kins from the starting point of time. 24

A date 8 Muluc 2 Zip will recur every 52 years, but if expressed 9 - 10 -6-5-9, 8 Muluc 2 zip , its position in time is fixed as its distance from the starting point of the Long Count. 25

If the date 8 Muluc 2 Zip is expressed it will recur every 52 years. If it is written Katun 11, 8 Muluc 2 zip , such a date cannot occur for 374,400 years. ${ }^{26}$

The starting point of the Long Count is not agreed upon. These dates were calculated as the starting point of the Maya calendar:

1. 3113 B.C. 27
2. February 10 , 3641 B.C. 28
3. October 14, 3373 В.с. 29
4. August 13, 3113 B.C. ${ }^{30}$
5. 3300 B.C. 31

It is universally agreed, however, that the beginning of the Maya calendar is 4 Ahau 8 Cumhu. No event is recorded for this date. Therefore, all katuns and cycles of even periods in Long Count must end on day Ahau. 32

The astronomical year is 365 days, 5 hours, 48 minutes, and 45.51 seconds. 33 Using this true year as compared to our present year, the amount of error is 46.8 days in 6000 years. The Maya calendar error was only : slightly ever one day in 6000 years. 34

This amazing accuracy was achieved by the use of "at least four systems of annotating time." 35 The 365 day year was one check. Twenty day names and thirteen day numbers yield a 260 day period which was used because of its "natural" number. The lunar calendar was used by the Mayas and by most of the primitive people. The fourth check was perhaps the most involved -that of elaborate observations of Venus and Mercury. These systems were so accurate that they were used as a check on each other. 36

It is amazing that the length of the Venus cycle could be accurately determined considering the geographic location of the Maya civilization. It is characteristically foggy and misty most of the morning, and cloudy during the rainy season. "There are only five inferior conjunctions of Venus in eight years, and so in the thirty years of his manhood (the Maya are not long-1ived) a priest-astronomer might under ideal conditions observe about twenty heliacal risings. In reality, bad weather would reduce that number to about ten. ${ }^{37}$

These four systems were interrelated. The 584 days for one revolution of Venus and the 260 day cycle have a highest common factor of 4. 584 divided by 4 is 146 . 146 times 260 is 379 kO days. This length of time is 65 Venus revolutions, 146 rounds of 260 days, 104 years of 365 days. 38

These should have the same resting place but do not, so a correction was needed in the Venus cycle. A correction of subtracting four days at the end of the 61st Venus year for 35620 days, which is the same for 137 rounds of 260 day cycles. This disrupts the 365 day year as 35620 is not divisible by 365. This was ingeniously taken care of by making corrections of 24 days after 301 Venus revolutions. Actually, a correction of 24.08 days should have been made. This amounts to an error of slightly over one day in 6000 years. 39

A MAYA CALENDAR AND JULIAN CALENDAR WITH LONG COUNT DATE,

 JULIAN DATE, AND YEAR-BEARERThe Long Count 12-12-0-0-0, 7 Ahau 13 Kayab, means 12 cycles, 12 katuns in Long Count. 7 Ahau, 13 Kayab is the close of the katun 7 and the start of katun 5, which is September 29, 1594. The end of katun 5 is 12-13-0-0-0, 5 Ahau 13 Ceh.

November 2, 1594 has the year-bearer 2 Ix which agrees with the calendar listed. 40

JULIAN
1593
Nov. 2
Nov. 3
Nov. 4
Nov. 5
Nov. 6
Nov. 7
Nov. 8
Nov. 9
Nov. 10
Nov. 11
Nov. 12
Nov. 13
Nov. 14
Nov. 15
Nov. 16
Nov. 17
Nov. 18
Nov. 19
Nov. 20
Nov. 21
Nov. 22
Nov. 23
Nov. 24
Nov. 25
Nov. 26
Nov. 27
Nov. 28
Nov. 29
Nov. 30

MAYA

1 Muluc 2 Pop
3 Pop
4 Pop
5 Pop
6 Pop
7 Pop
8 Pop
9 Pop
10 Pop
11 Pop
12 Pop
13 Pop
14 Pop
15 Pop
16 Pop
17 Pop
18 Pop
19 Pop
0 Uo
1 Uo
2 Uo
3 Uo
4 Uo
5 Uo
6 Uo
7 Uo
8 Uo
9 Uo
10 Uo

JULIAN
MAYA

Dec. 1
Dec. 2
Dec. 3
Dec. 4
Dec. 5
Dec. 6
Dec. 7
Dec. 8
Dec. 9
Dec. 10
Dec. 11
Dec. 12
Dec. 13
Dec. 14
Dec. 15
Dec. 16
Dec. 17
$\begin{array}{lll}\text { Dec. } 17 & 7 \mathrm{Ix} & 7 \mathrm{Zip} \\ \text { Dec. } 18 & 8 \mathrm{Meu} & 8 \mathrm{Zip}\end{array}$
Dec. 19
Dec. 20
Dec. 21
Dec. 22
Dec. 23
Dec. 24
Dec. 25
Dec. 26
Dec. 27
Dec. 28
Dec. 29

	Eznab		
5	Cauac	12	Uo
6	Ahau	13	Uo
7	Imix	14	Uo
8	Ik	15	Uo
9	Akbal	16	Uo
10	Kan	17	Uo
11	Chicch	18	Uo
2	Cimi	19	Uo
13	Manik		Zip
1	Lamat		zip
2	Muluc	2	Zip
3	Oc		Zip
4	Chuen		zip
5	Eb	5	zip
6	Ben	6	zip
7	Ix	7	Zip
8	Meu	8	Zip
9	Cib	9	Zip
10	Caban	10	zip
11	Eznab	11	Zip
12	Cauac	12	Zip
13	Ahau	13	Zip
1	Imix	14	Zip
2	Ik	15	Zip
3	Akbal	16	zip
4	Kan	17	
5	Chicchan18 $2 i$		
6	Cimi	19	Z

JULIAN	MAYA		
Dec. 30	7	Manik	0 Zota
Dec. 31	8	Lamat	1 Zota
1594			
Jan. 1	9	Muluc	2 Zota
Jan. 2	10	Oc	3 Zota
Jan. 3	11	Chuen	4 Zota
Jan. 4	12	Eb	5 Zota
Jan. 5	13	Ben	6 Zota
Jan. 6	1	Ix	7 Zota
Jan. 7	2	Meu	8 Zota
Jan. 8	3	Cib	9 Zota
Jan. 9	4	Caban	10 Zota
Jan. 10	5	Eznab	11 Zota
Jan. 11	6	Cauac	12 Zota
Jan. 12	7	Ahau	13 Zota
Jan. 13	8	Imix	14 Zota
Jan. 14	9	Ik	15 Zota
Jan. 15	10	Akbal	16 Zota
Jan. 16	11	Kan	17 Zota
Jan. 17	12	Chicchan	18 Zota
Jan. 18	13	Cimi	19 Zota
Jan. 19	1	Manik	0 Tzec
Jan. 20	2	Lamat	1 Taec
Jan. 21	3	Muluc	2 Tzec
Jan. 22	4	Oc	3 Tzec
Jan. 23	5	Chuen	4 Taec
Jan. 24	6	Eb	5 Tzec
Jan. 25	7	Ben	6 Tzec
Jan. 26	8	Ix	7 Tzec
Jan. 27	9	Meu	8 Tzec
Jan. 28	10	Cib	9 Tzec
Jan. 29	11:	Caban	10 Tzec
Jan. 30	12	Eznab	11. Tzec
Jan. 31	13	Cauac	12 Tzec
Feb. 1	1	Ahau	13 Tzec
Feb. 2	2	Imix	14 Tzec
Feb. 3	3	Ik	15 Tzec
Feb. 4	4	Akbal	16 Tzec
Feb. 5	5	Kan	17 Tzec
Feb. 6	6	Chicchan	18 Tzec
Feb 7	7	Cimi	19 Tzec
Feb. 8	8	Manik	0 Xul
Feb. 9	9	Lamat	1 Xul
Feb. 10	10	Muluc	2 XuI
Feb. 11	11	Oc	3 Xul
Feb 12	12	Chuen	4 Xul
Feb 13	13	Eb	5 Xul

JULIAN	MAYA	
Feb. 14	1 Ben	6 Xul
Feb. 15	2 Ix	7 Xul
Feb. 16	3 Meu	8 Xul
Feb. 17	4 Cib	9 XuI
Feb. 18	5 Caban	10 Xu 1
Feb. 19	6 Eznab	11 Xu 1
Feb. 20	7 Cauac	12 Xu
Feb. 21	8 Ahau	13 Xul
Feb. 22	9 Imix	14 Xu 1
Feb. 23	10 Ik	15 Xu
Feb. 24	11 Akbal	16 Xul
Feb. 25	12 Kan	17 Xul
Feb. 26	13 Chicchan	18 Xul
Feb. 27	1 Cimi	19 Xul
Feb. 28	2 Manik	0 Yaxkin
Mar. 1	3 Lamat	1 Yaxkin
Mar. 2	4 Muluc	2 Yaxkin
Mar. 3	5 Oc	3 Yaxkin
Mar. 4	6 Chuen	4 Yaxkin
Mar. 5	7 Eb	5 Yaxkin
Mar. 6	8 Ben	6 Yaxkin
Mar. 7	9 Ix	7 Yaxkin
Mar. 8	10 Meu	8 Yaxkin
Mar. 9	11 Cib	9 Yaxkin
Mar. 10	12 Caban	10 Yaxkin
Mar. 11	13 Eznab	11 Yaxkin
Mar. 12	1 Cauac	12 Yaxkin
Mar. 13	2 Ahau	13 Yaxkin
Max:14	3 Imix	14 Yaxkin
Mar. 15	4 Ik	15 Yaxkin
Mar. 16	5 Akbal	16 Yaxkin
Mar. 17	6 Kan	17 Yaxkin
Mar. 18	7 Chicchan	18 Yaxkin
Mar. 19	8 Cimi	19 Yaxkin
Mar. 20	9 Manik	0 Mol
Mar. 21	10 Lamat	1 Mol
Mar. 22	11 Muluc	2 Mol
Mar. 23	12 Oc	3 Mol
Mar. 24	13 Chuen	4 Mol
Mar. 25	1 Eb	5 Mol
Mar. 26	2 Ben	6 Mol
Mar. 27	3 Ix	7 Mol
Mar. 28	4 Meu	8 Mol
Mar. 29	5 Cib	9 Mol
Mar. 30	6 Caban	10 Mol
Mear. 31	7 Eznab	11 Mol
Apr. 1	8 Cauac	12 Mol
Apr. 2	9 Ahau	13 Mol

JUUIAN	MAYA		JULIAN	MAYA		
Apr. 3	10 Imix	14 Mol	May . 20	5	Lamat	1 Zac
Apr. 4	11 Ik	15 Mol	May 21	6	Muluc	2 Zac
Apr. 5	12 Ekbal	16 Mol	May 22	7	Oc	3 Zac
Apr. 6	13 Kan	17 Mol	May 23	8	Chuen	4 Zac
Apr. 7	1 Chicchan	18 Mol	May 24	9	Eb	5 Zac
Apr. 8	2 Cimi	12 Mol	May 25	10	Ben	6 Zac
Apr. 9	2 Manik	0 Chen	May 26	I1	Ix	7 Zac
Apr. 10	4 Lamat	1 Chen	May 27	12	Meu	8 Zac
Apr. 11	5 Muluc	2 Chen	May 28	13	Cib	9 Zac
Apr. 12	6 Oc	3 Chen	May 29	1	Caban	10 Zac
Apr. 13	7 Chuen	4 Chen	May 30	2	Eznab	11 Zac
Apr. 14	8 Eb	5 Chen	May 31	3	Cauac	12 Zac
Apr .15	9 Ben	6 Chen	Jane 1	4	Ahau	13 Zac
Apr. 16	10 Ix	7 Chen	June 2	5	Imix	14 Zac
Apr. 17	11 Meu	8 Chen	June 3	6	Ik	15 Zac
Apr. 18	12 Cib	9 Chen	June 4	7	Akbal	16 Zac
Apr. 19	13 Caban	10 Chen	June 5	8	Kan	17 Zac
Apr. 20	1 Eznab	11 Chen	June 6	9	Chicchan	18 Zac
Apr. 21	2 Cauac	12 Chen	June 7	10	Cimi	19 Zac
Apr. 22	3 Ahau	13 Chen	June 8	11	Manik	θ Ceh
Apr. 23	4 Imix	14 Chen	June 9	12	Lamat	1 Ceh
Apr. 24	5 Ik	15 Chen	June 10	13	Lumuc	2 Ceh
Apr. 25	6 Akbal	16 Chen	June 11	1	Oc	3 Ceh
Apr. 26	7 Kan	17 Chen	June 12	2	Chuen	4 Ceh
Apr. 27	8 Chicchan	18 Chen	June 18	3	Eb	5 Ceh
Apr. 28	9 Cimi	19 Chen	June 14	4	Ben	6 Ceh
Apr. 29	10 Manik	- Yax	June 15	5	Ix	7 Ceh
Apr. 30	11 Lamat	1 Yax	June 16	6	Meu	8 Ceh
May 1:	12 Muluc	2 Yax	June 17	7	Cib	9 Ceh
May 2	13 Oc	3 Yax	June 18	8	Caban	10 Ceh
May 3	1 Chuen	4 Yax	June 19	9	Eznab	11 Ceh
May 4	2 Eb	5 Yax	June 20	10	Cauca	12 Ceh
May 5	3 Ben	6 Yax	June 21	11	Ahau	13 Ceh
May 6	4 Ix	7 Yax	June 22	12	Imix	14 Ceh
May 7	5 Meu	8 Yax	June 23	13	Ik	15 Ceh
May 8	6 Cib	9 Yax	June 24	1	Akbal	16 Ceh
May 9	7 Caban	10 Yax	June 25	2	Kan	17 Ceh
May 10	8 Eznab	11 Yax	June 26	3	Chicchan	18 Ceh
May 11	9 Cauac	12 Yax	June 27	4	Cimi	19 Ceh
May 12	10 Ahau	13 Yax	June 28	5	Manik	0 Mac
May 13	11 Imix	14 Yax	June 29	6	Lamat	1 Mac
May 14	12 Ik	15 Yax	June 30	7	Muluc	2 Mac
May 15	13 Akbal	16 Yax	July 1	8	Oc	3 Mac
May 16	1 Kan	17 Yax	July 2	9	Chuen	4 Mac
May 17	2 Chicchan	18 Yax	July 3	10	Eb	5 Mac
May 18	3 Cimi	19 Yax	July 4	11	Ben	6 Mac
May 19	4 Manik	0 Zac	July 5	12	Ix	7 Mac

JULIAN	MAYA	
July 6	13 Meu	8 Mac
July 7	1 Cib	9 Mac
July 8	2 Caban	10 Mac
July 9	3 Eznab	11 Mac
July 10	4 Cauac	12 Mac
July 11	5 Ahau	13 Mac
July 12	6 Imix	14 Mac
July 13	7 Ik	15 Mac
July 14	8 Akbal	16 Mac
July 15	9 Kan	17 Mac
July 16	10 Chicchan	18 Mac
July 17	11 Cimi	19 Mac
July 18	12 Manik	0 Kankin
July 19	13 Lamat	1 Kankin
July 20	1 Muluc	2 Kankin
July 21	2 Oc	3 Kankin
July 22	3 Chuen	4 Kankin
July 23	4 Eb	5 Kankin
July 24	5 Ben	6 Kankin
July 25	6 Ix	7 Kankin
July 26	7 Meu	8 Kankin
July 27	8 Cib	9 Kankin
July 28	9 Caban	10 Kankin
July 29	10 Eznab	11 Kankin
July 30	11 Cauac	12 Kankin
July 31	12 Ahau	13 Kankin
Aug. 1	13 Imix	14 Kankin
Aug. 2	1 Ik	15 Kankin
Aug. 3	2 Akbal	16 Kankin
Aug. 4	3 Kan	17 Kankin
Aug. 5	4 Chicchan	18 Kankin
Aug. 6	5 Cimi	19 Kankin
Aug. 7	6 Manik	θ Muan
Aug. 8	7 Lamat	1 Muan
Aug. 9	8 Muluc	2 Muan
Aug. 10	9 Oc	3 Muan
Aug. 11	10 Chuen	4 Muan
Aug. 12	11 Eb	5 Muan
Aug. 13	12 Ben	6 Muan
Aug. 14	13 Ix	7 Muan
Aug. 15	1 Meu	8 Muan
Aug. 16	2 Cib	9 Muan
Aug. 17	3 Caban	10 Muan
Aug. 18	4 Eznab	11 Muan
Aug. 19	5 Cauac	12 Muan
Aug. 20	6 Ahau	13 Muan

JULIAN	MAYA		
Aug. 21	7	Imix	14 Muan
Aug. 22	8	Ik	15 Muan
Aug. 23	9	Akbal	16 Muan
Aug. 24	10	Kan	17 Muan
Aug. 25	11	Chicchan	18 Muan
Aug. 26	12	Cimi	19 Muan
Aug. 27	13	Manik	0 Pax
Aug. 28	1	Lamat	1 Pax
Aug. 29	2	Muluc	2 Pax
Aug. 30	3	Oc	3 Pax
Aug. 31	4	Chuen	4 Pax
Sept. 1	5	Eb	5 Pax
Sept. 2	6	Ben	6 Pax
Sept. 3	7	Ix	7 Pax
Sept. 4	8	Meu	8 Pax
Sept. 5	9	Cib	Pax
Sept. 6	10	Caban	10 Pax
Sept. 7	11	Eznab	11 Pax
Sept. 8	12	Cauac	12 Pax
Sept. 9	13	Ahau	13 Pax
Sept. 10	1	Imix	14 Pax
Sept. 11	2	Ik	15 Pax
Sept. 12	3	Akbal	16 Pax
Sept. 13	4	Kan	17 Pax
Sept. 14	5	Chicchan	18 Pax
Sept. 15	6	Cimi	19 Pax
Sept. 16	7	Manik	0 Kayab
Sept. 17	8	Lamat	1 Kayab
Sept. 18	9	Kuluc	2 Kayab
Sept. 19	10	Oc	3 Kayab
Sept. 20	11	Chuen	4 Kayab
Sept. 21	12	Eb	5 Kayab
Sept. 22	13	Ben	6 Kayab
Sept. 23	1	Ix	7 Kayab
Sept. 24	2	Meu	8 Kayab
Sept. 25	3	Cib	9 Kayab
Sept. 26	4	Caban	10 Kayab
Sept. 27	5	Eznab	11 Kayab
Sedt. 28	6	Cauac	12 Kayab
Sept: 29	7	Ahau	13 Kayab*
Sept. 30	8	Imix	14 Kayab
Oct. 1	9	Ik	15 Kayab
Oct. 2	10	Akbal	16 Kayab
Oct. 3	11	Kan	17 Kayab
Oct. 4	12	Chicchan	18 Kayab
Oct. 5	13	Cimi	19 Kayab

$$
\text { * } 12-12-0-0-0
$$

JULIAN	MAYA		JULIAN	MAYA			
Oct. 6	1 Manik	0 Cumhu	Oct. 20	2	Imix	14	Cumhu
Oct. 7	2 Lamat	1 Cumhu	Oct. 21	3	Ik	15	Cumhu
Oct. 8	3 Muluc	2 Cumhu	Oct. 22	4	Akbal	16	Cumhu
Oct. 9	4 Oc	3 Cumhu	Oct. 23	5	Kan	17	Cumhu
Oct. 10	5 Chuen	4 Cumhu	Oct. 24	6	Chicchan	18	Cumhu
Oct. 11	6 Eb	5 Cumhu	Oct. 25	7	Cimi	19	Cumhu
Oct. 12	7 Ben	6 Cumhu	Oct. 26	8	Manik	0	Uayeb
Oct. 13	8 Ix	7 Cumhu	Oct. 27	9	Lamat		Uayeb
Oct. 14	9 Meu	8 Cumhu	Oct. 28	10	Muluc	2	Uayeb
Oct. 15	10 Cib	9 Cumhu	Oct. 29	11	Oc	3	Uayeb
Oct. 16	11 Caban	10 Cumhu	Oct. 30	12	Chuen		Uayeb
Oct. 17	12 Eznab	11 Cumhu	Oct. 31	13	Eb		Pop
Oct. 18	13 Cauac	12 Cumhu	Nov. 1	1	Ben		Pop
Oct. 19	1 Ahau	13 Cumhu	Nov. 2	2	Ix		Pop \%*

1. Elizabeth P. Benson, The Maya World (New York, 1967), p. 104.
2. Board of Regents of the Smithsonian Institute, Annual Report of Board of Regents of the Smithsonian Institution (Washington, D.C., 1935), p. 429.
3. Benson, the Maya World, p. 104.
4. James Norman, The Forgotten Empire (New York, 1965), pp. 86-87.
5. Benson, The Maya World, p. 107.
6. Eric S. Thompson, The Rise and Fall of Maya Civilization (Norman, Oklahoma, 1954), pp. 153-54.
7. Encyclopaedia Britannica, Vo1. 4, p. 581.
8. Encyclopaedia Britannica, Vol. 4, p. 581.
9. Thompson, The Rise and Fall of Maya Civilization, p. 139.
10. Ibid.
11. Michael D. Coe, The Maya (New York, 1966), p. 58.
12. Encyclopaedia Britannica, Vo1. 4, p. 581.
13. Ibid.
14. Ibid.
15. Benson, The Maya World, p. 100.
16. Encyclopaedia Britannica, Vol. 5, p. 660.
17. Ibid.
18. Maud Worcester Makemson, The Book of the Jaguar Priest (New York, 1951), pp. 161-62.
19. Thompson, The Rise and Fall of Maya Civilization, p. 101.
20. Encyclopaedia Britannica, Vo1. 5, p. 661.
21. Thompson, The Rise and Fall of Maya Civilization, p. 190.
22. Ibid., p. 141.
23. Benson, The Maya World, p. 101.
24. Encyclopaedia Britannica, Vol. 5, pp. 660-61.
25. Ibid., p. 661.
26. Ibid.
27. Thompson, The Rise and Fall of Maya Civilization, p. 152.
28. Encyclopaedia Britannica, Vol. 5, p. 662.
29. Ibid.
30. Ibid.
31. B1om, The Conquest of Yucatan, p. 190.
32. Encyclopaedia Britannica, Vol. 5, p. 661.
33. Webster's Collegiate Dictionary, Fifth Edition, p. 1169.
34. Thompson, The Rise and Fall of Maya Civilization, p. 146.
35. Blom, The Conquest of Yucatan, p. 198.
36. Ibid., pp. 198-99.
37. Thompson, The Rise and Fall of Maya Civilization, p. 146.
38. Ibid., p. 145.
39. Ibid., p. 146.
40. Makemson, The Book of the Jaguar Priest, p. 313.

BIBLIOGRAPHY

Annual Report of the Board of Regents of the Smithsonian Institution. United States Government Printing Office, 1935.

Beals, Carleton. Land of the Mayas, Yesterday and Today. London: AbelardSchuman, 1967.

Benson, Elizabeth P. The Maya World. New York: Thomas Y. Crowell Company, 1967.

Blom, Frans. The Conquest of Yucatan. New York: Houghton Mifflin Co., 1936.
Byrkit, Donald R. "Early Mayan Mathematics." The Arithmetic Teacher, Vol. 17, No. 5 (May, 1970). pp. 387-390.

Coe, Michael D. The Maya. New York: Frederick A. Praeger, Inc., 1966.
Encyclopaedia Britannica. Vol. IV and Vol. V.
Makemson, Maud Worcester. The Book of the Jaguar Priest: A Translation of the Book of Chilam Balam of Tizim, with commentary. New York: Henry Schuman, 1951.
"Maya." Life, XXII (June 30, 1947). pp. 51-67.
Norman, James. The Forgotten Empire. New York: G.P. Putnam's Sons, 1965.
Thompaon, Eric S. The Rise and Fall of Maya Civilization. New York: Houghton Mifflin Co., 1936.
von Hagen, Victor W. Maya, Land of the Turdey and the Deer. Cleveland, Ohio: The World Publishing Company, 1960.

The Maya Calendar: A Native American Curriculum Unit for Middle and High School, Natam VIII (MFT*TTT). T, INDIAN AMERICANS
The Maya Calendar: A Native
American Curriculum Unit for
Middle and High School, Natam
VIII (MFT*TTT). Torguson.

INDIAN AMERICANS

