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Abstract 
 

Direct measurement of the vertical displacement of bridge superstructures is typically not 

feasible; therefore, methods to estimate displacement from acceleration measurements exist. Joint 

input-state estimation techniques based on Kalman-type filters have been used for estimating 

displacements, but the task of tuning the filter is not straightforward. Therefore, this work 

explored a tuning procedure for the output-only implementation of the dual Kalman filter for 

displacement estimation via noisy acceleration measurements. The validity of the tuning 

procedure was demonstrated using simulated systems and experimental tests, and good dynamic 

displacement estimates were achieved in all cases. The approach indicated that model noise (e.g., 

due to poor system identification results) did not affect the tuning process as much as 

measurement noise. The output-only formulation of the problem caused the input estimates to 

lose physical meaning; however, the input estimator increased state estimation performance under 

various loading types as compared to a single Kalman filter.  
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Chapter 1: Introduction 

 

1.1 Problem Statement 

Structural health monitoring is concerned with identifying problematic or damage-related 

behavior in a structure, with the ultimate goal of providing tools for aiding in structural 

maintenance and decision making (French et al. 2014). Studies have suggested the use of output-

only vibration measurements for structural monitoring (Deraemaeker et al. 2008; Magalhães et al. 

2012), but changing environmental conditions make damage detection difficult. A monitoring 

system on the I-35W Saint Anthony Falls Bridge, which crosses the Mississippi River in 

Minneapolis, MN, has been collecting vertical acceleration data since the construction of the 

bridge in 2008. Given the significant variation observed in the modal parameters of the bridge, 

changes in the dynamic signature of the structure alone were found to provide insufficient 

information to detect damage (Gaebler et al. 2017). Gaebler et al. (2017) proposed that vertical 

displacement, a simpler parameter with a more immediate physical meaning than natural 

frequency, was better suited to monitor the short-term behavior and long-term serviceability of 

the I-35W Saint Anthony Falls Bridge.  

Vertical displacements are challenging to measure on structures like the I-35W Saint 

Anthony Falls Bridge without on-site surveying. Given that accelerometers are commonplace in 

monitoring efforts of civil structures, researchers have adopted state estimation methods to 

reconstruct the dynamic displacement response of vibrating systems through limited acceleration 

measurements (Eftekhar Azam et al. 2015a; Lourens et al. 2012a). These methods can 

theoretically provide optimal displacement estimates under certain conditions, but implementing 

the estimation methods on a civil system is not always straightforward. Therefore, the research 

conducted for this project was focused on a tuning procedure to implement a state estimation 

method to estimate the displacement response of a bridge structure from acceleration 

measurements.  

 

1.2 Literature Review 

Displacement profiles of structures are traditionally measured using linear variable 

differential transformers (LVDTs) in the laboratory, or using potentiometers and extensometers in 
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the field. LVDTs, potentiometers, and extensometers are contact-based displacement 

measurement methods that require a fixed reference point from which to measure relative 

displacements. When measuring vertical displacements in the laboratory, a common approach is 

to construct a scaffold under the desired measurement location and use the ground as fixed 

reference. However, the use of scaffolding for large-scale structures in the field is often 

impractical because it is costly, requires considerable time for assembly and disassembly, and, 

more importantly, requires unobstructed access to the desired measurement location from the 

ground (Gindy et al. 2008). This would exclude portions of bridges that span roadways and 

railways in which traffic cannot be stopped for the testing period and portions of bridges that 

traverse bodies of water or deep ravines, such as the I-35W Saint Anthony Falls Bridge, from 

vertical displacement measurement using contact-based sensors.  

As an alternative to traditional measurement methods such as LVDTs, various non-

contact measurement systems have been used to measure displacements. Similar to contact-based 

measurement systems, almost all non-contact measurement systems require a fixed reference 

point. Nassif et al. (2005) showed that non-contact laser Doppler vibrometer measurements 

compare very well with those recorded by LVDTs; however, laser vibrometers measure the 

differential displacement between an optical laser head and the measurement point, so the unit 

needs to be mounted on a support that is free of vibration. Typically the system is setup on the 

ground underneath the measurement point, which is impractical for structures spanning bodies of 

water. Vision-based displacement measurement methods have also been used as an alternative to 

contact-based displacement measurement techniques. Lee and Shinozuka (2006) proposed a real-

time vision-based system that uses a digital video camera (with fixed location and telescopic 

device) to take a motion picture of a target installed at a measurement location. Displacement of 

the target is calculated using an image processing technique, which requires a target recognition 

algorithm, projection of the captured image, and calculation of the displacement using target 

geometry and number of pixels moved. Recent advances in computer vision techniques in 

conjunction with acquisition through unmanned aerial vehicles (UAVs) offer promising 

noncontact solutions to civil infrastructure condition assessment (e.g., crack detection) without 

requiring a fixed reference point, but the task of accurate dynamic displacement measurement for 

in situ civil infrastructure using UAVs requires further research (Spencer Jr. et al. 2019).  

To avoid some of the difficulties associated with measuring displacement directly, 

researchers have proposed techniques to achieve displacement estimates indirectly through the 
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relationship between acceleration and displacement. Accelerometers are frequently used for 

vibration monitoring of civil structures, and, in theory, displacements can be determined by 

double integration of acceleration measurements. In practice, displacement estimates from 

integrated acceleration measurements tend to drift away from measured displacements due to 

incorrectly assumed initial conditions and small recording errors in the acceleration signal (Gindy 

et al. 2008). Numerous correction methods have been developed for minimizing the effect of 

errors that accumulate through successive integrations of the measured acceleration signal, and 

the correction methods can generally be implemented before or after integration of the measured 

accelerations. Gindy et al. (2008) proposed an analytical model based on a state-space approach 

that was used to obtain an approximate model of the noise-free acceleration signal which, when 

twice integrated, results in an estimated displacement signal. Unlike Gindy et al. (2008), which 

attempts to correct the displacement estimate by removing much of the noise in the measured 

acceleration signal, most other approaches correct the displacement estimate after integration of 

the measured noisy acceleration signal. If assuming zero initial conditions, a linear base line 

method can be used to remove a fitted line from the integrated acceleration signal prior to a 

second integration (Faulkner et al. 1996; Kropp 1977). If the initial conditions are not zero, 

however, the initial velocity estimation method (VEM) has been used to reduce the accumulation 

of error in displacement estimates from incorrect initial condition assumptions (Park et al. 2005). 

The VEM is an iterative procedure that estimates initial bridge velocity while assuming a zero 

initial displacement and is carried out until zero average velocity is achieved, thereby ensuring no 

permanent drift at the end of the signal. With all integration techniques, the accumulation of error 

in the displacement estimate tends to increase with longer acceleration signal segments.  

As an alternative to successively integrating acceleration measurements, some 

researchers have approached the problem from a control theory perspective through state 

estimation. Any set of differential equations can be transformed into a coupled set of first order 

equations, called the state-space form, as a general way of representing the dynamics of a linear 

system. When modeling physical processes, model/process noise and measurement noise are 

typically included in the system equations to improve estimation of system response in the 

presence of uncertainties. In the context of estimating displacements from acceleration, state 

estimation refers to the process of identifying quantities that completely describe the system state 

(e.g. displacements, velocities), based on a system model (e.g. relationship between displacement, 

velocity, and acceleration), from the system output (e.g. acceleration measurements). Estimating 

the true state of a system is an extensively studied problem, and various state estimators have 
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been proposed for applications to civil engineering problems. A technique that has seen success 

for displacement estimation from noisy acceleration measurements is the Kalman filter (Kalman 

1960), as the Kalman filter is the optimal time-varying solution to the linear estimation problem 

(Franklin et al. 1998).  

Joint input-state estimation refers to the process of estimating both the unknown states 

and unknown inputs of a system. For large-scale civil structures, it is generally not possible to 

measure the input to the system or accurately predict the driving forces. Prior to joint input-state 

estimation methods being used for civil applications, a common approach was to model the input 

force as a zero-mean white Gaussian process and make use of Bayesian techniques for state 

estimation (Gillijns and De Moor 2007; Lourens et al. 2012a). This approach can provide 

reasonable state estimates in some circumstances, but it may provide unacceptable state estimates 

when the loading assumption is violated. So as to identify the unknown forces in a stochastic 

manner, Lourens et al. (2012b) included the unknown forces in the state vector and estimated the 

input to the system in conjunction with the states using an augmented Kalman filter. The 

augmented Kalman filter method tends to have numerical instabilities due to unobservability 

issues of the augmented system matrix, and Maes et al. (2015) later derived the conditions for the 

invertibility of linear system models that apply to any instantaneous input estimation or joint 

input-state estimation algorithm. Eftekhar Azam et al. (2015a; b) combined two separate Kalman 

filters (aptly named the dual Kalman filter) for joint input-state estimation; and demonstrated that 

by fine-tuning the regulatory parameters of the filter, the successive structure of the dual Kalman 

filter resolves the numerical issues attributed to unobservability and rank deficiency of the 

augmented formulation of the problem. 

Tuning the parameters of the estimation system refers to proper selection of the noise 

covariance matrices that represent the stochastic part of the system model. The specified noise 

characteristics of a system have significant effects on the quality of the state estimate, and 

traditional Kalman filters require exact knowledge of the process noise covariance matrix and 

measurement noise covariance matrix for optimal estimation. For the dual Kalman filter, an 

additional input noise covariance matrix is present to model the uncertainties associated with the 

input system model. As such, specification of three covariance matrices (i.e., process noise 

covariance matrix, input noise covariance matrix, and measurement noise covariance matrix) is 

required. Typically, the stochastic part of the system model is difficult to quantify, and the 

covariance matrices are only known approximately, if at all.   
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One approach to quantify the stochastic part of the system is by estimating the noise 

covariance matrices in the state and measurement equations of the model. Noise covariance 

matrix estimation methods found in the literature are based on using the measured data to find the 

noise covariance matrices. Duník et al. (2017) provides an in-depth survey of many noise 

covariance matrix estimation procedures, which are usually divided into four groups: correlation 

methods (Mehra 1970), maximum-likelihood methods (Shumway and Stoffer 2000), covariance 

matching methods (Myers and Tapley 1976), and Bayesian methods (Lainiotis 1971). The area of 

noise covariance matrix estimation is well established, but many filter designers rely on the 

simpler practice of utilizing user-defined covariance matrices.  

Utilization of user-defined noise covariance matrices intrinsically results in suboptimal 

filter designs, as the optimal filter design would coincide with one using the true noise covariance 

matrices describing the physical system being modeled, but the practice is simple and can provide 

filter designs that perform acceptably. Typically, the form of the noise covariance matrices are 

chosen by the user, and a scalar coefficient is treated as a tunable parameter in the estimator 

design. Once the form of the covariance matrices are chosen by the filter designer, L-curve-type 

approaches can be used to choose good (i.e., nearly optimal) parameters for the noise covariance 

matrices. L-curves are a convenient way to display information about the estimator design as a 

function of the tuning parameter, and they provide a visual from which an intuitive selection for 

the regularization parameter can be chosen. Traditionally, L-curves are a plot of the norm of the 

estimated solution versus the estimation residual norm (i.e., the norm of the difference between 

the estimated and the measured quantities) for different values of the regularization parameter. 

Hansen (1992) provides an in-depth exploration of L-curves.  

The values of the regularization parameter obtained through the L-curve are associated 

with the (nearly) optimal estimates for the observed quantity (i.e., acceleration measurements). 

However, this does not necessarily coincide with the most accurate estimate of the unobserved 

quantities, namely the displacement, velocity, and input estimates (Eftekhar Azam et al. 2015b). 

In the case of the augmented Kalman filter, Lourens et al. (2012b) treated the covariance matrix 

describing the noise of the force increments as the regularization parameter, and noticed that the 

curve representing the square of the norm of the identified force as a function of the error norm 

(i.e., the norm of the difference between the measured accelerations and accelerations computed 

using the state and input estimates) does not exhibit its classical L-shape. This behavior was 

explained by the fact that the error norm for the augmented Kalman filter depends on the force as 
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well as on the state estimates. A similar observation of a not so classic L-curve was made by 

Eftekhar Azam et al. (2015b) when using the dual Kalman filter. In instances using the 

augmented Kalman filter and the dual Kalman filter, choosing the regularization parameter by 

means of a traditional L-curve is not a straightforward task (Eftekhar Azam et al. 2015b). 

To aid in tuning the dual Kalman filter, Eftekhar Azam et al. (2015b) introduced a 

complimentary metric that relies on the plot of the filter regularization parameter against the error 

norm. The covariance matrix describing the fictitious input noise was treated as the regularization 

parameter and the error norm was the norm of the known error in the acceleration estimate, which 

was the same as that used in Lourens et al. (2012b). Since its introduction, this L-curve-type 

tuning approach has been a common method for finding an appropriate level of regularization for 

the dual Kalman filter.  

In using this tuning method for the dual Kalman filter, most authors assume prior 

knowledge of the process noise covariance matrix and measurement noise covariance matrix 

(Eftekhar Azam et al. 2015a; b; Petersen et al. 2018; Tatsis and Lourens 2016). Doing so allows 

the input noise covariance matrix to be treated as the single tuning parameter of the system. In 

most scenarios, the chosen process noise covariance is a “best practice” solution without a true 

basis from optimal theory (Petersen et al. 2018).  

However, knowledge of the process noise covariance matrix a priori may not be possible 

in all scenarios, especially when the system model is constructed using output-only system 

identification techniques. Generating a system model using modal information from output-only 

system identification methods has considerable advantages over, for example, a complicated 

finite element model. Finite element models require significant time and effort to ensure that they 

accurately reflect the physical structure. When estimating displacements from accelerations, the 

accelerometers necessary for system identification would already be in place; and using 

identification results near the time of desired estimation would ensure an updated system model 

(Gaebler 2017). Even when minimizing model uncertainty using the most up-to-date system 

identification, the process noise is still difficult to quantify. In addition to instances when the 

process noise covariance matrix is not known, the filter designer may wish to understand the 

implications of the process noise covariance selection on the filter estimates. In such scenarios, 

the process noise covariance matrix should be treated a second tuning parameter of the system.  
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1.3 Research Approach and Outline 

This work highlights a tuning process for use with an output-only formulation of the dual 

Kalman filter for joint input-state estimation. When constructing a system model from a typical 

output-only system identification technique, the structural mass information is unknown. 

Therefore, approximations are typically taken in the formulation of the system equations that 

cause the input estimates to lose physical meaning. The tuning process for selecting the noise 

covariance matrices used by previous researchers is modified in a way that the process noise 

covariance and input noise covariance are treated as user-defined tuning parameters. The noise 

covariance matrices are assumed to be diagonal, and the magnitude of the diagonal elements are 

tuned to provide acceptable estimation performance. Various systems are considered, both 

numerical and experimental, and the effects of system damping, model and measurement noise, 

and model truncation on the tuning process are highlighted. The relationship between the tuning 

parameters associated with the optimal estimate of the observed acceleration and the tuning 

parameters associated with the optimal estimate of the unobserved displacement is also 

documented.  

Chapter 2 contains the output-only formulation of the linear state-space equations to be 

used with the dual Kalman filter. An explanation on how the dual Kalman filter is used and 

implemented for joint input-state estimation is included. Chapter 3 focuses on tuning the dual 

Kalman filter for a simulated spring-mass-damper system. In Chapter 4 the output-only 

formulation of the problem is validated via a simulated blind case study. Chapter 5 discusses the 

advantage of using the dual Kalman filter over a traditional, single Kalman filter when the input 

estimates are not of concern. Conclusions on the tuning procedure are given in Chapter 6.  
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Chapter 2: System model equations and the dual Kalman filter 

 

In this chapter, a stochastic state-space representation of a discrete system is formulated 

for implementation of the dual Kalman filter using an output-only system model. First, the 

equations of motion are used to generate the model and measurement equations of a discretized 

system in state-space form. The equations are modified to account for an output-only 

implementation with unknown structural mass. Then, the dual Kalman filter algorithm is 

introduced to jointly estimate both inputs (i.e., external forces) and states (i.e., displacement and 

velocity) from measured accelerations.  

 

2.1 State-space system equations   

Consider the equations of motion for a discretized system 

 𝐌𝐌�̈�𝐮(𝑡𝑡) + 𝐂𝐂�̇�𝐮(𝑡𝑡) + 𝐊𝐊𝐮𝐮(𝑡𝑡) = 𝐟𝐟(𝑡𝑡) = 𝐒𝐒p𝐩𝐩(𝑡𝑡) (1) 

where 𝐮𝐮(𝑡𝑡) ∈ ℝ𝑛𝑛 is a displacement vector, 𝐌𝐌, 𝐂𝐂, and 𝐊𝐊 ∈ ℝ𝑛𝑛 × 𝑛𝑛 represent the mass, damping, 

and stiffness matrix, respectively, for an 𝑛𝑛 degree of freedom system. A single dot and double dot 

over a vector denote first and second time derivatives, respectively. The excitation force vector 

𝐟𝐟(𝑡𝑡) ∈ ℝ𝑛𝑛 can be represented as a superposition of 𝑝𝑝 input time histories 𝐩𝐩(𝑡𝑡) ∈ ℝ𝑝𝑝  modified by 

an influence matrix  𝐒𝐒p ∈ ℝ𝑛𝑛 × 𝑝𝑝.  

When using output-only system identification methods, the problem is conveniently 

formulated in modal coordinates. The undamped eigenvalue problem corresponding to Eq. (1) is 

written:  

 𝐊𝐊𝐊𝐊 = 𝐌𝐌𝐊𝐊𝛀𝛀2 (2) 

where the solution gives the mode shapes, 𝐊𝐊 ∈ ℝ𝑛𝑛 × 𝑛𝑛, and natural frequencies, 𝛀𝛀 ∈ ℝ𝑛𝑛 × 𝑛𝑛, of 

the system. Introducing the coordinate transformation: 

 𝐮𝐮(𝑡𝑡) = 𝐊𝐊𝚽𝚽(𝑡𝑡) (3) 

where 𝚽𝚽(𝑡𝑡) ∈ ℝ𝑛𝑛 and premultiplying Eq. (1) by 𝐊𝐊𝑇𝑇, the equation of motion is rewritten in modal 

coordinates as: 
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 𝐊𝐊T𝐌𝐌𝐊𝐊z̈(𝑡𝑡) + 𝐊𝐊T𝐂𝐂𝐊𝐊�̇�𝚽(𝑡𝑡) + 𝐊𝐊T𝐊𝐊𝐊𝐊𝚽𝚽(𝑡𝑡) = 𝐊𝐊T𝐒𝐒p𝐩𝐩(𝑡𝑡) (4) 

The dynamic response of civil structures is typically dominated by a limited number of 

vibration modes, and therefore a limited number of modes are identifiable by output-only 

methods. A truncated modal space could be substituted in Eq. (3) such that the modal matrix 

𝐊𝐊m ∈ ℝ𝑛𝑛 × 𝑚𝑚 consists of the first 𝑚𝑚 mode shapes as columns, where 𝑚𝑚 < 𝑛𝑛, and 𝚽𝚽m(𝑡𝑡) ∈ ℝ𝑚𝑚. 

The subscript 𝑚𝑚 denotes matrices associated with the truncated modal space with 𝑚𝑚 modes. 

Assuming proportional damping and that the orthogonality property of the mode shapes holds 

(𝐊𝐊m
T𝐌𝐌𝐊𝐊m is diagonal), Eq. (4) can be premultiplied by (𝐊𝐊m

T𝐌𝐌𝐊𝐊m)−1 to arrive at a set of 𝑚𝑚 

decoupled equations: 

 �̈�𝚽m(𝑡𝑡) + 𝚪𝚪m�̇�𝚽m(𝑡𝑡) + 𝛀𝛀m
𝟐𝟐 𝚽𝚽m(𝑡𝑡) = (𝐊𝐊m

T𝐌𝐌𝐊𝐊m)−1𝐊𝐊m
T 𝐒𝐒p𝐩𝐩(𝑡𝑡) (5) 

where 𝛀𝛀m ∈ ℝ𝑚𝑚 × 𝑚𝑚  is a diagonal matrix which contains the natural frequencies 𝜔𝜔𝑖𝑖 (𝑖𝑖 =

1, … ,𝑚𝑚) in radians per second and 𝚪𝚪m ∈ ℝ𝑚𝑚 × 𝑚𝑚 contains entries of the form 2𝜁𝜁𝑖𝑖𝜔𝜔𝑖𝑖 on the 

diagonal, where 𝜁𝜁𝑖𝑖 denotes the modal damping ratio. 

By introducing the state vector 𝐱𝐱(𝑡𝑡) ∈ ℝ𝑠𝑠, where 𝑠𝑠 = 2𝑚𝑚 stands for the number of states, 

Eq. (5) can be represented as a continuous-time state equation: 

 �̇�𝐱(𝑡𝑡) = 𝐀𝐀c𝐱𝐱(𝑡𝑡) + 𝐁𝐁c𝐩𝐩(𝑡𝑡),                𝐱𝐱(𝑡𝑡) = �𝚽𝚽m(𝑡𝑡)
�̇�𝚽m(𝑡𝑡)� (6) 

with system matrices:  

𝐀𝐀c = � 𝟎𝟎 𝐈𝐈
−𝛀𝛀m

𝟐𝟐 −𝚪𝚪m
� , 𝐁𝐁c = �

𝟎𝟎
(𝐊𝐊m

T𝐌𝐌𝐊𝐊m)−1𝐊𝐊m
T 𝐒𝐒p

� 

The problem is formulated assuming that only acceleration measurements are available, 

and that the measurement locations define the 𝑛𝑛 degrees of freedom of the discrete system. The 

acceleration measurement vector 𝐲𝐲(𝑡𝑡) ∈ ℝ𝑛𝑛 is expressed in terms of the state and input using the 

equation of motion to arrive at a state-space measurement equation: 

 𝐲𝐲(𝑡𝑡) = 𝐂𝐂c𝐱𝐱(𝑡𝑡) + 𝐃𝐃c𝐩𝐩(𝑡𝑡) (7) 

where the measurement matrix 𝐂𝐂c and direct transmission matrix 𝐃𝐃c are: 

𝐂𝐂c = [−𝐊𝐊m𝛀𝛀m
𝟐𝟐 −𝐊𝐊m𝚪𝚪m], 𝐃𝐃c = �𝐊𝐊m(𝐊𝐊m

T𝐌𝐌𝐊𝐊m)−1𝐊𝐊m
T 𝐒𝐒p� 
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2.2 Output-only implementation 

When using output-only models, 𝐌𝐌 is generally unknown. In such a situation, mass 

normalization of mode shapes is impossible and an approximation on the system matrices 𝐁𝐁c and 

𝐃𝐃c is required. The accuracy of the approximation, with respect to the real system, dictates 

whether or not the input estimates hold physical meaning. In the case that the approximation 

accurately reflects the physical system, 𝐩𝐩(𝑡𝑡) represents force time histories and the loading on the 

structure. When the positions of the applied forces are unknown, the inputs 𝐩𝐩(𝑡𝑡) become a set of 

equivalent forces acting at the location of the acceleration measurements which would produce 

the same measured response (Lourens et al. 2012a). A more likely scenario is an inaccurate 

approximation of the system matrices, in which case the input estimates lose physical meaning. In 

order to satisfy Eq. (7) for a given acceleration measurement and state, 𝐩𝐩(𝑡𝑡) must absorb the 

inaccuracies associated with the approximation made on 𝐃𝐃c.  

In this study, (𝐊𝐊m
T𝐌𝐌𝐊𝐊m)−1 was assumed to equal the identity matrix of appropriate 

dimension and mode shapes were normalized such that the maximum relative displacement was 

unity. The assumed continuous-time state-space equations are rewritten as: 

 �̇�𝐱 = 𝐀𝐀c𝐱𝐱(𝑡𝑡) + 𝐁𝐁p𝐩𝐩(𝑡𝑡) 

𝐲𝐲(𝑡𝑡) = 𝐂𝐂c𝐱𝐱(𝑡𝑡) + 𝐃𝐃p𝐩𝐩(𝑡𝑡) 
(8) 

𝐀𝐀c = � 𝟎𝟎 𝐈𝐈
−𝛀𝛀m

𝟐𝟐 −𝚪𝚪m
� , 𝐁𝐁p = �

𝟎𝟎
𝐊𝐊m
T 𝐒𝐒p

�,   

𝐂𝐂c = [−𝐊𝐊m𝛀𝛀m
𝟐𝟐 −𝐊𝐊m𝚪𝚪m], 𝐃𝐃p = �𝐊𝐊m𝐊𝐊m

T 𝐒𝐒p� 

 

2.3 Discrete-time stochastic state-space equations 

For use with stochastic estimation approaches using measured data, the continuous-time 

state-space equations are represented in discrete time with appropriate noise vectors. Eq. (8) can 

be implemented in discrete time with a sampling rate 1/Δ𝑡𝑡 such that discrete time instants are 

defined by 𝑡𝑡𝑘𝑘 = 𝑘𝑘 Δ𝑡𝑡, for 𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑡𝑡. Under the assumption of a zero-order hold on the input, 

the discrete-time state-space equations are: 
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 𝐱𝐱𝑘𝑘+1 = 𝐀𝐀𝒅𝒅𝐱𝐱𝑘𝑘 + 𝐁𝐁𝒅𝒅𝐩𝐩𝑘𝑘 

𝐲𝐲𝑘𝑘 = 𝐂𝐂𝒅𝒅𝐱𝐱𝑘𝑘 + 𝐃𝐃𝒅𝒅𝐩𝐩𝑘𝑘 
(9) 

where 𝐀𝐀d = exp(𝐀𝐀c𝛥𝛥𝑡𝑡) , 𝐁𝐁d = [𝐀𝐀c − 𝐈𝐈]𝐀𝐀c−1𝐁𝐁p, 𝐂𝐂d = 𝐂𝐂c,  and 𝐃𝐃d = 𝐃𝐃p. Eq. (9) is represented 

stochastically with the addition of process noise 𝐰𝐰𝑘𝑘
x ∈ ℝ𝑠𝑠 and measurement noise 𝐯𝐯k ∈ ℝ𝑛𝑛 

vectors: 

 𝐱𝐱𝑘𝑘+1 = 𝐀𝐀d𝐱𝐱𝑘𝑘 + 𝐁𝐁d𝐩𝐩𝑘𝑘 + 𝐰𝐰𝑘𝑘
x 

𝐲𝐲𝑘𝑘 = 𝐂𝐂d𝐱𝐱𝑘𝑘 + 𝐃𝐃d𝐩𝐩𝑘𝑘 + 𝐯𝐯𝑘𝑘 
(10) 

The process noise and measurement noise vectors were assumed to be uncorrelated, zero-mean, 

white noise signals with covariance matrices 𝐐𝐐x ∈ ℝ𝑠𝑠 × 𝑠𝑠 and 𝐑𝐑 ∈ ℝ𝑛𝑛 × 𝑛𝑛, respectively.  

 

2.4 Dual Kalman filter for input and state estimation 

The dual Kalman filter (DKF) was used to estimate the unknown input 𝐩𝐩𝑘𝑘 and unknown 

state 𝐱𝐱𝑘𝑘 of the Eq. (10) system using the noisy acceleration measurements 𝐲𝐲𝑘𝑘. The DKF scheme 

is divided into two stages: a Kalman filter to estimate the input and a Kalman filter to estimate the 

system state. Input estimation is accomplished by introducing a fictitious process equation that 

serves to propagate the input forward in time: 

 𝐩𝐩𝑘𝑘+1 = 𝐩𝐩𝑘𝑘 + 𝐰𝐰𝑘𝑘
p (11) 

where 𝐰𝐰𝑘𝑘
p ∈ ℝ𝑝𝑝 is an assumed zero-mean, white noise process with covariance matrix 𝐐𝐐p ∈

ℝ𝑝𝑝 × 𝑝𝑝.  

The general scheme for the dual Kalman filter, as described by Eftekhar Azam et al. 

(2015a), is as follows:  

• Initialization at time 𝑡𝑡0 
𝐩𝐩�0 = 𝔼𝔼[𝐩𝐩0] 

𝐏𝐏0
p =  𝔼𝔼[(𝐩𝐩0 − 𝐩𝐩�0)(𝐩𝐩0 − 𝐩𝐩�0)T] 

𝐱𝐱�0 = 𝔼𝔼[𝐱𝐱0] 
𝐏𝐏0x =  𝔼𝔼[(𝐱𝐱0 − 𝐱𝐱�0)(𝐱𝐱0 − 𝐱𝐱�0)T] 
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• At time 𝑡𝑡𝑘𝑘, for 𝑘𝑘 = 1, … ,𝑁𝑁𝑡𝑡: 
o Prediction stage for the input: 

1. Evolution of the input and prediction of covariance input: 
𝐩𝐩𝑘𝑘− = 𝐩𝐩𝑘𝑘+1 

𝐏𝐏𝑘𝑘
p− = 𝐏𝐏𝑘𝑘−1

p + 𝐐𝐐p 
o Update stage for the input: 

2. Calculation of Kalman gain for input: 
𝐆𝐆𝑘𝑘
p = 𝐏𝐏𝑘𝑘

p−𝐃𝐃dT(𝐃𝐃d𝐏𝐏𝑘𝑘
p−𝐃𝐃dT + 𝐑𝐑)−1 

3. Improve predictions of input using latest observation: 
𝐩𝐩�𝑘𝑘 = 𝐩𝐩𝑘𝑘− + 𝐆𝐆𝑘𝑘

p(𝐲𝐲𝑘𝑘 − 𝐂𝐂d𝐱𝐱�𝑘𝑘−1 − 𝐃𝐃d𝐩𝐩𝑘𝑘−) 

𝐏𝐏𝑘𝑘
p = 𝐏𝐏𝑘𝑘

p− − 𝐆𝐆𝑘𝑘
p𝐃𝐃d𝐏𝐏𝑘𝑘

p− 
o Prediction stage for the state: 

4. Evolution of state and prediction of covariance of state: 
𝐱𝐱𝑘𝑘− = 𝐀𝐀d𝐱𝐱�𝑘𝑘−1 + 𝐁𝐁d𝐩𝐩�𝑘𝑘 

𝐏𝐏𝑘𝑘x− = 𝐀𝐀d𝐏𝐏𝑘𝑘−1x 𝐀𝐀dT𝐀𝐀T + 𝐐𝐐x 
o Update stage for the state: 

5. Calculation of Kalman gain for state: 
𝐆𝐆𝑘𝑘x = 𝐏𝐏𝑘𝑘x−𝐃𝐃dT(𝐃𝐃𝐝𝐝𝐏𝐏𝑘𝑘x−𝐃𝐃dT + 𝐑𝐑)−1 

6. Improve predictions of state using latest observation: 
𝐱𝐱�𝑘𝑘 = 𝐱𝐱𝑘𝑘− + 𝐆𝐆𝑘𝑘x(𝐲𝐲𝑘𝑘 − 𝐂𝐂d𝐱𝐱𝑘𝑘− − 𝐃𝐃d𝐩𝐩�𝑘𝑘) 
𝐏𝐏𝑘𝑘x = 𝐏𝐏𝑘𝑘x− − 𝐆𝐆𝑘𝑘x𝐂𝐂d𝐏𝐏𝑘𝑘x− 

 

The dual Kalman filter procedure required initial information on the expected value and 

covariance of the state (𝐱𝐱�0 and 𝐏𝐏0x, respectively) and input (𝐩𝐩�0 and 𝐏𝐏0
p, respectively). For all 

implementations of the dual Kalman filter in this manuscript, the initial expected value of all state 

and input variables was zero. The initial covariance matrices of the state and input were assumed 

to be fully populated with ones. This assumption did not accurately reflect the joint variability of 

the elements of the state and input vectors, however impact of the assumption on the final state 

estimates was minor due to the steady state implementation of the filter described in greater detail 

in Chapter 3.  

 



13 
 

Chapter 3: Tuning the dual Kalman filter 

 

The following sections contain examples of a simulated system that were explored to 

highlight the process of tuning the dual Kalman filter for displacement estimation from 

acceleration measurements. The tuning procedure is introduced first in Section 3.1. Then the 

system on which the tuning procedure is utilized is presented in Section 3.2. Section 3.3 presents 

an investigation of added system noise and its effects on tuning.    

 

3.1 Tuning procedure for 𝐐𝐐𝐱𝐱 and 𝐐𝐐𝐩𝐩 

Tuning refers to proper selection of the noise covariance matrices 𝐐𝐐x, 𝐐𝐐p, and 𝐑𝐑 to 

achieve accurate estimates of the unobserved state and input. Because measurements are 

necessary to operate the dual Kalman filter, it is usually possible to quantify the measurement 

noise covariance 𝐑𝐑 prior to implementing the filter. The measurement noise is based on the 

sensitivity of the sensors used to measure the accelerations, and the variance of each sensor can 

be quantified by manufacture specifications and tests to determine the sensor noise floor. In 

tuning the other noise covariance matrices, the input noise covariance matrix and process noise 

covariance were assumed to take the form 𝐐𝐐p = 𝑄𝑄𝑝𝑝 × 𝐈𝐈 and 𝐐𝐐x = 𝑄𝑄𝑥𝑥 × 𝐈𝐈, respectively, where 𝑄𝑄𝑝𝑝 

and 𝑄𝑄𝑥𝑥 were scalar quantities. Such an assumption is typical when no information on the cross-

correlation of the noise elements is available (Franklin et al. 1998). The magnitudes of 𝑄𝑄𝑝𝑝 and 𝑄𝑄𝑥𝑥 

were the variances of the noise components, and 𝑄𝑄𝑝𝑝 and 𝑄𝑄𝑥𝑥 were treated as the tuning parameters 

of the system. 

 Because the accuracy of the estimates, and therefore the accuracy of the tuning 

procedure, could only be judged if the true state and input were known, estimated quantities were 

compared to the true simulation response and excitation to gain insight on the effects of tuning. 

To simplify this comparison, a steady state form of the DKF algorithm presented in Chapter 2 

was used for estimation. Due to the formulation of the input estimator, numerical instabilities 

arose when trying to solve for the steady state gains prior to implementing the filter. Therefore, 

the time-varying DKF was run until steady state was reached, and then a time-invariant DKF was 

applied to the entire time history using the steady state gains. The time-invariant filter allowed for 

comparison of the entire response and estimate time histories without having to account for the 

stabilization time of the filter. Additionally, the system was assumed to be time-invariant over the 
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estimation time considered; updates to the output-only model to reflect system changes was 

assumed to occur prior to implementing the filter.    

In most practical settings, the noise covariance matrices needed to implement the DKF 

are unknown. Several works in the literature provide rule-of-thumb methods to appropriately tune 

the filter, however most authors assume prior knowledge of the process noise 𝑄𝑄𝑥𝑥. With that 

assumption, the covariance of the input noise 𝑄𝑄𝑝𝑝 acts as a single tuning parameter for the DKF, 

and L-curve-type approaches are often taken to select the input covariance 𝑄𝑄𝑝𝑝 (Eftekhar Azam et 

al. 2015a; Lourens et al. 2012b; Petersen et al. 2018; Tatsis and Lourens 2016). Such an 

assumption is difficult to make when constructing a model using output-only system 

identification results, where the amount of uncertainty in the model may be unknown. For the 

output-only formulation of the problem in this work, no knowledge of the process noise 

covariance parameter 𝑄𝑄𝑥𝑥 was assumed a priori, and 𝑄𝑄𝑥𝑥 was treated as a second tuning parameter 

of the system.  

To tune the filter, the dual Kalman filter algorithm was implemented for various 

combinations of 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝 and the response of the structure was estimated from the acceleration 

measurements. After the entire time history was estimated, two separate metrics were used to 

judge the performance of the DKF.  

One metric looked at the norm of the estimation error for the measured quantities 

∑‖𝐲𝐲𝑘𝑘 − (𝐂𝐂d𝐱𝐱𝑘𝑘− + 𝐃𝐃d𝐩𝐩�𝑘𝑘)‖22 /𝑁𝑁𝑡𝑡 over the tunable range of 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝. This was analogous to the 

L-curve type approach used in Eftekhar Azam et al. (2015a), only expanded in the 𝑄𝑄𝑝𝑝 dimension 

to allow proper selection of the process noise covariance. All measured quantities were assumed 

to be accelerations, therefore this metric quantified the error of the acceleration estimates (from 

estimated states and inputs) as compared to the measured accelerations. The tunable range for 𝑄𝑄𝑥𝑥 

and 𝑄𝑄𝑝𝑝 is difficult to define prior to computing the estimates, however values larger than and 

smaller than the magnitude of the measurement noise covariance should be considered. The plot 

of this acceleration error-metric as a function of the tuning parameters 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝 is the main tool 

used to tune the dual Kalman filter.  

A second metric was used to judge the performance of the estimator and measured the 

accuracy of the unobserved displacement state estimates with respect to the true state response. In 

practice, this comparison is impossible as displacement measurements were assumed unavailable. 

For simulations, however, the exact, noise-free displacement response was available, and the 
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comparison was possible. The average root mean squared error over all degrees of freedom  

∑ ��∑ �xk,act − xk,est�
2/𝑘𝑘 𝑁𝑁𝑡𝑡�𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷 /𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 was the metric adopted to compare the simulated and 

estimated displacements.  

These two metrics, one to evaluate the accuracy of the acceleration measurements and 

one to evaluate the accuracy of the displacement estimates, are analyzed jointly to provide insight 

on how to tune for proper estimation of the unobserved displacement state from only knowledge 

of the acceleration error.  

 

3.2 Simulated system 

To assess the method of tuning the dual Kalman filter, a simulated 8 degree of freedom 

(DOF) system was considered. The system was a series of masses connected to each other with 

identical spring/damper couplings, with the first and last masses connected with the same 

coupling to fixed supports, as shown in Figure 1. Each node had a mass of 1 kg and the stiffness 

between each mass was 200 N/m. The modal damping ratio of each mode was varied depending 

on the case under consideration but was set at 2% for the initial discussion. The properties of this 

system were motivated by the I-35W Saint Anthony Falls Bridge in Minneapolis, MN; the mass 

and stiffness of the simulated system were chosen to produce natural frequencies that closely 

matched those identified on the I-35W Saint Anthony Falls Bridge (Gaebler et al. 2017). 

The implementation of the dual Kalman filter was based on the simulated measurements 

generated by subjecting the system to a spatially correlated white noise excitation at each node. 

For each node, the same white noise signal was randomly shifted in time, with an average lag of 

0.1 seconds. This excitation was used to approximate the correlated input at different nodes 

expected in a civil structure. The full system response was simulated in discrete time with a 

sampling rate of 100 Hz. Acceleration time histories from each node were used as measurements 

in the DKF, with varying amounts of Gaussian white noise added to simulate measurement noise.  

 

3.3 Investigation of noise and its effects on tuning  

In this section, the dual Kalman filter is used to estimate the response of the system 

defined in Section 3.2 subjected to a spatially correlated white noise excitation at each node, 
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using the tuning procedure described in Section 3.1. First, the response of the system was 

estimated using the true system parameters (with no added model or measurement noise) to 

introduce the tuning curves and to provide a baseline case from which to make comparisons. 

Then, the effects of system damping, model and measurement noise, and model truncation on the 

tuning process were investigated.  

 

3.3.1 Tuning when no noise is present 

The dual Kalman filter algorithm was implemented using the true modal parameters 

within the system model and using acceleration measurements with no added noise (i.e. clean 

model, clean measurements). The filter algorithm was executed assuming a measurement noise 

covariance of 𝐑𝐑 = 𝑅𝑅 × 𝐈𝐈, where 𝑅𝑅 = 10−7. The magnitude of the measurement noise was chosen 

to match that seen in the data collected from accelerometers on the I-35W Saint Anthony Falls 

Bridge. Displacement estimates were generated over the range 𝑄𝑄𝑥𝑥 = [10−20, 10−5]  and 𝑄𝑄𝑝𝑝 =

[10−20, 100]. A selection of the generated displacement estimates at node 4 is shown in Figure 2, 

which highlights the significant effect of tuning on the displacement estimates. Figure 3 shows 

the power spectrum of the displacement estimates of Figure 2. Some displacement estimates had 

considerably larger high frequency content than others, which depended on the assumed level of 

process noise and input noise. Selection of the best (i.e., nearly optimal) tuning parameters based 

solely on the displacement estimates shown in Figure 3.  

To aid in determining the best tuning parameters, the two error metrics were plotted as 

surfaces over the range of 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝, as shown in Figure 4a and Figure 4b. The two axes of the 

horizontal plane represent the tuning parameters of the displacement and input force estimation 

systems. Increasing values of the input noise covariance 𝑄𝑄𝑝𝑝 and process noise covariance 𝑄𝑄𝑥𝑥, as 

compared to the fixed measurement noise covariance 𝑅𝑅, coincided with a relative increase in trust 

in the acceleration measurements. The lowest point on the displacement error surface (Figure 4b) 

located the tuning parameters with which the best displacement estimates were generated. The 

difficulty of using this tuning method lied in finding the optimal combination of 𝑄𝑄𝑥𝑥  and 𝑄𝑄𝑝𝑝 

based solely on the acceleration error surface and estimated displacements (i.e. without 

knowledge of the exact displacements).  

In keeping with an L-curve approach based on the acceleration error metric, an input 

noise covariance of  𝑄𝑄𝑝𝑝 = 10−7 was chosen intuitively from Figure 4a. However, proper 



17 
 

selection of 𝑄𝑄𝑥𝑥 was difficult as it does not appear to affect the acceleration error for certain 

values of 𝑄𝑄𝑝𝑝. From the displacement error surface (Figure 4b), any process noise covariance less 

than 𝑄𝑄𝑥𝑥 = 10−15 with 𝑄𝑄𝑝𝑝 = 10−7 gave the best displacement estimate. For this case, the tuning 

parameters producing the best displacement estimates suggested that when relatively less trust 

was placed in the input estimator, more accurate displacement estimates were achieved.  

When implementing this tuning procedure in the field, the displacement error surface is 

unknown. Therefore, a modified representation of the acceleration error surface was required to 

determine the appropriate tuning parameters. Figure 4b shows several flat portions on the 

displacement error surface, which are highlighted with bold rectangular outlines. The 

combination of tuning parameters contained within each of the flat regions yielded essentially the 

same displacement error, and thus provided displacement estimates that were nearly identical. 

The flat regions from the displacement error surface were superimposed onto the acceleration 

error surface in Figure 4a. These four flat regions could be roughly identified from the 

acceleration errors only; the large flat region on the lower plane was divided by projecting the 

location of the valley on the upper surface. The identification of these flat regions from 

acceleration error, in turn, were used to locate a region in which tuning makes a difference on 

displacement estimates. Figure 5 shows the region of tuning parameters that generate all the 

possible displacement estimates (hexagon hatch), which was identified by the connecting lines of 

the four flat regions (diagonal hatch).  

Given that the displacement measurements were not available for field implementations, 

the range of possible displacement estimates (as seen in Figure 2) generated from the identified 

region of tuning parameters (hexagon hatch in Figure 5) was inspected to select the tuning 

parameters that provided an estimate that was acceptable. Of course, this required judgement on 

the true response of the structure, from which there should be some form of engineering backing. 

Examples of judgement traits could include overall magnitude of the time history peaks or 

frequency content of the estimates, compared to what would be expected for the structure under 

consideration. For example, displacement estimates that contain the largest peak magnitudes in 

the time history while remaining a relatively smooth signal may be a good choice. In Figure 2, 

these properties were reflected by the displacement estimate generated assuming 𝑄𝑄𝑥𝑥 = 10−18 

and 𝑄𝑄𝑝𝑝 = 10−6, which happened to provide displacement estimates that matched the true 

response well. The tuning parameters 𝑄𝑄𝑥𝑥 = 10−17 and 𝑄𝑄𝑝𝑝 = 10−6 provided the state estimates 

with the lowest displacement error. 
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For the case with a perfect system and perfect measurements, the tuning parameters 

giving the best displacement estimates also produced the lowest acceleration error. This behavior, 

however, may not be true in all scenarios and for all noise levels. To test the assumption that the 

best acceleration and displacement estimates are produced by the same tuning parameters, various 

amounts of noise were added to both the system model and the acceleration measurements to see 

what effects, if any, they had on tuning for displacement estimates.  

 

3.3.2 Tuning when model noise and measurement noise is present 

Imperfections were added to both the system model used in the dual Kalman filter and 

the acceleration measurements to determine what effects, if any, the imperfections had on tuning 

for displacement estimates. Various levels of damping were also considered. For each scenario, 

the DKF algorithm was implemented assuming a measurement noise covariance of 𝐑𝐑 = 10−7 ×

𝐈𝐈. Displacement estimates were generated over the range 𝑄𝑄𝑥𝑥 = [10−20, 10−5]  and 𝑄𝑄𝑝𝑝 =

[10−20, 100], and the acceleration error and displacement error surfaces were analyzed in an 

attempt to correlate the displacement estimate quality with the acceleration estimate quality.  

3.3.2.1 Model noise – natural frequencies and mode shapes 

Model noise was introduced using noisy natural frequencies and mode shapes (i.e., 

natural frequencies and mode shapes that were different from the parameters of the true system in 

Section 3.2) in the development of the DKF equations. The level of noise under consideration 

was motivated by the variation seen in the system identification results of the I-35W Saint 

Anthony Falls Bridge (Gaebler et al. 2018). Variation of the modal parameters identified for the 

I-35W Saint Anthony Falls Bridge was seen in two forms: in the range of the identification results 

over a short time period (i.e., less than one month) and in the seasonal variation of the 

identification results with a period of one year. Both forms of variation were modeled in the 

simulated system. The spread in the identification results of the I-35W Saint Anthony Falls 

Bridge over a short time period of three weeks was modeled using the mode shapes and natural 

frequencies given in Figure 6 and Table 1, respectively, and was labeled as the “noisy” model. 

The seasonal variation in natural frequencies seen in Gaebler et al. (2018) for the I-35W Saint 

Anthony Falls Bridge was modeled using natural frequencies 0.105 Hz higher than those used in 

the noisy model and using the same mode shapes as the noisy model.  
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The amount of noise added to the modal properties of the system made no difference in 

any aspect of the tuning procedure or estimate quality. Figure 7 shows the acceleration and 

displacement error over the range of 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝 for the noisy system model with perfect 

measurements. The tuning surfaces of the models containing the two magnitudes of noise 

appeared similar in shape and magnitude to those constructed with the true modal properties, and 

the best displacement estimates (𝑄𝑄𝑥𝑥 = 10−15,𝑄𝑄𝑝𝑝 = 10−6) were able to capture the true system 

response. The best displacement estimates were generated by the tuning parameters that also 

produced the best acceleration estimates. 

3.3.2.2 Damping 

The effect of damping on tuning for displacement estimates was considered in two ways: 

(1) by varying the magnitude of the damping ratio over the range 0.5% ≤ 𝜁𝜁 ≤ 10% and (2) by 

using a poor-quality damping identification in the dual Kalman filter estimation system model.  

The response of the system was simulated for true modal damping of 0.5%, 2%, and 

10%, and tuning surfaces were generated assuming a system model constructed using the true 

damping values. Each scenario was under the same excitation, and therefore the magnitude of the 

response decreased with increased damping. The acceleration and displacement error over the 

range of 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝 for the 0.5% and 10% modally damped cases are shown in Figure 8 and 

Figure 9, respectively. The 2% modally damped error metrics are shown in Figure 4. Because the 

two error metrics were not normalized, the error values obtained for the three damping cases are 

not directly comparable. Comparison of Figure 4, Figure 8, and Figure 9 show that while different 

in magnitude, the shapes of the error surfaces for the different levels of damping had similar 

characteristics. The flat regions on the displacement error surfaces that yielded essentially the 

same displacement estimate could be identified by the flat areas on the acceleration error surface; 

however, the values of the tuning parameters contained within each of the flat regions changed 

slightly with changes to system damping. For all the trial damping ratios, tuning values near the 

flat region produced by low values of 𝑄𝑄𝑥𝑥 and high values of 𝑄𝑄𝑝𝑝 provided the best displacement 

and acceleration estimates. Table 2 lists the tuning parameters which yielded the best 

displacement estimates for each level of damping. The magnitude and frequency content of the 

true system response was captured by the dual Kalman estimator for all of the considered levels 

of damping. 

Accurate identification of structural damping is often the most difficult component of 

system identification. Poor damping identification was simulated by assuming 5% modal 
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damping in the dual Kalman filter system when the acceleration measurements were generated 

from a 2% modally damped system. The acceleration and displacement error surfaces are shown 

in Figure 10 for the poor damping identification case. Generally, the error surfaces were similar 

in shape to those for which the assumed damping matched the level of damping used to generate 

the acceleration measurements. The tuning parameters that yielded the lowest displacement error 

are compared to the tuning parameters for other damping cases in Table 2. Even though the level 

of damping used in the dual Kalman filter system model overpredicted the level of damping in the 

true system, the magnitude and frequency content of the true system response was captured by the 

dual Kalman estimator. 

For the damping cases considered in this study, results indicated that (1) for the range of 

damping values typically exhibited by large structures, similar tuning values produced the same 

relative quality of displacement estimate and (2) good displacement estimates could be recovered 

using poor identification results assuming the measurements were of similar quality to those 

taken from the I-35W Saint Anthony Falls Bridge. In addition, the best displacement estimates 

were generated by the tuning parameters that also produced the best acceleration estimates.  

3.3.2.3 Model truncation 

As the development of the dual Kalman filter was suitable for model constructions using 

only a few modes, the effect of model truncation was considered by generating estimates using 

only the first four modes of the system model presented in Section 3.2. As would be expected, 

truncating the model diminished the estimator’s capability to capture the exact, full order 

response to a white noise excitation. Figure 11 shows a portion of the best displacement estimate 

time history for a truncated model with noisy modal parameters and 2% damping. Similar to the 

best tuning parameters for the full order model, the tuning values that provided the best 

displacement estimates for the truncated model (𝑄𝑄𝑥𝑥 = 10−14,𝑄𝑄𝑝𝑝 = 10−7) were near the flat 

region on the acceleration error tuning surface produced by low values of 𝑄𝑄𝑥𝑥 and high values 

of 𝑄𝑄𝑝𝑝. The shapes of the error surfaces were similar between the truncated and full order model, 

and the best displacement estimates were produced by the tuning parameters that gave the best 

acceleration estimates.  

3.3.2.4 Measurement noise 

Measurement noise was introduced to the 0.5%, 2%, and 10% damped systems by adding 

a zero-mean Gaussian noise to the simulated acceleration responses. Various signal-to-noise 
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ratios (SNR) were considered (SNR = 15, 20) to simulate the noise levels seen in the 

accelerometer data obtained from the I-35W Saint Anthony Falls Bridge (French et al. 2012). The 

dual Kalman filter algorithm was implemented assuming the true full order model presented in 

Section 3.2 with measurement noise covariance 𝐑𝐑 = 10−7 × 𝐈𝐈.  

For both noise levels (SNR = 15, 20) and all damping levels (0.5%, 2%, and 10%), the 

shape of the acceleration error surface was like all other cases; however, the displacement error 

surface shape was different than the displacement error surfaces generated with no measurement 

noise. Figure 12 shows the acceleration and displacement error for the 2% damped system with 

measurement noise (SNR = 20). The surface was shown from a different perspective so the point 

with the minimum displacement error was visible (𝑄𝑄𝑥𝑥 = 10−13,𝑄𝑄𝑝𝑝 = 10−12). Unlike all other 

forms of model noise considered, the minimum error displacement estimates were not generated 

by the tuning parameters that produced the minimum error acceleration estimates. Instead of the 

minimum error displacement estimates being generated by tuning parameters near the flat region 

on the acceleration error tuning surface corresponding to low values of 𝑄𝑄𝑥𝑥 and high values of 𝑄𝑄𝑝𝑝, 

the minimum error displacement estimate for a system with measurement noise was generated 

from tuning parameters with relatively high assumed process noise 𝑄𝑄𝑥𝑥 and low assumed input 

noise 𝑄𝑄𝑝𝑝.  A portion of the displacement estimate at node 4 produced by the minimum error 

tuning parameters is shown in Figure 13. Significantly poorer displacement estimation 

performance was achieved when measurements were contaminated with noise as compared to 

cases with no measurement noise.  

The shape differences of the acceleration error and displacement error tuning surfaces for 

the case with significant measurement noise suggested that the tuning parameters which produce 

the minimum error displacement estimates cannot be identified from the acceleration error tuning 

surface alone.   

 

3.4 Tuning conclusions 

A simulated 8 degree of freedom system was considered to assess an expanded L-curve-

type tuning approach for displacement estimation from acceleration measurements using the dual 

Kalman filter. The expanded tuning approach incorporated parameters that reflect the unknown 

process noise and input noise of the estimation system (𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝, respectively).  
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A tuning surface of the acceleration estimate error vs 𝑄𝑄𝑥𝑥 and 𝑄𝑄𝑝𝑝 was generated and 

compared to the displacement estimate error to study the relationship between the optimal tuning 

parameters for the observed and unobserved quantities. Several cases of model and measurement 

noise were considered; and for systems with similar modal properties to the I-35W Saint Anthony 

Falls Bridge, results showed that modeling errors due to poor identification results had less of an 

effect on the tuning procedure than measurement error. Because of measurement error, the tuning 

parameters that generated minimum error displacement estimates could not be selected from the 

acceleration error tuning surface alone.  

Generally, the acceleration error surface can be used to define a region of tuning 

parameters that make a difference on the displacement and velocity estimates. The estimates 

produced by this region of tuning parameters must then be inspected to select the proper tuning 

parameters that provide an acceptable displacement estimate. When implemented on civil 

structures in the field, engineering judgment must be used to select the tuning parameters. From 

experimentation on the simulated 8 degree of freedom system, often the best choice of tuning 

parameters was one which produced displacement estimates that had the largest peaks while 

remaining smooth.  
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Chapter 4: Blind case study 

 

To test the tuning procedure outlined in Chapter 3 for displacement estimation in a more 

realistic setting, a blind case study scenario was considered. The only information available to the 

individual who performed the study was (1) noisy acceleration measurements, (2) geometry of the 

structure including sensor location, and (3) the first 6 natural frequencies of the system. In 

general, knowledge of the structure geometry and sensor locations are not necessary to implement 

the dual Kalman filter procedure, but they are usually known. Natural frequency approximations 

are sometimes available from finite element models and can be used as a check for output-only 

modal parameter identification.  

The blind case study structure is shown in Figure 14 and was designed to roughly 

approximate a bridge with a flexible pier at midspan. The system modeled a 20 foot long simply 

supported concrete beam (𝑤𝑤𝑐𝑐 = 100 lb/ft3 (15.7 kN/m3), 𝑓𝑓𝑐𝑐′ = 5 ksi (34 MPa), 𝐸𝐸𝑐𝑐 = 4030.5 ksi 

(27996 MPa)) with a vertical spring support (𝑘𝑘 = 441.685 kip/ft (6445.91 kN/m)) at midspan. The 

rectangular cross section (2 ft (0.6096 m) wide by 6 ft (1.8288 m) deep) was constant along the 

length of the beam. Table 3 lists the true modal parameters of the system. The simulated system 

was excited along the length by a spatially correlated band-limited white noise and the 

corresponding acceleration measurements provided to the user contained measurement noise 

(SNR = 20). 

NExT-ERA/DC (James III et al. 1995; Juang and Pappa 1985; Juang et al. 1988) was 

used to identify the modal parameters such as natural frequencies, mode shapes, and damping 

ratios of the unknown system from six separate simulated acceleration data files. For each run, 

the results were sorted by mode shape, and the identification result with the highest consistent-

mode indicator (CMI) was kept (Pappa et al. 1993). Table 4 lists the average modal parameters 

identified from the six acceleration measurement files provided to the author. These parameters 

were used to formulate a model of the structure to be used in the dual Kalman filter. The first, 

third, and fifth vibrational modes of the structure (from Table 3) were identified using the output-

only technique.  

Figure 15 shows the acceleration error as a function of process noise and input noise 

covariances for an assumed 𝐑𝐑 = 𝐈𝐈. The acceleration error tuning metric provided little guidance 

in selecting the tuning parameters, so the displacement estimates themselves were assessed. Of 
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the displacement estimates generated over the range of tuning parameters shown in Figure 15, 

Figure 16 displays a representative sample of the smoother estimated time histories at node 3. 

Displacement estimates with large amounts of drift or with frequency content higher than 

expected were discarded based on engineering judgement. The estimates in Figure 16 differ 

mainly by the magnitude of the peaks, and those with very low magnitudes have a slight phase 

shift.  

The dashed line (𝑄𝑄𝑥𝑥 = 10−7, 𝑄𝑄𝑝𝑝 = 10−10, 𝐑𝐑 = 𝐈𝐈 ) in Figure 16 was a smooth estimate 

(essentially no visible high frequency content) with peak magnitudes that encompass all other 

peaks. Towards the end of the acceleration record, this dashed estimate drifts slightly away from 

an estimate with a true zero mean and more high frequency content. If a truly smooth estimate 

without drift was desired, the dashed line could be used to estimate shorter segments of data, thus 

avoiding the drift that occurs after long periods of time. However, the effects of the filter initial 

conditions must be considered if taking such an approach. An estimate with similarly large peak 

amplitudes, but with a low level of high frequency content (𝑄𝑄𝑥𝑥 = 10, 𝑄𝑄𝑝𝑝 = 10−6, 𝐑𝐑 = 𝐈𝐈 ) was 

selected instead of the dashed estimate as the authors’ “best guess” for displacement estimation. 

Selecting the estimate with the largest magnitude was treated as a conservative approach, 

especially if large displacements were unfavorable. Figure 17 shows the input estimates at node 3 

corresponding to the two displacement estimates previously mentioned ({𝑄𝑄𝑥𝑥 = 10−7, 𝑄𝑄𝑝𝑝 =

10−10} and {𝑄𝑄𝑥𝑥 = 10, 𝑄𝑄𝑝𝑝 = 10−6}). In comparing the estimated inputs, significant drift in the 

input estimation appears to cause the slight drift in the dashed displacement estimate.   

After the tuning parameters (𝑄𝑄𝑥𝑥 = 10,𝑄𝑄𝑝𝑝 = 10−6, 𝐑𝐑 = 𝐈𝐈 ) were chosen and the system 

response was estimated, the true displacements were revealed to the author performing the blind 

analysis. Figure 18 shows the estimated displacements compared to the true displacements at 

node 3 for a single run. In this case, there was good agreement between the estimated and true 

displacements (node 3 RMSE = 0.0201 inches (0.5105 mm)). These results indicate that the 

tuning procedure outlined in Section 3 can provide acceptable displacement estimates in a field 

setting.  
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Chapter 5: Advantages of the dual Kalman filter when inputs are not of 

interest 

 

In this work, the input estimator in the dual Kalman filter was used as a tool towards state 

estimation. The main reason for the use of the dual Kalman filter, rather than a single Kalman 

filter, was improved displacement estimation performance, especially under various loading 

types. When no input estimator is used, an assumption on the type of excitation is necessary. If 

the loading assumption is incorrect, significant filter performance degradation may be observed. 

The increased performance of the dual Kalman filter over the single Kalman filter in instances 

with unknown loading is explored in the following sections via a simulated example and an 

experimental test. 

 

5.1 Simulated example 

For the simulated example, state estimation of the 8-DOF system with 2% damping in 

Chapter 3 was considered using a single Kalman filter (Kalman 1960). The system was excited by 

a random white noise excitation at all nodes, but randomly shifted in time. The estimation 

problem was formulated using Eq. (10) and setting 𝐁𝐁d = 𝟎𝟎 and 𝐃𝐃d = 𝟎𝟎. Such a construction 

inherently assumed that the modal excitation is a zero mean white noise. For comparison of the 

two formulations, i.e. a single Kalman filter (with 𝐁𝐁d = 𝟎𝟎 and 𝐃𝐃d = 𝟎𝟎) and the dual Kalman 

filter, the modal parameters used in the dynamic models were exact, and no measurement noise 

was added.  

Figure 19 shows a portion of the most accurate displacement estimate time histories for 

the single Kalman and dual Kalman estimation methods for the 8-DOF system under random 

loading. The single Kalman filter estimates (Displacement Error = 0.008211 m) were not as 

accurate as the dual Kalman filter estimates (Displacement Error = 0.001543 m), but the single 

Kalman filter did give reasonable displacement estimates for some portions of the time history. 

The tuning parameters that generated the best displacement estimate were not the same for the 

single Kalman estimator (𝑄𝑄𝑥𝑥 = 10−13) and dual Kalman estimator (𝑄𝑄𝑥𝑥 = 10−16,𝑄𝑄𝑝𝑝 = 10−7). 

Figure 20 shows the acceleration and displacement error for the single Kalman filter estimates as 

a function of 𝑄𝑄𝑥𝑥. Even though the single Kalman filter could match the acceleration 



26 
 

measurements to a high precision for increasing 𝑄𝑄𝑥𝑥 in Figure 20a, increased acceleration estimate 

accuracy did not reduce the displacement estimate error seen in Figure 20b.  

Higher accuracy was not achieved in the single Kalman filter displacement estimates by 

using a process noise covariance of 𝑄𝑄𝑥𝑥 = 2.8657, i.e. the true covariance of the random 

excitation. With the process noise covariance assumed known, the measurement noise covariance 

was varied as the single tuning parameter of the system and the best displacement estimates were 

generated by the noise covariance parameters 𝑄𝑄𝑥𝑥 = 2.8657 and 𝐑𝐑 = 106 × 𝐈𝐈 (Displacement 

Error = 0.008274 m). The process noise and measurement noise covariance combinations 

generated similar state estimates because the two ratios of process noise to measurement noise 

were similar. The ratio-dependence of the Kalman-type filters, instead of each noise covariance 

parameter influencing the filter independently, was also observed by previous researchers (Auger 

et al. 2013; Bittanti and Savaresi 2000). 

Although the two Kalman filter implementations can be effective for the modified 

random excitation used in the simulated case study, a single Kalman filter was not able to capture 

the initial displacement response in the case of an impulse loading. An impulse time history with 

a single nonzero value of 1000 at 𝑡𝑡 = 1 𝑠𝑠𝑠𝑠𝑠𝑠 was applied to node 4 of the same 8-DOF model with 

2% damping described in Chapter 3. The system response was estimated using both the single 

and dual Kalman filter estimators. From the possible range of estimates, the best displacement 

estimates were generated with the same noise covariances as for the random excitation case and 

are shown in Figure 21. The dual Kalman filter was able to react faster than the single Kalman 

filter to the acceleration measurements while remaining smooth. This behavior was observed in 

the single Kalman filter estimates because the impulse loading violated the assumption of a 

Gaussian white noise excitation. However, the single Kalman filter displacement estimates were 

nearly identical to the dual Kalman filter estimates and the true displacement response starting 

about 1.1 seconds (110 measurements) after the impulse. The speed with which the single 

Kalman filter approaches the dual Kalman filter is dependent on the selection of 𝑄𝑄𝑥𝑥 and 𝐑𝐑. As 

more trust was placed in the measurements, the initial spike in the single Kalman estimator 

increased in magnitude but corrected to the true value quicker.  
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5.2 Experimental test 

To verify the proposed dual Kalman filter estimation technique on a physical structure, a 

small-scale laboratory test was conducted in the Theodore V. Galambos Structural Engineering 

Laboratory at the University of Minnesota that compared displacements estimated using the 

Kalman filtering technique to displacements measured using linear variable differential 

transformers (LVDTs). The laboratory test was performed on a single-story, single-bay steel 

frame with bolted connections. Figure 22 shows the experimental set up. An HSS 6x6x3/8 test 

beam was suspended between two W12x120 columns, and an isolated wooden frame was built 

beside the test frame as a reference platform for the LVDTs. For the experimentation discussed 

here, the actuator connected to the test beam in Figure 22 was disconnected; instead, excitation 

was supplied using a padded sledge hammer.  

The test beam was subjected to an impact force, and the subsequent acceleration and 

displacement response was measured at eight locations along the beam. LVDTs measured 

displacements at the locations of the accelerometers. Figure 23 shows a schematic drawing of the 

experimental setup and sensor locations. Figure 24 shows the accelerometer and LVDT 

attachment. At each sensing location, a PCB Piezotronics model 352C33 piezoelectric shear 

accelerometer (100 mV/g) and a ±0.5” Schaevitz LVDT were fastened to an aluminum angle that 

was glued to the test beam. Data was collected using an NI cDAQ-9178 and was sampled at 1600 

Hz. The signals were passed through an elliptic low-pass filter with a 400 Hz cutoff frequency.  

Displacements were estimated at the locations of the accelerometers using single and dual 

Kalman filter estimation techniques, and the estimated displacements were compared to the 

measured displacements. The system model was constructed using modal parameters determined 

from the output-only system identification technique ERA/DC (Juang et al. 1988). The identified 

modal parameters for the steel beam are listed in Table 5. The measurement noise covariance 

matrix 𝐑𝐑 was assumed to be the identity matrix of appropriate dimension for both the single and 

dual Kalman filters. Similar to previous filter constructions, the coefficients on the process noise 

covariance matrix (for the single and dual Kalman filter) and input noise covariance matrix (dual 

Kalman filter only) were treated as the tuning parameters of the two systems. The best tuning 

parameters were selected as those which produced displacement estimates most closely matching 

the measured displacements using the displacement error metric introduced in Section 3. 

The displacement estimation results at location 4 (nearest midspan) are shown in Figure 

25 for the single and dual Kalman filter approaches and compared to the measured response. Like 
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the simulated example, the dual Kalman filter was able to match the true displacement response 

due to an impact load faster than the single Kalman approach. However, the dual Kalman filter 

displacement estimates spike immediately following the impact. The initial large peak is likely 

non-physical due to the response time of the system. The first oscillatory peak, which would be 

the largest, is captured by the dual Kalman filter and not the single Kalman filter. The initial 

magnitude discrepancy between the measured deflections and those estimated using the single 

Kalman filter are attributed to the incorrect, built-in assumption of random loading. As such, the 

single Kalman filter was not well suited to estimate sudden displacement changes due to a large 

change in loading.  
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Chapter 6: Conclusions  

 

This work explored a tuning procedure for the output-only implementation of the dual 

Kalman filter for displacement estimation via noisy acceleration measurements. The tuning 

process was an expanded L-curve approach for proper selection of two noise covariance 

parameters describing the unknown input and process noise of the system. Given that the actual 

displacement response of the structure was unavailable, selecting optimal tuning parameters 

based on a displacement error metric was impossible. Therefore, an acceleration-based metric 

was used to generate a range of possible tuning parameters, then engineering judgement was used 

to evaluate the true response of the structure.  

 The tuning procedure was demonstrated on a simulated system reflecting the vibrational 

response characteristics of the I-35W Saint Anthony Falls Bridge, a simulated blind case study 

system modeling a simply supported concrete beam with a flexible pier at midspan, and a 

laboratory experiment on a full-scale steel beam. Good dynamic displacement estimates were 

achieved for all cases using the dual Kalman filter. The approach indicated that model noise (e.g., 

due to poor system identification results) did not affect the tuning process as much as 

measurement noise. Additionally, the output-only formulation of the problem without structural 

mass information required that modal participation factor approximations be made, and thus 

caused the unknown input estimates to lose physical meaning. Despite these caveats, the input 

estimator significantly increased state estimation performance under various loading types as 

compared to a single Kalman filter.  
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Tables 

 

Table 1: Natural frequencies (Hz) for simulated 8-DOF clean and noisy model. 

Mode 1 2 3 4 5 6 7 8 
Clean 0.78 1.54 2.25 2.89 3.45 3.90 4.23 4.43 
Noisy 0.77 1.56 2.28 2.87 3.45 3.91 4.21 4.38 

 

Table 2: Best tuning parameters for simulated 8-DOF systems with various levels of damping. 

Damping Parameters giving best 
displacement estimates 

True Assumed 𝑄𝑄𝑥𝑥 𝑄𝑄𝑝𝑝 
0.5% 0.5% 10−17 10−6 
2% 2% 10−16 10−6 

10% 10% 10−16 10−6 
2% 5% 10−15 10−6 

 

Table 3: True modal properties of blind case study system. 

Mode Natural 
Frequency 

Damping 
Ratio Mode Shape 

[] [Hz] [] dof 1 dof 2 dof 3 dof 4 dof 5 dof 6 dof 7 dof 8 
1 3.06 0.02 0.35 0.65 0.88 1 1 0.88 0.65 0.35 
2 4.46 0.025 0.65 1 0.88 0.35 -0.35 -0.88 -1 -0.65 
3 9.89 0.03 1 1 0 -1 -1 0 1 1 
4 17.84 0.031 1 0.35 -0.88 -0.65 0.65 0.88 -0.35 -1 
5 27.90 0.04 1 -0.35 -0.88 0.65 0.65 -0.88 -0.35 1 
6 40.14 0.06 1 -1 0 1 -1 0 1 -1 

 

Table 4: Identified modal properties of blind case study system. Standard deviation of 
identification results in parenthesis. 

Identified 
Mode 

Natural 
Frequency 

Damping 
Ratio Mode Shape 

[] [Hz] [] dof 1 dof 2 dof 3 dof 4 dof 5 dof 6 dof 7 dof 8 

1 3.07 
(0.05) 

0.030 
(0.005) 

0.32 
(0.03) 

0.63 
(0.02) 

0.86 
(0.01) 

1.00 
(0.01) 

1.00 
(0.01) 

0.86 
(0.01) 

0.62 
(0.02) 

0.32 
(0.03) 

2 9.88 
(0.06) 

0.027 
(0.007) 

0.88 
(0.01) 

0.85 
(0.01) 

-0.08 
(0.01) 

-1.00 
(0.01) 

-1.00 
(0.01) 

-0.08 
(0.01) 

0.85 
(0.01) 

0.88 
(0.01) 

3 27.81 
(0.36) 

0.024 
(0.005) 

0.98 
(0.03) 

-0.35 
(0.04) 

-0.87 
(0.04) 

0.64 
(0.02) 

0.69 
(0.05) 

-0.86 
(0.02) 

-0.38 
(0.07) 

1.00 
(0.01) 
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Table 5: Identified modal properties of steel beam. 

Identified 
Mode 

Natural 
Frequency 

Damping 
Ratio Mode Shape 

[] [Hz] [] dof 1 dof 2 dof 3 dof 4 dof 5 dof 6 dof 7 dof 8 
1 24.5 0.002 0.43 0.66 0.93 1.00 0.92 0.38 0.99 0.99 
2 90.9 0.017 0.83 1.00 0.78 0.31 -0.55 -0.57 -0.14 -0.15 
3 173.8 0.007 0.99 0.86 0.06 -0.45 0.12 1.00 -0.35 -0.37 
4 282.3 0.013 0.90 0.04 -1.00 -0.58 0.58 -0.87 0.18 0.20 
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Figures 

 

 

 

 

 

 

 

Figure 1: Simulated 8 degree of freedom system. 
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Figure 2: Displacement estimate range at node 4 of 8-DOF system. Clean model, clean 
measurements, 2% damping.  

 

 

Figure 3: Power spectrum of 8-DOF system displacement estimates. Clean model, clean 
measurements, 2% damping.  
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Figure 4a: Acceleration estimation error surface for 8-DOF system. Clean model, clean 
measurements, 2% damping. 

 

Figure 4b: Displacement estimation error surface for 8-DOF system. Clean model, clean 
measurements, 2% damping. 
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Figure 5: Top-down view of acceleration error surface in Figure 4a. Flat regions (diagonal hatch) 
identify a region of tuning parameters that generate all possible displacement estimates (hexagon 

hatch). 

 

 

Figure 6: Mode shapes for 8-DOF clean and noisy model. 
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Figure 7: (Left) Acceleration and (right) displacement estimation error surface for 8-DOF system. 
Noisy model, clean measurements, 2% damping. 

 

 

Figure 8: (Left) Acceleration and (right) displacement estimation error surface for 8-DOF system. 
Clean model, clean measurements, 0.5% damping. 
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Figure 9: (Left) Acceleration and (right) displacement estimation error surface for 8-DOF system. 
Clean model, clean measurements, 10% damping. 

 

 

Figure 10: (Left) Acceleration and (right) displacement estimation error surface for 8-DOF 
system. Clean model, clean measurements generated from 2% damping model, assumed 5% 

damping for DKF implementation. 
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Figure 11: Displacement estimate of 8-DOF system at node 4. Truncated model, clean 
measurements, 2% damping.   

 

 

Figure 12: (Left) Acceleration and (right) displacement estimation error surface for 8-DOF 
system. Clean model, noisy measurements (SNR = 20), 2% damping. 
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Figure 13: Displacement estimate of 8-DOF system at node 4. Clean model, noisy measurements 
(SNR = 20), 2% damping.  

 

 

 

 

 

 

 

Figure 14: Blind case study system.   
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Figure 15: Acceleration estimation error surface for blind case study system. 

 

 

Figure 16: Displacement estimate range at node 3 for blind case study system. 
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Figure 17: Input estimates at node 3 for blind case study system. 

 

 

Figure 18: Comparison of displacement estimate from dual Kalman filter (DKF) for blind case 
study system at node 3. 
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Figure 19: Displacement estimates from dual Kalman filter (DKF) and single Kalman filter (KF) 
at node 4 for 8-DOF system under random excitation. Clean model, clean measurements, 2% 

damping.  

 

 

Figure 20a: Single Kalman filter acceleration estimation error for 8-DOF system under random 
excitation. Clean model, measurements. 2% damping. 
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Figure 20b: Single Kalman filter displacement estimation error for 8-DOF system under random 
excitation. Clean model, measurements. 2% damping. 

 

 

Figure 21: Displacement estimates from dual Kalman filter (DKF) and single Kalman filter (KF) 
at node 4 for 8-DOF system under impulse excitation. Clean model, clean measurements, 2% 

damping. 
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Figure 22: Laboratory set up of experimental steel test beam. 

 

 

 

 

 

 

 

Figure 23: Plan view schematic drawing of experimental setup and sensor locations. 
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Figure 24: Lab experiment beam-column connection with accelerometer and LVDT attachment. 

 

 

Figure 25: Displacement estimates from dual Kalman filter (DKF) and single Kalman filter (KF) 
at node 4 for steel beam under impulse excitation. 
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