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Abstract

Atomistic simulation is a powerful computational tool to investigate materials on

the microscopic scale and is widely employed to study a large variety of problems in

science and engineering. Empirical interatomic potentials have proven to be an indis-

pensable part of atomistic simulation due to their unrivaled computational efficiency in

describing the interactions between atoms, which produce the forces governing atomic

motion and deformation. Atomistic simulation with interatomic potentials, however,

has historically been viewed as a tool limited to provide only qualitative insight. A key

reason is that in such simulations there are many sources of uncertainty that are difficult

to quantify, thus failing to give confidence interval on the obtained results. This thesis

presents my research work on the development of interatomic potentials with the ability

to quantify the uncertainty in simulation results. The methods to train interatomic po-

tentials and quantify the uncertainty are demonstrated via two-dimensional materials

and heterostructures throughout this thesis, whose low-dimensional nature makes them

distinct from their three-dimensional counterparts in many aspects. Both physics-based

and machine learning interatomic potentials are developed for MoS2 and multilayer

graphene structures. The new potentials accurately model the interactions in these

systems, reproducing a number of structural, energetic, elastic, and thermal properties

obtained from first-principles calculations and experiments. For physics-based poten-

tials, a method based on Fisher information theory is used to analyze the parametric

sensitivity and the uncertainty in material properties obtained from phase average. We

show that the dropout technique can be applied to train neural network potentials and

demonstrate how to obtain the predictions and the associated uncertainties of material

properties practically and efficiently from such potentials. Putting all these ingredients

of my research work together, we create an open-source fitting framework to train inter-

atomic potentials and hope it can make the development and deployment of interatomic

potentials easier and less error prone for other researchers.
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3.5 Phonon dispersions of monolayer graphene along high-symmetry points

in the first Brillouin zone. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Thermal conductivity in the armchair direction as a function of the inte-

gration upper limit for a pristine graphene, graphene with one vacancy,

and graphene with two vacancies. . . . . . . . . . . . . . . . . . . . . . . 96

3.7 Normalized heat current autocorrelation as a function of time for a pris-

tine graphene, graphene with one vacancy, and graphene with two vacancies. 97

3.8 Close-proximity divacancy in adjacent layers of AB-stacked bilayer graphene

that favors the formation of covalent bonds between layers. . . . . . . . 98

3.9 Core structures of the V 1
2 (ββ) and V 2

2 (ββ) divacancies after relaxation. 99

3.10 Representation of the simulation supercell used to compute the friction

force in bilayer graphene. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.11 Shear stress τ of friction versus pulling distance ∆x for bilayer 2019

graphene with and without divacancies. . . . . . . . . . . . . . . . . . . 101

4.1 The diagonal elements of the inverse FIM in logarithmic space. . . . . . 115

4.2 The diagonal elements of the FIM. . . . . . . . . . . . . . . . . . . . . . 117

4.3 Schematic representation of a dropout NN potential to compute the

atomic energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 Uncertainty in atomic energy and forces on atom for the training set and

test set using DNNIP with various dropout ratios. . . . . . . . . . . . . 125

4.5 Predictive mean and uncertainty of the energy of a monolayer graphene

as a function of the number of DNNIP evaluations. . . . . . . . . . . . . 125

4.6 Representations of the carbon local atomic neighborhoods by UMAP. . 127

4.7 Histogram of the uncertainty in atomic energy for carbon allotropes. . . 128

ix



4.8 The potential part of the virial stress and the uncertainty in atomic energy

in monolayer graphene at various lattice parameters. . . . . . . . . . . . 131

4.9 Phonon dispersions in monolayer graphene obtained from the dropout

NN potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.10 Energy of a monolayer graphene versus the in-plane lattice parameter

obtained using the dropout NN potential and DFT. . . . . . . . . . . . 135

5.1 Data parallelization scheme used by KLIFF. . . . . . . . . . . . . . . . . 143

5.2 Flowchart of the procedures of using KLIFF to train an IP. . . . . . . . 145

x



Notations

δ(·) Dirac delta

δ·,· Kronecker delta

s∗ complex conjugate of a scalar s

M † complex conjugate transpose of a matrix M

MT transpose of a matrix M

Rn real space of n dimensions

V total interatomic potential energy of an atomic system

L(θ) loss function with parameters θ

x a column vector of an observation of the input

y a column vector of an observation of the output

X a matrix of N inputs in a data set, X = [xT
1 ;xT

2 ; · · · ;xT
N ]

Y a matrix of N outputs in a data set, Y = [yT
1 ;yT

2 ; · · · ;yT
N ]

D a data set comprised of N observations, D = (X,Y )

p(θ) probability distribution of θ

p(x |y) conditional probability distribution of x given y

xi



List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

4D four-dimensional

AIMD ab initio molecular dynamics

AIREBO adaptive intermolecular reactive empirical bond order

API application programming interface

BFGS Broyden–Fletcher–Goldfarb–Shanno minimization algorithm

BOA Born–Oppenheimer approximation

DFT density functional theory

DNNIP dropout neural network interatomic potential

DRIP dihedral-angle-corrected registry-dependent interlayer potential

EAM embedded atom method

FIM Fisher information matrix

GAP Gaussian approximation potential

GGA generalized gradient approximation

GP Gaussian process

IP interatomic potential

KC Kolmogorov–Cresp

KIM knowledgebase of interatomic models

KL Kullback–Leibler

KLIFF KIM-based learning-integrated fitting framework

KRR kernel ridge regression

xii



LAMMPS large-scale atomic/molecular massively parallel simulator

LCBOP long-range carbon bond order potential

LDA local density approximation

LJ Lennard–Jones

LM Levenberg–Marquardt

MC Monte Carlo

MCMC Markov chain Monte Carlo

MD molecular dynamics

MEAM modified embedded atom method

NN neural network

NNIP neural network interatomic potential

OpenKIM open knowledgebase of interatomic models

ReaxFF reactivate force field

REBO reactive empirical bond order

RMSE root-mean-square error

SGD stochastic gradient descent

SW Stillinger–Weber

TB tight-binding

TMCMC transitional Markov chain Monte Carlo

UQ+P uncertainty quantification and propagation

VASP Vienna ab initio simulation package

vdW van der Waals

xiii



Chapter 1

Introduction

A review of the history of human civilization makes it clear that major advancements in

how we live, work, travel, communicate, etc. are more than often driven by fundamental

development in materials and the relevant technological processes, manifested by the

naming of ages of civilizations—from the Stone Age through the Bronze and Iron Ages

to the Silicon Age (Information Age) [1–3]. It is believed now we may be on the edge

of another great materials revolution powered by nanotechnology, preluding the “Age

of Nano”1 [4,5]. Nanotechnology2 refers to the study, manipulation, and engineering of

materials with at least one dimension sized from 1 to 100 nanometers [6].

The study of nano materials requires a resolution on the atomistic level. Experi-

mentally, this is impossible until the advent of scanning tunneling microscope (STM) [7]

and atomic force microscope (AFM) [8], which enable us to see and control individual

atoms, respectively. Even with these tools, it can still be difficult and/or expensive to

conduct materials research in experimental settings [9,10]. As an alternative, atomistic

simulation (e.g. Monte Carlo (MC), molecular dynamics (MD), and lattice dynamics

methods) is a powerful computational tool to investigate materials problems on the

nano scale and is widely employed in academia and industry to study a large variety

1Considering the rise of artificial intelligence (AI) in the last decade, especially deep learning, and its
promising applications in many scientific, engineering, and technological areas, some may argue that the
next age should be named the “Age of AI” instead of the “Age of Nano”. Maybe, this can be answered
by an AI-enabled robot made of nano materials in the future.

2The ideas and concepts behind nanotechnology was first brought up by physicist Richard Feynman
at an American Physical Society meeting in 1959, long before the term nanotechnology was coined by
Norio Taniguchi at the University of Tokyo in his explorations of ultraprecision machining in 1974 [6].

1
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of problems, ranging from phase transitions [11], chemical reaction processes [12], to

protein foldings [13].

At the core of any atomistic simulation lies a description of the interactions between

atoms, which produces the forces governing atomic motion and deformation. First-

principles approaches that involve solving the Schrödinger equation are most accurate,

but due to hardware and algorithmic limitations, these approaches are typically limited

to studying small molecular systems and crystalline materials characterized by compact

unit cells with an upper limit on the number of atoms in the range of ∼ 103. This

difficulty can be overcome with the aid of empirical interatomic potentials (IPs) (also

known as force fields). IPs strive to capture the influence of the electrons on the nuclei in

an effective manner without explicitly simulating them, so they are computationally far

less expensive than first-principles methods and can therefore be used to compute static

and dynamic properties that are inaccessible to quantum calculations. Historically,

atomistic simulation with IPs is viewed as a tool limited to provide only qualitative

insight. A key reason is that in such simulations there are many sources of uncertainty

that are difficult to quantify, thus failing to give confidence interval on the result of a

simulation [14].

Since the discovery of graphene [15], two-dimensional (2D) materials and heterostruc-

tures have been shown to possess remarkable electronic, mechanical, thermal, and op-

tical properties that their three-dimensional (3D) bulk counterparts do not have. Such

unprecedented properties open the door to a host of innovative nanotechnology appli-

cations, such as semiconductors, ultrasensitive sensors, and medical devices to name a

few. To accelerate this revolution, highly accurate atomistic simulation techniques are

required to better understand the basic science of 2D materials and heterostructures,

systematically design new devices, and improve manufacturing processes.

The main goal of this thesis is to develop accurate IPs that have the ability to

quantify the uncertainty in atomistic simulations and then apply these IPs to study 2D

materials and heterostructures.
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1.1 Atomistic modelling

Quantum mechanics is a fundamental theory in physics which describes nature at the

smallest scales of energy levels of atoms and subatomic particles. In the quantum

mechanics treatment, both the nuclei (protons and neutrons) and the orbiting electrons

are directly modeled. The mass of an individual proton/neutron is roughly 1836 times of

that of an individual electron, and thus the nuclei can be modeled as classical Newtonian

particles, leaving the electrons to be considered as wave-like particles. The wave-like

behavior of a total number of Nel electrons can be represented using a wave function

χ(r1, . . . , rNel
, t), where rn (n = 1, 2, . . . Nel) is the spacial position of electron n and t

denotes time. The evolution of this wave function is governed by the time-dependent

Schrödinger equation [16](
u(r1, . . . , rNel

, t)− ~2

2mel

Nel∑
n=1

∇2
n

)
χ(r1, . . . , rNel

, t) = i~
∂

∂t
χ(r1, . . . , rNel

, t), (1.1)

where u(r1, . . . , rNel
, t) is an external potential energy filed the system of electrons is

subjected to, ∇2
n is the Laplacian operator applied to electron n, mel is the mass of an

electron, ~ is the Plank’s constant, and i is the imaginary unit.

As mentioned above, the mass of an individual proton/neutron is far greater than

that of an individual electron, so the magnitude of the acceleration of the nucleus due

to the Coulomb interaction is smaller than that of the electron. Consequently, we

can assume that as the nuclei move, the electrons find the appropriate ground state

configuration by responding instantaneously to the gradual evolution of the nuclei posi-

tions. This assumption is known as the Born–Oppenheimer approximation (BOA) [17].

When modeling materials, the primary origin of the external potential is the interaction

between the electrons and the nuclei in the solid. Therefore, a mathematical conse-

quence of the BOA assumption is that the external potential becomes time-independent,

u(r1, , . . . , rNel
). In this case, equation (1.1) can be solved by the method of separation

of variables, and we look for solutions of the wave function in the form

χ(r1, . . . , rNel
, t) = ψ(r1, . . . , rNel

)ϕ(t), (1.2)
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where ψ is a function of positions of electrons only and ϕ is a function of time only.

Inserting this into equation (1.1) and rearranging the terms, we get

i~
1

ϕ

dϕ

dt
= − ~2

2mel

1

ψ

Nel∑
n=1

∇2
nψ + u, (1.3)

of which the left-hand side only depends on time t whereas the right-hand side only

depends on the positions of elections. This is valid only when both sides of the equation

are equal to a constant; otherwise, for example, by varying t, the left side changes

without touching the right side, and the equality can not hold any longer. Let’s call

this constant ε. The time-dependent part can be easily solved as

ϕ(t) = exp(−iωt), (1.4)

where ω = ε/~, which is also the reason why ε is treated as energy. The positional part

of the wave function is known as the time-independent Schrödinger equation [16]:(
u(r1, . . . , rNel

)− ~2

2mel

Nel∑
n=1

∇2
n

)
ψ(r1, . . . , rNel

) = εψ(r1, . . . , rNel
). (1.5)

The objective then is to solve this time-independent Schrödinger equation for the

electronic wave function, ψ(r1, . . . , rNel
). From the wave function, we can, in principle,

know everything about the materials system, including the mechanism of the bond-

ing formation when atoms are brought together and the motion of atoms when forces

are applied to the system. We refer computational schema attempting to solve either

equation (1.1) or equation (1.5) as first-principles or ab inito methods.

Unfortunately, it turns out that equation (1.5) can only be solved exactly for the case

of a hydrogen atom with a single electron. To solve the hydrogen molecule (two protons

and two electrons) problem, we need to make a number of further assumptions, let along

materials made up of thousands of or even millions of atoms. To tackle this, a number

of approximate methods have been put forward, among which the density functional

theory (DFT) has become one of the most popular and versatile methods available in

computational chemistry, condensed-matter physics, and materials science. The central

idea of DFT is to recast the many-body problem involving multiple electrons to an
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equivalent, but greatly simplified, problem of solving for a single electron wave function

like the hydrogen atom problem, in which the electron density ρ(r) is the fundamental

quantity to be solved for. There are essentially three “steps” in solving equation (1.5)

using DFT [17]: (i) replace the many-electron wave function by an electron density

with an effective external potential; (ii) replace the multi-electron problem with an

equivalent single-electron system; and (iii) solve for the wave function for the greatly

simplified single-electron case.

DFT is actually an exact theory without any approximations being made, provided

the exchange-correlation term in the effective potential is known exactly. However, the

exchange-correlation term is an energy contribution difficult to compute, and typically

approximations have to be made to carry out the computation. The local density ap-

proximation (LDA), and generalized gradient approximation (GGA), as well as the hy-

brid of them are widely used functionals to approximate the exchange-correlation term.

Another approximation widely used in DFT is that instead of solving the Schrödinger

equation for all electrons, we solve for the electronic structure of the valence electrons

only. The argument behind this is that the core electrons are tightly bound to remain

close to the nucleus and thus do not participate in any significant way in the bonding

process. Of course, the effects of core electrons cannot be neglected completely. To this

end, we replace the Coulomb potential in the DFT formulation with an effective pseu-

dopotential, which, essentially, provides an overall description for all the core electrons,

but individual description for each valence electron. The use of pseudopotential greatly

reduces the degrees of freedom.

Although first-principles approaches such as DFT that involve solving the Schrödinger

equation are very accurate, due to hardware and algorithmic limitations, these ap-

proaches are typically limited to studying small molecular systems and crystalline ma-

terials characterized by compact unit cells with an upper limit on the number of atoms

in the range of ∼ 103. To proceed, we make further approximations. The tight-binding

(TB) method approximates the wave functions of a system by superposing the wave

functions for isolated atoms located at each atomic site. Many integrals in DFT are

parametrized into simple analytic forms. In spite of these simplifications, TB method

still requires computationally intensive matrix inversion.

To step further boldly, empirical interatomic potentials (IPs) (also known as force
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fields) treats atoms as classical particles without explicitly modeling the degrees of

freedom of electrons. The BOA allows the electrons to be replaced by an effective

potential [17], although the exact form of the effective potential is not known. So, the

central task in developing IPs is to design a function—taking the positions of atoms3 and

their species as the arguments—to accurately approximate the energy of the electrons.

Mathematically, we are seeking for IP function of the form

V = V(r1, . . . , rNa , Z1, . . . , ZNa ;θ), (1.6)

where r1, . . . , rNa and Z1, . . . , ZNa are the positions and atomic species of a system

of Na atoms, respectively, and θ is a set of fitting parameters associated with the IP

mathematical form. IPs are computationally far less costly than first-principles methods

and can therefore be used to compute static and dynamic properties that are inaccessible

to quantum calculations. IPs are the central topic of this thesis, and we will discuss

more about the laws of physics an IP has to obey and how to design IPs in chapters 2

and 3.

1.2 Two-dimensional materials and heterostructures

The methods to train interatomic potentials (IPs) and quantify their uncertainty devel-

oped in this thesis are general and can be applied to any materials system. The example

materials systems studied throughout this thesis are two-dimensional (2D) materials and

heterostructures, whose low-dimensional nature makes them distinct from their three-

dimensional (3D) counterparts in many aspects. In this section, we give a brief review

of 2D materials and heterostructures to provide some background information.

Graphene is a one-atom thick crystalline sheet consisting of carbon atoms arranged in

a hexagonal lattice (see figure 1.1). Each unit cell consists of two carbon atoms, and the

distance between neighboring atoms is 1.42 Å (i.e. the lattice parameter is a = 2.46 Å).

In graphene, one s orbital and two p orbitals of each atom hybridize to form three

equivalent sp2 orbitals, arranging themselves in a triangular planar configuration. The

remaining unhybridized p orbital arranges itself to be as far apart from the sp2 orbitals

3Hereafter, “atom” refers to a classical particle without distinguishing the protons, neutrons, and
electrons, unless otherwise stated.
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Figure 1.1: Crystal structure of graphene. (a) Top view of graphene. A unit cell (the
shaded region) consists of two atoms, with a lattice parameter of a = 2.46 Å. (b) sp2

hybridization in graphene.

as possible. As a result, it is positioned perpendicular to the plane where the sp2

orbitals reside, with one lobe above the plane and the other below the plane. The sp2-

hybridized orbitals of different atoms come head to head with each other, thus forming

strong covalent σ bonds; whereas the remaining unhybridized p orbitals make up the

weak π bonds, and side-by-side π bonds of different atoms hybridize together to form

the π bands. The π bands are half-filled that permit free-moving electrons, responsible

for most of graphene’s notable electronic properties [18].

Graphene, once presumed unstable and impossible to exist due to the formation of

curved structures [19], was successfully extracted from bulk graphite by a mechanical ex-

foliation approach in air using adhesive tape by Geim and Novoselov in 20044 [15]. Ever

since, other methods such as liquid-phase exfoliation [21], growth on SiC [22], growth

on metals by precipitation [23], chemical vapor deposition [24] etc. have also been ap-

plied to successfully obtain graphene. Graphene has attracted significant interest due

to its uncommon properties never seen in 3D bulk materials. It is a semiconductor with

zero electronic band gap and has unusual 2D Dirac-like electronic excitation [25]. The

Dirac electrons behave uncommonly in many ways, such as the confinement [26] and the

integer quantum Hall effect [27]. Graphene has an unexpected high opacity, absorbing

∼ 2.6% [28] of green light, and ∼ 2.3% of red light [29]. As a result, we can see graphene

with naked eyes, although it is only one-atom thick. This unusual opacity of graphene is

4Geim and Novoselov won the the Nobel Prize in Physics in 2010 “for groundbreaking experiments
regarding the two-dimensional material graphene” [20].
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Figure 1.2: A two-dimensional heterostructures created by stacking graphene, hBN, and
MoS2 layer by layer.

defined solely by the fine structure constant, a fundamental physical constant indepen-

dent of any material parameter [29, 30]. Graphene has superior thermal conductivity

and high melting point. The thermal conductivity of suspended single layer graphene

has been experimentally measured as 1500–2500 W m−1 K−1 [31–35]. The large spread

can be attributed to measurement uncertainties as well as the variations in the quality

of the graphene being measured. The melting point of graphene is around 4125 K [36].

As a comparison, copper has a thermal conductivity of ∼ 401 W m−1 K−1 [37], and the

sun’s surface have an effective temperature of 5777 K [36]. Mechanically, as the strongest

material ever tested, graphene has a tensile strength of 130.5 GPa and a Young’s mod-

ulus of 1 TPa [38]. Again, as a comparison, the A36 steel (a common structural steel)

has a tensile strength of 400–550 MPa and a Young’s modulus of 200 GPa [39].

Besides graphene, more than a dozen of different 2D crystals are found to be sta-

ble under ambient conditions. They can be broadly classified into three categories [40]:

(i) graphene family, including graphene, hexagonal boron nitride (hBN), BCN, fluoro-

graphene, and graphene oxide; (ii) transition metal dichalcogenide of the type MX2

with M a transitional metal atom (Mo, W, etc.) and X a chalcogen atom (S, Se, etc.);

(iii) 2D oxides such as micas and bismuth strontium calcium copper oxide (BSCCO).

A high-throughput screening exploration of the Materials Project [41] together with

density functional theory (DFT) calculations have predicted about 680 monolayers to

be stable [42], although many remain to be synthesized and experimentally confirmed.

Like graphene, these 2D materials (are expected to) also have unusual properties.

Completely new tunable materials can be created by stacking 2D materials layer by
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layer to form 2D heterostructures (see figure 1.2 for an example). These materials have

even more unusual and novel properties that their monolayer and 3D counterparts do

not possess [40, 43]. For example, the electronic band gap of a graphene bilayer can

be tuned by applying a variable external electric field, which allows great flexibility

in the design and optimization of semiconductor devices such as p-n junctions and

transistors [44]. A different manifestation of interesting behavior not found in the bulk is

the superconductivity in intentionally misaligned (by a relative twist of ∼ 1.1◦) graphene

bilayers [45].

With these extraordinary properties, 2D materials and heterostructures are expected

to be utilized in many applications such as semiconductors [46–48], light processing

[49, 50], energy generation and storage [51–55], ultrasensitive sensors [56–59], medicine

[60–64] and so forth. Although researches on fundamental properties of 2D materials

and heterostructures and the attempt to apply them in a larger number of areas are

intense, they are still in their infancy and are likely to remain one of the leading topics

in condensed matter physics and materials science for many years [40].

1.3 Structure of thesis

The first part of this thesis will be concerned with the design and parameterization

of both physics-based and machine learning interatomic potentials (IPs). Chapter 2 is

mainly based on published work for physics-based IPs presented in [65–68]. However,

this chapter will also provide an exposition of the symmetry requirements an IP (both

physics-based and machine learning IPs) has to satisfy and the least-squares method to

estimate the parameters in an IP. After introducing the general principles, two physics-

based IPs are presented: a Stillinger–Weber (SW) potential for monolayer MoS2 and

a registry-dependent potential for the interlayer interactions in multilayer graphene.

Chapter 3 is devoted to machine learning IPs. We first review the descriptors to repre-

sent atomic environments and some widely-used machine learning regression algorithms

that have been applied to build IPs based on the descriptors. Then a neural network

interatomic potential (NNIP) developed to model both the interlayer and intralayer

interactions in multilayer graphene structures is introduced.

The second part (chapter 4) focuses on evaluating the quality of IPs. A review of
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the approaches to quantify the uncertainty in IPs themselves and properties obtained

using atomistic simulations with IPs is first provided. Then we discuss the use of Fisher

information matrix (FIM) to measure the parametric sensitivity and the prediction

uncertainty for the SW potential, as well as the application of dropout techniques to

carry out uncertainty quantification and propagation (UQ+P) for an NNIP.

Finally, the KIM-based learning-integrated fitting framework (KLIFF) [69]—an open-

source Python package for training both physics-based and machine learning IPs—is in-

troduced in chapter 5. Its capabilities and implementation details are discussed briefly in

this chapter, considering that the user manual [69] provides extensive information about

this package. The thesis is concluded with a discussion of future work in chapter 6.

All the IPs developed in this thesis are implemented as KIM models archived

in the open knowledgebase of interatomic models (OpenKIM) repository [70]. They

can be used with major molecular simulation codes that conform to the knowledge-

base of interatomic models (KIM) application programming interface (API), including

LAMMPS [71], ASE [72], GULP [73], and DL POLY [74] among others.



Chapter 2

Physics-based Potentials

The history of interatomic potentials (IPs) dates back to the 1920s, when Lennard–Jones

(LJ) developed a pair potential for noble gases [75–77], φ(r) = 4ε
[
(σ/r)12 − (σ/r)6

]
.

The r−6 term in the LJ potential was proposed to model the van der Waals (vdW) forces

based on theoretical derivations using two identical linear harmonic oscillators [78],

whereas the r−12 term has no physical justification, chosen to model the Pauli repulsion

at short ranges due to overlapping electron orbitals. Since then, a large number of IPs

have been proposed, including

1. cluster potentials such as the three-body Stillinger–Weber (SW) potential [79] and

four-body generalized pseudopotential theory [80];

2. pair functionals such as the embedded atom method (EAM) [81];

3. bond-order potentials such as the Tersoff [82], reactive empirical bond order (REBO)

[83], long-range carbon bond order potential (LCBOP) [84], and reactivate force

field (ReaxFF) [85] potentials.

Although these IPs become more and more complicated in terms of their mathe-

matical form and the number of parameters, they can still be classified into the same

category: physics-based IPs. A defining characteristic of such IPs is that their math-

ematical forms are devised to capture the underlying physics in the materials systems

that they try to model. The physics-based IPs aim to subsume the complex chemistry

of the Schrödinger equation into an effective form; therefore, they generally guarantee

11
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better transferability (i.e. the ability to make predictions outside the properties an IP

is trained to reproduce) compared with machine learning IPs that will be discussed in

chapter 3.

In this chapter, we first discuss some of the requirements that IPs (both physics-

based and machine learning) must satisfy and how to train IPs in section 2.1, and then

present two physics-based IPs for two-dimensional (2D) materials and heterostructures:

a SW potential for monolayer MoS2 in section 2.2 and a registry-dependent potential

for the interlayer interactions in graphene in section 2.3.

2.1 Background

A parametric interatomic potential (IP) takes the form

V = V(r1, . . . , rNa , Z1, . . . , ZNa ;θ), (2.1)

where r1, . . . , rNa and Z1, . . . , ZNa are the coordinates and atomic species of a system

of Na atoms, respectively, and θ denotes a set of fitting parameters. The IP energy

defined above mush satisfy certain invariant requirements based on the nature of the

laws of physics:

1. The principle of material frame-indifference states that the energy V of a system

(and all quantities derived from it) must be invariant with respect to rigid-body

translation and rotation [17]. Mathematically, we require

V(Qr1 + c, . . . ,QrNa + c, Z1, . . . , ZNa ;θ) = V(r1, . . . , rNa , Z1, . . . , ZNa ;θ), (2.2)

for all rotations Q ∈ SO(3) (proper orthogonal tensors) and vectors c ∈ R3.

2. An IP should be invariant with respect to inversion, i.e.

V(r1, . . . , rNa , Z1, . . . , ZNa ;θ) = V(−r1, . . . ,−rNa , Z1, . . . , ZNa ;θ). (2.3)

The above two invariance requirements imply that V can only be a function of the
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distances between atoms [17], i.e.

V = V(r12, r13, . . . , r1,Na , r23, . . . , rNa−1,Na , Z1, . . . , ZNa ;θ), (2.4)

where rij is the Cartesian distance between atoms i and j.

3. An IP should be invariant with respect to permutation of the coordinates of atoms

with the same species, i.e.

V(r1, . . . , rNa , Z1, . . . , ZNa ;θ) = V(π[r1, . . . , rNa ], Z1, . . . , ZNa ;θ), (2.5)

where π[·] denotes an arbitrary permutation honoring the atomic species require-

ment.

For notational simplicity, we assume that the atomic species information is implicitly

carried by the coordinates, and thus we exclude Z from the mathematical form to write

equation (2.1) as

V = V(r1, . . . , rNa ;θ). (2.6)

2.1.1 Mathematical form of potentials

The total potential energy of a system of Na atoms can be decomposed to the contri-

butions of individual atoms, taking the form

V =

Na∑
i=1

Ei, (2.7)

where Ei is the energy of atom i. While some IPs may be constructed from different

concepts, nevertheless they can be expressed in this form by rewriting its mathematical

form. For example, the total energy of the Lennard–Jones (LJ) potential [75–77] is

constructed as the sum of the energy of individual bonds,

V =
1

2

Na∑
i=1

Na∑
j=1
j 6=i

φ(rij), (2.8)
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where the 1
2 is used to avoid double counting. We can simply rearrange it to get

V =

Na∑
i=1

1

2

Na∑
j=1
j 6=i

φ(rij)

 =

Na∑
i=1

Ei, (2.9)

where Ei := 1
2

∑Na
j=1,j 6=i φ(rij) can be regarded as the energy of atom i. However, the

decomposition of the total energy into contributions of individual atoms is not unique,

which is extremely true for many-body IPs. The decomposition could have an effect

on some properties obtained from atomic simulations such as the thermal conductivity

calculated using certain formulation of the heat current [86].

The art of designing a physics-based IP lies in finding the “correct” functions to

express the potential energy of individual atoms or atom groups based on the developer’s

physical intuition and sometimes a bit of luck. The mathematical forms of most IPs are

constructed by composing elementary functions such as polynomials, exponentials, and

trigonometric functions among others.

In practice, the fitted mathematical forms of some IPs are often stored in a dis-

cretized tabulated format as a list of data points, and intermediate values are obtained

by interpolation. For example, a pair potential function φ(r) would be stored as a set

of values: (r1, φ1), (r2, φ2), . . . , (rn, φn), where φi = φ(ri) and n is the number of data

points. In some cases, an analytic form for the function does not exist and the fitting

procedure directly generates the IP in its discretized form with a small number (typically

10–30) of φi values used as the fitting parameters. Interpolation of tabulated data using

polynomials or splines is computationally more efficient than calculating the total energy

and forces directly from the analytic mathematical forms, especially when the analytic

mathematical forms are complicated. Many popular IPs are routinely tabulated, in-

cluding the embedded atom method (EAM) [81,87,88], Finnis-Sinclair (FS) model [89],

effective medium theory (EMT) [90], modified embedded atom method (MEAM) [91],

and angular-dependent potential (ADP) [92,93] among others.

Users of tabulated IPs typically consider the data file containing the discretized

mathematical forms as the IP without considering the nature of the interpolation. The

reasoning behind this is that if enough data points are used, the type of interpolation
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will not affect the results. This argument is largely correct for Monte Carlo (MC) and

molecular dynamics (MD) simulations, which, for finite temperatures, sample many of

the interpolated data points and obtain a “smeared” result that is effectively indepen-

dent of the interpolation type. However, the nature of the interpolation can strongly

affect methodologies that use higher-order derivatives of the IP without sampling, such

as lattice dynamics calculations. An example where a calculation can “go wrong” due

to interpolation effects is the application of the vibrational self-consistent field (VSCF)

method [94] to the second-generation reactive empirical bond order (REBO) poten-

tial [83]. VSCF requires derivatives of an IP up to fourth order, but REBO incorporates

a cubic spline with knots (data points) at graphene and diamond geometries. This leads

to discontinuities in the (numerically-computed) third- and fourth-order derivatives at

the spline knots and, hence, to a breakdown of the VSCF approach [65].

We have systematically studied the effect of tabulation and interpolation on the

predictions of IPs [65]. The simplest possible case of a one-dimensional (1D) chain of

copper atoms interacting via a nearest-neighbor modified Morse potential [95] has been

employed to compute quasi-harmonic predictions for the thermal expansion and finite-

temperature elastic constants as well as MD predictions for these properties. Although

simple, this example includes all of the features that are expected to play out in three-

dimensional (3D) lattice dynamics calculations. We study five types of splines: natural

cubic, cubic Hermite, clamped quartic, clamped quintic, and quintic Hermite. As a

cautionary tale, we also include a sixth, “näıve quartic” spline generated using an algo-

rithm that appears reasonable but leads to significant errors. The predictions obtained

from the spline computations are compared to the same computations performed with

the analytic IP. The results show a strong effect of the interpolation on the computed

properties. Strictly speaking, only the clamped quintic spline is able to reproduce all

results obtained from the analytic IP. If the number of data points is on the order of

500, the quintic Hermite spline may also do a good job of reproducing the results.

The observed strong interpolation effects suggest that for tabulated IPs, the interpo-

lation method should be definitely considered as part of the definition; otherwise, large

errors may occur in atomistic simulations due to the use of such IPs.
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2.1.2 Parameterization

Once we manage to devise an appropriate mathematical form of an IP, there still remain

the parameters in the mathematical form to be determined. The parameterization

process is typically formulated as a least-squares minimization problem, where we adjust

the IP parameters so as to reproduce a training set of reference data obtained from

experiments and/or first-principles calculations.

Least squares and maximum likelihood

Before discussing the parameterization of IPs, let’s first briefly review the least squares

method and the maximum likelihood method for parameter estimation and the relation-

ship between them.

For a parametric model h(x;θ), where θ denotes the parameters in the model, given

a set of observations of the input x1, . . . ,xN and the corresponding output y1, . . . ,yN ,

we hope to find out what parameters θ that are most likely to generate the outputs

from the inputs. The least squares method aims to solve this problem by minimizing a

quadratic loss function,

L(θ) =
1

2

N∑
i=1

(yi − hi)TΣ−1(yi − hi), (2.10)

weighted by the inverse of an positive definite matrix Σ, with respect to the parameters

θ. The minimization problem can be solved using optimization algorithms such as the

first-order gradient descent method or the second-order Newton’s method.

From a probabilistic perspective, we can assume an observed output is given by the

model prediction h(x;θ) with an additive noise ε, i.e.

y = h(x;θ) + ε. (2.11)

If the noise ε follows a Gaussian distribution1 with zero mean and a covariance matrix

Σ, i.e. p(ε) = N (ε|0,Σ), equation (2.11) can be written as a probabilistic model by

1Gaussian distribution is typically the choice if we have no extra information of the noise.
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which an input x generates an output y given the parameters θ,

p(y|x,θ) = N (y |h(x;θ),Σ)

=
1√

(2π)M |Σ|
exp

[
−1

2
(y − h)TΣ−1(y − h)

]
,

(2.12)

where M is the dimension of y and |Σ| denotes the determinate of Σ. This is the

likelihood distribution for a single data point. For a data set of N observations, D =

(X,Y ) with inputs X = [xT
1 ; . . . ;xT

N ] and outputs Y = [yT
1 ; . . . ;yT

N ], the likelihood is

p(Y |X,θ) =
N∏
i=1

p(yi |xi,θ)

=
[
(2π)M |Σ|

]−N
2 exp

[
−1

2

N∑
i=1

(yi − hi)TΣ−1(yi − hi)
]
,

(2.13)

assuming the data points are independently and identically distributed (i.i.d.), i.e. the

data points are drawn independently from the distribution in equation (2.12). An

estimation of the parameters θ can be then obtained by maximizing the likelihood

distribution for the data set, and the parameters obtained in this manner are called

the maximum likelihood estimator. The covariance Σ is not dependent on θ; therefore,

maximizing equation (2.13) is equivalent to maximizing the argument of the exponential,

which is further equivalent to minimizing equation (2.10).

We see that the parameters obtained from the least squares method and these from

the maximum likelihood method shall be exactly the same. The least squares method

implicitly assumes that the noise ε is an independently and identically distributed (i.i.d.)

variable with zero mean and covariance Σ, leading to the minimization of the sum of the

weighted squares. This is equivalent to maximizing the likelihood function for the data

set under the Gaussian assumption, and therefore the least squares method is clearly a

“disguised” maximum likelihood technique [96,97].

The force-matching method

Traditionally, IPs are fitted to reproduce a set of material properties considered impor-

tant for a given application such as the cohesive energy, equilibrium lattice constant,
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and elastic constants of a given crystal phase. However, experience has shown that

the transferability (i.e. the ability to accurately predict behaviors that they were not

fitted to reproduce) of such IPs can be limited due to the small number of atomic con-

figurations sampled in the training set (although recent work [98] has shown that this

approach can be effective in some cases). Further, as the complexity of IPs increases

(both in terms of the mathematical forms and the number of parameters), it can be

difficult to obtain a sufficient number of material properties for the training set. This

is particularly true for multispecies systems like intermetallic alloys.

To address these difficulties, Ercolessi and Adams [99] proposed the force-matching

method, in which a training set containing material properties is augmented with the

forces on atoms obtained by first-principles calculations for a set of atomic configu-

rations. These can be configurations associated with important structures or simply

random snapshots of the crystal as the atoms oscillate at finite temperature. By fitting

to this information, the transferability of the potential is likely enhanced since it is ex-

posed to a larger cross-section of configuration space. The issue of insufficient training

data is also resolved since as many configurations as needed can be easily generated.

This makes it possible to increase the number of parameters, and in fact in the original

Ercolessi–Adams potential for aluminum [99] the mathematical forms were taken to be

cubic splines with the spline knots serving as parameters. This gives maximum freedom

to the fitting process.

The IPs presented in this thesis are all parameterized using the force-matching

approach against a training set of first-principles total-energy calculations based on

density functional theory (DFT). Besides forces, we usually include potential energy in

the training set. For a training set of N configurations, equation (2.10) can be explicitly

written as

L(θ) =
1

2

N∑
i=1

we
i

[
E(ri;θ)− Êi

]2
+

1

2

N∑
i=1

wf
i‖f(ri;θ)− f̂i‖2, (2.14)

where E(ri;θ) and f(ri;θ) = − (∂V/∂r)|ri are the energy and forces in configuration

i computed from an IP,2 Êi and f̂i are the corresponding reference energy and forces

2Here, we abuse the notation for simplicity. Instead of denoting the coordinates of an atom, ri
indicates the concatenated coordinates of all the atoms in configuration i such that ri ∈ R3Na,i , where
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for configuration i in the training set, and we
i and wf

i are the weights associated with

the energy and forces of configuration i. The weights we
i and wf

i are typically inversely

proportional to (Na,i)
2 in which Na,i is the number of atoms in configuration i, so as to

make each configuration contributes more or less equally to the loss function (i.e. avoid

configurations with more atoms dominating the loss function). For energy in units

of eV and forces in units of eV/Å, these weights have units of eV−2 and (eV/Å)−2,

respectively.

To obtain the optimal parameter set θ of an IP that reproduces a training set

as much as possible, global and/or local minimization algorithms are used to reduce

the loss function in equation (2.14). For example, the potfit program uses simulated

annealing for global minimization followed by a local polish using a conjugate gradient

method [100, 101]. A difficulty associated with this procedure is that IPs are nonlinear

functions that are often “sloppy” in the sense that their predictions are insensitive to

certain combinations of the parameters [102]. These soft modes in parameter space can

cause the minimization algorithms to fail to converge. Recently, an understanding of

sloppy models based on ideas from differential geometry has led to efficient methods

for fitting such models [103]. The basic idea is that the parameters of a model (like

an IP) define a manifold in the space of data predictions. Fitting the model then

corresponds to finding the point on the manifold closest to the training set. Using these

ideas, Transtrum et al. [103,104] augmented the Levenberg–Marquardt (LM) algorithm

[105, 106] with a geodesic acceleration adjustment to improve convergence. The new

geodesic LM algorithm [103,104] is likely to be more efficient and more likely to converge

for sloppy model systems than conventional approaches.

Geodesic LM algorithm has been used for a variety of applications in physics and

biology, not to the IP fitting problem until we applied it to fit the environment-dependent

interatomic potential (EDIP) for silicon [107]. We find that it is on average twice as

likely to converge to the correct solution from different initial guesses than standard

LM [105, 106] or Powell’s [108] algorithms that tended to get trapped along sloppy

directions [66]. However, the improved performance comes at the cost of about an order

of magnitude increase in computational expense for geodesic LM. For the fitting of

physics-based IPs, the computations are not prohibitive and geodesic LM should be the

Na,i is the number of atoms in configuration i. The same notation applies to the force fi.
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preferred method. So we choose the geodesic LM method to carry out the minimization

for the two IPs for two-dimensional (2D) materials that are discussed in sections 2.2

and 2.3.

2.2 A Stillinger–Weber potential for MoS2

To date, several interatomic potentials (IPs) for MoS2 have been proposed. The earliest

published in 1975 is a valence force field (VFF) model by Wakabayashi et al. [109], in

which the potential energy was decomposed into harmonic components. The interlayer

interaction was assumed to be due to an axially symmetric force between sulfur atoms

of neighboring layers, and the intralayer interaction was assumed to be associated with

the stretching and bending of Mo–S bonds. The IP parameters were optimized to

reproduce the phonon spectrum obtained from inelastic neutron scattering. Liang et

al. [110] developed a reactive empirical bond order (REBO)-type IP for the Mo–S system

using the master formula underlying the Abell [111] Tersoff [82,112,113] and REBO [114]

potentials with an additional Lennard–Jones (LJ) [75,76] potential to describe the weak

interlayer van der Waals (vdW) interactions. This IP was fit to a training set of the

energy, bond length, and bond stiffness of Mo–Mo, Mo–S, S–S systems with the main

objective to reproduce structural and elastic properties of MoS2. Jiang et al. [115, 116]

developed two Stillinger–Weber (SW) [79] potentials for monolayer MoS2. The first [115]

considered all available two-body and three-body interactions in monolayer MoS2 and

was fit to the same phonon spectrum used in the VFF model [109]. In the second

parameterization [116], Mo–Mo and S–S two-body interactions were neglected, and the

potential was fit to bond lengths and bond angles from experiments and first-principles

calculations, and to energies predicted by the VFF model [109]. A reactivate force field

(ReaxFF) potential was developed by Ostadhossein et al. [117] to study energetics and

reaction mechanisms in single- and multi-layer MoS2. It was fit to a training set of

energies, geometries, and charges derived from first-principles density functional theory

(DFT) calculations for both clusters and periodic systems.

Recent developments in sensitivity analysis of stochastic systems based on relative

entropy measures and Fisher information matrix (FIM) [118–120] have led to a deeper

understanding of the force-matching methodology discussed in section 2.1.2. It is now
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recognized that force matching is equivalent to relative entropy minimization provided

that the training set of forces is obtained from a trajectory that samples the appropriate

distribution function [121]. This improves the transferability of the potential since it can

be shown that minimizing relative entropy also bounds the uncertainty in predictions

of other observables [122]. The statistical mechanics approach to force matching was

originally studied for equilibrium conditions [123, 124] and later extended to nonequi-

librium steady states [122]. This generalization allows for treatment of driven systems

subject to external conditions, such as thermal gradients and deformations.

In this section, we apply an information-theoretic based force-matching approach

to retrain the SW potential of Jiang et al. [115, 116]. We find that this significantly

improves the accuracy of the potential for a variety of properties. In addition, the

information theory analysis yields (1) the uncertainty in the fitting parameters (i.e. the

confidence with which the parameters are determined from a given training set); and

(2) the sensitivity of the potential’s predictions on its parameters (i.e. how variations in

the parameters affect the results) [125,126]. Here we only discuss the parameterization

and testing of the SW potential for MoS2, and a detailed sensitivity and uncertainty

analysis of this model is discussed in section 4.2.

2.2.1 Definition of Stillinger–Weber model

The SW potential was originally introduced to model bulk silicon [79]. The innovation

in this model was the inclusion of a three-body term to penalize configurations away

from the tetrahedral ground state structure of Si. The model was later extended to other

tetrahedral material systems including Ge [127], III–V compound semiconductors [128]

and compounds of the major II–VI elements Zn, Cd, Hg, S, Se, and Te [129]. It has also

been adapted for monolayer MoS2 and monolayer black phosphorus that do not have a

tetrahedral structure [115,116].

The total SW potential energy V of a system consisting of Na atoms is

V =

Na∑
i=1

Na∑
j>i

φ2(rij) +

Na∑
i=1

Na∑
j 6=i

Na∑
k>j
k 6=i

φ3(rij , rik, βjik), (2.15)
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where the two-body interaction takes the form

φ2(rij) = εIJ ÂIJ

[
BIJ

(
rij
σIJ

)−pIJ
−
(
rij
σIJ

)−qIJ]
× exp

(
1

rij/σIJ − aIJ

)
, (2.16)

and the three-body term is

φ3(rij , rik, βjik) = εJIK λ̂JIK
[
cosβjik − cosβ0

jik

]2×exp

(
γ̂IJ

rij/σIJ − aIJ
+

γ̂IK
rik/σIK − aIK

)
,

(2.17)

in which rij = ‖ri−rj‖ is the bond length between atoms i and j with ri the coordinates

of atom i, βjik is the bond angle formed by bonds i–j and i–k with the vertex at atom

i and β0
jik is the corresponding predetermined reference angle. The IP parameters

are ε, Â, B, p, q, σ, a, λ̂, γ̂. Both the two-body and three-body terms are designed to be

identically zero at the cutoff radius rcut = aσ. The parameters depend on the species of

the interacting atoms, which are indicated by uppercase subscripts. For example, εIJ is

the parameter ε for the pairwise interaction between atom i of species I and atom j of

species J .

Equations (2.16) and (2.17) can be recast in a form in which all parameters are

independent and the dependence on the cutoff radius is made explicit. We define AIJ =

εIJ ÂIJ , λJIK = εJIK λ̂JIK , γIJ = σIJ γ̂IJ , and rcut
IJ = aIJσIJ , then

φ2(rij) = AIJ

[
BIJ

(
rij
σIJ

)−pIJ
−
(
rij
σIJ

)−qIJ]
× exp

(
σIJ

rij − rcut
IJ

)
, (2.18)

and

φ3(rij , rik, βjik) = λJIK
[
cosβjik − cosβ0

jik

]2 × exp

(
γIJ

rij − rcut
IJ

+
γIK

rik − rcut
IK

)
. (2.19)

The new parameters are A,B, p, q, σ, λ, γ along with the cutoff radii and equilibrium

angles. Note that when r > rcut, both φ2 and φ3 vanish. For MoS2 we add an additional

cutoff rcut*
JK for bond j–k in φ3, i.e. φ3 vanishes as well when rjk > rcut*

JK . This will be

explained in section 2.2.1.

Based on the work of Jiang et al. [115,116], two-body bond stretching (or compres-

sion) is considered for three types of interaction, i.e. IJ ∈ {Mo–Mo, Mo–S, S–S} in
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Figure 2.1: Crystal structure of monolayer MoS2. (a) Top view, where the green shaded
region depicts a unit cell. (b) Side view of the shaded unit cell in (a). Each Mo atom is
surrounded by six first-nearest-neighbor S atoms and each S atom is connected to three
first-nearest-neighbor Mo atoms. Images rendered with AtomEye [130].

equation (2.18). For three-body bond bending, only interactions of type S-Mo-S (Mo

is the species of the vertex atom) and Mo-S-Mo (S is the species of the vertex atom)

are considered, i.e. in equation (2.19) JIK ∈ {S–Mo–S, Mo–S–Mo}. Consequently,

there are only two λ parameters (λS–Mo–S and λMo–S–Mo) and a single γ parameter

(γ = γMo–S = γS–Mo). We will denote the set of all parameters as θ in the following

discussion.

Cutoffs and bond angles

The crystal structure of monolayer MoS2 is shown in figure 2.1. It consists of a

monatomic Mo plane sandwiched between two monatomic S planes. Mo and S atoms

occupy alternating corners of a hexagon to form a honeycomb structure. A unit cell,

the green shaded region in figure 2.1a, consists of one Mo atom and two S atoms. The

in-plane zero-temperature equilibrium lattice constant of the relaxed structure obtained

using the DFT code SIESTA [131] is a0 = 3.20 Å, and the vertical separation between

S layers is b0 = 3.19 Å. Each Mo atom is surrounded by six first-nearest-neighbor S

atoms and each S atom is connected to three first-nearest-neighbor Mo atoms.

The cutoff rcut
IJ is set to the second-nearest neighbor distance of the corresponding

IJ species. As an example, consider the calculation of rcut
S–S. Referring to figure 2.1b, the

nearest neighbors of atom S2 are S1, S3 and S5. In fact dS2–S1 = dS2–S3 = a is slightly

larger than dS2–S5 = b, however we ignore this small difference and treat all these atoms
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Figure 2.2: Pair function φ2(r) of the SW potential, whose effective cutoff is much
smaller than the theoretical one. The parameters used in the plot are A = 4.15 eV,
B = 0.44, p = 5, q = 0, σ = 2.85 Å, and rcut = 5.55 Å.

as the first neighbor ring for the purpose of determining the cutoff and the parameter

σS–S (as explained below). The second neighbors of S2 are atoms S4 and S6. Therefore

rcut
S-S = dS2–S4 =

√
a2 + b2 = 4.51956 Å. The other two cutoffs are determined in a

similar fashion: rcut
Mo–Mo =

√
3a = 5.54660 Å and rcut

Mo–S =
√

4a2/3 + b2/4 = 4.02692 Å.

As pointed out by Zhou et al. [129], the SW two-body and three-body functions

decay to close to zero at a distance smaller than the cutoff radius due to the presence

of the exponential terms. This is demonstrated in figure 2.2 for the φ2(r) function for

the sample parameters listed in the caption. It is clear that while the theoretical cutoff

is 5.55 Å, the potential energy becomes negligibly small beyond an effective cutoff of

about r = 5.10 Å. If desired, this characteristic can be employed to expedite atomistic

simulations by using the effective cutoff rather than the theoretical one to compute

neighbor lists [129].

In the three-body term φ3, an additional cutoff is employed to exclude certain inter-

actions. Each Mo atom is surrounded by six first-nearest-neighbor S atoms, resulting

in three different types of S–Mo–S angles after accounting for symmetry (β1, β2, and

∠S2–Mo–S4 in figure 2.1b). While β1 and β2 are almost of the same value, ∠S2–Mo–S4

is much larger. Because equation (2.19) only allows for one equilibrium angle, it is
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desirable to exclude large-angle interactions of the third type so that the equilibrium

structure of MoS2 can be correctly described.3 Following Refs. [115,116] and the GULP

package [73,132], in addition to the two cutoffs rcut
IJ and rcut

IK included in equation (2.19),

a new cutoff rcut*
JK is applied to rjk when J and K are S atoms. For rjk > rcut*

JK , the

three-body term involving atoms j, i and k is ignored. We take the additional cutoff

to be rcut*
S-S = 3.86095 Å, corresponding to the average of the first- and second-nearest-

neighbor distances of S–S bonds. This cutoff allows for bond angle interactions of types

β1 and β2, but ∠S2–Mo–S4 type interactions will be excluded. We note that this in-

troduces a discontinuity in the potential energy since the three-body term is abruptly

removed at rjk = rcut*
JK . The maximum discontinuity can be 2.67 eV, but this occurs

when atom i is located in the middle between atoms j and k, which is far from the

equilibrium structure. As long as the system is not subjected to extreme deformations

far from the equilibrium ground state, the discontinuity will be mild if encountered and

should not adversely affect molecular simulations.

Given a0 = 3.20 Å and b0 = 3.19 Å, it is straightforward to show that the angles in

figure 2.1b are β1 = 81.92◦ and β2 = 81.61◦. Since the angles are quite close, we choose

to use the same β0 as the reference angle for both S–Mo–S and Mo–S–Mo three-body

interactions. We set β0 = 81.79◦, which is the value of both β1 and β2 if a0 and b0 are

equal.

Predetermined parameters and constraints

Aside from the cutoff radii specified in the previous section, the SW potential for MoS2

has 18 parameters: three values each for A,B, p, q, σ, two for λ, and one for γ. It is

non-trivial to fit so many parameters at once given that the IP is highly nonlinear. To

facilitate the fitting process and make it more robust, some parameters are determined

a priori and the values of some others are constrained.

In other parameterizations of the SW potential [79, 115, 116, 129], the exponents q

and p were taken to be 0 and 4, respectively. Here we take q = 0, but allow p to be a

fitting parameter that can only take on integer values.

In the original SW potential for Silicon [79], Stillinger and Weber determined σ by

3This is not a concern for Mo–S–Mo interactions, since there is only one type of Mo–S–Mo bond
with a bond angle equal to β1.
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requiring rm = 21/6σ, where rm is the distance at which φ2(r) reaches its minimum.4

In this work, σ is obtained in the same way. Given the lattice constants of the relaxed

MoS2 structure, a0 = 3.20 Å and b0 = 3.19 Å, the equilibrium bond lengths can be

computed as dMo–Mo = 3.20 Å, dMo–S = 2.44 Å, and dS–S = 3.19 Å. Thus we have

σMo–Mo = 2.85295 Å, σMo–S = 2.17517 Å and σS–S = 2.84133 Å.

As in Ref. [116], we require that in the ground state structure all bonds are at their

equilibrium lengths and all angles are at their equilibrium values, i.e. (∂φ2/∂r)|r=d = 0

and (∂φ3/∂β)|β=β0 = 0. The latter is satisfied automatically, and the former leads to a

constraint relating B, p, q and σ,

B =
q(d/σ)−1−q(d− rcut)2 + (d/σ)−qσ2

p(d/σ)−1−p(d− rcut)2 + (d/σ)−pσ2

=
1

pd−p−1σp−1(d− rcut)2 + d−pσp
, (2.20)

where d is the equilibrium bond length computed above and in the last equality q = 0

was used.

Accounting for the preset parameters and applying the constraint in equation (2.20),

the parameters left to be determined are θ = {A, p, λ, γ}. This is a small subset of all

the parameters, which greatly helps with the fitting process described next.

2.2.2 Parameterization

In the force-matching method [99], an IP is fit to first-principles forces for a training set

of atomic configurations. If the configurations in the training set are obtained by sam-

pling a thermodynamic ensemble (e.g. the canonical NVT ensemble or the isothermal-

isobaric NPT ensemble), then the parameterization not only optimizes the forces but

all observables that are defined as averages over the stationary distribution [122]. This

significantly enhances the transferability of the IP. For the SW potential considered

here, the training set is generated from a long thermostatted trajectory in the NPT

ensemble from an ab initio molecular dynamics (AIMD) simulation.

The training set trajectory was obtained by AIMD using the DFT code SIESTA

4This equation comes from the LJ potential [75–77] φ(r) = 4ε[(σ/r)12 − (σ/r)6], whose minimum
is at rm = 21/6σ. The two-body term φ2(r) of the SW potential is based on the LJ potential with an
additional exponential cutoff.
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[131]. The interactions between ionic cores and valence electrons were modeled by a

double zeta polarized basis set and norm-conserving pseudopotential [133] constructed

within the Troullier-Martins formalism [134]. The exchange-correlation energy of the

electrons is treated within the generalized gradient approximation (GGA) Perdew–

Burke–Ernzerhof functional [135]. An energy cutoff of 90 Ry was used for the rep-

resentation of charge density and potentials. Brillouin zone integration was carried out

at a single k-point (Γ point).5

In the training set calculations, periodic boundary conditions were applied in all

three directions with a vacuum of 30 Å perpendicular to the MoS2 layer to minimize

interactions between periodic images. The training set was constructed as follows. First,

the equilibrium MoS2 lattice structure was obtained by performing a full relaxation

of a single unit cell allowing the cell to change its volume and shape until all stress

components were less than 0.1 kBar and allowing the atoms to move until all forces

were less than 0.03 eV/Å. The relaxed unit cell has an in-plane lattice constant of

a0 = 3.20233 Å and the separation between the two sulfur layers is b0 = 3.18928 Å

(see figure 2.1). Second, a rectangular block supercell was constructed with in-plane

dimensions of 25.61 Å × 33.28 Å (corresponding to 8 × 12 relaxed unit cells) consisting

of Na = 288 atoms: 96 Mo atoms and 196 S atoms. Third, AIMD simulations were

performed using the supercell under NPT conditions with a pressure of p = 0 and

temperature of T = 750 K.6 The atoms were initially assigned random velocities drawn

from the Maxwell-Boltzmann distribution with the temperature equal to twice the target

temperature. The system was then integrated in time for 3000 steps with a time step of

∆t = 0.7 fs. The first 1000 steps were discarded to allow the system to equilibrate. In

the subsequent 2000 steps, the atom coordinates r and the forces on the atoms f̂ were

recorded in the training set. Thus the training set is {(ri, f̂m)}Ni=1, where N = 2000,

ri ∈ R3Na , and f̂i ∈ R3Na .

The parameters θ = {A, p, λ, γ} are optimized by minimizing the loss function

5Brillouin zone integration using a single k-point is generally inaccurate. However due to the rel-
atively large supercell used here, the size of the reciprocal vectors are relatively small, and thus the
sampling grid in reciprocal space is dense. The resulting accuracy is considered adequate, especially
considering the high cost of the AIMD calculations that would greatly increase with a denser k-point
grid.

6We also tried to fit the potential at other temperatures, but found only slight differences between
the fitted potential parameters and the resulting predictions for material properties. We therefore only
include the results for T = 750 K.
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Table 2.1: Fitted SW–FM parameters in the two-body term φ2.

Interaction
Parameter Mo-Mo Mo-S S-S

A (eV) 3.9781804791 11.3797414404 1.1907355764
B 0.4446021306 0.5266688197 0.9015152673
p 5 5 5
q 0 0 0

σ (Å) 2.85295 2.17517 2.84133
rcut (Å) 5.54660 4.02692 4.51956

Table 2.2: Fitted SW–FM parameters in the three-body term φ3.

λS-Mo-S = 7.4767529158 eV λMo-S-Mo = 8.1595181220 eV
γ = 1.3566322033 Å β0 = 81.7868◦

rcut
Mo-S = 4.02692 Å rcut*

S-S = 3.86095 Å

defined in equation (2.14) using the geodesic Levenberg–Marquardt (LM) algorithm.

There is no energy data in the training set, so the energy weight wei in equation (2.14)

is set to 0; the force weight wfi is set to 17. The initial guesses of the parameters were

taken from Ref. [115]. The fitted parameters are listed in tables 2.1 and 2.2. We denote

the new SW potential as SW–FM (Stillinger–Weber Force Matching) for later use in

comparison.

2.2.3 Results and predictions

To test the accuracy of the SW–FM potential, we computed the temperature depen-

dence of the lattice constants and stiffness of MoS2. These properties are important for

the design of MoS2 based electronic devices, since internal stress or strain due to ther-

mal expansion can degrade performance or even cause damage [136]. The calculations

were performed using the classical atomic simulation code large-scale atomic/molecular

massively parallel simulator (LAMMPS) [71, 137]. For all simulations, periodic bound-

ary conditions were applied in all directions, with a spacing of 40 Å in the direction

perpendicular to the MoS2 layer to isolate it from its periodic images. The simulation

7Since each configuration in the training set has the same number of atoms, there is no need to
normalize the force weight by the number of atoms.
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Table 2.3: Equilibrium lattice constants a0 and b0 (Å), cohesive energy Ec per unit cell
(eV), and elastic constants C11 and C12 (N/m) for SW–FM, other IPs in the literature,
and first-principles results.

Method a0 b0 Ec C11 C12

SW–FM 3.19702 3.19386 15.28 119.2 41.0
SW–Jiang 2013 3.09368 3.18216 12.76 140.8 52.7
SW–Jiang 2015 3.11072 3.12898 3.72 105.0 28.7

REBO 3.16752 3.24248 21.48 154.4 45.8
ReaxFFa 3.19 3.11 15.20 205.1 81.6

SIESTA (GGA: PBE) 3.20 3.19 15.90 - -
VASP (GGA: PW91)b 3.20 3.13 15.55 - -

VASP (LDA)b 3.11 3.11 19.05 - -
VASP (GGA: PBE)c 3.19 3.13 15.21 - -

VASP (LDA)c 3.13 3.12 18.75 - -
VASP (LDA)d - - - 140.0 40.0

VASP (GGA: PBE)d - - - 130.0 40.0
VASP (GGA: PBE)e - - - 132.7 33.0

aRef. [117]
bRef. [138]
cRef. [139]
dRef. [140]
eRef. [141]

setup and results for the different properties are described below.

Lattice constants and cohesive energy

The zero-temperature equilibrium lattice constants and cohesive energy of MoS2 were

obtained by minimizing the energy of a single unit cell using conjugate gradients with

energy and force tolerances of 10−10 eV and 10−10 eV/Å, respectively. The results for

the SW–FM potential along with other IPs and DFT results are listed in table 2.3. As

expected, both a0 and b0 agree with the SIESTA predictions since the σ parameters were

preset to reproduce the equilibrium structure as explained in section 2.2.1. The cohesive

energy per unit cell Ec predicted by SW–FM is in good agreement with SIESTA (and

other DFT) results.

The cohesive energy versus lattice constant curves plotted in figure 2.3 for different

IPs and SIESTA show the effect of stretching and compressing MoS2, which can be
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Figure 2.3: Energy of unit cell as a function of in-plane lattice constant a. The data
points are shifted such that all minima coincide. Ec and a0 for each potential are listed
in table 2.3.

important for practical applications due to pre-straining or rippling. The points were

computed by creating a unit cell with in-plane lattice constant a and relaxing the unit

cell atoms in the out-of-plane direction. The results show that SW–FM agrees with

SIESTA results across the entire range of stretching and compression (about ±15%),

whereas other IPs agree either in tension or compression, but not both.

Elastic constant

The zero-temperature elastic constants were computed using LAMMPS by finite differ-

ence, C11 = ∆σ1/∆ε1 and C12 = (∆σ1/∆ε2 + ∆σ2/∆ε1)/2 in Voigt notation, where ∆σ

and ∆ε are the stress and strain induced by infinitesimally displacing atoms from their

equilibrium positions.

Due to symmetry C11 and C22 are the same, which means that orientation (at

least the armchair and zigzag directions) does not affect the elastic behavior of MoS2.

The results for C11 and C12 are listed in table 2.3. The SW–FM predictions are in

good overall agreement with DFT results, comparable to the other IPs (except for the

ReaxFF potential, which appears to overestimate the elastic constants).
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In-plane linear thermal expansion coefficient

The in-plane linear thermal expansion coefficient (LTEC) αL of MoS2 provides a measure

of the temperature dependence of the lattice constants. There are two main methods

for calculating LTEC from molecular dynamics (MD) simulations. First, in the direct

method, the LTEC is computed from its definition by taking the first derivative of lattice

constant with respect to temperature at constant pressure:

αL =
1

a

∂a

∂T

∣∣∣∣
p

. (2.21)

Second, in the fluctuation method, the LTEC is computed as an ensemble average of

the covariance of the Hamiltonian H and the volume V [142]:

αL =
1

2kBT 2〈V 〉 [〈HV 〉 − 〈H〉〈V 〉] , (2.22)

where 〈·〉 denotes a phase average, and kB is the Boltzmann constant. A detailed

derivation of equation (2.22) is given in Appendix A.

To generate the data for both methods, a series of isothermal-isobaric (NPT ) MD

simulations were performed with a configuration of 1200 atoms (400 Mo and 800 S)

at different temperatures and zero pressure. The equations of motion were integrated

using a velocity–Verlet algorithm with a time step of 1 fs. The system was initially

maintained at constant temperature using a Langevin thermostat for 106 time steps.

Then a Berendsen barostat was added and the system was evolved for another 106 time

steps. This equilibration phase effectively dissipates lattice phonons generated by the

initial conditions. Finally, the system was switched to an isothermal-isobaric (NPT )

ensemble for 107 time steps using a Nose–Hoover thermostat and barostat to control

the temperature and pressure with damping coefficients of 0.01 fs−1 and 0.001 fs−1,

respectively.

At a given temperature the equilibrium supercell size in the x direction, Lx, was

computed by averaging the instant cell size values. The equilibrium lattice constant

defined in equation (2.21) follows as a = Lx/c, where c is the number of unit cells

along the x direction in the supercell. (For example, if we use the system depicted
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in figure 2.1a, c equals 4.)8 The equilibrium lattice constant at different temperatures

is plotted in figure 2.4a. To obtain the corresponding LTEC curve using the direct

method in equation (2.21) it is necessary to obtain the slope of the lattice constant

curve. To this end we use the Gaussian process regression (GPR) method implemented

in scikit–learn [143, 144] to fit the lattice constant data (blue line in figure 2.4a).9 The

LTEC is then computed from equation (2.21) by using finite differences to compute the

derivative of the GPR curve. To use GPR, it is necessary to provide lattice constant

uncertainty. To compute this uncertainty at a given temperature, ten subsets, each with

5× 105 simulation steps, were drawn randomly and independently from the simulation

trajectory. The mean lattice constant was computed for each subset and from this set

of values the standard deviation was obtained and used as the uncertainty. The result

is plotted in figure 2.4b. The numerical values of the standard deviations are too small

to be seen, so they are not depicted in the figures.

For the fluctuation method, αL was computed using equation (2.22). The resulting

LTEC αL values are plotted in figure 2.5. Similar to the direct method, GPR was used

to fit the data with uncertainties computed using the same procedure described above.

In the figure, the uncertainties are shown as error bars, and the 95% confidence interval

predicted by GPR is plotted as the shaded green region.

Both the direct and fluctuation methods using SW–FM show that the LTEC αL

increases quickly at low temperatures and saturates at about 400 K. These results are

in agreement with quasiharmonic DFT predictions [136, 146], and classic MD predic-

tion [145] using the REBO potential for MoS2 [110]. We also computed the temperature

dependence of the in-plane lattice constant using the SW potentials in Refs. [115,116].

The former [115] predicts that the lattice constant decreases with increasing tempera-

ture, resulting in a negative LTEC αL. The latter [116] predicts a positive increasing

LTEC αL in the temperature range 0 to 900 K, i.e. the LTEC αL does not saturate at

high temperature as observed by SW–FM and other sources as described above.

8We verified that upon heating the MoS2 hexagonal lattice expands uniformly. Therefore it does
not matter whether the lattice is oriented in the zigzag or armchair direction along the x-axis when
computing the lattice constant a, since both will give the same result.

9Polynomials are often used to fit lattice constant data in order to compute the LTEC, for example in
Ref. [145]. However, we found that in our case polynomials were far too sensitive. A small perturbation
in one of the lattice constant data points can lead to a completely different LTEC curve.
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Figure 2.4: (a) Equilibrium lattice constant a, and (b) the corresponding LTEC αL
computed using the direct method for the SW-FM potential.
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Figure 2.5: LTEC αL computed using the fluctuation method for the SW-FM potential.
The line is a GPR fit to the data.

2.2.4 Summary

We have parameterized a SW potential for MoS2 using the force-matching method (SW–

FM), where the potential parameters were optimized to match as closely as possible a

training set of forces generated from a SIESTA AIMD trajectory at T = 750 K. The

cutoffs and the reference bond angles were determined from the geometry of relaxed

monolayer MoS2 structure predicted by SIESTA. The equilibrium bond lengths and

bond angles are prebuilt into the potential by applying appropriate constraints to the

IP parameters. In this way, the relaxed structure of monolayer MoS2 is guaranteed to

have the correct geometry.

To test the accuracy of the fitted IP, it was used to compute the lattice constants,

cohesive energy versus lattice constant curve, elastic constants, and in-plane linear ther-

mal expansion coefficient. Our validation tests show that:

1. The SW–FM potential correctly predicts the equilibrium lattice constants, cohe-

sive energy, and energy versus lattice constant curves.

2. The elastic constant C11 is a bit underestimated compared with the first principles

predictions, but the overall predictions for C11 and C12 are good.
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3. The in-plane linear thermal expansion coefficient αL, computed using both the

direct method and the fluctuation method, increases rapidly at low temperature

and saturates at high temperature in agreement with first-principles calculations

and classical computations using the REBO potential for MoS2.

For the properties computed in this work, we find that the SW–FM potential out-

performs the previous SW potentials for MoS2 [115, 116] on which this work is based,

and has comparable accuracy to the REBO [110] and ReaxFF [117] reactive potentials.

Thanks to its simple mathematical form, MD simulations with SW–FM are significantly

faster than with REBO or ReaxFF. We note that SW–FM is parameterized only for

monolayer MoS2 in the 2H phase, and thus should not be used for other phases of MoS2

(e.g. bulk MoS2 or the monolayer 1T phase).

2.3 An interlayer potential for graphene

A large number of interatomic potentials (IPs) have been developed to model the strong

covalent bonds in carbon systems. Among these are bond-order potentials, such as the

Tersoff [113,147] and reactive empirical bond order (REBO) [83,114] potentials, which

allow for bond breaking and formation depending on the local atomic environments.

Such models have been shown to be accurate for many problems and are widely used,

but are not suitable for layered two-dimensional (2D) materials since they do not include

long-range weak interactions. To address this, the adaptive intermolecular reactive

empirical bond order (AIREBO) [148] potential (based on REBO) added a 6–12 form

of the Lennard–Jones (LJ) potential [77] to model van der Waals (vdW) interactions.

For graphitic structures, the LJ potential works well in describing the overall binding

characteristics between graphene layers. For example, the LJ parameterization used in

AIREBO predicts an equilibrium layer spacing of 3.357 Å and a c-axis elastic modulus

of 37.78 GPa for graphite, in good agreement with first-principles and experimental

results. The isotropic nature of LJ, that is, the fact that it depends only on distance

between atoms and not orientation, makes it too smooth to distinguish energy variations

for different relative alignments of layers [149]. Figure 2.6a shows the energy variation

obtained by sliding one layer relative to the other along the armchair direction of a

graphene bilayer (the stacking states are shown in figure 2.7). The energy remains
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Figure 2.6: Energy and force variations when sliding and twisting a graphene bilayer. (a)
Energy variation of sliding one layer relative to the other along the armchair direction.
(b) Out-of-plane component of the force on the atom at the rotation center (blue circle
labeled 1 in the bottom layer of the right-most plot in figure 2.7). Rotation by 0◦

corresponds to AB stacking, and rotation by ±60◦ corresponds to AA stacking. In both
sliding and twisting, periodic boundary conditions are applied and the layer spacing is
fixed at 3.4 Å. Details are provided in section 2.3.2.
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Figure 2.7: AA, AB, and SP stackings of bilayer graphene. Blue circles and red dots
represent atoms in two separate layers.

nearly constant with a maximal difference of 0.41 meV/atom between the AA and AB

stackings, a small fraction (6.6%) of the density functional theory (DFT) result (also

shown in the figure).

The reason that the LJ potential fails to capture the energy variations due to inter-

layer sliding is that in addition to vdW, the interlayer interactions include short-range

Pauli repulsion between overlapping π orbitals of adjacent layers. These repulsive in-

teractions are not well described by a simple pair potential like LJ [150–152]. The

Kolmogorov–Cresp (KC) interlayer potential was developed to account for this registry

effect (relative alignment of layers) in graphitic structures [150]. In the KC potential,

the dispersive (vdW) attraction between layers is described using the same theoretically-

motivated r−6 term as in LJ, and π orbital overlap is modeled by a Morse [153] type

exponential multiplied by a registry-dependent modifier that depends on the transverse

distance between atom pairs. The KC potential has been modified and reparameterized

to better fit the energy variations between different stacking states predicted by DFT-D

(DFT with dispersion corrections) [154]. It has also been adapted for other 2D materials

such as h-BN [151] and graphene/h-BN [152,155] heterostructures.

The energy corrugation obtained by the KC potential is in agreement with DFT

as shown in figure 2.6a. However, the forces obtained from the KC potential deviate

significantly from the DFT results. This implies that equilibrium structures associated

with energy minima will differ as well. To illustrate this point, consider a graphene

bilayer where one layer is rigidly rotated relative to the other. Figure 2.6b shows the

force in the z-direction (perpendicular to the layers) acting on the bottom atom on

the rotation axis (atom 1 in the bottom layer of the right-most plot in figure 2.7) as a

function of rotation angle. The force predicted by the KC potential decreases and then

increases from AA (±60◦) to AB (0◦), whereas DFT predicts a monotonic increase from
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AA to AB. In particular, the KC potential yields the same z-force for the AA and AB

stackings,10 which indicates that the KC potential cannot distinguish the overlapping

atoms at the rotation center in these states. This is intrinsic to the KC potential. The

force on the central atom in the AA and AB states is identical, regardless of the choice

of KC parameters. The modified KC potential [154] has the same problem. The LJ

potential does even worse (figure 2.6b), predicting a constant force on the central atom

that is independent of the rotation angle.

In this section, a new registry-dependent interlayer potential for graphitic struc-

tures is developed that addresses the limitations of the KC potential described above.

A dihedral-angle-dependent term is introduced into the registry modifier of the repul-

sive part that makes it possible to distinguish forces in AA and AB states. We refer

to this potential as the dihedral-angle-corrected registry-dependent interlayer potential

(DRIP). DRIP is validated by showing that it correctly reproduces the DFT energy

and forces for different sliding and rotated states as well as structural and elastic prop-

erties. It is then applied to study structural relaxation in twisted graphene bilayers

and exfoliation of graphene from graphite; these representative example are large-scale

applications that cannot be studied using DFT.

2.3.1 Definition of model

The DRIP mathematical form is

V =
1

2

∑
i

∑
j /∈layer i

φij , (2.23)

where j /∈ layer i means j runs over all atoms except for the ones that are in the

same layer as atom i. The pairwise interaction is based on the KC form with dihedral

modifications:

φij = fc(xr)

[
e−λ(rij−z0)

[
C + f(ρij) + g(ρij , {α(m)

ij })
]
−A

(
z0

rij

)6
]
, m = 1, 2, 3.

(2.24)

10Note that the x and y components of the force are zero at AA and AB due to symmetry.
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The cutoff function fc(x) is same as that used in the reactivate force field (ReaxFF)

potential [85] and the interlayer potential for h-BN [151,152]:

fc(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1, (2.25)

for 0 ≤ x ≤ 1 and vanishes for x > 1, while it has zero first and second derivatives

at x = 1; in the expressions where this function appears its argument is always non-

negative. The variable xr in equation (2.24) is the scaled pair distance xr = rij/rcut.

The use of fc(xr) ensures that DRIP is smooth at the cutoff rcut (set to 12 Å), a feature

that the KC model does not possess.

The term with r−6
ij dependence in equation (2.24) models attractive vdW interactions

(as in LJ), while the repulsive interactions due to orbital overlap are modeled by the

exponential term multiplied by a registry-dependent modifier. The transverse distance

function f(ρ) has the same form as in KC:

f(ρ) = e−y
2 [
C0 + C2y

2 + C4y
4
]
, y =

ρ

δ
(2.26)

with its argument in equation (2.24) given by the expression

ρ2
ij = r2

ij − (ni · rij)2, (2.27)

in which rij is the vector connecting atoms i and j, rij is the corresponding pair distance,

and ni is the layer normal at atom i. For example, as shown in figure 2.8, ni can be

defined as the normal to the plane determined by the three nearest-neighbors of atom

i: k1, k2 and k3:

ni =
rk1k2 × rk1k3

‖rk1k2 × rk1k3‖
. (2.28)

Note that in general ρij 6= ρji because the normals ni and nj depend on their local

environments.

The dihedral angle function is given by

g(ρ, {α(m)
ij }) = Bfc(xρ)

3∑
m=1

e−ηα
(m)
ij , (2.29)
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Figure 2.8: Schematic representation of an atomic geometry that defines the normal
vectors ni and nj and the dihedral angle Ωk1ijl2 .

where α
(m)
ij is the product of the three cosines of the dihedral angles formed by atom

i (in layer 1), its mth nearest-neighbor km, atom j (in layer 2), and its three nearest-

neighbors l1, l2 and l3:

α
(m)
ij = cos Ωkmijl1 cos Ωkmijl2 cos Ωkmijl3 (2.30)

cos Ωkijl = ejik · eijl (2.31)

ejik =
rik × rji
‖rik × rji‖

, eijl =
rjl × rij
‖rjl × rij‖

. (2.32)

To understand the physical origin of the terms defined in equations (2.30) to (2.32),

recall that a dihedral angle Ω is the angle between two planes defined by four points that

intersect at a line defined by two of them as shown in figure 2.8. Here, the intersection

line is defined by atoms i and j. The two planes are then defined by atoms (j, i, k1)

and (i, j, l2). The normals to these planes are ejik1 and eijl2 , respectively, defined in

equation (2.32), with the corresponding dihedral angle given by equation (2.31). The

dihedral product α
(m)
ij monotonically decreases when twisting a graphene bilayer from

AB to AA stacking, and consequently can be utilized to construct a potential function

that distinguishes AB and AA stacking and the intermediate stacking states. The cutoff

function fc(xρ) in equation (2.29) is the same as that in equation (2.25), and xρ = ρ/ρcut,

where we set ρcut = 1.562 Å to include only a few of the computationally expensive 4-

body dihedral angle interactions. The potential has a total of ten parameters, C0, C2,
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C4, C, δ, λ, B, η, A, and z0, and two cutoffs rcut and ρcut.

To determine the values of all the parameters that appear in the DRIP potential,

we constructed a training set of energies and forces for graphene bilayers at differ-

ent separation, sliding, and twisting states. The training set is generated from DFT

calculations using the Vienna ab initio simulation package (VASP) [156, 157]. The

exchange-correlation energy of the electrons is treated within the generalized gradient

approximation (GGA) functional of Perdew, Burke and Ernzerhof (PBE) [135].

Standard density funtionals such as the local density approximation (LDA) and

GGA accurately represent Pauli repulsion in interlayer interactions, but fail to capture

vdW forces that result from dynamical correlations between fluctuating charge distri-

butions.11 To address this limitation, various approximate corrections have been pro-

posed including the D2 method [158], the D3 method [159], the Tkatchenko and Schef-

fler (TS) method [160], the TS method with iterative Hirshfeld partitioning (TSIHP)

method [161], the many-body dispersion (MBD) method [162], and the dDsC disper-

sion correction method [163]. To select a correction for the DRIP training set, we used

these dispersion correction methods to compute a number of structural, energetic, and

elastic properties. The results are shown in table 2.4 along with experimental values

and more accurate adiabatic-connection fluctuation-dissipation theory based random-

phase-approximation (ACFDT-RPA) computations that have been shown to provide

a very accurate description of vdW interactions [164, 165]. The conclusion from these

comparisons is that D2 and D3 provide inaccurate estimates for the layer spacing of

AB graphene and graphite (dAB and dgraphite), and TS, TSIHP, and dDsC significantly

overestimate the graphite binding energy Egraphite. MBD provides the best overall ac-

curacy for all considered properties and is therefore the vdW correction used in this

work together with the PBE functional.

Each monolayer of the graphene bilayer is modeled as a slab with in-plane lattice

constant a = 2.46 Å, and the supercell size in the direction perpendicular to the slab is

set to 30 Å to minimize the interaction between periodic images. The sampling grid in

reciprocal space is 20 × 20 × 1, with an energy cutoff of 500 eV. A primitive unit cell

of a graphene bilayer consists of four basis atoms. To generate a graphene bilayer with

11GGA predicts no binding at all at physically meaningful spacings for graphite. LDA gives the
correct interlayer spacing for AB stacking, however, it underestimates the exfoliation energy by a factor
of two and overestimates the compressibility [150].
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(Å
)

(Å
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(a) (b) (c)

Figure 2.9: Primitive unit cell of a graphene bilayer: (a) AA stacking, (b) AB stacking,
and (c) unique sampling region and sampling points.

different translational registry, the two atoms in the bottom layer are fixed at fractional

positions b1 = (0, 0, 0) and b2 = (1
3 ,

1
3 , 0) relative to the graphene lattice vectors a1,a2,

and c, where c is perpendicular to the plane defined by a1 and a2 with length equal

to the interlayer distance d. The other two atoms are located at r1 = (p, q, 1) and

r2 = (p + 1
3 , q + 1

3 , 1). The two parameters p ∈ [0, 1] and q ∈ [0, 1] determine the

translational registry. For example, the graphene bilayer is in AA stacking (figure 2.9a)

when p = 0 and q = 0, and in AB stacking (figure 2.9b) when p = 1
3 and q = 1

3 . Due

to the symmetry of the honeycomb lattice, only 1/12 of the area defined by a1 and

a2 needs to be sampled to fully explore all translational registry states (see the shaded

region in figure 2.9c). The DRIP training set comprised the seven states indicated in

the shaded region of figure 2.9c, specifically (p, q) = (0, 0), (0, 1
6), (0, 2

6), (0, 3
6), (1

6 ,
1
6),

(1
6 ,

2
6), (2

6 ,
2
6). These states include all the high-symmetry states of interest, including

AA, AB, and the saddle point (SP) stacking (p = 0, q = 3
6). The seven translational

registry states are sampled at different layer spacings d, varying from 2.7 Å to 4.5 Å

with a step size of 0.1 Å. For layer spacings larger than 4.5 Å but smaller than the

cutoff rcut = 12 Å, only bilayer graphene in AB stacking is included since the difference

between the stacking states in this range is negligible (see discussion in section 2.3.2).

Thus 7× 19 + 75 = 208 translation configurations are included in the training set.

In addition to translation configurations, a set of twisted bilayer configurations
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✓ = 27.8�

(a)

(b)

Figure 2.10: Example of commensuration of a graphene bilayer. (a) The two layers
are commensurate when rotated relative to each other by cos−1(23

26) = 27.8◦, which
corresponds to m = 3, n = 7 according to the condition in equation (2.33). (b) The
resulting supercell after rotation, with 26 atoms in each layer.

are included in the training set. It is possible to construct a commensurate super-

cell arbitrarily close to any twisting angle according to the commensuration condi-

tion [149,173,174]

θ = cos−1

(
3n2 −m2

3n2 +m2

)
, (2.33)

where m and n are any two integers satisfying 0 < m < n. As an example, considering

the AB-stacked bilayer in figure 2.10a, a commensurate bilayer can be obtained by

rotating one of the layers by θ = 27.8◦ (m = 3, n = 7) with the supercell shown in

figure 2.10b. Four types of twisted bilayers with rotation angles 9.43◦, 21.79◦, 32.30◦

and 42.10◦ (corresponding to (m,n) = (1, 7), (1, 3), (1, 2) and (2, 3)) are included in the

training set. The twisted configurations were evaluated at layer spacings from 3.0 Å to

4.0 Å with a step size of 0.1 Å. Thus 4×11 = 44 twisted configurations are included in the

training set. This does not include rotations for θ = 0◦ and θ = ±60◦ corresponding to

the AB and AA stacking states, respectively, which are already included in the training

set.

The parameters of the potential are optimized by minimizing the loss function in
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equation (2.14), i.e.

L(θ) =
1

2

N∑
i=1

we
i

[
E(ri;θ)− Êi

]2
+

1

2

N∑
i=1

wf
i‖f(ri;θ)− f̂i‖2. (2.34)

The reference energy and forces from DFT, Êi and f̂i, require explanation. Since

DFT provides only the total energy and forces on atoms due to both intralayer and

interlayer interactions it is necessary to separate out the interlayer contributions when

constructing the training set. This is accomplished as follows. For configuration i,

first the total energy and forces of the bilayer are obtained from DFT: Êbilayer
i , f̂bilayer

i .

Then each monolayer is computed separately by removing all atoms from the other

monolayer. Thus, there will be two energies, Êlayer 1
i and Êlayer 2

i , and two forces, f̂ layer 1
i

and f̂ layer 2
i (although each force vector will only contain nonzero components for the

atoms belonging to its monolayer). The DFT interlayer energy and forces appearing in

equation (2.34) are then defined as:

Êi = Êbilayer
i − Êlayer 1

i − Êlayer 2
i , (2.35)

f̂i = f̂bilayer
i − f̂ layer 1

i − f̂ layer 2
i . (2.36)

In the present case, the training set includes N = 252 configurations. Both the

energy weight we
i and force weight wf

i are set to 1. The optimization was carried out

using the KIM-based learning-integrated fitting framework (KLIFF) [69] with a geodesic

Levenberg–Marquardt (LM) minimization algorithm [66, 103, 104]. The objective is to

find the set of parameters θ that minimizes L(θ). The optimal parameter set identified

by this process and preset cutoffs are listed in table 2.5.

2.3.2 Testing of model

We performed an extensive set of calculations to test the ability of DRIP to reproduce

its training set (described in section 2.3.1), and test its transferability to configurations

outside the training set. The calculations using the potential were performed with

large-scale atomic/molecular massively parallel simulator (LAMMPS) [71,137] and DFT

calculations with VASP [156, 157]. Periodic boundary conditions are applied in both

in-plane directions, and the in-plane lattice constant is fixed at a = 2.46 Å. The setup
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Table 2.5: DRIP parameters obtained by minimizing the loss function and preset cutoffs.

Parameter Value Parameter Value

C0 (meV) 11.598 B (meV) 7.6799
C2 (meV) 12.981 η (1/Å) 1.1432
C4 (meV) 32.515 A (meV) 22.216
C (meV) 7.8151 z0 (Å) 3.3400
δ (Å) 0.83679 rcut (Å) 12
λ (1/Å) 2.7158 ρcut (Å) 1.562

for the DFT computations is the same as that used for generating the training set in

section 2.3.1.

Figure 2.11 shows the unrelaxed forces on the atoms in the bottom layer of the

twisted bilayer shown in figure 2.10 with a layer spacing of d = 3.4 Å. There are 26

atoms in the bottom layer. For each, the out-of-plane force (z-component) is displayed

as a bar. The plot compares the results of LJ, KC and DRIP with DFT. For the LJ

potential, the parameterization in the AIREBO potential is used. The DRIP forces

are in very good agreement with DFT, whereas the LJ potential yields almost zero

forces, and the KC potential greatly overestimates the forces. (Note that the force

ranges in the three panels are different). The force on the central atom when twisting

a bilayer obtained from DRIP (denoted as 1 in figure 2.7) is displayed in figure 2.6b

as a function of rotation. The results are in agreement with DFT, indicating that the

dihedral modification in DRIP successfully addresses the deficiency of the KC potential.

To investigate the accuracy of the IPs in a dynamical setting, trajectories are gener-

ated at a temperature of 300 K using ab initio molecular dynamics (AIMD) for bilayers

in AA and AB stackings, and the twisted bilayer shown in figure 2.10. For each configu-

ration along the trajectories, the DFT forces due to interlayer interactions are computed

using the procedure defined in equation (2.36) and explained above. Next, LAMMPS

is used to compute the LJ, KC and DRIP interlayer forces for the AIMD configura-

tions. The error in the potential forces is shown in figure 2.12. Each dot in the plot

represents one atom pulled from one of the configurations along the AIMD trajectories.

The horizontal coordinate in the plot is the magnitude of the in-plane component (left

panels) and out-of-plane component (right panels) of the DFT interlayer force acting

on the atom. The force is separated in this way because the in-plane component is
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Figure 2.11: Out-of-plane component of the forces on the 26 atoms in the bottom layer
of the twisted bilayer shown in figure 2.10 (each represented as a bar) computed from
DFT and the (a) LJ potential, (b) KC potential, and (c) DRIP model. The layer spacing
is 3.4 Å.



48

significantly smaller than the out-of-plane component. (Note that this is only the force

due to interlayer interactions. The force due to intralayer bonding is not included.) The

vertical coordinate is the magnitude of the difference between the potential and DFT

force vectors for that atom. We see that the in-plane force error for LJ aligns with the

diagonal, i.e. the error equals the DFT force, which means that LJ predicts an in-plane

force close to zero. This is because LJ provides a poor model for the anisotropic overlap

of electronic orbitals between adjacent layers and thus has almost no barrier for rela-

tive sliding. The KC model performs better in the sense that it predicts resistance to

sliding, however the overall accuracy in forces is poor. In contrast, DRIP provides con-

sistently accurate in-plane forces across the range of DFT forces with errors less than

20 meV/Å. For the out-of-plane component both LJ and DRIP perform comparably

providing good accuracy across the range of DFT forces, whereas the KC model again

shows poor accuracy with very large errors in some cases.

Next, we consider energetics. The interlayer binding energy Eb of a graphene bi-

layer as a function of layer spacing d is shown in figure 2.13 for AB and AA stackings

and the twisted configuration shown in figure 2.10. The LJ potential (figure 2.13a)

cannot distinguish these states and gives nearly identical binding energy versus layer

spacing curves for all three. Both KC (figure 2.13b) and DRIP (figure 2.13c) correctly

capture the energy differences between the three stacking states. For all three IPs, the

twisted bilayer curve lies between the other two, which is expected since the AB and

AA stackings are minimum and maximum energy states. Also notable is that at large

layer spacing, the curves for all three stacking states merge since registry effects due to

π-orbital overlap become negligible and interactions are dominated by vdW attraction,

which are the same for all three states and captured equally well by all three IPs.

A more complete view of the interlayer energetics is obtained by considering the

generalized stacking fault energy (GSFE) surface obtained by sliding one layer relative

to the other while keeping the layer spacing fixed. Figure 2.14 shows the results for a

layer spacing of d = 3.4 Å calculated using DRIP and DFT. DRIP is in quantitative

agreement with DFT results. The KC GSFE has a similar appearance and the LJ GSFE

is nearly flat. The KC and LJ results are not included for brevity, but the energies of

the three potentials along the dashed line in the left panel of figure 2.14 are displayed

in figure 2.6a.
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Figure 2.12: Deviation of potential forces from DFT results due to interlayer interac-
tions. The configurations are taken from three AIMD trajectories at 300 K.



50

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
d (Å)

30

20

10

0

10

20

30

40

50

E
b
(m

eV
/
at

om
)

DFT AB
DFT AA
DFT twisted
LJ AB
LJ AA
LJ twisted

(a)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
d (Å)

30

20

10

0

10

20

30

40

50

E
b
(m

eV
/a

to
m

)

DFT AB
DFT AA
DFT twisted
KC AB
KC AA
KC twisted

(b)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
d (Å)

30

20

10

0

10

20

30

40

50

E
b
(m

eV
/a

to
m

)

DFT AB
DFT AA
DFT twisted
DRIP AB
DRIP AA
DRIP twisted

(c)

Figure 2.13: Interlayer binding energy Eb of a graphene bilayer versus layer spacing d
for AA stacking, AB stacking, and a twisted bilayer with rotation angle θ = 27.8◦ (see
figure 2.10) using (a) LJ potential, (b) KC potential, and (c) DRIP model, compared
to DFT results.
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Figure 2.14: The GSFE obtained by sliding one layer relative to the other at a fixed layer
spacing of d = 3.4 Å. The energy is relative to the AB state, which is −22.98 meV/atom
for DRIP (on the left) and −22.33 meV/atom for DFT (on the right). The sliding
parameters ∆a1 and ∆a2 are in units of in-plane lattice constant a = 2.46 Å.

As a final test, table 2.4 shows the predictions of DRIP for a number of structural,

energetic, and elastic properties. The table also includes results for the long-range

carbon bond order potential (LCBOP) [84] and AIREBO [148] potentials, as well as

DFT and experimental results as described in section 2.3.1. The LCBOP potential uses

two Morse [153] type terms to model long-range interactions, and LJ [77] is used in the

AIREBO potential. The properties of the DRIP model are in good agreement with the

PBE+MBD DFT computations with which the training set was generated.

2.3.3 Applications

To further compare the predictions of the KC potential and DRIP, we carried out two

large-scale simulations, beyond the capability of DFT: (1) structural relaxation in a

twisted graphene bilayer, and (2) exfoliation of a graphene layer off graphite. In these

simulations, the interlayer interactions are modeled using either KC or DRIP, and the

REBO potential is used to model the intralayer interactions.

Structural relaxation of a twisted graphene bilayer

The electronic properties of stacked 2D materials can be manipulated by controlling

the relative rotation between the layers, which in turn leads to different structural
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relaxation. A prototypical problem is the twisting of a graphene bilayer. The bilayer is

created by rotating one layer relative to the other by θ = 0.82◦, setting (m,n) = (1, 81)

as discussed in section 2.3.1. The out-of-plane relaxation δ of an atom is obtained by

subtracting the mean out-of-plane coordinates of all atoms in the top layer from the

out-of-plane coordinate of that atom:

δi = zi −
1

Na

Na∑
j=1

zj (2.37)

where zi is the out-of-plane coordinate of atom i in the top layer and Na = 9842 is the

number of atoms in the top layer.12

The out-of-plane relaxation of the twisted bilayer is plotted in figure 2.15. The results

of DRIP and KC are qualitatively similar. The bright spots correspond to high-energy

AA stacking, the long narrow ribbons correspond to SP stacking, and the triangular

regions correspond to alternating AB and BA stackings. It has been shown that the

formation of this structure is due to local rotation at AA domains [175]. Quantitatively,

however, the two IPs give different out-of-plane relaxation, especially at the peaks as

seen in figure 2.15b. The peak value predicted by DRIP is 0.076 Å, which is 26%

smaller than the KC potential value of 0.103 Å. This difference at the peaks could

lead to significant differences in electronic properties because twisted graphene bilayers

develop highly-localized states around AA-stacked regions for small twist angles [176].

Exfoliation of graphene from graphite

Graphene can be prepared by exfoliating graphite. In this process, the vdW attraction

between layers is overcome by peeling a single layer off a graphite crystal. A method as

simple as sticking scotch tape to graphite and applying an upward force can be used [15].

To simulate this process, one edge of the top layer of a graphite crystal is pulled up

under displacement control conditions as illustrated in figure 2.16a. The atoms at the

left end of the top layer are displaced in the z-direction according to d = d0 + 0.2k,

where d0 = 3.35 Å is the initial layer spacing, and k = 0, 1, . . . , 99 is the step number.

At each step k, once the displacement is applied to the left atoms, the remaining atoms

12Using the atoms in the bottom layer will yield the same results because the relaxed structure of the
bottom layer and the top layer are identical.
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Figure 2.15: Out-of-plane relaxation in a twisted bilayer with a relative rotation of
θ = 0.82◦. (a) Contour plot obtained from the DRIP model and the KC potential, and
(b) relaxation along the diagonal indicated by the dashed line in panel (a). The bilayers
shown in the figure corresponds to 3× 3 supercells used in the computation, i.e. a1 and
a2 are in units of in-plane lattice constant a = 2.46 Å.
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Figure 2.16: (a) Schematic demonstrating the process of peeling a graphene layer off
graphite, and (b) the normal force, fz, needed to peel the top layer as a function of the
displacement at the left end of the top layer, d− d0. The armchair direction of graphite
is aligned with the x-axis. The initial layer spacing is d0 = 3.35 Å.
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in the top layer are relaxed. The substrate (bottom three layers) is kept rigid during

this process. The system contains 600 atoms in each layer of size 105.83 Å and 14.76 Å

in the x and y directions, respectively. The system is periodic in the y direction, and

non-periodic the other two directions.

The normal force, fz, needed to pull the left end of the top layer is plotted in

figure 2.16b. Both KC and DRIP give qualitatively similar results. The force first

increases as the left end is pulled up and then exhibits a sudden drop at about 3 Å.

The normal force has two contributions: (1) interlayer interactions with atoms in the

substrate; and (2) covalent-bonded interactions with other atoms in the top layer. The

former is almost unchanged before and after the load drop, therefore the drop is mainly

due to the in-plane interactions in the top layer. Before the load drop, the right-end

of the top layer is trapped in a local minimum created by the substrate (similar to the

one denoted as AB in figure 2.14, although there we only consider a graphene bilayer),

and consequently as the left end is pulled up, the top layer experiences an increasing

axial strain. At about 3 Å, the right-end of the top layer snaps into an adjacent local

minimum by moving in the negative x direction. As a result, the axial strain in the top

layer is released and the load is reduced. The same explanation applies to the load drop

at a displacement of about 15 Å, and it is expected to continue to occur periodically

with continued pulling.

As for the results in bilayer relaxation, KC and DRIP are in qualitative agreement,

but there are quantitative differences. The KC potential predicts an initial peeling load

of about 0.65 eV/Å, which is about 75% of the 0.87 eV/Å value predicted by DRIP.

The second snap-through occurs at a displacement of 16.6 Å for DRIP, and at 15.0 Å

for KC.

2.3.4 Summary

The interlayer interactions in stacked 2D materials play an important role in determin-

ing the mathematicality of many nanodevices. For graphitic structures, the two-body

pairwise LJ potential is too smooth to model the energy corrugation in different stacking

states. The registry-dependent KC potential improves on this and correctly captures

the energy variation, but fails to yield reasonable forces. In particular, the KC model
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does not distinguish forces on atoms in the AA and AB stacking states that are differ-

ent in DFT calculations. The KC model is also discontinuous at the cutoff, which can

lead to difficulties in energy minimization and loss of energy conservation in dynamic

applications.

To address these limitations, we developed a new potential for graphitic structures

based on the KC model. The DRIP has a smooth cutoff and includes a dihedral-angle-

dependent term to distinguish different stacking states and obtain accurate forces. The

potential parameters were determined by training on a set of energies and forces for

graphene bilayers at different layer spacing, sliding, and twisting, computed using GGA-

DFT calculations, augmented with the MBD dispersion correction to account for the

long-range vdW interactions.

To test the quality of DRIP, we employed it to compute energetics, forces, and

structural, and elastic properties for a graphene bilayer in different states and graphite.

The validation tests show that compared with first-principles results:

1. DRIP correctly predicts the equilibrium layer spacing, interlayer binding energy,

and generalized stacking fault energy of a graphene bilayer, as well as the equilib-

rium layer spacing of graphite.

2. DRIP underestimates the c-axis elastic modulus C33 of graphite by about 10%

relative to ACFDT-RPA and experiments, but this result is in good agreement

with PBE+MBD to which DRIP was fit.

3. DRIP provides more accurate forces than the KC model across the entire range

of bilayer rotations and in particular distinguishes the forces in the AA and AB

states that the KC potential cannot.

In two large-scale applications, not amenable to DFT calculations, we showed that

DRIP and KC agree qualitatively, but differ quantitatively by 26% in the out-of-plane

relaxation of a twisted graphene bilayer, and by 23% in the normal force required to

peel one graphene layer off graphite.

The added four-body dihedral-angle-dependent correction in DRIP is very short-

ranged (ρcut = 1.562 Å) and therefore the computational overhead relative to KC is

small. In fact, for the large-scale applications (bilayer relaxation and peeling) described
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in section 2.3.3, DRIP was actually faster than KC in terms of the overall computation

time due to improved convergence.

Although DRIP was parameterized against a training set consisting of graphene

bilayers, it can be used to describe interlayer interactions for other systems such as

graphite and multi-walled carbon nanotubes where the carbon atoms are arranged in

layers. This IP only provides a description of the interlayer interactions, and therefore

must be used together with a companion model that provides the intralayer interactions,

such as the Tersoff [113,147] or REBO [83,114] potentials.



Chapter 3

Machine Learning Potentials

In chapter 2, we discussed the procedures to develop an interatomic potential (IP):

first devise a mathematical form for the IP and then obtain the parameters in the

mathematical form by solving an optimization problem. It is possible to place the IP

development problem in a broader context of the theory of machine learning. Murphy

defines machine learning as [177]:

A set of methods that can automatically detect patterns in data, and

then use the uncovered patterns to predict future data, or to perform other

kinds of decision making under uncertainty (such as planning how to collect

more data!).

Machine learning uses the tools of probability theory to solve such pattern recogni-

tion problems, typically divided into two types: unsupervised learning and supervised

learning.

In unsupervised learning, we are only given a data set of inputs {x1,x2, . . . ,xN},
without the corresponding outputs {y1,y2, . . . ,yN} as in supervised learning to be dis-

cussed below. It can be further subdivided into three categories based on the goal:

clustering, density estimation, and visualization [96]. Clustering refers to the discovery

of groups of similar examples within the data, density estimation refers to the determi-

nation of the distribution of data within the input space, and visualization refers to the

projection of the data from a high-dimensional space down to a low-dimensional space

(usually two or three dimensions). Unsupervised learning problems are not well-defined,

58



59

since there is no obvious error metric to test the predictions made by a model [177].

In supervised learning, besides the inputs {x1,x2, . . . ,xN}, we also have their cor-

responding outputs {y1,y2, . . . ,yN}. If the outputs are a finite number of discrete

categories and the aim is to assign each input to one of the categories, the task is called

classification; if the desired outputs are continuous and the aim is to find a continuous

function to map the inputs to the outputs, then the task is called regression.

The IP development problem belongs to regression in supervised learning. The in-

puts are the coordinates and species of atoms in atomic configurations, and the outputs

are the total potential energies (and other properties that can be computed from atom-

istic simulations) of the configurations. Although the IPs discussed in chapter 2 fall

within the definition of machine learning, we still call them physics-based IPs because

the mathematical forms of such IPs are designed based on the underlying physics in

the materials system, making it difficult to get a better model upon observation of

more data. On the contrary, we call machine learning IPs the type of models that

train general-purpose functions (e.g. Gaussian process (GP) and neural network (NN))

against a large amount of data and are systemically improvable upon observation of

more data.

In the last decade, machine learning IPs [178–182] have been shown very successful

for many materials systems ranging from organic molecules [180] to alloys [182]. In

these methods, a training set of first-principles data is interpolated using suitable ba-

sis functions to obtain the energy and forces of intermediate configurations. In effect,

they attempt to “learn” the quantum mechanical Schrödinger equation directly from

the training set with minimal supervision. Given a description of the atomic environ-

ments (the local environments of an atom, discussed in details in section 3.1), a machine

learning IP returns the atomic energy (energy of an atom), and the total energy is the

sum of the atomic energies of all the atoms in the system. This separates the material

physics, which is entirely contained in the training set, from the mathematical inter-

polation performed by the machine learning algorithm. Once properly tuned, machine

learning IPs have the advantage that, in principle, they can describe arbitrary bonding

states with a sufficiently dense training set.

In this chapter, we first review some methods to represent atomic environments,

upon which machine learning regression methods are applied to model the potential
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energy. Then we discuss several widely used regression methods for IPs. Finally, we

present a neural network interatomic potential (NNIP) trained to model both the in-

terlayer and intralayer interactions in multilayer graphene structures.

3.1 Representation of atomic environments

The appropriate representation of atomic environments is a crucial ingredient in modern

computational chemistry, condensed matter physics, and materials science. It is widely

used in applications such as structure search of molecules, molecular dynamics (MD)

simulations of phase transitions, and, of course, interatomic potential (IP) constructions

[183]. IPs are typically constructed as a sum of the energies of individual atoms1 that are

built on a carefully chosen representation of atomic environments. Therefore, selecting

an appropriate representation of atomic environments is critical in designing IPs.

Atomic environments are typically represented as a vector of real values, called the

descriptor (or fingerprint). Concatenating the position of all atoms in a Cartesian

coordinate system provides a simple and unequivocal descriptor; however, it does not

satisfy the invariant requirements by the laws of physics (item 1 discussed below). A

good descriptor needs to retain the faithfulness of the Cartesian representation and

should also be:

1. invariant with respect to translation, rotation, and inversion of the system (i.e.

choice of the reference frame), and permutation of atoms of the same species. In

fact, these are the invariant requirements that all IPs (physics-based and machine

learning) must adhere to as discussed in section 2.1. In principle, one can let the

machine learning regression algorithm to learn these requirements by providing

an enormous amount of training data. This is obviously impossible to achieve

in practice; therefore, these requirements are built into the representation and

we ensure that the machine learning regression algorithm does not break these

requirements.

1As discussed in section 2.1.1, although the total potential energy of some IPs is obtained as a sum
of the potential energies of bond lengths, bond angles, etc., it can nevertheless be transformed as a sum
over atomic energies.
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2. complete. A system of descriptors is said to be complete if it uniquely deter-

mines the atomic environments, up to the above mentioned symmetries; it is

over-complete if a proper subset of is complete. In other words, a representation

is complete when there exists a one-to-one mapping (i.e. a bijection) between the

atomic environments and the invariant descriptors. It is not complete if more

than one atomic environments are mapped to the same invariant descriptors (i.e.

surjection). It is over-complete if more than one invariant descriptors are assigned

to a given atomic environments, but different atomic environments never have

identical descriptors.

3. continuous and differentiable. Having discontinuities in the representation makes

it extremely challenging, if not impossible, for a machine learning algorithm to

recover the smoothness of a potential energy surface. IPs should be differen-

tiable so as to compute certain quantities in atomistic simulations. For example,

atomic forces require first derivatives of potential energy with respect to atomic

coordinates and derivatives up to the 4th order are necessary for some physical

properties, like elastic constants, computed using lattice dynamics [65].

4. independent. For crystalline solids and amorphous materials, the number of neigh-

boring atoms that fall into the local environments of an atom (typically defined

by a cutoff sphere with its center located at the atom) needs to be allowed to vary,

because, in the course of an atomistic simulation, atoms can enter or leave the

local environments. For the purpose of function fitting, it is preferable and more

practical that the length of the descriptor vector is independent of the number of

neighbors.

In this section, we survey some of the representative atomic environment descriptors

developed in recent years, including the Coulomb matrix representation, the symme-

try functions representation, the bispectrum representation, and the many-body tensor

representation.

3.1.1 Coulomb matrix

The Coulomb matrix [180,184,185] representation is built on the same information that

enters the Hamiltonian for an electronic structure calculation, namely, the coordinates
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and atomic numbers of atoms. The environment of an atom A is represented as

Mij =

0.5Z2.4
i for i = j

ZiZj

‖ri−rj‖ for i 6= j
, (3.1)

where ri and Zi denote the Cartesian coordinates and atomic number of atom i, respec-

tively, and the indices i and j run over atom A itself and its neighboring atoms within

its cutoff sphere. The diagonal elements represent an exponential fit of the free atom

potential energy to its nuclear charge (atomic number), and the off-diagonal elements

encode the Coulomb repulsion between nuclear charges (atomic numbers) of atoms i

and j.

The Coulomb matrix retains the translational, rotational, and inversional symme-

tries, but fails the permutational symmetry requirement as permutating two atoms with

the same species change the order of rows and columns. To avoid the dependence on

atom ordering, one can diagonalize the Coulomb matrix and use the ordered eigenvalues

as the descriptor vector. For matrices with different size,2 the eigenvalues of the smaller

systems can be padded by zeros [180]. In such the Coulomb matrix representation satis-

fies requirements 1, 3, and 4; however, it is not complete since distinct atomic structures

can have exactly the same descriptor [186].

3.1.2 Symmetry functions

The symmetry functions [178, 187] employ two sets of radial functions and angular

functions to represent atomic environments. Radial functions are constructed as sums

of two-body terms, and angular functions additionally contain sums of three-body terms.

Three types of functions are proposed to describe the radial environments of an atom i:

G1
i =

∑
j 6=i

fc(rij), (3.2)

G2
i =

∑
j 6=i

e−η(rij−Rs)2 · fc(rij), (3.3)

2The Coulomb matrix for an atom with fewer neighbors has a smaller size than that with more
neighbors.
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and

G3
i =

∑
j 6=i

cos(κrij) · fc(rij). (3.4)

Two types of functions are proposed for the angular environments of an atom i:

G4
i = 21−ζ

∑
j 6=i

∑
k>j
k 6=i

(1 + λ cos θjik)
ζ · e−η(r2

ij+r2
ik+r2

jk)fc(rij) · fc(rik) · fc(rjk), (3.5)

and

G5
i = 21−ζ

∑
j 6=i

∑
k>j
k 6=i

(1 + λ cos θjik)
ζ · e−η(r2

ij+r2
ik+r2

jk)fc(rij) · fc(rik). (3.6)

In the symmetry functions, rij denotes the Euclidean distance between atoms i and j,

θjik is the angle between bonds j–i and k–i with the vertex at atom i, and η,Rs, κ, ζ

and λ are hyperparameters. The cutoff function fc is given by

fc(r) =


1
2

[
cos
(
πr
rcut

)
+ 1
]

for r ≤ rcut

0 for r > rcut

, (3.7)

where rcut is the cutoff distance, atoms beyond which do not contribute to the local

environments.

The symmetry functions take only pair distances between atoms as the arguments,3

thus automatically satisfying the translational, rotational, and inversional symmetry

requirement [17]. They are also permutationally symmetric since these functions are

constructed by summing over all the bond lengths and bond angles within the cutoff

sphere. They are obviously continuous and differentiable. Each choice of the hyperpa-

rameter η in G1
i constitutes to one component in the descriptor vector, and the same

applies to G2
i , G

3
i , G

4
i , and G5

i . Consequently, the length of the descriptor vector is

equal to the number of hyperparameter sets, independent of the number of neighboring

atoms. The symmetry functions are not complete because interactions of orders higher

than two-body and three-body are ignored. In sum, the symmetry functions satisfy

requirements 1, 3, and 4, but not 2 discussed in section 3.1.

3The bond angles cosjik in G4
i and G5

i can be easily rewritten as a function of pair distances using
the law of cosines.
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3.1.3 Bispectrum

We start by defining a spatial distribution of the neighbors in an atomic environment

by a three-dimensional (3D) atomic neighborhood density function,

ρ(r) =
∑
i

wZiδ(r − ri), (3.8)

where the index i runs over all the atoms within some cutoff distance, wZi is a weight

factor assigned according to the atomic species of atom i, ri is the distance vector

connecting the center atom and its neighboring atom i,4 and δ(·) is the Dirac delta

function.

Equation (3.8) can be expanded in terms of spherical harmonics,

ρ(r̂) =
∞∑
l=0

l∑
m=−l

clmYlm(r̂), (3.9)

where r̂ is the point on the unit sphere corresponding to the direction of the vector

r, and ρ(r̂) is the projection of ρ(r) onto the unit sphere. The coefficients clm can be

obtained as

clm = 〈ρ|Ylm〉 =
∑
i

Ylm(r̂i), (3.10)

where 〈·|·〉 denotes function inner product. Applying a rigid-body rotation R ∈ SO(3) to

a spherical harmonic function Ylm can be expressed as a linear combination of spherical

harmonics,

RYlm =
l∑

m′=−l
Dl
mm′Ylm′ , (3.11)

where Dl is the Wigner matrix [188], whose elements are given by

Dl
mm′ = 〈Ylm|R|Ylm′〉. (3.12)

4Note, here we relax the notation to use ri to indicate the distance vector, instead of the Cartesian
coordinates of atom i.
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The Wigner matrix is unitary, i.e.

(Dl)†Dl = I, (3.13)

where (·)† denotes complex conjugate transpose of a matrix, and I is the identity. The

projected atomic neighborhood density function in equation (3.9) transforms under

rotation R as,

Rρ = R

∞∑
l=0

l∑
m=−l

clmYlm

=
∞∑
l=0

l∑
m=−l

clmRYlm

=
∞∑
l=0

l∑
m=−l

l∑
m′=−l

clmD
l
mm′Ylm′

=
∞∑
l=0

l∑
m′=−l

(
l∑

m=−l
clmD

l
mm′

)
Ylm′ ,

(3.14)

where in the third equality we use equation (3.11). Comparing equation (3.14) and

equation (3.9), we see that the expansion coefficients transform under a rotation R as

clm
R−→

l∑
m′=−l

clm′D
l
m′m ⇐⇒ cl

R−→Dlcl. (3.15)

As a result, the tensor product of the expansion coefficient transforms under a rotation

R as

cl1 ⊗ cl2
R−→ (Dl1 ⊗Dl2)(cl1 ⊗ cl2). (3.16)

The tensor product of two Wigner matrices can be decomposed into a direct sum of

Wigner matrices [183]:

Dl1 ⊗Dl2 = (C l1l2)†

 l1+l2⊕
l=|l1−l2|

Dl

C l1l2 , (3.17)
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where
[⊕l1+l2

l=|l1−l2|D
l
]

is a block diagonal matrix

 l1+l2⊕
l=|l1−l2|

Dl

 =


D|l1−l2|

D|l1−l2|+1

. . .

D|l1+l2|

 , (3.18)

and C l1l2 is the Clebsch-Gordan coefficients matrix [189]. The Clebsch-Gordan co-

efficients matrices are unitary (i.e. (C l1l2)†C l1l2 = I). Combining equations (3.16)

and (3.17), we see that C l1l2(cl1 ⊗ cl2) transforms under a rotation R as

C l1l2(cl1 ⊗ cl2)
R−→ C l1l2(C l1l2)†

 l1+l2⊕
l=|l1−l2|

Dl

C l1l2(cl1 ⊗ cl2)

=

 l1+l2⊕
l=|l1−l2|

Dl

C l1l2(cl1 ⊗ cl2).

(3.19)

The form of equation (3.19) implies thatC l1l2(cl1⊗cl2) itself possesses a diagonal matrix

structure, and thus we can rewrite it as

C l1l2(cl1 ⊗ cl2) =

l1+l2⊕
l=|l1−l2|

gll1l2 (3.20)

for some accordingly defined gll1l2 , which transforms under rotation R as

gll1l2
R−→Dlgll1l2 . (3.21)

The bispectrum of ρ(r̂) is defined as

bll1l2 = c†lgll1l2 , (3.22)

which is invariant to rotation (combining equations (3.15) and (3.21)):

bll1l2
R−→ (Dlcl)

†Dlgll1l2 = c†lgll1l2 . (3.23)
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In indicial notation, the bispectrum defined in equation (3.22) can be written as

bll1l2 =
l∑

m=−l

l1∑
m1=−l1

l2∑
m2=−l2

c∗lmC
ll1l2
mm1m2

cl1m1cl2m2 , (3.24)

where (·)∗ denotes the complex conjugate of a scalar.

So far, we have focused only on the rotational symmetry of the representation, but

neglected the radical distances of neighboring atoms to the center atom by projecting

the atomic neighborhood density function onto the unit sphere. To introduce the radical

dependence, one way is to complement the spherical harmonical function with a radical

basis; however, as pointed out in [183], this can easily lead to a poor representation if

the radial basis functions do not sufficiently overlap. By expanding equation (3.8) using

a four-dimensional (4D) hyperspherical harmonics basis, the atomic neighborhood can

still be represented in a 3D space, but without the need to explicitly introduce a radial

basis set [183]. The derivation of bispectrum in the 4D space is analogous to that in

the 3D space, and the final expression for the bispectrum is

Bjj1j2 =

j1∑
m′1,m1=−j1

cj1
m′1,m1

j2∑
m′2,m2=−j2

cj2
m′2,m2

j∑
m′,m=−j

Cjj1j2mm1m2
Cjj1j2
m′m′1m

′
2
(cjm′m)†. (3.25)

The bispectrum of the atomic neighborhood density function is permutationally

invariant as can be easily seen from equation (3.8) that changing the order of the atoms

only affects the order of summation. It is rotationally invariant as shown above, and

a proof of the translational symmetry can be found in Ref. [190]. It is continuous

and differentiable, and the length of the descriptor vector depends on the number of

expansion coefficients one hopes to use, independent of the number of atoms in the

neighborhood. The bispectrum is not complete; however, it is still a remarkably rich

invariant representation of atomic environments [190].

3.1.4 Many-body tensor

The Coulomb matrix discussed in section 3.1.1 is diagonalized and the eigenvalues can

be used as a representation of the atomic environments. The closely related bag of

bonds (BoB) representation [191] also uses the Coulomb matrix, but it arranges the
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matrix components in a different manner to obtain the descriptor vector. The matrix

components are assigned into a total number of N2
s bags according to the two species

an component is associated with, where Ns is the total number of species in the system.

The bags with fewer bonds are zero padded such that all the bags have the same number

of bonds as the largest one (Nb). We can view the bag of bonds as a N2
s ×Nb matrix.

To proceed, the entries in each bag are sorted according to their magnitude, and then

the bags are concatenated in a predefined order to form a vector representation of the

atomic environments.

The many-body tensor representation (MBTR) [192] retains the same idea to stratify

the bonds according to the species, but avoids any type of sorting by arranging the bond

distances on a real-space axis x:

f̂2(x, Z1, Z2) =

Na∑
i,j=1

δ(x− r−1
ij )δZ1,ZiδZ2,Zj , (3.26)

where Na is the number of atoms, δ(·) denotes the Dirac delta, δ·,· denotes the Kronecker

delta, and Zi is the species of atom i. The above measure has a mixed continuous-

discrete domain. To make it smooth, the Dirac delta δ(·) can be replaced by another

distribution (e.g. the Gaussian distribution) to achieve a broadening or smearing effect

[192], and the Dronecker delta δ·,· can be replaced by a species similarity matrix C ∈
RNs×Ns . We can also add a weighting function to scale the contributions of certain

groups of atoms. Putting all these together, equation (3.26) becomes

f2(x, Z1, Z2) =

Na∑
i,j=1

w2(i, j)p(x, g2(i, j))CZ1,ZiCZ2,Zj , (3.27)

where g(i, j) describes a relation between atoms i and j. The above two-body represen-

tation can be readily generalized to a many-body representation:

fk(x,Z) =

Na∑
i1,...,ik=1

wk(i1, . . . , ik)p(x, gk(i1, . . . , ik))

k∏
j=1

CZj ,Zij
, (3.28)

where Z ∈ Nk are atom species, wk assigns a weight for a group of k atoms, and

gk describes a relation among the k atoms in the group. Canonical choices of gk for
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k = 1, 2, 3, 4 are atoms count, bond length, bond angle, and dihedral angle, respectively.

Equation (3.28) is continuous along the x axis, not suitable for a vectorized repre-

sentation of the atomic environments, but it can be readily discretized, resulting in a

rank k+ 1 tensor of dimensions Ns × · · · ×Ns ×Nx with Nx = (xmax − xmin)/∆x. One

can then linearize the element rank of the k + 1 dimensional tensor to make it a vector

representation of the atomic environments.

So far, we have only talked about how to use MBTR to represent molecules with

a finite number of atoms. For periodic crystalline systems, there are infinitely many

number of atoms (i.e. Na = ∞), making the sum in equation (3.28) diverges. As

pointed out in [192], this can be overcome by requiring the indices i1, . . . , ik only run

over the atoms in a primitive unit cell. Yet another method is to let the indices only

run over the neighboring atoms within a cutoff sphere centered at the target atom.

The length of the MBTR descriptor is independent of the number of neighboring

atoms by construction. The MBTR representation is invariant with respect to trans-

lation, rotation, and inversion of the space, as well as permutation of atoms with the

same species. It is also continuous and differentiable if appropriate gk is selected, for

example, the above mentioned canonical choices. It is complete if a sufficiently large

k is used (apparently k = Na would work), although, in practice, we usually tend to

choose a k no larger than 4, making the representation incomplete.

3.2 Regression methods for machine learning potentials

There are many machine learning regression methods suitable for constructing inter-

atomic potentials (IPs). In this section, we review some of the most widely used ones,

including the parametric linear regression and neural network (NN) models and the

nonparametric kernel ridge regression (KRR) and Gaussian process (GP) models. IPs

built using these methods have been shown successful in reproducing first-principles

energies and forces and are widely used to study a variety of materials problems. Be-

fore delving into these regression methods, let me first introduce the notation that will

be used throughout this section. We use a column vector x of length M to denote
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an observation of the input data and a scalar y to denote the corresponding output.5

Collectively, a N × M matrix X = [xT
1 ; ,xT

2 ; · · · ;xT
N ] represents a set of N inputs,

where each row represents a specific observation, and correspondingly a column vector

y = [y1; y2; · · · ; yN ] of length N represents the set of all outputs. We use x∗ to denote a

new input not in the training set, for which we want to make prediction using a model,

and use y∗ to denote the prediction.

3.2.1 Linear regression

As the simplest regression method, linear regression models the output as a linear

combination of the input:

y(x;θ) = θ0 + θ1x1 + · · ·+ θMxM =
M∑
i=0

θixi = θTx, (3.29)

where we define an additional dummy input x0 = 1 for the convenience to write the

equation in a vector form. This model is not only a linear function of the parameters θ,

but also a linear function of the input x. The linearity in input, however, significantly

limits the generality of the model. Linear regression can be extended to model non-

linear relationship by considering linear combinations of nonlinear functions of the input,

taking the form

y(x;θ) =

D∑
i=0

θiφi(x) = θTφ(x), (3.30)

where φ0(x), . . . , φD(x) are a set of D nonlinear basis functions and we define a dummy

basis function φ0(x) = 1 as in equation (3.29). Although equation (3.30) models nonlin-

ear relationship between the input and output, we still call functions of this form linear

regression because it is linear in the parameters θ [96, 177].

Given a data set D = (X,y), the parameters θ in equation (3.30) can be solved

analytically using the least squares method discussed in section 2.1.2. For scalar output,

5For simplicity, we use a scalar output. The methods discussed in this section can be easily generalized
to vector output.
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equation (2.10) can be written as

L(θ) =
1

2

1

σ2

N∑
i=1

[
yi − θTφ(xi)

]2
, (3.31)

where σ2 is the variance. The gradient of L(θ) with respect to θ is

∇θL(θ) =
1

σ2

N∑
i=1

[
yi − θTφ(xi)

]
φ(xi)

T. (3.32)

Setting it to zero, we have

N∑
i=1

yiφ(xi)
T − θT

[
N∑
i=1

φ(xi)φ(xi)
T

]
= 0. (3.33)

Then the solution θ̂ can be obtained as

θ̂ = (ΦTΦ)−1ΦTy, (3.34)

known as the normal equations for least-squares problem, where Φ is a N × (D + 1)

matrix, called the design matrix :

Φ =


φ0(x1) φ1(x1) . . . φD(x1)

φ0(x2) φ1(x2) . . . φD(x2)
...

...
. . .

...

φ0(xN ) φ1(xN ) . . . φD(xN )

 . (3.35)

The quantity (ΦTΦ)−1ΦT is known as the Moore-Penrose pseudo-inverse of the matrix

Φ, which can be regarded as a generalization of the notion of matrix inverse to non-

square matrices [96]. In fact, fo invertible square matrix Φ, we have (ΦTΦ)−1ΦT =

Φ−1Φ−TΦT = Φ−1.

The spectral neighbor analysis potential (SNAP) [193] adopts the linear regression

approach, where the bispectrum discussed in section 3.1.3 is used as the basis functions.
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3.2.2 Kernel ridge regression

KRR [177] is a combination of the ridge regression (linear least squares with an L2

regularization) and the kernel trick. It learns a linear function in the kernel space,

but for nonlinear kernels, this corresponds to a nonlinear function in the original input

space.

For a linear regression model y(x;θ) = θTφ(x), we add an L2 regularization term

to its original loss function (equation (3.31)) to obtain a new loss function6

L(θ) =
1

2

N∑
i=1

[
yi − θTφ(xi)

]2
,+λ‖θ‖2, (3.36)

where λ is a regularization constant. Solving this by setting the gradient of L(θ) to zero

as in section 3.2.1, we have

θ̂ = (ΦTΦ + λI)−1ΦTy, (3.37)

where I is an identity matrix. Using the matrix inversion identity,7 equation (3.37) can

be rewritten as

θ̂ = ΦT(ΦΦT + λI)−1y. (3.38)

Defining a new variable α := (ΦΦT + λI)−1y, we have

θ̂ = ΦTα =
N∑
i=1

αiφ(xi). (3.39)

The fact that φ(xi) corresponds to the ith observation (i.e. the ith row of the design ma-

trix Φ) suggests that the optimal solution is a linear combination of the N observations

in the training set.

At test time, the prediction for a new data point x∗ can be computed as

y(x∗; θ̂) = θ̂Tφ(x∗) =
N∑
i=1

αiφ(xi)
Tφ(x∗). (3.40)

6The variance σ2 in equation (3.31) is absorbed into the regularization constant λ.
7For any matrix P and Q, we have P + PQP = P (I +QP ) = (I + PQ)P . So if both I + PQ

and I +QP are invertible, then (I + PQ)−1P = P (I +QP )−1.
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Equation (3.40) is in the form of an inner product, and thus we can apply the kernel

trick:

y(x∗; θ̂) =

N∑
i=1

αiκ(φ(xi),φ(x∗)), (3.41)

where κ(φ(xi),φ(x∗)) is a kernel function that measures the similarity between φ(xi)

and φ(x∗).

Rupp et al. [180] have employed KRR to model molecular atomization energies.

They use a Gaussian kernel to measure the similarity between molecules,

κ = exp

[
− 1

2σ2
d(φ(x),φ(x′))

]
, (3.42)

where the distance between molecules is defined as the L2 norm of the eigenvalues of

the Coulomb matrix discussed in section 3.1.1:

d(φ(x),φ(x′)) =

√∑
i

|εi − ε′i|2, (3.43)

in which εi and ε′i are the ith eigenvalues of the Coulomb matrices of the two molecules,

respectively.

3.2.3 Gaussian process

KRR is a deterministic model that cannot yield well-calibrated probabilistic outputs.

The Bayesian framework provides a probabilistic approach to calibrate models. In the

Bayesian approach, we assume there is some function to map an input to an output,

y = f(x;θ), and a prior distribution over the parameters p(θ). Given a training set,

and a likelihood of the data, p(y|X,θ), we can then obtain the posterior distribution

over θ as p(θ|X,y) ∝ p(θ)p(y|X,θ). With the posterior distribution, we can evaluate

the predictive distribution for a new data point

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,θ)p(θ|X,y) dθ. (3.44)

The above approach focuses on parametric representation of the function, y = f(x;θ);

however, instead of inferring for the parameters θ, we can define a prior distribution
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over functions and perform Bayesian inference over the functions directly.

GP is defined as a probability distribution over functions f(x) such that the set of

values of f(x1), . . . , f(xN ) evaluated at an arbitrary set of points x1, . . . ,xN is a joint

Gaussian distribution [96,177]. Similar to a Gaussian distribution for random variables,

a GP can be denoted as

f(x) ∼ GP(m(x), κ(x,x′)), (3.45)

where

m(x) = E[f(x)] (3.46)

is the mean function, and

κ(x,x′) = E[(f(x)−m(x))(f(x′ −m(x′))] (3.47)

is the kernel or covariance function, which needs to be positive definite. For a finite

data set X, this process defines a joint Gaussian distribution

p(f) = N (µ,K), (3.48)

where µ = [m(x1), . . . ,m(xN )] is the mean vector, and Kij = κ(xi,xj) is the Gram

matrix. In most applications, the mean function µ is simply taken as the constant

function 0, as no prior knowledge of the value of the latent function underlying the data

is available. As a result, we have

p(f) = N (0,K). (3.49)

To apply GP to regression problems with noise in the observations, we assume the

noise ε is additive, i.e. y = f(x) + ε, and it is independent and identically distributed

(i.i.d.), following a Gaussian distribution such that

p(y|f) = N (f, σ2), (3.50)

where σ2 is the variance of the noise. The joint distribution of the outputs y =
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[y1, . . . , yN ]T conditioned on f = [f1, . . . , fN ]T is a Gaussian of the form

p(y|f) = N (f , σ2I), (3.51)

where I is an identity matrix. With the GP prior in equation (3.49) and the conditional

distribution in equation (3.51), the marginal distribution conditioned on the data set

D = (X,y) can be obtained by integrating over f

p(y) =

∫
p(y|f)p(f) df = N (0,Σ), (3.52)

where the covariance matrix has components

Σij = κ(xi,xj) + σ2δij . (3.53)

So far, we have obtained the marginal distribution of a GP upon observations of

the training set. To make prediction for a new data point (x∗, y∗), we need to find

the joint distribution of the training set and the new data point, which, according to

equation (3.52), is given by (
y

y∗

)
= N

(
0,

(
Σ k

kT c

))
, (3.54)

where Σ is the N × N covariance matrix given in equation (3.53), the vector k has

elements ki = κ(xi,x
∗) for i = 1, . . . , N , and c = κ(x∗,x∗) + σ2. Therefore, the

predictive distribution is [96]

p(y∗|y) = N (m∗, (σ2)∗), (3.55)

where the mean is m∗ = kTΣ−1y and the covariance is (σ2)∗ = c − kTΣ−1k. The

predictive mean can also be written as

m∗ = kTΣ−1y =

N∑
i=1

αiκ(xi,x
∗), (3.56)

where αi is the ith component of Σ−1y.
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We note that the predictive mean of GP regression (equation (3.56)) has the same

form as the prediction made by KRR (equation (3.41)). However, GP regression has

the advantage that it is a full probabilistic model, from which confidence interval of a

prediction can be obtained by manipulating the predictive covariance.

Csányi et al. have employed the smooth overlap of atomic positions (SOAP) kernel

[183] to create GP potentials for a wide range of materials such as carbon, silicon, and

germanium [179,194,195].

3.2.4 Neural network

The linear regression model discussed in section 3.2.1 takes the form

y(x;θ) = f(θTφ(x)), (3.57)

where f(·) is merely an identity function in this case. In order to apply such models to

large-scale problems, it is necessary to adapt the basis functions φ(·) to the data [96].

An approach is to make the basis functions parametric and allow these parameters to

be adjusted, along with the original parameters θ, during training. A feed-forward NN

is a series of models in the form of equation (3.57) composed on top of each other, with

the outmost function f(·) remaining an identity function, but the others replaced by

some nonlinear activation functions.8 In such, we achieve the goal to transform each

basis function to a nonlinear function of linear combination of the inputs.

An NN can be represented graphically in the form of a network diagram as shown in

figure 3.1. This example NN consists of an input layer, two hidden layers, and an output

layer. Each node in the hidden layers is connected to all the nodes in the previous layer

and the next layer, and the node value is9

ynm = σ

(∑
n′

yn
′
m−1w

n′,n
m + bnm

)
, m = 1, 2, 3, (3.58)

8If the inner activation functions are linear, then the network can be replaced by an equivalent
model in the form of equation (3.57). This follows from the fact that the composition of successive
linear transformations is itself a linear transformation.

9Following the NN literature, a bias parameter b is separated from the set of weight parameters. The
bias parameter b is associated with an input variable whose value is clamped at 1.
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Figure 3.1: Schematic representation of an NN comprised of an input layer, two hidden
layers and an output layer. Each arrow connecting two nodes between adjacent NN
layers represents a weight. Biases and activation function are not shown in this plot.
See text for explanation of the variables.

where ynm is the value of node n in layer m, wn
′,n
m is the weight connecting node n′ in

layer m−1 and node n in layer m, bnm is the bias applied to node n of layer m, and σ is an

activation function (e.g. hyperbolic tangent) that introduces nonlinearity into the NN.

In a more compact way, equation (3.58) can be written as ym = σ(ym−1Wm + bm),10

where ym is a row vector of the node values in layer m, Wm is a weight matrix, and

bm is a row vector of the biases. For example, y1 and b1 are row vectors each with 4

elements and W1 is a 5 × 4 matrix for the NN shown in figure 3.1. Consequently, the

output can be expressed as11

y3 = σ[σ[y0W1 + b1]W2 + b2]W3 + b3. (3.59)

In essence, the NN model is nothing but a nonlinear function y = f(x;θ) that

maps a set of input to a set of output controlled by adjustable parameters θ = {W , b}.
Therefore, training an NN is not different from training any other nonlinear parametric

10The activation function is applied element-wisely.
11Usually the activation function is not applied to the output layer.
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model. Given a training set D = (X,y), we minimize the loss function

L(θ) =
1

2

N∑
i=1

‖f(xi;θ)− yi‖2, (3.60)

with respect to the parameters θ. A large number of, if not all, minimization algorithms

require the gradient of the loss function with respect to the parameters. Thanks to the

structure of the NN model, there is an efficient technique to evaluate the gradient of the

loss function in equation (3.60). This can be achieved by using a local message passing

scheme in which information is sent alternately forwards and backwards through the

NN, known as the error backpropagation [196]. The error backpropagation technique

only requires an overall computational cost of O(W ), proportional to the number of

weight parameters in the NN [96].

In principle, we can use any minimization algorithm to optimize the parameters, such

as the Levenberg–Marquardt (LM) method discussed in section 2.1.2 and the Broyden–

Fletcher–Goldfarb–Shanno minimization algorithm (BFGS) method that we shall use in

section 3.3. The loss function in equation (3.60) decomposes as a sum over the training

set, so does the gradient:

∇θL(θ) =
1

2

N∑
i=1

∇θ‖f(xi;θ)− yi‖2. (3.61)

Therefore, the computational cost of one minimization step is O(N), proportional to the

number of data points N in the training set. A recurring problem in machine learning

is that large training sets are necessary for good generalization. So, batch optimization

methods that require the whole training set (e.g. LM and BFGS) are computationally

expensive for machine learning problems, although they typically have good convergence

behaviors and lead to a small final loss.

In practice, nearly all machine learning is powered by the stochastic gradient descent

(SGD) algorithm [197], an extension of the standard gradient descent algorithm. The

insight of SGD is to treat the gradient as an expectation and estimate this expectation

using a (small) subset of the training data. Specifically, at each minimization step,

instead of using the whole training set to compute the gradient, we sample a minibatch
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of examples {x1, . . . ,xN ′} from the training set. The minibatch size N ′ is typically

chosen to be a relatively small number, ranging from 1 to a few hundred, and it is

usually held fixed as the training set size N grows. In such, we can estimate the

gradient at each minimization step with O(1) time:

∇θL(θ) ≈ N

2N ′

N ′∑
i=1

∇θ‖f(xi;θ)− yi‖2. (3.62)

Another crucial feature of SGD is that it allows the loss to increase during minimization,

which is inevitable in training dropout NNs that will be discussed in section 4.3, because

the NN structure changes from step to step when dropout is applied.

3.3 A neural network potential for multilayer graphene

As a prototype of stacked two-dimensional (2D) materials, multilayer graphene exhibits

strong sp2 covalent bonds within a layer and weak dispersion and orbital repulsion in-

teractions between layers. The cohesive energy of monolayer graphene, characterizing

intralayer bonding, is 8.06 eV/atom, whereas the interlayer binding energy of bilayer

graphene is only 0.02263 eV/atom. Although weak, it is the interlayer interactions

that define the function of many nanodevices such as nanobearings, nanomotors, and

nanoresonators [150], and also drive incommensurate to commensurate structural tran-

sitions [175,198], which lead to novel transport properties [45,199].

As discussed in section 2.3, there have been several efforts to develop an interatomic

potential (IP) for carbon systems. Early efforts include the bond-order Tersoff [113,147]

and reactive empirical bond order (REBO) [83, 114] potentials, which modulate the

strength of bonds based on their atomic environments. These potentials provide a

reasonable description for strong covalent bonds, but do not account for dispersion

interactions and thus are inherently short-ranged in nature. To address this limitation,

the adaptive intermolecular reactive empirical bond order (AIREBO) [148] potential

adds a 6–12 Lennard–Jones (LJ) [77] term to model dispersion, and the long-range

carbon bond order potential (LCBOP) [84] and AIREBO–M [200] potentials add Morse

[153] terms for this purpose. The more complex reactivate force field (ReaxFF) [201]

potential constructs the bond order differently than the above potentials and includes
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explicit terms to account for van der Waals (vdW), Coulombic, and under- and over-

coordination energies.

These IPs have been shown to work well for a variety of applications, but in many

cases their quantitative predictions are inaccurate when compared with first-principles

and experimental results. For example, the phonon dispersion curves of monolayer

graphene at 0 K computed using these IPs deviate largely from density functional the-

ory (DFT) results, especially for the optical modes (discussed later in section 3.3.2).

As for interlayer interactions, the Tersoff and REBO potentials cannot be used because

they do not account for long-range dispersion interactions. The AIREBO, AIREBO–

M, LCBOP, and ReaxFF potentials do predict overall binding characteristics between

graphene layers, such as the equilibrium layer spacing and the c-axis elastic modulus,

but are unable to accurately distinguish energy variations for different relative align-

ments of layers [68]. The reason is that in addition to dispersion, the interlayer inter-

actions include short-range Pauli repulsion between overlapping π orbitals of adjacent

layers. The repulsive interaction is not correctly modeled in these IPs. The registry-

dependent Kolmogorov–Cresp (KC) potential [150] and the dihedral-angle-corrected

registry-dependent interlayer potential (DRIP) [68] discussed on section 2.3 address

this by employing a term that depends on the transverse distance between atom pairs

to capture the repulsion due to orbital overlapping. However, a major limitation of the

KC potential and DRIP is that they are not reactive, i.e. they require an a priori fixed

assignment of atoms into layers. This prevents the study of many problems of interest,

such as vacancy migration between layers [202].

For carbon systems, Csányi et al. have developed two Gaussian approximation po-

tentials (GAPs)12: one for liquid and amorphous carbon [203] and the other for mono-

layer graphene [194]. Khaliullin et al. [11, 204] have developed neural network (NN)

potentials to model phase transition from graphite to diamond. Generally speaking, the

transferability (i.e. the ability of an IP to make accurate predictions outside its train-

ing set) of machine learning potentials is low. Therefore, given their training sets, the

GAP for liquid and amorphous carbon and the NN potentials for phase transition are

not suitable for multilayer graphene structures. The GAP for graphene is an accurate

model that correctly reproduces many properties of monolayer graphene obtained from

12GAP uses Gaussian process as the repression method.
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DFT [194]; however, similar to the Tersoff and REBO potentials, it lacks a descrip-

tion of the interlayer interactions and therefore cannot be used for multilayer graphene

structures.

In this section, we present a new hybrid NN and physics-based potential for mul-

tilayer graphene systems that is reactive and provides an accurate description of both

the intralayer and interlayer interactions. The potential is referred to as “hNN-Grx”

(where the subscript x indicates that it can be used for multiple graphene layers). The

long-range dispersion attraction is modeled using a theoretically-motivated r−6 term

(as in the LJ potential), and the short-range interactions are described using a general-

purpose NN. The latter include both the covalent bonds within a layer and the repulsion

due to overlapping orbitals of adjacent layers. The parameters in the new hNN-Grx po-

tential are trained against a large dataset of monolayer graphene, bilayer graphene, and

graphite configurations obtained from DFT calculations with an accurate dispersion

correction.

3.3.1 Definition of model

The total potential energy of a configuration consisting of N atoms is decomposed into

the contributions of individual atoms

E =

Na∑
i=1

Ei, (3.63)

where Ei is the atomic energy of atom i, composed of a long-range interaction part

and a short-range interaction part, i.e. Ei = Elong
i + Eshort

i . The long-range dispersion

attraction is modeled by a theoretically-motivated r−6 term as in the LJ potential,

Elong
i = −A

Na∑
j 6=i

r−6
ij · Sup(x) · Sdown(x), (3.64)

where A is a fitting parameter, rij is the distance between atoms i and j, and Sup(x) and

Sdown(x) are switching functions that turn interactions on and off in certain distance
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Table 3.1: Summary of parameters in the hNN-Grx potential and hyperparameters that
define the neural network structure in the short-range part of the potential.

A 8.3427 eV
rmin

up 2 Å

rmax
up 4 Å

rmin
down 9 Å
rmax

down 10 Å

number of hidden layers 3
number of nodes in hidden layers 30

activation function σ tanh
rshort

cutoff 5 Å
descriptors see section 3.1.2

weights see appendix B
biases see appendix B

ranges. The down switching function is defined as

Sdown(x) =


1, x < 0

−6x5 + 15x4 − 10x3 + 1, 0 ≤ x ≤ 1

0, x > 1

. (3.65)

This function monotonically decreases from one to zero over the range x ∈ [0, 1], and has

zero first and second derivatives at both x = 0 and x = 1. The up switching function is

the complementary expression, Sup(x) = 1−Sdown(x). The switches are applied within

a desired distance interval [rmin, rmax] using the dimensionless argument,

x = x(rij) =
rij − rmin

rmax − rmin
. (3.66)

The values of rmin and rmax for the up and down switching functions are given in

table 3.1. With these values, the down switching function Sdown(x) causes the potential

to smoothly vanish at the cutoff rmax
down, and the up switching function Sup(x) turns off

the long-range interactions when the pair distance rij is smaller than rmin
up .

The short-range interactions (including both the covalent bonds within a layer and

the repulsion between overlapping orbitals of adjacent layers) are represented by an
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Figure 3.2: Schematic representation of an NN potential for the short-range energy
Eshort
i of atom i. This NN consists of an input layer, two hidden layers, and an output

layer. The configuration of neighbors of atom i within a cutoff rcut is transformed to a
descriptor vector yj0 (j = 1, 2, . . . , 5), which serves as the input to the NN. The arrows
connecting nodes in adjacent layers represent weights. Biases and activation functions
are not shown in this figure. See text for explanation of the variables.

NN as shown schematically in figure 3.2. For this example NN, the short-range atomic

energy Eshort
i can be expressed as (see section 3.2.4 for more information)

Eshort
i = σ[σ[y0W1 + b1]W2 + b2]W3 + b3. (3.67)

IPs must be invariant with respect to translation, rotation, and inversion of space,

and permutation of chemically equivalent atoms as discussed in section 3.1. To ensure

that the NN satisfies these requirements, the environment of atom i, which is the in-

put to the NN, must be transformed to a new representation called a descriptor that

automatically satisfies these invariances. Thus the input layer y0 is a descriptor vector

which is a function of the set of positions rneigh
i of all atoms within the neighborhood
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of atom i defined by the cutoff distance rcut (including atom i itself), i.e.13

yj0 = gj(rneigh
i ), (3.68)

where j ranges over the components of the descriptor vector. As discussed in section 3.1,

there are various types of descriptors to represent the atomic environments. In this sec-

tion, we use symmetry functions [187] discussed in section 3.1.2 and the hyperparameters

are given in appendix B.

A challenging aspect of training an NN, which is also a source of the power and

flexibility of the method, is that it is up to developer to select the number of descriptor

terms to retain, the number of hidden layers, the number of nodes within each hidden

layer (which need not be the same), and the activation function. It is also possible to

create different connectivity scenarios between layers. Here we have opted for simplicity

and adopted a fully-connected network with the same number of nodes in each hidden

layer to reduce the number of hyperparameters that need to be determined in the

training process. We chose the commonly used hyperbolic tangent function, tanh(x) =

(ex − e−x)/(ex + e−x), as the nonlinear activation function σ.

The hNN-Grx potential parameters were determined from a dataset of energies and

forces for pristine and defected monolayer graphene, bilayer graphene, and graphite

at various states. This includes configurations with compressed and stretched cells,

random perturbations of atoms, and configurations drawn from ab initio molecular

dynamics (AIMD) trajectories at different temperatures. The dataset consists of a total

number of 14,250 configurations that are randomly divided into a training set of 13,500

configurations (95%) and a test set of 750 configurations (5%). The dataset along with

a detailed description of the configurations are provided in appendix D. The data set is

generated from DFT calculations using Vienna ab initio simulation package (VASP) in

the same way as described in section 2.3.1.

The hNN-Grx potential is fit in two stages: first the parameters in the long-range

part in equation (3.64) are determined, then the parameters in the short-range NN part

in equation (3.67).

For the long-range part, the interval bounds in the switching functions (rmin
up , rmax

up ,

13The descriptor values are normalized by subtracting from each component yj0 the mean value for this
component across all atomic environments in the training set and dividing by the standard deviation.
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rmin
down, rmax

down) are listed in table 3.1. The rmin
up and rmax

up values are selected based on the

graphene equilibrium lattice spacing of about 3.4 Å, rmax
down sets the cutoff of the long-

range interactions and is based on prior experience with DRIP [68] (see section 2.3),

and rmin
down is set a bit lower to create a smooth transition. After fixing these, a single

parameter θ = {A} remains to be determined. It is optimized by minimizing a loss

function L(θ) that quantifies the difference between the predictions of equation (3.64)

and DFT results for a subset of the training set. The subset consists of 52 configurations

of AB-stacked bilayer graphene at various layer spacings ranging from rmax
up to rmin

down.

The parameters are optimized by minimizing the loss function in equation (2.14), i.e.

L(θ) =
1

2

N∑
i=1

we
i

[
E(ri;θ)− Êi

]2
+

1

2

N∑
i=1

wf
i‖f(ri;θ)− f̂i‖2, (3.69)

where E(ri;θ) and f(ri;θ) = − (∂E/∂r)|ri are the potential energy and forces of con-

figuration i, in which E(ri;θ) = Elong =
∑Na,i

n=1E
long
n , where Na,i is the number of atoms

in configuration i. The energy weight we
i and force weight wf

i of configuration i have

units of eV−2 and (eV/Å)−2, respectively, given energy in units of eV and forces in units

of eV/Å. We set we
i to 1/(Na,i)

2, and wf
i to 1/(10(Na,i)

2).14 The target DFT energy and

forces for the long-range part Êi and f̂i consider only interlayer interactions, obtained

in the same way as described in details in section 2.3.1. The resulting parameter A is

given in table 3.1.

With the long-range interactions determined, the next step is to determine the short-

range part of the potential. The same loss function in equation (3.69) is used with three

differences compared with the long-range fitting: (i) the parameters θ are the weights

W and biases b in the NN; (ii) the entire training set is used; and (iii) the target energies

Êi and forces f̂i are the differences between the total DFT values and the predictions

from the long-range contribution in equation (3.64). The third item ensures that the

potential produces correct total energy and forces when the long-range and short-range

parts are used together.

The optimization was carried out using the KIM-based learning-integrated fitting

14The weights are inversely proportional to (Na,i)
2 such that each configuration contributes more

or less equally to the loss L(θ). This prevents configurations with more atoms from dominating the
optimization.
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framework (KLIFF) [69] with a Broyden–Fletcher–Goldfarb–Shanno minimization algo-

rithm (BFGS) minimizer [205]. A grid search was performed to determine the optimal

number of hidden layers and nodes by fitting the potential to the training set in each

case and finding which provided the minimum loss for the test set.15 Using this pro-

cess, it was found that 3 hidden layers with 30 nodes per layer was the optimal choice.

The resulting energy root-mean-square error (RMSE) and forces RMSE for the test set

are 4.66 meV/atom and 41.41 meV/(Å atom), respectively, and 4.56 meV/atom and

41.13 meV/(Å atom) for the training set. See table 3.1 for details of the NN parameters.

3.3.2 Testing of the hNN-Grx potential

An extensive set of calculations were performed to test the ability of the new hNN-

Grx potential to reproduce structural, energetic, and elastic properties of monolayer

graphene, bilayer graphene, and graphite obtained from DFT. A portion of the results

is presented in table 3.2 together with results from widely used IPs, ab initio ACFDT–

RPA, and experiments.

The in-plane lattice parameter of monolayer graphene, a, is obtained by fitting

the Birch–Murnaghan equation of state (EOS) [208] (to conform to the approach used

in DFT computations). The results presented in table 3.2 show that AIREBO and

AIREBO–M underestimate the value of a, Tersoff overestimates it, and the other po-

tentials give values close to the experimental and DFT results. Table 3.2 also shows the

values of the equilibrium layer spacing for bilayer graphene in AB stacking dAB, bilayer

graphene in AA stacking dAA, and graphite dgraphite. These values are also obtained

from the Birch–Murnaghan EOS, keeping the in-plane lattice parameter fixed to its

equilibrium monolayer value. The hNN-Grx potential and DRIP are in good agreement

with DFT(PBE+MBD) results to which they were fit. The KC model is in better agree-

ment with more accurate ACFDT–RPA. The remaining IPs all underestimate the AA

separation, and have inconsistent results for AB and graphite: AIREBO and LCBOP

are accurate for both, and AIREBO–M and ReaxFF underestimate both. Given this it

is not surprising that except for hNN-Grx, KC, and DRIP, all of the above IPs provide

inaccurate values for dAA− dAB. The DFT value is 0.215 Å, and the potentials predict:

15The loss of the test set is used to make the determination, rather than the training set, to prevent
overfitting.
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0.024 Å (AIREBO), 0.025 Å (AIREBO–M), 0.019 Å (LCBOP), and 0.009 Å (ReaxFF).

The reason for the poor accuracy is that these potentials cannot distinguish the AA and

AB stacking states. This is discussed further below.

Next, we consider energetics. The interlayer binding energy of a graphene bilayer

Eb as a function of layer spacing d is shown in figure 3.3 for AB and AA stacking. The

curves are shifted such that ∆E = Eb − EAB and ∆d = d − dAB, where EAB (listed

in table 3.2) is the optimal interlayer binding energy of AB-stacked bilayer graphene

at the equilibrium layer spacing dAB (i.e. EAB is the depth of the energy well relative

to a reference state at infinite separation). We see that the AIREBO, AIREBO–M,

LCBOP, and ReaxFF potentials give nearly identical results for energy versus separation

in the AB and AA stacking states in contrast to DFT where a clear difference exists.

In addition, the AIREBO–M and LCBOP potentials underestimate the depth of the

energy wells, whereas the ReaxFF potential overestimates it. (This can be seen by

considering the values predicted by these potentials relative to DFT at the largest

separation of ∆d = 2.5 Å, which is approaching the reference state). The hNN-Grx

potential correctly captures the energy difference between the AB and AA stacking

states as well as the depth of the energy wells. KC and DRIP can also capture the

energy difference (see section 2.3.2). Also notable is that at large separation, the curves

for the two stacking states merge since registry effects due to π-orbital overlap become

negligible and interlayer interactions are dominated by dispersion attraction. This effect

is captured correctly by the hNN-Grx potential.

A more complete view of the interlayer energetics is obtained by considering the

generalized stacking fault energy (GSFE) surface obtained by sliding one layer relative

to the other while keeping the layer spacing fixed. Figure 3.4 shows the results for a

layer spacing of d = 3.4 Å; the hNN-Grx potential is in quantitative agreement with

DFT results. The KC and DRIP GSFEs have a similar appearance (see section 2.3.2),

whereas the AIREBO, AIREBO–M, LCBOP, and ReaxFF GSFEs are nearly flat (not

shown).

Also listed in table 3.2 are the cohesive energy Ecoh and relaxed single-vacancy

formation energy Ev for monolayer graphene. The latter is computed as Ev = E2 −
E1 − µ, where E1 and E2 are the relaxed energy of monolayer graphene before and

after the single vacancy is created (by removing an atom from the simulation cell),
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Figure 3.3: Interlayer binding energy of a graphene bilayer versus layer spacing for AB
and AA stackings obtained from various potentials compared with DFT results. The
curves are shifted such that the minimum energy in AB stacking is located at (0, 0).
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Figure 3.4: The GSFE of bilayer graphene obtained by sliding one layer relative to the
other at a fixed layer spacing of d = 3.4 Å. The energy is relative to the AB state, which
is −21.53 meV/atom for the new hNN-Grx potential (on the left) and −22.33 meV/atom
for DFT (on the right). ∆EAA-AB denotes the energy difference between the AA and AB
states, and similarly ∆ESP-AB denotes the energy difference between saddle point (SP)
and AB states. The sliding parameters ∆a1 and ∆a2 are in units of lattice parameter
a = 2.466 Å.

and µ is the chemical potential of carbon, taken to be the cohesive energy Ecoh here.

All IPs perform reasonably well for these two properties except that the single-vacancy

formation energy predicted by GAP–Gr is significantly smaller compared with the other

IPs and DFT. This is likely because GAP–Gr was only trained against configurations

drawn from molecular dynamics (MD) trajectories of ideal graphene.

Finally, we consider elasticity properties. The elastic moduli of hexagonal graphite

was computed using finite differences. The five independent components are listed in

table 3.2. For each IP, the graphitic structure is constructed using its corresponding

in-plane lattice parameter, a, and equilibrium layer spacing dgraphite. In addition, the

in-plane elastic moduli C11 and C12 of monolayer graphene were computed (values listed

in parentheses). Similar to graphite, the graphene structure is constructed using the cor-

responding in-plane lattice parameter of each IP, whereas the “thickness” of graphene

(required to obtain bulk units) is assumed to be 3.34 Å in all cases. The results show

that for graphite the hNN-Grx potential is in good agreement with DFT for C11 (9.5%)

and C12 (8.8%), reasonable agreement for C33 (21.6%) and C44 (46.1%), and incorrect
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for C13 (1340%) (although we note that the DFT results disagree with experiments

in this case). For graphene, the hNN-Grx potential is in excellent agreement for C11

(2.1%), but overestimates C12 (29.5%). For the other potentials, notable disagreements

are: (i) ReaxFF predicts significantly larger values of C12 of both graphite and graphene;

(ii) All of the potentials greatly underestimate C44 for graphite; (iii) Tersoff overesti-

mates C11 and predicts negative C12 for graphene; and (iv) GAP–Gr overestimates C12

for graphene.

While the elastic moduli provide insight into the elastic behavior of the IPs, a more

complete view is gained from the phonon dispersion curves. A number of thermodynamic

properties, such as the thermal expansion coefficient and heat capacity, can be obtained

directly from dispersion relations via calculation of the free energy. Figure 3.5 shows the

phonon dispersion curves of monolayer graphene calculated using finite differences as

implemented in the phonopy package [209]. The predictions of the hNN-Grx potential

and GAP–Gr are in excellent agreement with DFT. The other potentials provide good

agreement for some phonon branches, but not all. REBO quantitatively predicts the

shape and dispersion character of most of the phonon branches, but fails for the high-

frequency transverse optical (TO) and longitudinal optical (LO) branches. LCBOP,

AIREBO, AIREBO–M, and ReaxFF are comparable, qualitatively predicting the overall

shapes of most curves, but are in poor quantitative agreement with DFT. Tersoff has

the worst performance with poor qualitative agreement for most branches. We note that

a drawback common to all of the physics-based potentials is that they fail to capture

the dispersive behavior of the high-frequency LO and TO branches, which hNN-Grx

and GAP-Gr predict with negligible error. The phonon dispersions of bilayer graphene

and graphite (not shown here) are identical to monolayer graphene, except that the ZA

branch splits into two doubly degenerate branches near the Γ point [210,211].

For the properties computed above and the IPs tested, the results indicate that

overall, machine learning potentials (both hNN-Grx and GAP–Gr) have higher accu-

racy than the physics-based potentials. However, the accuracy comes at the price of

increased computational cost. Table 3.2 shows the time (relative to Tersoff) that it

takes each potential to complete an MD trajectory of the same duration under the

canonical ensemble. The simulations were carried out using large-scale atomic/molecu-

lar massively parallel simulator (LAMMPS) [71,137] with our hNN-Grx implemented in
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Figure 3.5: Phonon dispersion curves of monolayer graphene along high-symmetry
points in the first Brillouin zone. The red curve is the DFT prediction, and the blue
curves are results from the potentials. Branch labels are shown in the upper left panel,
where “L” stands for longitudinal, “T” for transverse, “Z” for flexural, “O” for opti-
cal, and “A” for acoustic. Note that parts of the highest two branches by the Tersoff
potential are not shown.
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KIM [70, 212], GAP–Gr implemented in QUIP [213], and the other potentials natively

built into LAMMPS.16 While GAP–Gr is nearly 4000 times slower than Tersoff, the

hNN-Grx potential is much faster, only about 280 times17 slower than Tersoff. This

is a benefit of parametric methods: the evaluation time does not depend on the size

of the training set. Both hNN-Grx and GAP–Gr are still significantly faster than a

first-principles method like DFT, although they are significantly slower than the tested

physics-based potentials. KC and DRIP are relatively more expensive than the other

physics-based potentials because to model long-range dispersion attraction, they need

to use a much larger cutoff distance. For example, DRIP uses a cutoff of 12 Å, whereas

the other physics-based potentials considered here typically have cutoffs smaller than

5 Å.

3.3.3 Applications

The hNN-Grx potential is applied to two problems of interest that are beyond the

capabilities of DFT: (i) thermal conductivity of monolayer graphene; and (ii) interlayer

friction in bilayer graphene. In both cases the effect of vacancies on the results are

explored.

Thermal conductivity

Graphene has been reported to have extremely high thermal conductivity with experi-

mentally measured values between 1500 and 2500 W/mK [31–35] in suspended samples

at room temperature. (For comparison, copper has a thermal conductivity of about

400 W/mK.) Despite these efforts, accurate determination of the thermal conductiv-

ity of graphene remains challenging because thermal transport in this material is very

sensitive to defects and experimental conditions [214,215]. Atomistic simulations using

IPs provide an alternative approach to study the thermal conductivity in graphene and

investigate the effect of defects. In graphene at room temperature, the vast majority

16The configuration used in the simulations is monolayer graphene (bilayer graphene for KC and
DRIP) consisting of 192 atoms. Both KIM and QUIP have interfaces to LAMMPS, so that their
potentials can be used directly. The simulations were performed in serial mode with one core.

17For the hNN-Grx potential, the relative computational cost of the long-range LJ part to the short-
range NN part is 1:93. Within the NN part, the ratio of the time to evaluate the descriptors and the
time associated with other computations (e.g. calculating energy and forces) is 75:18. Thus it is clear
that the bottleneck is the evaluation of the descriptors.
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of the thermal transport is due to lattice vibrations,18 and thus we focus on the lattice

contribution in this work. An accurate prediction of the lattice contribution depends

on the ability of the potential to describe the phonon dispersion curves, and in partic-

ular the ZA mode associated with out-of-plane vibrations that provides the dominant

contribution to the lattice thermal conductivity in suspended graphene [218, 219]. As

seen in figure 3.5, the hNN-Grx potential is highly accurate in predicting all phonon

dispersion branches including ZA.

The thermal conductivity is computed using the Green–Kubo method, an equi-

librium MD approach. The Green–Kubo expression, based on linear-response theory,

is [220,221]

κij =
1

ΩkBT 2

∫ ∞
0
〈Ji(t)Jj(0)〉dt, (3.70)

where i, j ∈ {x, y, z} are Cartesian components, kB is Boltzmann’s constant, T is the

temperature, 〈Ji(t)Jj(0)〉 is the heat current auto-correlation (HCA) function expressed

as a phase average, and Ω is the volume of the system defined as the area of graphene

multiplied by the van der Waals thickness (3.457 Å in the present case; see table 3.2).

The upper limit of the integral in equation (3.70) can be approximated by tP , the

correlation time required for the HCA to decay to zero. In the case of an MD simulation,

the phase average in the HCA is approximated by a time average computed at discrete

MD time steps. Consequently, equation (3.70) is in fact a summation and we actually

compute [221]

κij(tP ) =
∆t

ΩkBT 2

P∑
p=1

(Q− p)−1
Q−p∑
q=1

Ji(p+ q)Jj(q), (3.71)

where ∆t is the MD time step, Q is the total number of steps, P = tP /∆t is the number

of steps for integration (should be smaller than Q), and Ji(p+ q) is the ith component

of the heat current at step p+ q.

A key component of the Green–Kubo method is the definition of the heat current.

We note that the heat current implemented in the LAMMPS MD code [71, 137] is

18The electronic contribution is estimated to be 1% according to the Wiedemann–Franz law [216]. A
later DFT study shows that the Wiedemann–Franz law is broadly satisfied at low and high temperatures
but deviates largely at room temperatures [217]. Even in the latter case, the lattice contributions still
accounts for about 90% of the total thermal conductivity.
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intended for pair potentials only. For many-body potentials, such as the hNN-Grx

potential, using the LAMMPS expression can lead to incorrect results.19 In this work,

we use the definition in [222], which applies to arbitrary many-body potentials.

We study the thermal conductivity in pristine graphene and investigate the impact

of defects. In practice, graphene can contain a variety of defects including single vacan-

cies, double vacancies, Stone–Wales defects, adatoms, dislocations, and grain bound-

aries [223, 224]. Here, we focus on single vacancies, which have been experimentally

shown to be a common type of defect in graphene [225]. The base graphene system

consists of a periodic rectangular supercell of size 51.25 Å by 49.32 Å in the x (arm-

chair) and y (zigzag) directions comprised of 960 atoms. Separate calculations showed

that this system is sufficiently large to obtain converged thermal conductivity for ideal

graphene in agreement with previously published results in [219]. Single vacancies are

generated by randomly removing atoms from the supercell. The equations of motion are

integrated using a velocity-Verlet algorithm with a time step of ∆t = 1 fs. The system

is initially thermalized for 0.5 ns at a constant temperature of T = 300 K under NV T

conditions (canonical ensemble) using a Langevin thermostat. The thermostat is then

switched off and data for the Green–Kubo expression is collected under NV E condi-

tions (microcanonical ensemble). A time scale on the order of nanoseconds is necessary

to sufficiently converge the HCA function [221]. We ran the NVE simulation for 10 ns

based on previous studies of thermal conductivity in graphene [44,226].

The thermal conductivity in the x (armchair) direction, κxx, as a function of tP for

pristine graphene, graphene with a 0.1% vacancy density (one vacancy per supercell),

graphene with a 0.2% vacancy density (two vacancies per supercell) is plotted in fig-

ure 3.6. In each case, the thermal conductivity is computed by averaging over eight

uncorrelated trajectories with different initial conditions. We see that the majority of

the samples are well converged after tP = 0.5 ns, with the mean showing an even better

convergence. The thermal conductivity of pristine graphene measured at tP = 0.5 ns is

2531 W/mK, in good agreement with the experimental values of 1500–2500 W/mK for

suspended graphene [31–35]. The thermal conductivity for the graphene with a 0.1%

vacancy density is 415 W/mK, an 84% reduction, and for graphene with a 0.2% vacancy

19See [86] for a comparison of the thermal conductivity obtained using different definitions of the heat
current for the Tersoff potential [113,147].
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Figure 3.6: Thermal conductivity in the x direction, κxx, as a function of tP for pristine
graphene, graphene with 0.1% vacancy density, and graphene with 0.2% vacancy density.
In each panel, the thin gray lines are the HCA cumulative averages obtained from eight
independent trajectories, and the thick lines (red, blue, or green) are the means of these
HCA curves. The “X” denotes the sample with the largest κxx at tP = 1 ns among the
eight samples whose normalized HCA is shown in figure 3.7.
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Figure 3.7: Normalized HCA, 〈Jx(t)Jx(0)〉 / 〈Jx(0)Jx(0)〉, as a function of time t for
pristine graphene, graphene with 0.1% vacancy density, and graphene with 0.2% vacancy
density. The red, blue, and green curves are for the samples marked with an “X” for
graphene with 0, 0.1% and 0.2% vacancy density in figure 3.6.

density it is 195 W/mK, a 92% reduction. Similar values were obtained in the y (zigzag)

direction, i.e. κyy ≈ κxx as expected due to isotropy in the graphene plane.

In figure 3.7, we plot the normalized HCA, 〈Jx(t)Jx(0)〉 / 〈Jx(0)Jx(0)〉, for the sam-

ples marked with an “X” in figure 3.6. It is clear that the normalized HCA decays

to zero much earlier than t = 0.5 ns for all three types of graphene, indicating that

tP = 0.5 ns is sufficient for calculating the thermal conductivity. Further, the decay

of the normalized HCAs for graphene containing vacancies is much faster than that of

pristine graphene, which is related to the fact that the thermal conductivity in defective

graphene is much smaller than in pristine graphene. (Note that 〈Jx(0)Jx(0)〉 is almost

the same for all three cases and thermal conductivity is the integral of the HCA). The

underlying mechanism for the reduced thermal conductivity of graphene with vacan-

cies is that vacancy defects are a strong scattering source for phonons, which govern

heat transport in this system. Creation of a single vacancy leaves three carbon atoms

with two-fold coordination, effectively breaking the sp2 characteristics of the local lat-

tice. These two-fold coordinated atoms are less likely to follow the normal pattern of

vibrations in pristine graphene and cause a significant degree of scattering [226].
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V 1
2 (ββ) V 2

2 (ββ)

Figure 3.8: Close-proximity divacancies in adjacent layers of AB-stacked bilayer
graphene that favor the formation of covalent bonds between layers. Hollow circles
denote vacancies, and gray squares are locations where covalent bonds can form be-
tween atoms in adjacent layers. (There are two atoms in each gray square; the blue
atom in the bottom layer is hidden by the red atom in the top layer.) Following the no-
tation in [227], the subscript 2 in V 1

2 (ββ) and V 2
2 (ββ) indicates that two single vacancies

form a divacancy, the superscripts 1 and 2 denote first- and second-nearest interlayer
neighbors, and β means that a vacancy is located at the hexagonal ring center of the
other layer.

Interlayer friction

Although the bonding between layers in multilayer graphene is weak, the material still

exhibits significant resistance to sliding due to orbital overlap between layers. The

friction becomes even larger when covalent bonds are formed between adjacent layers.

Such bonds have been proposed to occur when vacancies exist in close proximity to

each other in the top and bottom layers and react to form covalent bonds in their

vicinity [227]. A plausible mechanism for this to happen is the creation of vacancies

through high-energy ion or electron bombardment of multilayer graphene [228]. Here,

we study the effect of vacancies and interlayer covalent bonding on friction in bilayer

graphene.

A number of possible interlayer divacancies can form via the coalescence of single

vacancies in adjacent layers leading to the formation of covalent bonds [227, 229]. We

focus on the two structures shown in figure 3.8, where the two vacancies are first- and

second-nearest interlayer neighbors referred to as V 1
2 (ββ) and V 2

2 (ββ) (see the figure

caption for an explanation of the notation).

Graphene bilayers containing the two types of divacancies V 1
2 (ββ) and V 2

2 (ββ) are

fully relaxed using DFT and the hNN-Grx potential. An important point is that in



99
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Figure 3.9: Core structures of the V 1
2 (ββ) and V 2

2 (ββ) divacancies after relaxation.
The interlayer covalent bond(s) formed near the divacancy are colored green. The bond
length predicted by DFT (hNN-Grx) is shown.

order for covalent bonds to form between layers it is necessary to compress the bilayer

in the direction perpendicular to the layers, so that the layers are brought to within

a spacing of about 2.4 Å prior to relaxation. Both DFT and the hNN-Grx potential

predict the same core structure after relaxation as shown in figure 3.9. Two interlayer

covalent bonds of equal length (colored green) are formed in the first-nearest-neighbor

divacancy (V 1
2 (ββ)). The bond length is predicted by the hNN-Grx potential to be

1.44 Å, which is good agreement with the DFT value of 1.53 Å. The formation of the

covalently-bonded divacancy leaves a two-fold coordinated atom in each layer, which

is electronically unsaturated and could be chemically active. For the second-nearest-

neighbor divacancy (V 2
2 (ββ)) only one bridging bond is formed with a length of 1.40 Å

according to the hNN-Grx potential. Again there is good agreement with DFT, which

predicts a bond length of 1.38 Å. As expected the single bond is stronger than the pair

of bonds for the first-nearest-neighbor divacancy as demonstrated by the shorter bond

length in this case. The V 2
2 (ββ) divacancy leaves two two-fold coordinated atoms in

each layer, which reconstruct to form a bond (not shown) with a bond length predicted

to be 1.84 Å by hNN-Grx and 2.15 Å by DFT. (The two atoms are 2.466 Å away from

each other in pristine graphene.)

Next, we measure the interlayer friction force in bilayer graphene with and without

the two types of divacancies. The setup for this simulation is shown in figure 3.10 for

the armchair direction. A graphene layer (red) is placed on top of a larger layer (blue)

and pulled to the right under displacement control conditions. The bottom layer has a

width of 76.88 Å (in the x direction) and height 22.19 Å (in the y direction) and contains
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Figure 3.10: Representation of the simulation supercell used to compute the friction
force in bilayer graphene with and without covalently-bonded divacancies in adjacent
layers. The force required to pull the top layer to the right along the armchair direction
is measured. The black rectangle indicates the location of divancncies when included.

648 atoms. The top layer has a width of 49.83 Å and 432 atoms. When divacancies are

included, they are introduced into the center of the bilayer at the location indicated by

the black rectangle in figure 3.10. Periodic boundary conditions are applied in the x

and y directions, and the direction perpendicular to the plane is free. Thus the system

corresponds to an infinite graphene nanoribbon with finite width in the x-direction (top

layer) sliding on an infinite graphene layer (bottom). The atoms at the right end of

the top layer (green shaded region) are displaced in the x direction with a step size of

0.1 Å. At each step, after applying the displacement to these atoms, the total energy

of the system is minimized subject to the following constraints: (1) The atoms at the

right end of the bottom layer are fixed in all three directions; and (2) the x coordinates

of the atoms at the right end of the top layer are fixed to their displaced positions.

Following relaxation, the force F required to hold the top layer in its displaced position

is computed as the total force acting on the constrained atoms in the top layer. From

this the shear stress is computed as τ = F/A, where A is the area of the top layer.

The shear stress is a more useful property than the force since it can be more readily

compared across systems.

Figure 3.11a shows τ as a function of the pulling distance ∆x along the positive

armchair direction. For a pristine bilayer without vacancies, the maximum shear stress

is 423 MPa at ∆x = 0.6 Å with a periodicity of
√

3a = 4.27 Å reflecting the underlying

periodic nature of the bilayer structure. Note that the shear stress is negative once

the top layer passes the unstable equilibrium state where it is balanced between forces

pulling it forward and backwards. The maximum shear stress for V 1
2 (ββ) is 1014 MPa
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Figure 3.11: Shear stress τ of friction versus pulling distance ∆x for bilayer graphene
with and without divacancies. Three different pulling directions are shown (see fig-
ure 3.10): (a) and (b) armchair edge in the positive and negative x directions, and (c)
zigzag edge in the y direction (positive and negative are the same).
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at ∆x = 2.9 Å. The interlayer bond breaks immediately once the shear stress reaches

this maximum, leading to an abrupt drop in the shear stress. In contrast for the V 2
2 (ββ)

divacancy, the interlayer bond does not break at the maximum shear stress of 597 MPa

at ∆x = 0.8 Å, but instead breaks later at a somewhat lower shear stress at ∆x = 2.2 Å.

Once the interlayer bonds are broken, the V 1
2 (ββ) and V 2

2 (ββ) curves follow the pristine

bilayer curve almost identically. This suggests that the presence of single vacancies in the

layers (in the absence of interlayer covalent bonding) has a negligible effect on friction.

We expect the shear stress for pristine graphene to depend on the pulling direction

due to the changing crystallographic orientation. The effect of the divacancies will also

depend on orientation. For example, referring to figure 3.8, we see that when pulling

the top layer to the right, the single vacancies in V 1
2 (ββ) move apart, whereas when

pulling to the left they initially move closer together. We explore friction anisotropy by

considering two more directions in figure 3.10: (1) pulling to the left along the armchair

direction, and (2) pulling upwards along the zigzag direction (downwards is the same due

to symmetry). In the first case, the simulation setup is the same as in figure 3.10, except

that the atoms on the left end of the top layer are pulled in the negative x direction.

In the second case, a bilayer is constructed with similar geometry to figure 3.10, but

with the zigzag edge aligned with the x direction and the armchair edge aligned with

the y direction. This system contains 370 atoms in the top layer and 560 atoms in the

bottom layer.

The shear stress versus pulling distance for these two cases are shown in figures 3.11b

and 3.11c. The results in the negative armchair direction (figure 3.11b) are similar

to those in the positive armchair direction (figure 3.11a), but with some differences.

The maximum shear stress for pristine graphene is the same as in figure 3.11a due to

symmetry, but for V 1
2 (ββ) it is 1018 MPa at ∆x = 2.2 Å, which is still larger than

that for V 2
2 (ββ), 824 MPa at ∆x = 4.8 Å. However, in this orientation V 1

2 (ββ) breaks

earlier (and immediately as before), whereas V 2
2 (ββ) exhibits a large amount of slip prior

to bond failure. For the zigzag direction in figure 3.11c, the shear stress for pristine

bilayer has a periodicity of 2.466 Å (smaller than that in figures 3.11a and 3.11b).

The maximum shear stress for the pristine bilayer, V 1
2 (ββ), and V 2

2 (ββ) are 248 MPa,

352 MPa, and 583 MPa, respectively, all smaller than their counterparts in figure 3.11a

and figure 3.11b. This direction has the lowest friction resistance.
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3.3.4 Summary

We have developed a hybrid NN potential for multilayer graphene structures called

“hNN-Grx.” This potential employs an NN to capture the short-range intralayer cova-

lent bonds and interlayer orbital overlap interactions, and a theoretically-motivated r−6

term to model the long-range interlayer dispersion. The potential parameters are deter-

mined by training against a large dataset of energies and forces for monolayer graphene,

bilayer graphene, and graphite in various states. The training set is computed from DFT

using the PBE functional augmented with the MBD dispersion correction to account

for long-range vdW interactions.

The potential was tested against a variety of structural, energetic, and elastic prop-

erties to which it was not directly fit. The validation tests show that:

1. The hNN-Grx potential correctly predicts the in-plane lattice parameter, equi-

librium layer spacings, interlayer binding energies, and generalized stack fault

energies for multilayer graphene structures. An important feature is that it can

distinguish the energies of bilayer graphene in the AA and AB stacking states.

2. The hNN-Grx potential has good agreement with DFT for the C11 and C12 elastic

moduli for both graphene and graphite. For the other elastic moduli of graphite

the agreement is reasonable for C33 and C44, but poor for C13. (We note however

that DFT results are inconsistent with experiments in the latter case.)

3. The phonon dispersion curves calculated from the hNN-Grx potential are in ex-

cellent agreement with DFT result, significantly better than any other empirical

potential, except for GAP-Gr (which is also a machine learning potential). We

note that GAP-Gr is limited to single-layer graphene.

The hNN-Grx potential was applied to several large-scale applications, not amenable

to DFT calculations. The thermal conductivity of monolayer graphene with different

vacancy densities is computed using a Green–Kubo approach. The thermal conductivity

of pristine graphene is found to be 2531 W/mK, consistent with experimental measure-

ments (1500–2500 W/mK). The thermal conductivity is dramatically reduced with the

addition of vacancies due to phonon scattering: 415 W/mK for a vacancy density of

0.1%, and 195 W/mK for 0.2%.
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In a second application, the effect of covalent bonds between layers in bilayer graphene

on friction is explored. Such bonds are predicted to occur when vacancies in separate

layers exist in close proximity and the bilayer is compressed. The hNN-Grx potential

predicts the formation of interlayer covalent bonds and a corresponding divacancy struc-

ture in agreement with DFT. It is found that the presence of these bonds increases the

friction between layers by up to a factor of four depending on the sliding direction.

We have shown that the new hNN-Grx potential provides a complete and accurate

description of both the intralayer and interlayer interactions in multilayer graphene

structures. It can be used to study mechanical and thermal properties of these materials,

and investigate the effects of defects. Unlike interlayer potentials like KC [150] and

DRIP [68] this potential does not assign atoms membership to layers or assume a layered

structure to characterized the registry geometry. Thus, for example, hNN-Grx could be

used to model passage of atoms between layers.



Chapter 4

Uncertainty Quantification in

Potentials

Historically, atomistic simulation with interatomic potentials (IPs) is viewed as a tool

limited to provide only qualitative insight. A key reason is that in such simulations

there are many sources of uncertainty that are difficult to quantify, thus failing to

give confidence interval on the results obtained from simulations [14]. The uncertainty

in atomistic simulations with IPs can be categorized into three types: (i) numerical

uncertainty, (ii) structural uncertainty, and (iii) parametric uncertainty , although some

researchers use slightly different terms [9,10,14]. Numerical uncertainty originates from

the particular computational setup, including finite time of sampling, size of integration

time step, size of simulation box, etc. We focus on the structural uncertainty and

parametric uncertainty that originate from IPs in this chapter. Structural uncertainty

refers to several approximations in an IP, reflected in the mathematical form of the

IP. Parametric uncertainty refers to the lack of knowledge in the precise values of the

parameters in the mathematical form of the IP.

To make atomistic simulations more trustable and to obtain quantitative simulation

results, it is imperative to quantify the uncertainty in IPs and propagate it to simulation

results. Although atomistic simulations date back to the 1950s [230], only recently

efforts have been put to carry out uncertainty quantification and propagation (UQ+P)

for atomistic simulations with IPs. In this chapter, we first review some of the latest

105



106

work in this filed, and then present two new methods that we developed to conduct

UQ+P in atomistic simulations. The first is based on Fisher information theory, and

we apply it to the Stillinger–Weber (SW) potential for MoS2 discussed in section 2.2.

The second is tied to the dropout technique used in neural network (NN), and we apply

the dropout technique to the neural network interatomic potential (NNIP) for multilayer

graphene structures discussed in section 3.3.

4.1 Approaches for uncertainty quantification

4.1.1 Fisher information theory

Let p(z |θ) be the probability distribution of a random variable z conditioned on the

values of θ, the score is defined as the partial derivative of the natural logarithm of this

distribution with respect to θ [231],

s =
∂

∂θ
ln p(z |θ). (4.1)

The expectation of the score is 0, i.e. Ez[s] = 0, and the Fisher information is defined

as the variance of the score:

I(θ) = Ez

[(
∂

∂θ
ln p(z |θ)

)2
]

= −Ez
[
∂2

∂θ2
ln p(z |θ)

]
, (4.2)

where the last equality assumes ln p(z |θ) is twice differentiable. The Fisher information

is a measure of the amount of information that the observable random variable z carries

about the unknown parameter θ.

The Fisher information is closely related to the Kullback–Leibler (KL) divergence

(also called relative entropy). The KL divergence between two distribution p(z) and

q(z) is [231–233]

DKL(p(z)‖q(z)) =

∫ ∞
−∞

p(z)
p(z)

q(z)
d z. (4.3)

Let’s consider the KL divergence between a parametric distribution with perturbed pa-

rameters p(z |θ+∆θ) and the parametric distribution itself p(z |θ), i.e. g = DKL(p(z |θ+
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∆θ)‖p(z |θ)). Expanding g at ∆θ = 0, we have

g = g|∆θ=0 + ∆θT ∂g

∂θ

∣∣∣∣
∆θ=0

+
1

2
∆θT ∂2g

∂θ2

∣∣∣∣
∆θ=0

∆θ +O(‖∆θ‖3). (4.4)

The first and second terms are both 0 since the KL divergence g achieves its minimum

0 at ∆θ = 0, and it can be shown that

∂2g

∂θ2

∣∣∣∣
∆θ=0

= I(θ). (4.5)

Therefore,

DKL(p(z |θ + ∆θ)‖p(z |θ)) =
1

2
∆θTI(θ)∆θ +O(‖∆θ‖3), (4.6)

indicating that the Fisher information represents the curvature of the KL divergence.

For the least-squares minimization problem discussed in section 2.1.2, the likelihood

function takes the form (i.e. equation (2.12))

p(y|x,θ) =
1√

(2π)M |Σ|
exp

[
−1

2
(y − h)TΣ−1(y − h)

]
, (4.7)

where h = h(x;θ) is a parametric model. The Fisher information (equation (4.2)) for

this distribution is (see appendix C for a derivation)

I(θ) = Ey

[(
∂h

∂θ

)T

Σ−1

(
∂h

∂θ

)]
. (4.8)

Using the Monte Carlo (MC) sampling technique, we can estimate the above expectation

as [97,234]

I(θ) ≈ 1

N

N∑
i=1

(
∂hi
∂θ

)T

Σ−1

(
∂hi
∂θ

)
, (4.9)

where the sum runs over the whole data set comprised of N observations.

Both the outputs of the model h and the parameters θ are typically finite; conse-

quently, the Fisher information can be represented as a Np × Np matrix F (θ), where

Np is the length of the parameter vector θ. The diagonal elements of the inverse Fisher
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information matrix (FIM) provide lower bounds on the variance of any unbiased esti-

mator θ̂ for the parameters (e.g. the least-squares estimator discussed in section 2.1.2),

known as the Cramér–Rao bound [125,126],

Varθ[θ̂i] ≥ [F−1]ii. (4.10)

The KL divergence can provide an upper bound for a large family of observables via

the Csiszár–Kullback–Pinsker inequality [235],

|Eθ+∆θ[P ]− Eθ[P ]| ≤ ‖P‖∞
√

2DKL(p(z |θ)‖p(z |θ + ∆θ)), (4.11)

where ∆θ is a perturbation of the parameter vector θ, and ‖P‖∞ denotes the supremum

of an observable P . Submitting equation (4.6) into equation (4.11) and ignore the high

order terms, we have

|Eθ+∆θ[P ]− Eθ[P ]| ≤ ‖P‖∞
√

∆θTI(θ)∆θ. (4.12)

A tighter version of the Csiszár–Kullback–Pinsker inequality has recently been put for-

ward [120]:

|Eθ+∆θ[P ]− Eθ[P ]| ≤
√

Varθ[P ]
√

∆θTI(θ)∆θ, (4.13)

where Varθ[P ] denotes the variance of the observable P .

With FIM, we can obtain bounds on interatomic potential (IP) parameters and

observables computed from IPs using the Cramér–Rao inequality and the Csiszár–

Kullback–Pinsker inequality, respectively. These inequalities have analytical forms,

making them relatively easy to evaluate. The downside of this approach, however,

is that it only explores the parameter space in the vicinity of the best fit, which may

fail to provide information on how well an IP behaves in general. An example of apply-

ing the FIM based method to quantify the uncertainty in the Stillinger–Weber (SW)

potential discussed in section 2.2 is provided below in section 4.2.
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4.1.2 Frequentist statistics

Frequentist statistics based on the F-statistic was adopted by Messerly et al. [14] to

investigate the effects of parametric uncertainty in a Lennard–Jones (LJ) potential.

The fundamental equation of this approach is [236]

S(θ)− S(θ̂) < Nps
2FNp,ν,α, (4.14)

where S(θ) is a sum of the squared errors for some properties evaluated using a specific

parameter set θ (a choice of S could be the loss defined in equation (2.10)), S(θ̂) is

that evaluated at the optimal parameter set θ̂, Np is the number of parameters, s2 is an

independent estimate of the inherent variance having ν degrees of freedom, and FNp,ν,α

is the F-statistic at the α confidence level with Np and ν degrees of freedom. The

parameter set θ is acceptable at the α% confidence level if equation (4.14) is satisfied.

The uncertainty in the LJ parameters is propagated to the saturated liquid density

using a standard MC sampling approach [14]. To carry out the MC sampling, one

needs a probability density function in the parameter space, and this is achieved by

rearranging equation (4.14) to obtain

p(θ) = F−1
Np,ν

(
S(θ)− S(θ̂)

Nps2

)
, (4.15)

where F−1
Np,ν

is the inverse of the F-statistic with Np and ν degrees of freedom. Once

an ensemble of IP parameters are sampled, for any observable P that the can be com-

puted from atomistic simulations, the ensemble mean 〈P 〉 and variance σ2
P can then be

obtained.

4.1.3 Bayesian statistics

Many work fall into the category of Bayesian statistics. To my best knowledge, in

the field of uncertainty quantification in atomistic simulations, Bayesian statistics was

first employed by Frederiksen et al. [237], where they directly assume the form of the
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posterior distribution, conditioned on the data set D and the model M , to be

p(θ|D,M) ∝ exp

[
−L(θ)

T

]
, (4.16)

where L(θ) is a loss function (e.g. equation (2.10)), and T is a temperature introduced

to formalize the weighting of different parameter sets. An ensemble of IP parameters

can be generated from equation (4.16) given a temperature T , a data set D, and a

model M . Therefore, for any observable P , the ensemble mean 〈P 〉|T,D,M and variance

σ2
P |T,D,M can then be obtained. To generate an ensemble according to equation (4.16),

the authors also employed the MC sampling technique. They noticed that the curvatures

of the loss function in different directions vary enormously in the region near the optimal

parameter set and called for special care to use MC to get an efficient sampling. To this

end, they rescaled the MC trail moves using the calculated Hessian in their test for the

modified embedded atom method (MEAM) potential [237].

The methods by Messerly et al. [14] and Frederiksen et al. [237] resemble each other

in the sense that a distribution of the IP parameters, p(θ), is directly obtained (or

assumed) and then this distribution is sampled to generate an ensemble of parameter

sets so as to propagate the uncertainty in IPs to simulation results. The Frederiksen

et al. approach is more flexible though, because it incorporates a hyperparameter T to

control the distribution.

Most uncertainty quantification and propagation (UQ+P) works undertake the full

Bayesian approach that constructs the posterior distribution over IP parameters from

a prior and a likelihood. We assume that the observed true data from first-principles

calculations or experiments y is given by the model prediction h(x;θ) with an additive

error ε, i.e.

y = h(x;θ) + ε. (4.17)

Here, we use general notation not specific to IPs, but one can just regard the function

h as an IP mathematical form and x as the collections of coordinates r1, . . . , rNa . A

Gaussian distribution with zero mean is a reasonable choice for the error ε, consistent

with the maximum entropy principle [10], p(ε) = N (ε|0, σ2), where σ2 is the covariance

of the Gaussian distribution. Consequently, we can build a probabilistic model by which



111

an input x generates an output y given the parameters θ,

p(y|x,θ) = N (y|h(x;θ), σ2). (4.18)

This is the likelihood distribution for a single data point. Now consider a data set D =

(X,y) with inputs X = [xT
1 ; · · · ;xT

N ] and the corresponding outputs y = [y1; · · · ; yN ],

where N is the size of the data set. Make the assumption that the data points are drawn

independently from the distribution in equation (4.18), we can obtain the likelihood for

the data set:

p(y |X,θ) =

N∏
i=1

p(yi |xi,θ). (4.19)

Given the data set D, we are interested in finding the parameters θ that are most

likely to have generated the outputs y from the inputs X. Following the Bayesian

approach, the model parameters θ are considered to be uncertain and we assign a priori

distribution over the parameter space, p(θ). This distribution represents our prior

information as to which parameters are likely to have generated the outputs before

observing any data, based on previous knowledge, experience, or physical limitations.

We then look for the posterior distribution over the parameter space by invoking Bayes’

theorem:

p(θ |X,y) =
p(y |X,θ)p(θ)

p(y |X)
, (4.20)

where p(y |X) is the model evidence, given by

p(y |X) =

∫
p(y |X,θ)p(θ) dθ. (4.21)

The posterior in equation (4.20) tells us how to update our knowledge of the parameters

θ upon observation of the data.

Let p(P |θ) be the distribution of an observable P conditioned on the model pa-

rameters θ. We can propagate the distribution via the Markov equation by a weighted

integration over all possible values of the parameters to get the predictive distribution [9]

p(P |y,X) =

∫
p(P |θ)p(θ |X,y) dθ. (4.22)
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From this predictive distribution, we can readily obtain the mean 〈P 〉 and variance σ2
P

of the observable.

A key component of the full Bayesian approach outlined above is the evaluation

of the model evidence in equation (4.21). This can be done analytically for simple

models like linear regression; however, for more interesting and complicated models

such as multilayer neural network (NN) discussed in section 3.3, the evaluation cannot

be carried out analytically. For such models, evaluation of the posterior often relies on

sampling techniques such as the MC algorithm and its variants.

Following the full Bayesian approach, Cailliez and Pernot [9] studied the uncertainty

in some thermodynamical and transport properties for argon, and Angelikopoulos et

al. [10] investigated the self-diffusion coefficient and viscosity, among others, for ar-

gon. Both work used the LJ potential, and a uniform distribution was adopted for the

prior, representing the fact that no prior information on the values of the parameters is

available. Cailliez and Pernot applied standard MC to sample the posterior parameter

space, whereas Angelikopoulos et al. employed the transitional Markov chain Monte

Carlo (TMCMC) technique to conduct the sampling, which was claimed to address the

problem of choosing the right adaptive proposal in Markov chain Monte Carlo (MCMC)

for accelerated convergence to the posterior.

Although sampling techniques to evaluate the posterior work, it is computational

expensive. The most computationally intensive part is to evaluate the likelihood func-

tion in the resampling step, requiring multiple IP evaluations.1 This is the reason why

the demonstrations in most papers use the simplest LJ potential to reduce the compu-

tational cost. To address this, we can take advantage of surrogate models, while still

achieving highly accurate approximations. The idea is to use some simple, yet faithful,

meta model that can be quickly evaluated to represent the mapping between the input

and the output, approximating the computationally expensive atomistic simulations.

Widely used surrogate models include linear or polynomial regression, least-squares

formulation, Gaussian process (GP), and polynomial chaos [10,238,239].

Besides the MC based sampling techniques, another powerful method to do Bayesian

1For molecular dynamics (MD) simulations, it requires multiple MD runs [10].
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inference is the variational inference technique. In variational inference, instead of eval-

uating the posterior directly, one employs another distribution to approximate the pos-

terior and then carries out the Bayesian inference using the easy-to-evaluate approximat-

ing distribution. Variational inference does not guarantee to produce (asymptotically)

exactly the same samples as from the posterior (it can only find a density close to the

posterior), but tends to be much faster than sampling the exact posterior directly [240].

In variational inference, another distribution q(θ;ω), parameterized by ω, is used

to approximate the posterior of the original model, p(θ |X,y). The structure of the

approximating distribution q(θ;ω) should be known and it needs to be easy to evaluate.

The goal of variational inference is to obtain an optimal approximating distribution

q∗(θ;ω) as close as possible to the posterior p(θ |X,y), and then use q∗(θ;ω) to replace

p(θ |X,y) to make predictions. This former can be achieved by minimizing the KL

divergence [231–233] between q(θ;ω) and p(θ |X,y),

DKL(q(θ;ω) ‖ p(θ |X,y)) =

∫
q(θ;ω) log

q(θ;ω)

p(θ |X,y)
dθ, (4.23)

with respect to ω. The KL divergence is a measure of the similarity between the two

distributions. After obtaining the optimal approximating distribution q ∗ (θ;ω), we can

replace p(θ |X,y) in equation (4.22) by it to obtain

p(P |y,X) =

∫
p(P |θ)q∗(θ;ω) dθ, (4.24)

and then compute predictive mean and variance using this approximating predictive

distribution.

The dropout neural network interatomic potential (DNNIP) to be discussed in sec-

tion 4.3 adopts the variational inference approach to quantify the uncertainty, and

details on how to use DNNIP to make predictions in atomistic simulations are provided

there.

4.2 Fisher information based uncertainty quantification

We perform an uncertainty analysis of the SW-FM potential discussed in section 2.2

using the Fisher information theory extended to path-space distributions [241]. This
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analysis has two objectives. First, it provides an estimate for the uncertainty in the SW-

FM potential parameters, i.e. how well the parameters are identified from the training

set. Second, it provides an estimate for the uncertainty in the predictions of the SW-FM

potential for new properties.

For a molecular dynamics (MD) simulation under the NVT ensemble using the

Langevin thermostat, the motion of atoms is governed by two stochastic differential

equations [235]: dqt = M−1ptdt

dpt = fdt− γM−1ptdt+ σdWt,
(4.25)

where qt ∈ R3Na is the position vector of a configuration ofNa atoms in three-dimensional

(3D) space, pt ∈ R3Na is the momentum vector, f ∈ R3Na is the force vector, M is the

3Na× 3Na diagonal mass matrix of the atoms, γ is the 3Na× 3Na friction matrix, σ is

the 3Na×3Na diffusion matrix, andWt is a 3Na vector describing the Brownian motion.

According to the fluctuation-dissipation theorem, the friction and diffusion terms are

related to the temperature T via [17,235]

σσT = 2kBTγ, (4.26)

where kB is the Boltzmann constant.

For the system under Langevin dynamics, it has been show in Ref. [235] that the

Fisher information matrix (FIM) is

F (θ) = Eeq

[(
∂f

∂θ

)T

(σσT)−1

(
∂f

∂θ

)]

≈ 1

N

N∑
i=1

(
∂fi
∂θ

)T

(σσT)−1

(
∂fi
∂θ

)
,

(4.27)

where fi ∈ R3Na is the force vector at the ith MD step. The expectation Eeq[·] de-

notes averaging with respect to an equilibrium (stationary) distribution of the observed

dynamics. This is approximated by ergodic averaging on an equilibrated trajectory

where N is the number of sampled configurations in the training set. We see that the

path-space FIM in equation (4.27) has exactly the same form as equation (4.9), if we
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Figure 4.1: The diagonal elements of the inverse FIM in logarithmic space.

fit to forces only and regard σσT in equation (4.27) as the covariance matrix Σ in

equation (4.9) .

In real simulations, the friction matrix γ is typically a diagonal matrix of the form

γ = ηI, where η is a scalar and I is the identity matrix. Consequently, equation (4.27)

can be simplified as

F (θ) ≈ 1

2kBTη

1

N

N∑
i=1

(
∂fi
∂θ

)T(∂fi
∂θ

)
, (4.28)

The scalar η is associated with the thermostat used to control temperature in the ab ini-

tio molecular dynamics (AIMD) simulation. In our simulations η = 0.02 and T =750 K.

The path-space FIM was evaluated for the fitted parameters given in tables 2.1 and 2.2.

The derivatives of the SW-FM force f with respect to the potential parameters θ were

calculated by finite difference using Ridders’ method [242,243].

4.2.1 Parameter uncertainty

In cases where the magnitudes of the parameters differ greatly (as in our case where

the parameters range over more than an order of magnitude), it is helpful to perform
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a relative parameter analysis by using the logarithm of the parameters instead of the

parameters themselves. Defining θ̃i = log θi, it can be shown (see Appendix E) that the

FIM in the logarithmic parameter space is

F̃ij = θiFijθj . (4.29)

In terms of the logarithmic parameter space FIM, the Cramér-Rao bound in equa-

tion (4.10) becomes (see Appendix E)

Varθ[θ̂i/θi] ≥ [F̃−1]ii. (4.30)

This serves as an estimate for the uncertainty in the obtained parameters in a fractional

sense.

The diagonal elements of the inverse FIM, [F̃−1]ii, are plotted in figure 4.1. We

see that all elements are within two orders of magnitude of each other and there are

no parameters with extremely low values compared with the rest. This suggests that

all parameters in the interatomic potential (IP) are identified, and there is no cause to

simplify the model by removing undetermined parameters.

Examining the results more closely, we see that for the two-body interaction param-

eters (A, B, p and σ), the lower bounds for the standard deviation of the logarithmic

parameters θ̃ associated with Mo–S interactions are smaller than their Mo–Mo and S–S

counterparts, which loosely indicates that the Mo-S parameters are better determined.

This is consistent with our knowledge of the bonding in MoS2, where the Mo–S bonds

are shortest and expected to be strongest [244].

4.2.2 Observable uncertainty

The diagonal elements of the FIM provide an upper bound on the uncertainty due to

variations in parameters in any observable predicted by the model that is obtained by

averaging with respect to an equilibrium distribution in phase space according to a

sharper version of the Csiszár-Kullback-Pinsker inequality [120] (see equation (4.13)).

If we only perturb one component of the parameter vector, equation (4.13) can be
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simplified as

|Eθ+εei [O]− Eθ[O]| ≤ Stdθ[O]|ε|
√
Fii, (4.31)

where Eθ[O] is the expectation of an observable O using the parameter set θ, Stdθ[O]

is the corresponding standard deviation, ei is a unit vector of dimension Np (where Np

is size of the parameter vector θ) with the ith component equal to one and all others

zero. The quantity εei suggests that only the ith component of the parameter vector θ

is perturbed and the others are kept intact. Thus the diagonal of the FIM provides an

upper bound on the uncertainty of the predictions of the IP to its fitting parameters.

The larger Fii, the more sensitive the predictions are to parameter θi.

The diagonal elements of the FIM, Fii, are plotted in figure 4.2. We see that the

SW-FM potential is most sensitive to σMo-S and least sensitive to λMo-S-Mo. The ratio

of Fii for these two parameters is on the order of 105. In particular for the two-body

interaction parameters (B, p and σ), as we noted above, the potential is more sensitive

to parameters associated with Mo–S interactions than to those associated with Mo–Mo

and S–S interactions.

As an example for the bound in equation (4.31), we take the observable Eθ[O] to be
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the mean thickness t̄ of a MoS2 sheet,

t̄ = Eθ

[
1

Na

(
Na∑
i=1

ztop
i −

Na∑
i=1

zbot
i

)]
, (4.32)

where Na is the number of atoms in each sulfur layer, ztop
i is the coordinate perpen-

dicular to the MoS2 plane (lying in the xy place) of atom i in the top layer, zbot
i is

similarly defined for the bottom layer. The expected thickness t̄ was computed by per-

forming an MD simulation at T = 750 K using large-scale atomic/molecular massively

parallel simulator (LAMMPS) with the same setup used for calculations of the LTEC in

section 2.2.3, however under NVT conditions. The simulation was repeated ten times

with different initialization of atom velocities to compute the standard deviation that

appears on the right-hand side of equation (4.31).

Equation equation (4.31) was evaluated for the parameters associated with the max-

imum and minimum diagonal FIM elements (see figure 4.2), σMo-S and λMo-S-Mo, respec-

tively. These are the parameters with respect to which observables will be most and

least sensitive.

To evaluate equation (4.31), the mean thickness in equation (4.32) was computed

for the parameter set θ in tables 2.1 and 2.2, and also for θ + εei for the two studied

parameters with ε = 0.01.

For parameter σMo-S, we find

Left of equation (4.31) = |3.21887− 3.19900| = 0.01987

Right of equation (4.31) = 0.00087× (0.01× 2.17517)×
√

7.02436× 106

= 0.05016, (4.33)

and for parameter λMo-S-Mo, we find

Left of equation (4.31) = |3.19874− 3.19900| = 0.00026

Right of equation (4.31) = 0.00087× (0.01× 8.15952)×
√

1.13313× 102

= 0.00076. (4.34)

We see that as expected equation (4.31) is satisfied for both parameters, and at least
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in this case, the bounds are rather tight. Thus equation (4.31) can be used to estimate

the reliability of a model in making new predictions.

The Fisher information theory based uncertainty analysis shows that all the parame-

ters are well identified for the FM-SW potential. The IP is most sensitive to parameters

associated with two-body Mo–S interactions, and less sensitive to Mo–Mo and S–S in-

teractions. The analysis also provides an analytical upper bound on the uncertainty in

any phase average predictions that the IP makes due to small changes in its parame-

ters. This is demonstrated by example for the mean thickness of a MoS2 sheet at finite

temperature. The change in mean thickness computed by MD is found to be tightly

bound by the analytical expression. The FIM based uncertainty analysis described in

this section is general and can be applied to IPs for other materials as long as the train-

ing set for the force-matching method is obtained from a dynamical trajectory sampling

a distribution.

4.3 Dropout neural network potential

As discussed in section 3.3, in recent years, machine learning interatomic potentials

(IPs) [178–182,191] that train general-purpose functions (containing a large number of

parameters that can be on the order of 10,000) against a large amount of data have

been shown to possess errors around 4 ∼ 5 meV/atom, approaching the accuracy of

some first-principles methods such as density functional theory (DFT). However, such

IPs generally have very low transferability, i.e. the ability of an IP to make appropriate

predictions outside its training set. The reason is that the general-purpose mathematical

forms of such IPs bear no physical information, leading to extremely high parametric

uncertainty. The low transferable characteristics of such IPs suggest that prerequisite

actions must be taken to determine whether an IP is applicable to a new problem of

interest; otherwise, one cannot trust the simulation results because the employed IP

may introduce a huge amount of error.

We propose a dropout neural network interatomic potential (DNNIP) that can be

used easily in practice to determine the transferability of an IP to new problems and to

quantify the parametric uncertainty in simulation results.2 We show that a DNNIP is

2The bias-variance trade-off [245] tells us that a more flexible model would have lower structural
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Figure 4.3: Schematic representation of an NN potential to compute the atomic en-
ergy Ei. The NN consists of an input layer, two hidden layers, and an output layer.
The atomic neighborhoods information is transformed to the input for the NN, yn0
(n = 1, 2, . . . ), through a set of descriptors. Each arrow connecting two nodes between
adjacent layers represents a weight. The fully-connected NN becomes a dropout NN
when some connections are cut out (e.g. removing the dashed arrows). See text for
explanation of the variables.

equivalent to a Bayesian neural network (NN) via variational inference and thus one can

carry out uncertainty quantification using Bayesian statistics. We also provide a second

interpretation of the DNNIP such that it can be used in a parameter ensemble approach

to quantify uncertainty as in Ref. [237]. After introducing the DNNIP and the interpre-

tations, we demonstrate the approaches to carry out transferability determination and

uncertainty quantification using a model trained for condensed matter carbon.

4.3.1 Definition of model

The total interatomic potential energy of a configuration consisting of Na atoms can be

decomposed into the contributions of individual atoms

E =

Na∑
i=1

Ei, (4.35)

uncertainty but higher parametric uncertainty, and vice versa. The DNNIP is an extremely flexible
model and therefore we only consider the parametric uncertainty.
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where Ei is the atomic energy of atom i, represented by an NN as shown in figure 4.3.

As discussed in section 3.3.1, the output of a fully-connected NN can be written as

Ei = σ[σ[y0W1 + b1]W2 + b2]W3 + b3, (4.36)

in which the atomic environment descriptor to generate the inputs y0 for the NN used

here is the same as that in section 3.3.1.

By cutting out some connections between layers (e.g. the dashed arrows of the NN

shown in figure 4.3), we turn a fully-connected NN into a dropout NN [246,247]. Math-

ematically, equation (4.36) can be reformulated for a dropout NN as

Ei = σ[σ[y0(D1W1) + b1](D2W2) + b2](D3W3) + b3, (4.37)

where the dropout matrixDm (m = 1, 2, 3) is a diagonal matrix of binary integers of 0 or

1. Each diagonal element of Dm follows a Bernoulli distribution ∼ Bernoulli(1−p) with

a dropout ratio p. Redefining the weights W̃m := DmWm, we can view the dropout

NN as a Bayesian model, because the parameters are stochastic now. Following the

Bayesian approach, we denote p(θ) the prior distribution over the set of parameters θ =

{W̃1, W̃2, W̃3, b1, b2, b3} and then look for the posterior distribution over the parameter

space by invoking Bayes’ theorem [248]:

p(θ |X,Y ) ∝ p(Y |X,θ)p(θ), (4.38)

where p(Y |X,θ) is the likelihood for the training set (X,Y ) (see section 4.1.3 for a

discussion of the Bayesian approach). With the posterior, we can obtain the predictive

distribution for a new data point (x∗,y∗),

p(y∗ |x∗,X,Y ) =

∫
p(y∗ |x∗,θ)p(θ |X,Y ) dθ, (4.39)

and then compute the predictive mean and variance for the new data point. The diffi-

culty, however, is that the posterior for an NN with multiple hidden layers cannot be

evaluated analytically [249]. To tackle this, we can take advantage of variational infer-

ence [250] that uses another distribution, q(θ), to approximate the posterior and replaces
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p(θ |X,Y ) by q(θ) in equation (4.39) to make predictions. Using this variational infer-

ence approach, Gal and Ghahramani [249,251] have recently shown that training an NN

with the dropout technique approximates a Bayesian NN. Consequently, a dropout NN

possesses all the properties of a probabilistic Bayesian model, from which uncertainty

information can be extracted. In practice, for a new data point (x∗,y∗), we only need

to do multiple stochastic forward passes through the dropout NN (each with a different

realization of the dropout matrices) to get multiple samples of the output y∗1,y
∗
2, . . . at

the prediction stage. The average and variance of these samples can then be computed

as the predictive mean and uncertainty, respectively.

The practical method to obtain the predictive mean and uncertainty can also be

interpreted using the frequentist statistics. Applying dropout to a fully-connected NN

amounts to sampling a “thinned” NN from it. The thinned NN consists of all the nodes

that survived the dropout. An NN with a total number of n nodes can be considered as

a collection of 2n possible thinned NNs, and therefore training an NN with dropout can

be seen as training a collection of 2n thinned NNs with extensive weight sharing [247].

Consequently, using the dropout NN to make predictions can be seen as drawing samples

from the ensemble of models.

To demonstrate how to determine the transferability of a DNNIP and quantify the

uncertainty in atomistic simulations, we fit a DNNIP for carbon systems. The parame-

ters in DNNIP, θ = {W1, b1,W2, b2, . . . ,WL, bL} in which L is the number of NN layers

(hidden layers plus output layer), are optimized by minimizing a loss function L(θ) that

quantifies the difference between the predictions of DNNIP and a training set. We con-

struct a dataset of energies and forces for monolayer graphene, bilayer graphene, and

graphite at various states. These include configurations with compressed and stretched

cells and random perturbation of atoms for monolayer graphene, and configurations

from ab initio molecular dynamics (AIMD) trajectories at temperatures 300, 900, and

1500 K for monolayer graphene, bilayer graphene, and graphite. The dataset consists

of 4132 configurations, which is randomly divided into a training set of 3719 configura-

tions (90%) and a test set of 413 configurations (10%). The data set is generated from

DFT calculations using Vienna ab initio simulation package (VASP) in the same way

as described in section 2.3.1.

The parameters are optimized by minimizing the loss function in equation (2.14),
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i.e.

L(θ) =
1

2

N∑
i=1

we
i

[
Ei(ri;θ)− Êi

]2
+

1

2

N∑
i=1

wf
i‖fi(ri;θ)− f̂i‖2, (4.40)

where N = 3719 is the number of configurations in the training set, Ei and fi(ri;θ) =

− (∂V/∂r)|ri are the potential energy and forces of configuration i, and Êi and f̂i

are the corresponding reference energy and forces. We set the energy weight we
m to

1/(Na,i)
2 and the force weight wf

m to 1/(10(Na,i)
2), where Na,i is the number of atoms

in configuration i.

Same as section 3.3.1, the symmetry functions [178, 187] are employed as the de-

scriptor to transform the atomic environments to obtain the inputs y0 for the NN. Each

feature (i.e. the descriptor values of different atoms obtained using the same descrip-

tor) of the input is centered by subtracting the mean and then normalized by dividing

the standard deviation before feeding to the NN. We select the hyperbolic tangent,

tanh(x) = (ex − e−x)/(ex + e−x), as the nonlinear activation function, σ. We train

and test DNNIP using KIM-based learning-integrated fitting framework (KLIFF) [69].

The optimization of the parameters θ was carried out using the stochastic Adam op-

timizer [252] with a learning rate of 0.001 obtained by grid search. To accelerate the

training process, we employ the mini-batch technique [253] with a mini-batch size of

100.

There are three hyperparameters that define the structure of the NN: (1) number

of hidden layers, (2) number of nodes in each hidden layer, and (3) dropout ratio in

the hidden layers and the output layer. In general, one can have different number of

nodes and different dropout ratio for each layer, but for simplicity, we require that both

of them to be the same across layers. The dropout ratio for the first layer (hidden

layer 1) was set to 0, otherwise certain input information from the descriptors is totally

lost, leading to deteriorated performance of DNNIP. In the following discussion, the

dropout ratio refers to that in layers other than the first layer unless otherwise stated.

The number of hidden layers and number of nodes in each layer were obtained by grid

search over [2, 3, 4, 5] and [64, 128, 192, 256], respectively, at a dropout ratio of 0.1. We

found that 3 hidden layers with 128 nodes in each hidden layer yields the smallest loss,

equation (4.40), for the test set. Using 3 hidden layers with 128 nodes in each, we

trained two more DNNIPs with dropout ratios 0.2 and 0.3.
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Table 4.1: Energy and forces RMSEs for DNNIP using a dropout ratio of 0.1, 0.2 and
0.3.

Dropout ratio Energy RMSE Forces RMSE
[meV/atom] [(meV/Å)/atom]

0.1 (training set) 4.2 43.4
0.1 (test set) 4.2 52.0

0.2 (training set) 4.5 46.6
0.2 (test set) 4.6 54.9

0.3 (training set) 4.9 56.4
0.3 (test set) 5.2 68.9

The energy root-mean-square error (RMSE) is defined as

RMSE(E) =

√√√√ 1

N

N∑
i=1

(
Ēi − Êi

)2
, (4.41)

and the force RMSE is defined as

RMSE(f) =

√√√√ 1

N

N∑
i=1

∥∥∥f̄i − f̂i∥∥∥2
, (4.42)

where Ēm and f̄m are the DNNIP mean energy and mean forces obtained by evaluating

the DNNIP multiple times with different dropout matrices. The energy and forces

RMSEs for the DNNIP with dropouts ratios 0.1, 0.2, and 0.3 are listed in table 4.1. We

see that both the energy and forces RMSEs increase with dropout ratio. For a DNNIP

with fixed number of hidden layers and number of nodes in each hidden layer, larger

dropout ratio means fewer connections between layers, decreasing the capacity of the

model and thus leads to increased RMSEs.

The RMSE is a measure of the accuracy of DNNIP to reproduce the training set and

test set; to see the precision of the predictions made by DNNIP, we plot in figure 4.4

the uncertainty in atomic energy and force for both the training set and test set using

DNNIP with dropout ratios 0.1, 0.2, and 0.3. The magnitude of the force on an atom
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Figure 4.4: Uncertainty in (a) atomic energy and (b) forces on atom for the training
set and test set using DNNIP with various dropout ratios. The lower and upper box
edges represent the first and third quartiles of the data, respectively, the bar inside
the box denotes the median, the ends of the whiskers represent the lowest datum and
highest datum still within 1.5 interquartile range of the lower quartile and upper quartile,
respectively, and the circles represent outliers.
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is f =
√
f2
x + f2

y + f2
z , the uncertainty in which can be estimated by3

σf =
1

f

√
f2
xσ

2
fx

+ f2
yσ

2
fy

+ f2
z σ

2
fz
, (4.43)

where σfx , σfy , and σfz are the uncertainty in fx, fy, and fz, respectively. We see from

figure 4.4 that at a given dropout ratio, the uncertainty for the test set is slightly larger

than the training set based on the fact that the median, lower box edge, and upper box

edge for the test set are higher than their counterparts for the training set. For both the

training set and test set, we claim that the uncertainty in force increases with dropout

ratio since the median, lower box edge, and upper box edge increase with dropout ratio.

For the uncertainty in atomic energy, although the lower box edge slightly decreases

with dropout ratio, we still see increased median and upper box edge as the dropout

ratio becomes larger. All the results reported below are obtained using the DNNIP that

has 3 hidden layers with 128 nodes in each hidden layer at a dropout ratio of 0.1.

The predictive mean and uncertainty are obtained by evaluating IP multiple times

with different dropout matrices. An important question here is how many evaluations

are needed for the predictive mean and uncertainty to converge. Figure 4.5 shows the

predictive mean and uncertainty of the potential energy of a monolayer graphene as

a function of the number of DNNIP evaluations. For both the mean and uncertainty,

an evaluation number on the order of ∼100 leads the energy to converge into a band

smaller than 1 meV/atom, which is on the accuracy level of our training set generated

from DFT. All the predictive mean and uncertainty reported below are computed from

100 DNNIP evaluations unless otherwise stated.

4.3.2 Transferability determination

A direct method to determine the transferability of an IP is to measure the “distance”

between the configurations characterizing the quantity of interest (QoI set) and the

training set. If the distance is larger than some threshold value, we decide that the IP

cannot be applied to study the new problem. The total potential energy is decomposed

3For a scalar function f = f(x, y, z), the linearized uncertainty can be estimated using: σf =√
(∂f/∂x)2σ2

x + (∂f/∂y)2σ2
y + (∂f/∂z)2σ2

z , where σx, σy, and σz are the uncertainty in x, y, and z,
respectively [254].
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Figure 4.6: Representations of the carbon local atomic neighborhoods by UMAP. Each
dot in the plot denotes one atom, and the representation is applied to the descriptor
values (i.e. the input to the NN). The atoms are colored according to (a) the structure
from which they come from and (b) the uncertainty in atomic energy. The training set
consists of monolayer graphene (blue), bilayer graphene (orange), and graphite (green),
but not diamond (red).

into the contributions of individual atoms (see equation (4.35)), which are obtained

by mapping the descriptors that encode the local environments of individual atoms.

Therefore, the descriptors could be a good candidate from which we measure the distance

between the QoI set and the training set. The descriptors live in a high-dimensional

space, so to visualize them, we apply the uniform manifold approximation and projection

(UMAP) [255] dimensionality reduction technique to embed them to a three-dimensional

(3D) space. The projected descriptors of the training set and a QoI set composed of

diamond structures are plotted in figure 4.6. We see from panel (a) that the four carbon

allotropes form clusters and separate from each other, although there is some overlap

between them.4 The clustering of similar atomic environments is the reason that many

existing machine learning algorithms have successfully modeled the IP energy landscape

of atomistic systems [256]. The QoI set (diamond (red)) is away from the training set

(monolayer (blue), bilayer (orange), and graphite(green)), suggesting that the DNNIP

parameterized against the training set is not suitable for diamond structures.

We plot the uncertainty in atomic energy (the energy of individual atoms) in panel

4It seems from the plot that diamond adjoins graphite, but actually they are noncontiguous in the
out-of-paper direction.
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Figure 4.7: Histogram of the uncertainty in atomic energy. We randomly select 40,000
local atomic environments for each carbon allotrope, and the vertical axis is normalized
by this value. In panel (a), the training set consists of monolayer graphene, bilayer
graphene, and graphite, but not diamond, while in panel (b), the training set consists
of all four types of carbon allotropes. The cyan curve in the right plot of panel (a)
represents a normal distribution fitted to the histogram. The histograms on the left of
both panel (a) and panel (b) are stacked.
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(b) of figure 4.6. It is seen that the uncertainty in monolayer, bilayer, and graphite is low,

whereas that in diamond is much higher.5 The DNNIP is trained against monolayer,

bilayer, and graphite without any representatives of the local atomic envrionments of

diamond in the training set. Consequently, it has no idea of producing the correct

predictions for diamond, thus resulting in large uncertainty in the prediction. The fact

that the uncertainty is correlated to the distance between a QoI set and the training set

is very useful. Instead of calculating the distance between a QoI set and the training set,

we can compute the uncertainty in the QoI set and compare it with the uncertainty in

the training set to determine whether the IP is suitable for the new problem of interest

or not.

To show the uncertainty more quantitatively, we plot a histogram of the uncertainty

in atomic energy for the training set and QoI set in figure 4.7a. The uncertainty in the

training set is located around 10 meV, whereas that in the QoI set is much larger, around

20 meV. Again, this suggests that the IP is not applicable to diamond. We then add

the QoI set to the training set, and refit the IP. The new histogram obtained using the

refitted IP is plotted in figure 4.7b. The uncertainty in the original training set barely

changes, but the uncertainty in diamond decreases significantly, to a level comparable

to the other three carbon allotropes. This further confirms that the observed large

uncertainty in diamond before it is added to the training set is simply because the

IP is not trained against it. Also worth mentioning is the shape of the histogram.

The histogram for diamond using the IP without diamond in the training set follows

closely a normal distribution (figure 4.7a); however, it has a flatter tail on the larger

uncertainty side than the smaller uncertainty side when diamond is added to the training

set (figure 4.7b).

4.3.3 Uncertainty quantification

Now that we have a method to determine whether a DNNIP is transferable to a new

problem or not, the next question to answer is how to quantify the uncertainty in a

property obtained through atomistic simulations. We provide two ways to compute

5Arguably, a better way is to compare the relative uncertainty (the uncertainty normalized by the
predictive mean), but here it is not a problem because the energy scale of all four carbon allotropes is
around 8 eV/atom.
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the uncertainty: a direct method and an indirect method. In the direct method, we

compute the property multiple times, each with different but fixed dropout matrices in

the IP, and then calculate the average and standard deviation of the outputs from these

multiple runs as the predictive mean and uncertainty, respectively. This method applies

to any property. But if a property has a “simple” relation with the IP energy and/or

forces, the indirect method can be employed to propagate the uncertainty in the energy

and/or forces obtained from the IP to the property.

As an example, we compute the potential part of the virial stress in a monolayer

graphene using molecular dynamics (MD) simulations. The potential part of the virial

stress (stress for short below) can be expressed as [17,257]

sij =
1

V T

T∑
t=1

Na∑
α=1

rαi,tf
α
j,t, (4.44)

where i, j ∈ {1, 2, 3} are Cartesian components, rαi,t is the ith component of the position

of atom α at MD time step t, fαj,t is the jth component of the force on atom α at MD

step t, Na is the total number of atoms in the system, T is the total number of MD

steps, and V is the volume of the system defined as the area of graphene multiplied

with the van der Waals thickness, 3.4 Å in the present case.

In the indirect method, we rewrite equation (4.44) in a matrix form

s =
1

V T
Rf , (4.45)

where the stress s, in Voigt notation, is a column vector of 6 components, the coordinates

R is a 6 × 3NaT matrix, and the forces f is a column vector of length 3NaT . See

appendix F for a method to construct R and f . Unlike the direct method where we

run multiple MD simulations to compute the average and standard deviation of the

outputs, only one MD trajectory is generated in the indirect method. At each MD step,

we evaluate the forces multiple times with different dropout matrices and then update

the positions of atoms by integrating the equations of motion using the average forces

from the multiple evaluations. Therefore, we can assume that R is a coefficient matrix
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Figure 4.8: The potential part of the virial stress s11 and uncertainty in atomic energy
σe in monolayer graphene at various lattice parameters. The left y axis is for the error
bar plot of s11, where we show the predictive mean and uncertainty obtained using both
the direct and indirect methods. The right y axis is for the box and whisker plot of σe,
where the bar inside the box denotes the median, the ends of the whiskers represent the
lowest datum and highest datum still within 1.5 interquartile range of the lower quartile
and upper quartile, respectively, and the circles represent outliers.

without any uncertainty.6 Then the covariance of s can be estimated as [254]

Σs =
1

V 2T 2
RΣfR

T, (4.46)

where Σs and Σf denote the covariance matrices of s and f , respectively, and the

square root of the 6 diagonal elements of Σs give the uncertainty in the stress. The

force covariance matrix, Σf , can be obtained from the multiple evaluations of the IP at

each MD step.

Using both the direct and indirect methods, we computed the stress in a monolayer

6For a random variable x, the standard deviation of its sample mean x̄ =
(∑n

i=1 xi
)
/n is σx̄ = σ/

√
n,

where σ is the standard deviation of x, and n is the sample size. We assume that the number of
dropout evaluations is large enough such that the standard deviation of the mean of the forces is 0, thus
introducing no uncertainty to the positions of atoms.
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graphene at various in-plane lattice parameters. We construct a rectangular monolayer

graphene consisting of 96 atoms using in-plane lattice parameter ranging from 2.343

to 2.589 Å. The zigzag and armchair edges of the graphene are aligned with the first

and second Cartesian directions, respectively. Periodic boundary conditions are applied

to both in-plane directions. The equations of motion were integrated using a velocity-

Verlet algorithm with a time step of ∆t = 1 fs. The system was thermalized at a

constant temperature of T = 300 K under the canonical ensemble (NVT ) using a

Langevin thermostat. For both the direct and indirect methods, we ignore the first

10,000 unstable steps and then sample 1 out of 10 steps to obtain a total number of

1,000 steps to compute the stress.

The stress in the x direction s11 and its uncertainty σs11 are plotted in figure 4.8. It is

seen that the direct and indirect methods yield almost the same stress and uncertainty.7

The stress s11 in the graphene has the smallest magnitude at the equilibrium lattice

parameter a = 2.466 Å, and the magnitude increases as the graphene moves away from

its equilibrium structure. The uncertainty in the stress σs11 follows the same trend

as the stress s11 (i.e. small near a = 2.466 Å and getting larger when moving away

from it); however, the underlying mechanism is totally different. For s11, this is purely

due to the physical law that governs the material behavior: we get larger and larger

tensile (compressive) stress when a material is constantly stretched (squeezed). But for

σs11 , moving away from the equilibrium lattice parameter means making predictions

for configurations deviating from the training set,8 and thus we would expect higher

uncertainty in the predictions. This is in agreement with the uncertainty in atomic

energy, which measures the distance between these configurations and the training set

as discussed in section 4.3.2. The uncertainty in atomic energy is presented as box and

whisker plots in figure 4.8.

As a second example, we consider the phonon dispersions in a monolayer graphene,

which provides a comprehensive view of the elastic vibrational behavior of IPs. Un-

like the stress, there is not a simple linear relation between the phonon frequency and

7The slight difference originates from the fact that the stress and uncertainty are obtained from a
single MD trajectory in the indirect method, whereas multiple distinct MD trajectories different from
the one used in the indirect method have to be used in the direct method.

8For monolayer graphene, our training set only includes ab initio molecular dynamics trajectories
using an initial lattice parameter of a = 2.466 Å and slightly stretched and compressed configurations
using a lattice parameter a ∈ [2.40, 2.52] Å.
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the IP energy (or forces), so we compute the phonon dispersions using only the di-

rect method. The phonon dispersions was calculated using the finite difference method

as implemented in the phonopy package [209]. The phonon dispersions along some

high-symmetry points in the first Brillouin zone are plotted in figure 4.9. We see that

the predictive mean (dashed line) is in excellent agreement with DFT results (solid

line). Specifically, it correctly captures the characteristics of the flexural acoustic (ZA)

branch (e.g. the quadratic nature near the Γ point) that is associated with out-of-plane

vibrations, which provides the dominant contribution to lattice thermal conductivity

in graphene [218, 219]. The uncertainty in the phonon frequency is small for acoustic

branches and becomes larger for optical branches as the absolute phonon frequency in-

creases. Also plotted in figure 4.9 is the prediction obtained using the reactive empirical

bond order (REBO) potential [83], which performs the best among a number of physics-

based potentials such as the Tersoff [113], adaptive intermolecular reactive empirical

bond order (AIREBO) [148], long-range carbon bond order potential (LCBOP) [84],

and reactivate force field (ReaxFF) [201] models. See figure 3.5 for a comparison. The

REBO potential performs comparably well as our DNNIP for the low-frequency acoustic

branches, whereas its predictions for the high-frequency TO and LO branches deviate

significantly from DFT results, much worse than DNNIP.

4.3.4 Precision and accuracy

Given a set of predictions obtained by varying an IP’s parameters, accuracy refers to

the difference between the average prediction and exact value (e.g. DFT results), and

precision refers to the spread in the predictions. The predictions by an IP can only

be trusted for properties for which it has high precision (i.e. low uncertainty), but this

does not ensure that the predictions are accurate. To study the accuracy and precision

in the predictions of DNNIP, we investigate the energy of a monolayer graphene, E, at

different in-plane lattice parameter, a. At a given a, we do multiple DNNIP evaluations

with different dropout matrices to obtain a set of predictions for E, the mean and

standard deviation (our uncertainty) of which are plotted in figure 4.10. We see that the

accuracy and precision are correlated: both of them decreases as the lattice parameter

moves away from the equilibrium value a = 2.466 Å. This type of behavior has been

observed elsewhere in empirical IPs [237] as well as exchange-correlation functionals
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Figure 4.9: Phonon dispersions in monolayer graphene along some high-symmetry points
in the first Brillouin zone. The dashed line and the band around it represent the pre-
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are colored according to the vibrational modes: green for flexural (Z), blue for trans-
verse (T), and red for longitudinal (L). “A” and “O” stand for acoustic and optical,
respectively.
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Figure 4.10: Energy of a monolayer graphene versus the in-plane lattice parameter
obtained using the dropout NN potential and DFT.

used in DFT [258]. These models directly assume the form of the posterior where a

temperature is introduced to formalize the weighting of different parameter sets. This

leads to the empirical observation that the difference between the predictive mean and

the exact value typically fall within the uncertainty band, and therefore the precision

can be used as an estimate of the accuracy. Using a full Bayesian approach, our DNNIP

does not seem to have this property, which can be seen clearly from figure 4.10, especially

the predictions at small lattice parameters.

4.3.5 Summary

We propose a dropout neural network interatomic potential to model the interactions

between atoms in materials. This IP can be used easily to determine the transferability

to new problems of interest and to quantify the uncertainty in properties obtained from

atomistic simulations, thus making the results trustable. In practice, we simply do

multiple evaluations of the IP with difference dropout matrices to get multiple samples

of the property of interest and then compute the average and standard deviation of

these samples as the predictive mean and uncertainty, respectively. This approach is
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justified by both the Bayesian statistics and the frequentist statistics.

Using a DNNIP for carbon systems as an example, we demonstrated how to deter-

mine the transferability and quantify the uncertainty and also investigated the relation

between precision and accuracy. With transferability determination and uncertainty

quantification, we believe that atomistic simulations with machine learning IPs could

lead to better quantitative understanding of materials on a microscopic level.



Chapter 5

KLIFF: KIM-based

Learning-Integrated Fitting

Framework

The interatomic potentials (IPs) discussed in chapters 2 to 4 are all generated using the

open-source KIM-based learning-integrated fitting framework (KLIFF) for interatomic

potentials [69]. This package provides a unified interface to train both physics-based

models and machine learning models built on various atomic environment descriptors.

KLIFF is constructed using a modular approach and has a pure Python interface, mak-

ing it easy to add new functionality. It integrates closely with the knowledgebase of

interatomic models (KIM) ecosystem. A trained model can be readily deployed with

the KIM application programming interface (API) [259] and then be used in major sim-

ulation codes such as LAMMPS [71], ASE [72], DL POLY [74], and GULP [73] among

others. The KLIFF package, together with its documentation, is publicly available at

https://kliff.readthedocs.io.

5.1 Features and capabilities of KLIFF

KIM-based learning-integrated fitting framework (KLIFF) has a number of features

and capabilities. Here, we introduce a few of them that distinguish KLIFF from other

137
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interatomic potential (IP) fitting packages.

5.1.1 Integration with KIM

As indicated by the name, KLIFF is deeply integrated with the knowledgebase of inter-

atomic models (KIM) ecosystem. KIM strives to make molecular simulations reliable,

reproducible, and portable. KLIFF interacts with KIM in various aspects.

First, KLIFF supports the training of physics-based potentials archived in the open

knowledgebase of interatomic models (OpenKIM) repository. An IP is called a model

in the KIM nomenclature. A KIM portable model is an independent computer imple-

mentation of an IP that conforms to the KIM application programming interface (API)

portable model interface (PMI) standard. It can be a stand-alone model or a model

driver that reads in different parameter files to define different models.1 All contents

(including models) in the OpenKIM repository are archived subject to strict provenance

control with digital object identifiers (DOIs) assigned. This makes it possible to access

the exact IP used in a publication at any later date to reproduce the calculations—

an ability lacking prior to OpenKIM archiving. A large number of IPs are archived

in the OpenKIM repository with their correctness and code quality tested, such as

the SW potential [79, 260], the Tersoff potential [261–264], the environment-dependent

interatomic potential (EDIP) [265–268], and the embedded atom method (EAM) po-

tential [81, 88, 269] to name a few. Therefore, users of KLIFF oftentimes can use these

models directly without bothering to implement one from scratch, which is extremely

error prone.

Second, IPs trained with KLIFF can be easily tested via KIM. KLIFF can automat-

ically generate models that are compatible with the KIM API, thus allowing a trained

IP to run against KIM verification checks (VCs) and KIM tests. KIM verification checks

(VCs) are programs that explore the integrity of an IP implementation. They check for

programming errors (e.g. memory leak [270]), failures to satisfy required behaviors (e.g.

inversion [271] and permutation [272] symmetries), and general characteristics of the

1KIM also supports a second type of model called simulator model. While a portable model will work
seamlessly with any simulation code that supports the KIM API/PMI standard, a simulator model only
specifies how to setup and run a model that is implemented as an integrated part of a specific simulation
code.
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IP functional form (e.g. are the forces returned by the model consistent with those ob-

tained through numerical differentiation of the energy [273]). As opposed to KIM VCs,

KIM tests check the accuracy of an IP by computing a variety of physical properties of

interest to researchers, such as stacking fault energy [274], elastic constants [275], and

linear thermal expansion coefficient [276], etc. The information provided by KIM VCs

and KIM tests can save a researcher a great deal of time by identifying limitations of an

IP that can lead to subtle problems in simulations (e.g. poor convergence during energy

minimization due to incorrect or discontinuous forces) and giving a general idea of how

well an IP behaves on canonical physical properties.

Third, IPs trained with KLIFF can be deployed via KIM. Up to today, most IP

development papers only report the functional form of the IPs and the associated param-

eters, without mentioning or providing any computer implementation. After obtaining

a satisfied IP, IP developers either lack interest or expertise to make the IP implementa-

tion publicly available by transplanting it to a simulation code. Even if an IP developer

is willing to go through this time-consuming and error-prone process to transplant the

implementation, the IP will end up in only one or two simulation codes that the IP

developer thinks important and worth the time. If users do not use the same simulation

code, they need to implement the IP themselves in the simulation code they want to

use or have to wait until someone else to implement it. This creates a significant bar-

rier for the universal usability of the IP. The implementation is as important as (if not

more important than) the mathematical form and the associated parameters of an IP,

because in some cases the same parameter file can lead to different results when read

in by different simulation codes. (See [65] For a discussion of this effect for tabulated

EAM potentials.) As mentioned above, KLIFF can automatically create models that

are compatible with the KIM API. The KIM API enables any IP conforming to this

standard to work seamlessly with any KIM-compliant simulation code including large-

scale atomic/molecular massively parallel simulator (LAMMPS) [71,137], ASE [72,277],

DL POLY [74,278], GULP [73,132] and ASAP [279] among others. The final production

IP can be contributed to the OpenKIM repository for deployment. In such, the trained

IP obtains all sorts of advantages of a KIM portable model as discussed above (e.g.

provenance control), and other researchers can easily get access to it and then carry out

simulations.
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5.1.2 Sensitivity and uncertainty analysis

KLIFF provides a number of tools to analyze the quality of IPs and to train IPs with

the ability to conduct uncertainty quantification in atomistic simulations. The Fisher

information theory based approach discussed in sections 4.1.1 and 4.2 is available for

computing the Fisher information matrix (FIM), from which the sensitivity in IP pa-

rameters and the uncertainty in observable upon perturbation of IP parameters can

be obtained. KLIFF also supports the training of dropout neural network interatomic

potential (DNNIP) discussed in section 4.3.

5.1.3 A wide range of support

As discussed in section 5.1.1, KLIFF integrates with KIM to fit physics-based potentials

archived in the OpenKIM repository. Currently, the OpenKIM repository has 32 model

drivers, including the widely-used SW [79,260], Tersoff [261–264], EDIP [265–268], and

EAM [81, 88, 269] potentials, etc. For machine learning IPs, the foremost ingredient is

the descriptor that transforms atomic environments to vector representations to which

machine learning regression models are then applied. Currently, KLIFF has support for

the symmetry functions [178, 187], the bispectrum [179, 183], and the Coulomb matrix

representations [180]. Other descriptors such as the many-body tensor [191] represen-

tation are under development.

For “simple” machine learning models such as linear regression and kernel ridge re-

gression, KLIFF has its own implementations to conduct the training. Deep learning

with neural network (NN) is such a highly growing area that new techniques are pro-

posed every few months. It seems impractical (if not impossible) to implement these

techniques in KLIFF timely and elegantly. Therefore, to avoid reinvent the wheels,

KLIFF takes advantage of PyTorch [280] to build and train NN potentials. PyTorch

is an open-source deep learning platform that provides a seamless path from research

prototyping to production deployment. The NN model in KLIFF wraps PyTorch in

such a way that the user interface has no difference from other models in KLIFF (more

on the uniformity of KLIFF in section 5.1.4), but still retains the flexibility of PyTorch

to create customizable NN structures and then train with state-of-the-art deep learning

techniques.
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As discussed in section 2.1.2, IP parameters are obtained by minimizing a loss

function that quantifies the difference between IP predictions and the training set.

The optimizer used to carry out the minimization directly determines the values of

the parameters and thus the quality of the IP. It is impossible to tell which opti-

mizer is “the” best or one optimizer is better than another, although some optimizers

(e.g. the L-BFGS-B method [205]) work well for a wide range of problems in gen-

eral. KLIFF takes advantage of the optimization algorithms in SciPy [281] and Py-

Torch [280] to train models when minimization of a loss function is necessary. The

scipy.optimize.minimize module provides a large number of general minimization

algorithms, while the scipy.optimize.least_squares module provides algorithms

specific for nonlinear least-squares minimization problem with a loss function of the

form in equation (2.14) (e.g, the Levenberg–Marquardt (Levenberg–Marquardt (LM))

method [105, 106]). The optimizers in PyTorch are targeted for training NN mod-

els, including the stochastic gradient descent (SGD) method [282, 283] and its variants

such as the Adam method [252]. Besides, KLIFF also supports the geodesic LM al-

gorithm [103, 284, 285], which has been shown to work extremely well for “sloppy” IPs

whose predictions are insensitive to certain parameters or certain combinations of their

parameters. (See [66] for a comparison of using the geodesic LM method and other

methods for fitting the EDIP potential.)

5.1.4 Uniformity, modularity, and extensibility

KLIFF is designed to be as uniform, modular, and extensible as possible. It is imple-

mented using an object-oriented programming (OOP) paradigm and provides a pure

Python user interface. All the atomic environment descriptors, models, loss functions,

etc. are subclassed from individual superclasses. A subclass only provides or modi-

fies specific implementations of superclass methods when necessary without changing

their names and arguments, guaranteeing a uniform interface among subclasses. As

mentioned in section 5.1.3, KLIFF takes advantage of the optimization algorithms in

SciPy [281] and PyTorch [280] to train models when minimization of a loss function is

necessary. Although vanilla SciPy and PyTorch have different APIs to call these opti-

mization algorithms, KLIFF provides a uniform interface that wraps SciPy and PyTorch

optimization algorithms under the hood.
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The task to train an IP can be divided into several subtasks. For example, to train

a machine learning IP we typically: (1) select a descriptor to transform the atomic en-

vironments to vector representations; (2) build a regression model that takes the vector

representations as input to calculate a set of predictions (energy, forces, stresses, etc.);

(3) construct a loss function based on the predictions of the model and the correspond-

ing reference data in the training set and then minimize the loss function to obtain the

optimal parameter set; and (4) analyze the quality of the trained model. Using the

OOP paradigm, each atomic environment descriptor, regression model, loss function,

and analyzer are constructed as an individual class in such a way that any descriptor

should work seamlessly with any regression model, any regression model should work

with any loss function and so forth.

Extending KLIFF is made easy due to the way it is set up. New descriptor, regression

model, loss function, optimization algorithm, analyzer, etc., can be added to work with

existing modules in KLIFF. A new physics-based IP can be implemented either as a KIM

model or a KLIFF model. The benefits of KIM models are discussed in section 5.1.1;

however, this may be a bit burdensome in cases where fast research prototyping of new

mathematical forms of an IP is preferred, because one needs to get familiar with the

KIM API and then implement in low-level languages such as C, C++, or Fortran. To

this end, KLIFF allows the creation of new models within its own framework using pure

Python and it provides all sorts of utilities like neighbor list to aid the implementation of

an IP. With these utilities, typically, the only thing left is to use Python to code up the

mathematical form of the IP by replacing this (not implemented) part in a superclass

for an IP model. The newly created model can then be utilized for training with any loss

function and optimization algorithm that are supported by KLIFF. Extending other

parts of KLIFF is similar to adding new models, but generally simpler and easier.

5.1.5 Data parallelization

Computationally expensive parts such as generating the neighbor list and transforming

atomic environments into descriptor values are implemented in C++ to accelerate the

calculation. Even with this, the computational requirements can still become quite

demanding as the size of the training set increases. Fortunately, evaluation of the

loss function (equation (2.14)) can be easily divided into sub-problems, and thus many
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Figure 5.1: Data parallelization scheme used by KLIFF.

computer cores can work together to solve the problem with each core independently

focusing on its own sub-problem. KLIFF adopts the simple parallelization over data

scheme as illustrated in figure 5.1. Atomic configurations in the dataset are distributed

to different processes. Each process may not get the same number of configurations as

shown in figure 5.1 (when configurations do not have an equal number of atoms), but

instead the total number of atoms of the configurations distributed to each process is

approximately the same. This balances the load of each process since the computational

cost of IPs scales linearly with the number of atoms. Each process computes the sub-

loss according to equation (2.14) for the configurations assigned to it, and the total

loss is then obtained as the sum of the sub-losses from all the processes. Besides the

evaluation of the loss function, other tasks operating on the dataset such as generating

the neighbor list and computing the descriptor values are also parallelized in this way.

KLIFF supports running in parallel mode on both shared-memory multicore desk-

top machines and high performance computing (HPC) clusters composed of multiple

standalone machines connected by a network. Internally, we implement the data par-

allelization using both the OpenMP-style multiprocessing module of native Python

and the MPI-style mpi4py [286] third-party package. These two are mutually exclusive.
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The former can only work on desktop machines, while the latter works on both desktop

machines and HPC clusters.

5.2 Implementation details: the KLIFF code

In this section, we discuss how the KIM-based learning-integrated fitting framework

(KLIFF) package is set up. Detailed and update-to-date documentation of the in-

structions as well as the KLIFF package reference are available at: https://kliff.

readthedocs.io.

KLIFF is built using Python with several computationally expensive parts internally

implemented in C++. However, Python bindings of these C++ parts are used to create

the user interface, so users are expected to interact with KLIFF purely through Python.

It adopts a modular approach as discussed in section 5.1.4 and a flowchart representing

the procedures to use some of the modules in KLIFF to train interatomic potentials

(IPs) is schematically demonstrated in figure 5.2. The task to train an IP using KLIFF

breaks down to the interaction and information exchange between these parts: Dataset,

Model, Calculator, Loss, Optimizer, and Analyzer. In the following paragraphs, we

briefly discuss each of these modules and how they interact with each other.

Dataset. A dataset is comprised of a set of atomic configurations, acting as training

data to optimize IP parameters or examine data to test the quality of an IP. An

atomic configuration should have three lattice vectors of the simulation cell, flags to

indicate whether periodic boundary conditions (PBCs) are used, and atomic species and

coordinates of all atoms in the configuration. These collectively define a configuration

and are, typically, considered as the inputs to an IP model in terms of IP fitting.

These information must be read in from disk. KLIFF adopts the extended XYZ file

format, and each configuration is stored in a separate file. Internally, each atomic

configuration is associated with a Configuration object and a Dataset is essentially

a set of Configuration objects. The reference output values (e.g. energy, forces, and

stress) associated with the inputs of an atomic configuration are also read in from the

extended XYZ file and stored in the Configuration object. The reference outputs

are typically obtained from more accurate first-principles calculations or experimental

results.

https://kliff.readthedocs.io
https://kliff.readthedocs.io
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Figure 5.2: Flowchart of the procedures of using KLIFF to train an IP.
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Model. To start fitting, a model (representing an IP) is first instantiated. Depend-

ing on the nature of the model, various operations can be applied to the model. For a

physics-based model, KLIFF can provide information on what parameters are available

for fitting, together with a description of each parameter and the data structure and

data type of each parameter. Based on these information, we can then select a subset

(proper or improper) of the parameters to fit and specify their initial values or simply

use the default initial values. Lower and upper bounds on parameter values can also

be supplied to restrict them in a range. KLIFF provides two ways to specific the ini-

tial guesses of parameters, either setting values by calling Python functions or reading

in from a file. For a neural network (NN) model, the descriptor to transform atomic

environments to the inputs for the NN needs to be provided at initialization. Then the

NN can be constructed using whatever number of layers, number of nodes in each layer,

and activation functions that the user thinks appropriate. Unlike physics-based models,

KLIFF automatically initializes the parameters in the network. For example, the He

initializer [287] is used to initialize the weights and biases in linear layers. We also make

some other default choices and restrictions based on our experience. In such, we hope

KLIFF makes it easier for users to create machine learning IPs without diving into the

subtle side of machine learning.

Calculator. The created model is then attached to a calculator. Using the model,

the calculator computes the predictions corresponding to the reference outputs for

atomic configurations in the training set. A calculator can use any molecular simu-

lation codes to compute the predictions, but for “simple” properties such as energy,

forces, and stress, KLIFF has built-in implementations to quickly evaluate them.

Loss. The predictions computed by the calculator and the corresponding reference

output values stored in the training set are then used to construct a loss function (e.g.

equation (2.14)) that quantifies the difference between the model predictions and the

references. KLIFF predefines a set of widely-used loss functions that are flexible enough

to allow the assignment of a different weight for each configuration, making it possible

to let “important” configurations weigh more during the optimization. One can even

assign a different weight for each component of the prediction of the same configuration.

If the available loss functions do not satisfy the need, a user-defined one can be supplied

to KLIFF provided it follows the function prototype.
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Optimizer. Based on the value of the loss function and/or other stopping criteria

(e.g. the maximum allowed minimization step), KLIFF determines whether to terminate

the training process. If not, the loss function is then used by the optimizer to adjust

the IP parameters so as to minimize the value of the loss function. The optimizers sup-

ported by KLIFF can be broadly categorized into two classes: the batch optimizers and

the mini-batch optimizers. The former (e.g. the L-BFGS-B and Levenberg–Marquardt

(LM) methods) require the evaluation of the whole training set to carry out one mini-

mization step, whereas the latter (e.g. the stochastic gradient descent (SGD) and Adam

methods) typically only use a subset of the whole training set to carry out one mini-

mization step. A batch optimizer guarantees monotonic decrease of the loss function

as the minimization proceeds, and it typically yields smaller final loss function value

compared with a mini-batch optimizer. Mini-batch optimizers are quite useful when a

huge training set is used (usually the case for machine learning IPs), because evalua-

tion of the whole set requires an enormous amount of time, impractical in many cases.

For NN models that contain a large number of parameters, SGD-based optimizers can

find a reasonable solution in the parameter space that minimizes the loss function to a

certain level. KLIFF uses batch optimizer for physics-based IPs, which typically have

no more than tens of parameters and thus only need a relatively small training set. For

NN potentials, which normally involve tens of thousands of parameters or even more so

that a large training set is needed, SGD-based mini-batch optimizers are recommended.

But, of course, batch optimizers are still available to be used if one prefers.

The optimizer then update the model with the new set of parameters such that they

will be used the next time the calculator computes the predictions. The optimization

loop involving the Dataset, Model, Calculator, Loss, and Optimizer continues until

the loss function is converged or other stopping criterion is hit. At exist, the fitted IP can

be written out as a knowledgebase of interatomic models (KIM) model that conforms to

the KIM application programming interface (API), which can then be run against KIM

verification checks and KIM tests or be used with any KIM-compliant simulation codes

as discussed in section 5.1.1. Also, the model can be attached to a Analyzer to carry

out post-processing analysis, such as computing the Fisher information matrix (FIM)

as discussed in section 4.2.

Command line tool. KLIFF also provides a command line tool named kliff that
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facilitates the execution of many common tasks. For example, inquire a physics-based IP

to obtain the available parameters that can be optimized and their associated metadata

(e.g. data type and data size), and print a synopsis of the atomic configurations in the

dataset or split a dataset into multiple subsets.

5.3 Demonstration

In this section we give an example to demonstrate how to use KIM-based learning-

integrated fitting framework (KLIFF) to train a Stillinger–Weber (SW) potential for

silicon. Note, the codes shown in this section is compatible with KLIFF v0.1.1, which

may not work for later versions of KLIFF. But the up-to-date example is available at

the KLIFF documentation: https://kliff.readthedocs.io.

Here, we train a SW potential for silicon that is archived in the open knowledgebase

of interatomic models (OpenKIM) repository. Before getting started to train the model,

let’s first install it:� �
$ kim-api-collections-management install user \

SW_StillingerWeber_1985_Si__MO_405512056662_005� �
We are going to fit the model to a training set of energies and forces from com-

pressed and stretched diamond silicon structures as well as configurations drawn from

molecular dynamics (MD) trajectories at different temperatures. The training set

is stored in the extended XYZ format. A tarball of the training set can be down-

loaded from https://raw.githubusercontent.com/mjwen/kliff/master/examples/

Si_training_set.tar.gz. To extract the training set, do� �
$ tar xzf Si_training_set.tar.gz� �

Note that the Si_training_set is just a toy data set for the purpose to demonstrate

how to use KLIFF to train models, so by no means should it be suitable for the training

of interatomic potentials (IPs) for real simulations.

https://kliff.readthedocs.io
https://raw.githubusercontent.com/mjwen/kliff/master/examples/Si_training_set.tar.gz
https://raw.githubusercontent.com/mjwen/kliff/master/examples/Si_training_set.tar.gz
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Model

We first instantiate a knowledgebase of interatomic models (KIM) model for the SW

potential and print out all its available parameters that can be optimized (we call this

model parameters):

from kliff.models import KIM

model = KIM(model_name="SW_StillingerWeber_1985_Si__MO_405512056662_005")

model.echo_model_params()

The output generated by the last line reads:� �
#===========================================================================

# Available parameters to optimize.

#

# Model: SW_StillingerWeber_1985_Si__MO_405512056662_005

#===========================================================================

name: A

value: [15.28484792]

size: 1

dtype: Double

description: Multiplicative factors on the two-body energy function as a

whole for each binary species combination. In terms of the original SW

parameters, each quantity is equal to A*epsilon for the corresponding

species combination. This array corresponds to a lower-triangular matrix

(of size N=1) in row-major storage. Ordering is according to

SpeciesCode values. For example, to find the parameter related to

SpeciesCode ’i’ and SpeciesCode ’j’ (i >= j), use (zero-based) index = (

j*N + i - (j*j + j)/2).

name: B

value: [0.60222456]

size: 1

dtype: Double
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description: Multiplicative factors on the repulsive term in the two-body

energy function for each binary species combination. This array

corresponds to a lower-triangular matrix (of size N=1) in row-major

storage. Ordering is according to SpeciesCode values. For example, to

find the parameter related to SpeciesCode ’i’ and SpeciesCode ’j’ (i >=

j), use (zero-based) index = (j*N + i - (j*j + j)/2).

...� �
which shows the name, value, size, data type and a description of each parameter. In

fact, there are other model parameters in the SW potential available for optimization

(e.g. p, sigma, gamma, lambda, etc.), but we omit them here for the sake of space.

Now that we know what model parameters are available for fitting, we optimize a

subset of them to reproduce the training set.

model.set_fitting_params(

gamma=[[1.5]],

B=[["default"]],

sigma=[[2.0951, "fix"]],

A=[[5, 1, 20]])

model.echo_fitting_params()

Here, we tell KLIFF to fit four parameters gamma, B, sigma, and A of the SW poten-

tial. The information for each fitting parameter should be provided as a list of list,

where the size of the outer list should be equal to the size of the parameter given by

model.echo_model_params(). For each inner list, we can provide either one, two, or

three items.

• One item. We can use a numerical value to provide an initial guess of the param-

eter. For example, gamma. Alternatively, the string default can be provided to

use the default value in the model. For example, B.

• Two items. The first item should be a numerical value and the second item

should be the string fix, which tells KLIFF to use the first item as the value of

the parameter but do not optimize it. For example, sigma.



151

• Three items. The first item can be a numerical value or the string default, having

the same meanings as the one item case. The second and third items are the lower

and upper bounds for the parameters, respectively. A bound can be provided as

either a numerical value or None, with the latter indicating no bound is applied.

For example, A.

The call of model.echo_fitting_params() prints to stdout the fitting parameters that

we require KLIFF to optimize:� �
#===========================================================================

# Model parameters that are optimized.

#===========================================================================

A 1

5.0000000000000000e+00 1.0000000000000000e+00 2.0000000000000000e+01

B 1

6.0222455840000000e-01

sigma 1

2.0951000000000000e+00 fix

gamma 1

1.5000000000000000e+00� �
where the number 1 after the name of each parameter indicates the size of the parameter.

Parameters that are not included as fitting parameters are fixed to their default values

in the model during the optimization.

Training set

KLIFF has a Dataset class to deal with the training data (and test data). For the

silicon training set, we can read and process the extended XYZ files by:

from kliff.dataset import Dataset

dataset_name = "Si_training_set"
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tset = Dataset()

tset.read(dataset_name)

configs = tset.get_configs()

The configs in the last line is a list of Configuration. Each Configuration is an

internal representation of a processed extended XYZ file, consisting of the species, co-

ordinates, energy, forces, and other related information of a system of atoms.

Calculator

Calculator is the central agent that exchanges information and orchestrate the operation

of the fitting process. It computes a set of predictions using the model and provides this

information to the loss function (discussed below) to compute the loss value. It also

grabs the new parameters from the optimizer and update the parameters in the model

so that the up-to-date parameters are used the next time the model is evaluated. The

calculator can be created by:

from kliff.calculator import Calculator

calc = Calculator(model)

calc.create(configs)

where calc.create(configs) does necessary initializations for each configuration in

the training set such as creating the neighbor list.

Loss function

KLIFF uses a loss function to quantify the difference between model predictions and the

corresponding reference data in the training set and then uses optimization algorithms

to reduce the loss as much as possible. For physics-based IPs, any algorithm listed on

scipy.optimize.minimize and scipy.optimize.least squares can be used. In the following

code snippet, we create a loss function and then use the L-BFGS-B algorithm to minimize

the loss. The minimization will run with 1 process and a max number of 100 iterations

are allowed.

from kliff.loss import Loss

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
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steps = 100

loss = Loss(calc, nprocs=1)

loss.minimize(method="L-BFGS-B", options={"disp": True, "maxiter": steps})

The output reads:� �
RUNNING THE L-BFGS-B CODE

* * *

Machine precision = 2.220D-16

N = 3 M = 10

At X0 0 variables are exactly at the bounds

At iterate 0 f= 1.65618D+07 |proj g|= 1.63611D+07

At iterate 1 f= 4.50459D+06 |proj g|= 7.90884D+06

.

.

.

At iterate 25 f= 3.25435D+03 |proj g|= 1.16308D+02

At iterate 26 f= 3.25435D+03 |proj g|= 3.06113D+00

At iterate 27 f= 3.25435D+03 |proj g|= 6.61066D-01

* * *

Tit = total number of iterations

Tnf = total number of function evaluations

Tnint = total number of segments explored during Cauchy searches

Skip = number of BFGS updates skipped

Nact = number of active bounds at final generalized Cauchy point

Projg = norm of the final projected gradient

F = final function value
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* * *

N Tit Tnf Tnint Skip Nact Projg F

3 27 36 28 0 0 6.611D-01 3.254D+03

F = 3254.3480974009767

CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH

Cauchy time 0.000E+00 seconds.

Subspace minimization time 0.000E+00 seconds.

Line search time 0.000E+00 seconds.� �
As seen, the minimization converges after running for 27 steps.

Save trained model

After training, we’d better save the model to disk so that it can be loaded later for

retraining, evaluation, or other analysis. If we are satisfied with the fitted model, we

can also write it as a KIM model; then it can be used with simulation codes that conform

to the KIM application programming interface (API).

model.echo_fitting_params()

model.save("kliff_model.pkl")

model.write_kim_model()

The first line of the above code generates:� �
#===========================================================================

# Model parameters that are optimized.

#===========================================================================

A 1

1.5008554501462323e+01 1.0000000000000000e+00 2.0000000000000000e+01

B 1

5.9537800948866415e-01
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sigma 1

2.0951000000000000e+00 fix

gamma 1

2.4122637121188939e+00� �
A comparison with the original parameters before carrying out the minimization shows

that we recover the original parameters quite reasonably. The second line saves the fitted

model to disk with a file name of kliff_model.pkl, and the third line writes out a KIM

model named SW_StillingerWeber_1985_Si__MO_405512056662_005_kliff_trained.

So far, we have successfully trained the physics-based SW potential for silicon. For

machine learning IPs, the procedures would be largely the same. Again, refer to the

KLIFF documentation for other examples.



Chapter 6

Conclusions and Future Work

Atomistic simulation with empirical interatomic potentials (IPs) is a useful compu-

tational tool to investigate materials on a microscopic level. IPs that describe the

interactions between atoms and thus produce the forces governing atomic motion and

deformation are arguably the most important element that determines the quality of

atomistic simulations.

During my doctoral studies, I have developed both physics-based and machine learn-

ing IPs for two-dimensional (2D) materials and heterostructures and applied these IPs

to study their mechanical and thermal properties. In particular, I have created a

Stillinger–Weber (SW) potential for monolayer MoS2, a registry-dependent potential

for the interlayer interactions in graphene, as well as a neural network (NN) potential

for multilayer graphene structures. These IPs are either built based on existing models

to improve/correct their behaviors or built from scratch to capture the physics deemed

to be important for 2D materials and heterostructures.

Atomistic simulation with IPs are viewed as a tool limited to provide only qualitative

insight. A key reason is that in such simulations there are many sources of uncertainty

that are difficult to quantify, thus failing to give confidence interval on simulation results.

A novel contribution of my work is the development and application of techniques

to quantify the uncertainty in IPs themselves and simulation results obtained using

IPs. For physics-based IPs, I demonstrate how to analyze the parameter sensitivity

of an IP and the uncertainty in its predictions using the Fisher information theory

extended to path space. For machine learning NN potentials, I show how to apply the

156
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dropout technique to train a NN and then obtain the predictive mean and variance (the

uncertainty) as ensemble averages. Besides, I have discovered the correlation between

the uncertainty in atomic energies and the distance between the training set and the

configurations characterizing a new problem of interesting, and proposed a practical

method to determine the transferability of NN potentials.

I have also developed an open-source KIM-based learning-integrated fitting frame-

work (KLIFF) to train both physics-based and machine learning IPs. KLIFF inte-

grates closely with the knowledgebase of interatomic models (KIM) echosystem to ei-

ther use the physics-based IPs archived in the open knowledgebase of interatomic models

(OpenKIM) repository or deploy the trained model via the KIM application program-

ming interface (API). It supports a variety of atomic environment descriptors and ma-

chine learning regression methods, and specifically PyTorch is used internally to provide

state-of-the-art deep learning techniques for NN models. In addition, KLIFF provides

a number of tools to assess the quality of IPs such as computing the Fisher information

matrix (FIM). I hope other researchers will find KLIFF useful when developing their

own IPs.

There are many open directions for future research:

Potentials for other 2D materials and heterostructures. In this thesis, I

present NN potentials for multilayer graphene structures. In the future, I intend to

build NN potentials and perform large scale simulations for other 2D materials and

heterostructures. One interesting problem is to investigate how heterostructures behave

when different types of 2D materials are stacked on top of each other and whether we

can create new physics by stacking them in different manners.

Active learning. The IPs in this thesis are fit to pre-determined training sets that

are believed to be important for the problems of interest. This is, indeed, a nontrivial

task, especially for machine learning models, because we may not know a priori the

configurations that carry the information needed by a problem of interest. With the

uncertainty quantification capability of dropout NN, we are interested in applying active

learning to generate the training set automatically. First, we train an NN model to a

preliminary training set. Next, the trained NN model is applied to make predictions for

the problem of interest, and at the same time we measure the associated uncertainty

in the predictions. Then, we add back to the training set the configurations with large
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uncertainty and retrain the model against the updated training set. We do this training–

uncertainty quantification–enriching the training set process until the uncertainty in the

predictions is below a threshold value. With this active learning technique, training an

NN potential can be largely automated, if not all.

Faster atomic environment descriptors. Although significantly faster than

first-principles approaches, machine learning IPs are more computationally expensive

than physics-based IPs. For example, our NN potential that uses the symmetry func-

tions as the atomic environment descriptor is about 100 times slower than a Tersoff [113]

potential. Actually, the largest portion of time of a machine learning IP is spent on

evaluating the atomic environment descriptor. We have initialized an effort to design

new atomic environment descriptors that not only satisfy all the requirements discussed

in section 3.1, but are also computationally far less expensive. Preliminary results show

that Gabor transformation [288] of atomic density function seems a promising method.

Extending KLIFF. For now, KLIFF only allows the use of energy, forces, and stress

as the training target. We are planning to extend the framework such that any materials

property can be employed in the training, for example, equilibrium lattice parameters,

elastic moduli, and phonon dispersion curves to name a few. This is extremely useful

for physics-based IPs where the number of parameters is not too large such that we can

afford to compute these properties during the training process. We also hope to support

more physics-based IPs and machine learning regression methods.
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variational inference for non-equilibrium coarse-grained systems. J. Comput.

Phys., 314:355–383, 2016.
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Appendix A

Thermal expansion using the

fluctuation method

The partition function for the isothermal-isobaric (NPT ) ensemble is [220]

Q(N, p, T ) = C

∫ ∞
0

dV

∫
Γ

dp dq e−β(H+pV ), (A.1)

where C is a normalization constant, β = 1/(kBT ), kB is the Boltzmann constant, H is

the Hamiltonian, p is pressure, V is volume, and the two integrations are over volume

space and phase space Γ. The macroscopic observable associated with a phase function

A can be obtained as

〈A〉 =
C

Q

∫ ∞
0

dV

∫
Γ

dp dq e−β(H+pV )A = CQ−1

∫
x

dx e−β(H+pV )A, (A.2)

where in the last equality, we have rewritten the integration over volume space and

phase space as
∫
x for brevity.

Taking volume V as the phase function A, the derivative of the observable 〈V 〉 with
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respect to β is

∂〈V 〉
∂β

∣∣∣∣
N,p

=
∂(CQ−1)

∂β

∫
x

dx e−β(H+pV )V + CQ−1∂
∫
x dx exp [−β(H+ pV )]V

∂β

=− CQ−2∂Q

∂β

∫
x

dx e−β(H+pV )V + CQ−1

∫
x

dx
∂ exp [−β(H+ pV )]

∂β
V

=C2Q−2

∫
x

dx e−β(H+pV )(H+ pV )

∫
x

dx e−β(H+pV )V

− CQ−1

∫
x

dx e−β(H+pV )(H+ pV )V

=

[
CQ−1

∫
x

dx e−β(H+pV )(H+ pV )

] [
CQ−1

∫
x

dx e−β(H+pV )V

]
− CQ−1

∫
x

dx e−β(H+pV )(HV + pV 2)

=(〈H〉+ 〈pV 〉)〈V 〉 − 〈HV 〉 − 〈pV 2〉
=〈H〉〈V 〉 − 〈HV 〉+ 〈pV 〉〈V 〉 − 〈pV 2〉,

(A.3)

where in the third equality, we used ∂Q/∂β = −C
∫
x dx e−β(H+pV )(H + pV ), and in

the second to last equality, we used equation (A.2). The volumetric thermal expansion

coefficient is,

αV =
1

V

∂V

∂T

∣∣∣∣
N,p

=
1

〈V 〉
∂〈V 〉
∂β

∣∣∣∣
N,p

∂β

∂T
= −kBβ

2 1

〈V 〉
∂〈V 〉
∂β

∣∣∣∣
N,p

. (A.4)

At p = 0, plugging equation (A.3) into equation (A.4), we obtain

αV = kBβ
2 1

〈V 〉 [〈HV 〉 − 〈H〉〈V 〉] . (A.5)

It is seen that the volumetric thermal expansion coefficient αV is related to the covari-

ance of the Hamiltonian H and the volume V .

Next, we get the linear thermal expansion coefficient (LTEC) αL from αV . For a

two-dimensional (2D) material (e.g. MoS2), assume V = hL2, where L is the in-place

dimension, and h is the out-of-place dimension independent of L. Then the LTEC αL

is

αL =
1

L

∂L

∂T

∣∣∣∣
N,p

=

(
V

h

)−1/2 ∂L

∂V

∂V

∂T

∣∣∣∣
N,p

=
1

2

1

V

∂V

∂T

∣∣∣∣
N,p

=
1

2
αV . (A.6)



Appendix B

Hyperparameters in symmetry

functions

The symmetry functions are used as the atomic environment descriptor for the neural

network interatomic potentials (IPs) discussed in sections 3.3 and 4.3. The hyperparam-

eters η and Rs in equation (3.3) and ζ, λ, and η in equation (3.5) are listed in tables B.1

and B.2, respectively. The hyperparameters used here are taken from Ref. [289].

Table B.1: Hyperparameters in the radical descriptor G2
i .

No. η (Bohr−2) Rs (Bohr)

1 0.001 0
2 0.01 0
3 0.02 0
4 0.035 0
5 0.06 0
6 0.1 0
7 0.2 0
8 0.4 0
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Table B.2: Hyperparameters in the angular descriptor G4
i .

No. ζ λ η (Bohr−2) No. ζ λ η (Bohr−2)

1 1 −1 0.0001 23 2 −1 0.025
2 1 1 0.0001 24 2 1 0.025
3 2 −1 0.0001 25 4 −1 0.025
4 2 1 0.0001 26 4 1 0.025
5 1 −1 0.003 27 16 −1 0.025
6 1 1 0.003 28 16 1 0.025
7 2 −1 0.003 29 1 −1 0.045
8 2 1 0.003 30 1 1 0.045
9 1 −1 0.008 31 2 −1 0.045
10 1 1 0.008 32 2 1 0.045
11 2 −1 0.008 33 4 −1 0.045
12 2 1 0.008 34 4 1 0.045
13 1 −1 0.015 35 16 −1 0.045
14 1 1 0.015 36 16 1 0.045
15 2 −1 0.015 37 1 −1 0.08
16 2 1 0.015 38 1 1 0.08
17 4 −1 0.015 39 2 −1 0.08
18 4 1 0.015 40 2 1 0.08
19 16 −1 0.015 41 4 −1 0.08
20 16 1 0.015 42 4 1 0.08
21 1 −1 0.025 43 16 1 0.08
22 1 1 0.025



Appendix C

Fisher information for Gaussian

likelihood

For a Gaussian likelihood (i.e. equation (2.12)),

p(y|x,θ) = N (y |h(x;θ),Σ) =
1√

(2π)M |Σ|
exp

[
−1

2
(y − h)TΣ−1(y − h)

]
, (C.1)

the score is

s =
∂ ln p(y|x,θ)

∂θ

=
∂

∂θ

[
ln

(
1√

(2π)M |Σ|

)
− 1

2
(y − h)TΣ−1 (y − h)

]

= (y − h)TΣ−1∂h

∂θ
,

(C.2)

where the last step takes advantage of the fact that Σ−1 is symmetric and it is inde-

pendent of θ.

The Fisher information is,

I(θ) = −Ey
[
∂2 ln p(y|x,θ)

∂θ∂θ

]
= −Ey

[
∂

∂θ

(
∂ ln p(y|x,θ)

∂θ

)]
= −Ey

[
∂

∂θ

(
(y − h)TΣ−1∂h

∂θ

)]
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= −Ey
[

(y − h)TΣ−1∂
2h

∂θ2
−
(
∂h

∂θ

)T

Σ−1∂h

∂θ

]

= −Ey
[
(y − h)T

]
Σ−1∂

2h

∂θ2
+ Ey

[(
∂h

∂θ

)T

Σ−1∂h

∂θ

]
(C.3)

= Ey

[(
∂h

∂θ

)T

Σ−1∂h

∂θ

]
. (C.4)

From equation (C.3) to equation (C.4), we use the fact that Ey[y − h] = 0, since y is

a Gaussian distribution with h as its mean, i.e. y ∼ N (y |h(x;θ),Σ) as can be seen

from equation (C.1).



Appendix D

Dataset for the neural network

potential

The data set consists of energies and forces for pristine and defected monolayer graphene,

bilayer graphene, and graphite at various states. The configurations in the data set

are generated in two ways: (1) crystals with distortions (compression and stretch of

cells and random perturbations of atoms), and (2) configurations drawn from ab initio

molecular dynamics (AIMD) trajectories at temperatures 300, 900, and 1500 K. A

detailed summary of the data set is listed below.

For monolayer graphene, the configurations include:

• pristine

– In-plane compressed and stretched monolayers

– AIMD trajectories

• defected

– Relaxation of monolayer with a single vacancy

– AIMD trajectories of monolayers with a single vacancy

For bilayer graphene, the configurations include:

• pristine
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– AB-stacked bilayers with compression and stretch in the basal plane

– Bilayers with different translational registry (e.g. AA, AB, and SP) at various

layer separations

– Twisted bilayers with different twisting angles at various layer separations

– AIMD trajectories of twisted bilayers and bilayers in AB and AA stackings

• defected

– Relaxation of bilayer with a single vacancy in each layer

– AIMD trajectories of bilayer with a single vacancy in one layer and the other

layer is pristine

– AIMD trajectories of bilayer with a single vacancy in each layer; Initial con-

figuration without interlayer bonds

– AIMD trajectories of bilayer with a single vacancy in each layer; Initial con-

figuration with interlayer bonds formed

For graphite, the configurations include:

• pristine

– Graphite with compression and stretch in the basal plane

– Graphite with compression and stretch in the c-axis

– AIMD trajectories



Appendix E

Sensitivity analysis in logarithmic

parameter space

Defining θ̃i = log θi, we have

∂f/∂θ̃i = ∂f/∂θi · ∂θi/∂θ̃i = θi∂f/∂θi. (E.1)

The FIM in logarithm parameter space is

F̃ij(θ̃) =
1

2kBTη
Eeq

[
∂f(r;θ)

∂θ̃i
· ∂f(r;θ)

∂θ̃j

]

= θi

(
1

2kBTη
Eeq

[
∂f(r;θ)

∂θi
· ∂f(r;θ)

∂θj

])
θj

= θiFijθj , (E.2)

where in the second and third equality, we used equation (E.1) and equation (4.28),

respectively.

For an unbiased estimator θ̂ of the model parameters, the Cramér-Rao bound is

expressed as

Covθ[θ̂] ≥ F−1(θ). (E.3)

Let D = diag(θ) be the diagonal matrix generated from vector θ. Pre-multiplying both
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sides of equation (E.3) by D−1 and post-multiplying by D−T gives,

D−1Covθ[θ̂]D−T = D−1E
[
(θ̂ − E[θ̂])(θ̂ − E[θ̂])T

]
D−T

= E
[
D−1(θ̂ − E[θ̂])(θ̂ − E[θ̂])TD−T

]
= E

[(
D−1(θ̂ − E[θ̂])

)(
D−1(θ̂ − E[θ̂])

)T
]

= Covθ[D−1θ̂],

(E.4)

and

D−1F−1(θ)D−T =
(
DTF (θ)D

)−1
= F̃ (θ̃)−1, (E.5)

where we used equation (E.2).

Because D is a non-negative matrix (i.e. each element of D is non-negative), the

inequality equation (E.3) still holds when pre-multiplied by D−1 and post-multiplied by

D−T. Therefore

D−1Covθ[θ̂]D−T ≥D−1F−1(θ)D−T, (E.6)

and using equation (E.4) and equation (E.5), we have

Covθ[D−1θ̂] ≥ F̃ (θ̃)−1. (E.7)

The ith diagonal element of this inequality is

Varθ[θ̂i/θi] ≥ [F̃−1]ii. (E.8)



Appendix F

Stress in matrix form

The potential part of the virial stress can be written in a matrix form:

s =
1

V T
Rf . (F.1)

In Voigt notation, the stress s is a column vector with 6 elements:

s = [s11, s22, s33, s23, s13, s12]T , (F.2)

where s11, . . . , s12 are the stress components in the full matrix notation. Given rαi,t,

where i = 1, 2, 3, α = 1, . . . , N , and t = 1, . . . , T , the coordinate matrix R (of size

6× 3NT ) can be constructed as follows:

• rαi,t 7→ R1,3N(t−1)+3α−2 for i = 1,

• rαi,t 7→

R2,3N(t−1)+3α−1

R6,3N(t−1)+3α−2

for i = 2,

• rαi,t 7→


R3,3N(t−1)+3α

R4,3N(t−1)+3α−1

R5,3N(t−1)+3α−2

for i = 3,

where rαi,t 7→ Rp,q means setting Rp,q to rαi,t. The components of R that are not set

above take a value of 0. The force vector f (of size 3NT ) can be constructed by the
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mapping: fαi,t 7→ f3N(t−1)+3α−2.

For example, assume we have a system of N = 2 atoms running a total number of

T = 2 steps, then the coordinate matrix R and the force vector f are

R =



r1
1,1 0 0 r2

1,1 0 0 r1
1,1 0 0 r2

1,1 0 0

0 r1
2,1 0 0 r2

2,1 0 0 r1
2,1 0 0 r2

2,1 0

0 0 r1
3,1 0 0 r2

3,1 0 0 r1
3,1 0 0 r2

3,1

0 r1
3,1 0 0 r2

3,1 0 0 r1
3,1 0 0 r2

3,1 0

r1
3,1 0 0 r2

3,1 0 0 r1
3,1 0 0 r2

3,1 0 0

r1
2,1 0 0 r2

2,1 0 0 r1
2,1 0 0 r2

2,1 0 0


(F.3)

and

f =
[
f1

1,1, f
1
2,1, f

1
3,1, f

2
1,1, f

2
2,1, f

2
3,1, f

1
1,2, f

1
2,2, f

1
3,2, f

2
1,2, f

2
2,2, f

2
3,2

]T
, (F.4)

respectively.
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