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Abstract 

Brain-computer interfaces (BCIs) and neuromodulation technologies have 

recently begun to fulfill their promises of restoring function, improving rehabilitation, 

and enhancing abilities and learning. However, lengthy user training to achieve 

acceptable accuracy is a barrier to BCI acceptance and use by patients and the general 

population. Transcranial direct current stimulation (tDCS) is a noninvasive 

neuromodulation technology whereby a low level of electrical current is injected into the 

brain to alter neural activity and has been found to improve motor learning and task 

performance. A barrier to optimizing behavioral effects of tDCS is that we do not yet 

understand how neural networks are affected by stimulation and how stimulation 

interacts with ongoing endogenous activity. The purpose of this dissertation was to 

elucidate strategies to improve BCI control by targeting the user through two approaches: 

1. Subject control of a robotic arm to enhance user motivation and 2. tDCS application to 

improve behavioral outcomes and alter networks underlying sensorimotor rhythm-based 

BCI performance. The primary results illustrate that targeted tDCS of the motor network 

interacts with task specific neural activity to improve BCI performance and alter neural 

electrophysiology. This effect on neural activity extended across the task network, 

beyond the area of direct stimulation, and altered connectivity unilaterally and bilaterally 

between frontal and parietal cortical regions. These findings suggest targeted 

neuromodulation interacts with endogenous neural activity and can be used to improve 

motor-cognitive task performance. 
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Introduction 

 The brain is composed of hundreds of billions of cells communicating electrically 

through ions and chemically through neurotransmitters. The electrical properties of 

neurons allow for invasive and noninvasive bidirectional interfacing with the brain 

through neural decoding and neural stimulation. Noninvasive readout of electrical brain 

activity was first demonstrated in 1929 (Berger, 1929) and since then 

electroencephalography (EEG) has found uses in clinical applications, such as monitoring 

seizures, and basic and applied neuroscience to understand the response of the brain to 

external stimuli and internally generated states in health and disease (Schomer & Lopes 

da Silva, 2010). One of the primary proposed applications for decoding neural activity is 

to develop a brain-computer interface (BCI) that allows an individual to control any type 

of electronic device by thought alone (He, Gao, Yuan, & Wolpaw, 2013). The range of 

possibilities for this control spans from passive to active, from assistive to augmentative, 

and invasive to noninvasive (Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 

2002; Zander & Kothe, 2011). Interfacing a computer to the brain can be done through 

electrical stimulation to alter neural activity and behavior with proposed uses from 

enhancement to neuropsychiatric disorders (Coffman, Clark, & Parasuraman, 2014; 

Paulus, Nitsche, & Antal, 2016; Philip et al., 2017; Stagg & Nitsche, 2011). In this 

section, we give an overview of BCIs, then of noninvasive electrical stimulation of the 

brain, followed by a brief ethical discussion of the uses of these technologies. 

Brain-Computer Interfaces 

 The field of brain-computer interfacing has two main branches: invasive 
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approaches that require surgery and noninvasive approaches that do not. Both have their 

advantages and disadvantages and they are useful in different situations, however the 

limits of each is unclear. Currently, invasive approaches in humans and non-human 

primates have higher information transfer rates than noninvasive approaches and have 

been demonstrated to allow dexterous movements of paralyzed or robotic limbs (Bouton 

et al., 2016; Collinger et al., 2012; Hochberg et al., 2006). The primary advantage of the 

noninvasive approach is applicability of these to a wide population of patients and 

healthy individuals, with no significant risks associated with their use. This allows rapid 

iteration of the technology including device design, control algorithm optimization, and 

evaluation of possible control signals (He, Baxter, Edelman, Cline, & Ye, 2015; Wolpaw 

et al., 2002; Wolpaw & Boulay, 2010). Because of these advantages, this dissertation is 

focused solely on noninvasive BCIs, though knowledge gained can be applied towards 

learning BCI control with invasive devices. 

The primary clinical motivations for developing BCIs have been to restore 

function or improve rehabilitation following neural damage or disease with the aim of 

improving the patient’s ability to interact with their environment and other people (He et 

al., 2015). Individuals with spinal cord injuries, neurodegenerative disorders, or post-

stroke have difficulty interacting with their environment primarily due to impairments in 

motor control stemming from central or peripheral nervous system damage. As a single 

example of the diseases and disorders that could be alleviated with BCIs, stroke is the 

leading cause of disability in the United States with 795,000 people suffering a stroke 

each year. The cost of post stroke-care in 2010 was $73.7 billion with the standard of care 
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consisting of three to six months of outpatient rehabilitation (Moskowitz, Lo, & Iadecola, 

2010). BCIs have been used to support rehabilitation post-stroke (Ramos-Murguialday et 

al., 2013; Soekadar, Birbaumer, & Cohen, 2011) though they are not currently FDA 

approved nor reimbursed by Medicare in the United States. Neurodegenerative disorders 

such as ALS and muscular dystrophy as well as spinal cord damage can confine 

individuals to wheelchairs while in some cases not directly affecting the brain. In patients 

with ALS, BCIs have been used in the clinic and in the home to allow patients to write 

text to communicate, paint, and control their environment (Kübler et al., 2005; Nijboer & 

Broermann, 2010; Sellers, Vaughan, & Wolpaw, 2010).  

Commercial and low-cost EEG-based BCI products for the general population 

have been available for over a decade, but with the increased power of mobile processers 

to provide onboard signal processing and analog-to-digital conversion for inexpensive 

prices, these have expanded in recent years (Brunner, Bianchi, Guger, Cincotti, & Schalk, 

2011; McCrimmon et al., 2017). An understanding of the usefulness of these for healthy 

people is unclear, though applications towards mindfulness and ‘relaxation’ have been 

advertised. Newer noninvasive BCI approaches using hemodynamic signals from 

functional Near-Infrared Spectroscopy (fNIRS) and other optical methods have been 

hyped and advertised to improve the information transfer rate to allow healthy users to 

augment their communication and control, though the ability of these technologies to 

deliver on these promises is unclear (Strickland, 2017). With each of these approaches, 

we must be careful not to make promises beyond the ability of the technology. 

 There have been a multitude of approaches to developing these interfaces from 
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using self-modulation of ongoing rhythms by mental tasks to using external stimuli to 

evoke a response on the brain based on user attention and task directions (Pfurtscheller et 

al., 2010; Scherer & Pfurtscheller, 2013; Wolpaw et al., 2002; Wolpaw & Wolpaw, 2012; 

Yuan & He, 2014). Sensorimotor rhythm modulation by motor task performance was first 

reported 40 years ago by Pfurtscheller in Germany (Pfurtscheller & Aranibar, 1977). This 

work found that executing a motor task produces a desynchronization in alpha band (8-13 

Hz) activity in the sensorimotor cortical area that controls the task. Further work 

established a similar event related desynchronization to occur when motor tasks are 

purely imagined (Pfurtscheller, Neuper, Flotzinger, & Pregenzer, 1997). For example, 

when you imagine moving your right hand, the contralateral, left, sensorimotor cortex 

representing the hand area shows a desynchronization, and thus a decrease, in alpha 

power. This decrease in power is likely caused by altered firing of networks in the 

sensorimotor cortex. At rest, the sensorimotor cortex is synchronized in the alpha band 

and therefore shows a moderate amount of power in the alpha band. When a person 

executes or imagines a movement, the firing rate and patterns of neurons in the sub-

network within the motor cortex that underlie the performance of the movement are 

altered. This differentiates the network activity from that of the resting motor cortex, and 

therefore the total synchronized alpha or beta band power decreases (Pfurtscheller & 

Lopes da Silva, 1999). Invasive and noninvasive reports have also shown that there is an 

increase in gamma band power during motor execution and imagination (Ball et al., 

2008; Darvas et al., 2010; Kus, Ginter, & Blinowska, 2006; Pfurtscheller & Lopes da 

Silva, 1999). Motor imagination has interesting characteristics in that the controlling 
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network partially overlaps with that of the motor execution (Lotze et al., 1999; Lotze & 

Halsband, 2006) and there is a general stereotyped signature in electrophysiological 

recordings, but it also has no obvious output to the person performing the imagination; 

the subject does not intrinsically have feedback. Therefore, it is similar to many cognitive 

tasks that are internally generated via thought alone.  

 An intrinsic aspect of networks across the brain are oscillations, though there is 

debate as to whether they carry useful information or if they are epiphenomena related to 

biophysical aspects of neurons and their networks (Buzsáki, Anastassiou, & Koch, 2012; 

Engel & Fries, 2010; Joundi, Jenkinson, Brittain, Aziz, & Brown, 2012; Salari, Büchel, & 

Rose, 2012; van Wijk, Beek, & Daffertshofer, 2012). An understanding of the brain 

rhythms and interactions during sensorimotor rhythm performance can help us to further 

develop BCIs and improve BCI performance. This is important moving forward to 

clinical applications, as with any technology, if it is difficult to use or does not work 

reliably, people will not use it (Holz et al., 2013). In order to expand the use of BCIs to 

patients and healthy subjects, understanding how the brain uses BCIs to control different 

devices as well as how neural activity can be externally altered to improve performance is 

needed.  

Transcranial Current Stimulation 

 Electrical stimulation of the brain to treat neurological symptoms has been 

performed for millennia, though a basic understanding of the effect of electrical 

stimulation on muscles and the nervous system has only been developed in the past few 

centuries and although an understanding of how the electrical current affects the brain 
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and neurons has only been extensively investigated over the past century (Priori, 2003). 

In modern times, with the dawn of psychiatry and neuroscience as a discipline, our 

understanding of how externally generated electric fields/current in the brain affects the 

brain has allowed for more scientific investigation into the behavioral, and 

electrophysiological, effects of electrical stimulation. Electroconvulsive therapy, using 

electrodes placed on the scalp to induce seizures, was introduced in the 1930s for mental 

health disorders and is still efficaciously in use today to treat treatment-resistant major 

depressive disorder (Priori, 2003). In the 1960s, neuroscientists began investigating how 

externally applied electrical fields influence neuron activity and at what levels of current 

neuronal effects occur in vivo and in humans (Lippold & Redfearn, 1964; Priori, 2003; 

Purpura & McMurtry, 1965). While the noninvasive brain stimulation technique of 

transcranial magnetic stimulation was pioneered in the early 1980s and was approved for 

treatment-resistant depression in 2008, transcranial current stimulation was reintroduced 

in the literature with work by Nitsche and Paulus (Nitsche & Paulus, 2001; Nitsche & 

Paulus, 2000). Since this time, there has been an explosion in publications examining the 

behavioral, electrophysiological, and cellular effects of current stimulation in vitro and in 

vivo in animals and humans (Brunoni, Fregni, & Pagano, 2011; Stagg & Nitsche, 2011).  

 The use of electrical neuromodulation to treat diseases and disorders through either 

the peripheral (PNS) or central (CNS) nervous system was branded as ‘electroceuticals’ 

(Famm, Litt, Tracey, Boyden, & Slaoui, 2013) to draw a parallel analogy to 

pharmaceuticals. The potential advantage of these over CNS or PNS affecting drugs is in 

their local and targeted network effects, compared to systemic effects of standard drug 
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delivery. Current approaches to noninvasive current stimulation are primarily 

characterized by the waveform of the current injected into the brain. The most studied 

version is directed current stimulation (tDCS), where a non-oscillating current is injected 

at an amplitude up to a few millamperes. Antal et al. (Antal et al., 2008; Antal & Paulus, 

2013) first used alternating current stimulation (tACS) at specific frequencies to stimulate 

the motor cortex and found an effect on motor excitability. Other types of stimulation 

include random noise stimulation (tRNS), where the waveform is random noise with a 

frequency distribution within a specific frequency band, which was introduced by Terney 

and colleagues has been proposed to work through stochastic resonance (Terney, Chaieb, 

Moliadze, Antal, & Paulus, 2008). All forms of transcranial stimulation are thought to 

interact with endogenous firing activity, oscillations, and neural noise in some way, 

though the specifics of these effects in vivo are still being investigated. 

On a cellular neural network basis, networks of interneurons generate the specific 

rhythms that influence how pyramidal neurons fire. The effect of tDCS in the cortex is 

thought to be on pyramidal neurons where, based on mathematical modeling and in vitro 

studies, there would be an expected slight hyperpolarization of the dendrites and a 

depolarization of the cell body and proximal axons for pyramidal neurons perpendicular 

to the anode of the tDCS electrode (Bikson et al., 2004; Kabakov et al., 2012; Radman, 

Ramos, Brumberg, & Bikson, 2009; Rahman, Toshev, & Bikson, 2013; Stagg & Nitsche, 

2011). This depolarization of the cell body and axons would then lead to an increase in 

the firing rate due the affected neurons being closer to their firing threshold.  

Cellular and molecular investigations have found multiple molecules and 
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receptors involved in the time-varying effects of tDCS. Acute effects have been 

eliminated using voltage sensitive sodium and calcium channel antagonists (Liebetanz, 

Nitsche, Tergau, & Paulus, 2002; Stagg & Nitsche, 2011). Long-term after-effects were 

abolished by an NMDA receptor antagonist (Brunoni et al., 2012; Fritsch et al., 2010; 

Stagg & Nitsche, 2011). These molecular effects and methods of action need to be 

considered when applying tDCS for investigational use into the treatment of 

neuropsychiatric disorders and neurodegenerative disorders. Commonly prescribed 

medication that targets neurotransmitters or neuromodulators can alter the effect of 

stimulation, for example selective serotonin reuptake inhibitors (SSRIs) used to treat 

anxiety and depression can alter the directional effect of stimulation on excitability (Kuo 

et al., 2016; Nitsche et al., 2009). 

Many studies in both healthy humans and patients have been performed to 

examine the effect of tDCS on performance and learning of cognitive and motor tasks 

(Bestmann, de Berker, & Bonaiuto, 2015; Buch et al., 2017; Coffman et al., 2014; Kuo & 

Nitsche, 2012), as well as the effects to improve rehabilitation and reduce symptoms for 

mental illnesses or neurodegenerative disorders (Brunoni & Boggio, 2014; Flöel, 2014; 

Halko et al., 2011; Paulus, 2011; Philip et al., 2017; Zimerman & Hummel, 2014). The 

effects of TCS have been proposed to be a combination of effects directly on the brain 

and on somatosensory and cranial nerve inputs into the brain (Zaghi, Acar, Hultgren, 

Boggio, & Fregni, 2010). Extensive modeling studies have been performed with 

increasingly intricate and subject specific levels of detail to determine the distribution of 

current with differing electrode montages and the amount of current flowing through 
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different brain tissues ( Kuo et al., 2013; Ruffini, Fox, Ripolles, Miranda, & Pascual-

Leone, 2014; Sadleir, Vannorsdall, Schretlen, & Gordon, 2010). With these models, the 

expected magnitude of current is high enough to alter neuronal excitability based on in 

vitro studies. Recently, studies in both non-human primates and humans undergoing 

surgical procedures have examined, in vivo, the amount of current reaching cortical tissue 

using scalp stimulation electrodes (Opitz et al., 2016). 

With the promotion of do-it-yourself TCS devices, the marketing of low-cost 

devices by numerous companies, and the portrayal in the media of these devices the 

treatment of neuropsychiatric disorders and improve learning (Dubljević, Saigle, & 

Racine, 2014), self-medication using TCS has been cautioned against in the literature 

(Wurzman, Hamilton, Pascual-Leone, & Fox, 2016). As our understanding of the effects 

of TCS on the brain, both beneficial and detrimental, continue to be investigated and new 

methods of targeting the regions and networks of interest continue to be developed, it is 

clear a cautious approach should be advocated for. Long-term effects, either direct or 

side-effects, with subjects followed for years after stimulation have not been thoroughly 

investigated. However there have been studies that have found motor performance 

improvements to subsist for months following learning with stimulation (Reis et al., 

2009). At the same time, there have been few, if any, reports of significant side effects, 

with most side effects, including acute tingling or burning sensation during stimulation, 

and local scalp sensitivity under the electrodes following stimulation, being minimal 

(Brunoni et al., 2011; Poreisz, Boros, Antal, & Paulus, 2007). While many reports on the 

application of tDCS show improvements in motor learning, motor ability, or a reduction 
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in clinical symptoms, this is not always the case. Detrimental effects in task ability can 

occur based on the targeted location and polarity of stimulation (Iuculano & Cohen 

Kadosh, 2013) and is under-investigated due to the expansive parameter space that could 

be tested for detrimental side-effects. With these devices readily available and easily 

produced, and few demonstrated adverse effects, people will use them if there is a hope 

of cognitive improvement or enhancement. 

Ethical Issues Surrounding BCIs and Neuromodulation 

 Neural engineering at its base involves large ethical issues as its purpose is to alter 

the nervous system, and the brain in a vast majority of cases, which defines us as a person 

(Hamilton, Messing, & Chatterjee, 2011). Both neural decoding through BCIs and 

neuromodulation have ethical quandaries inherent in their use, though the specifics of 

these arises with specific usage. These technologies have been proposed to restore 

deficits following damage or improve rehabilitation, but they may also be able to enhance 

function in healthy people.  

 The use of brain-computer interfaces raises ethical issues in terms of informed 

consent and medical determinations of minimally conscious state and potential recovery 

for this state, as well as recovery from other damage (Haselager, Vlek, Hill, & Nijboer, 

2009; Nijboer, Clausen, Allison, & Haselager, 2013). When including subjects for at-

home and in-lab experiments, consideration towards the psychological effects on subjects 

who regain abilities, or have the hope of regaining abilities, should be considered, 

particularly in light of the possible loss of these following experimentation or lab use 

(Mabe, 2017).  
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 When considering enhancement with neuromodulation, we need to balance the 

known effects and possible side effects when performing experiments and when 

discussing the promise of the technology. Anecdotally, when asked, many people would 

likely say that they would prefer to learn some skill faster or perform some task better. I 

have asked this of elementary and middle school students when speaking to their classes 

about the brain; some want to learn mathematics or a foreign language faster, and they 

get very excited about it. Then I’ve asked: “What if you learn poorer in some other 

class?” They seem to have an idea if they can specifically pick which one, though their 

parents may have some other ideas. There have been reports of improvements in 

mathematical ability in children  as well as improvements in creative problem solving 

though caution is suggested when performing neuromodulation on children (Cohen 

Kadosh, Levy, O’Shea, Shea, & Savulescu, 2012).  

 There are a multitude of reasons to improve learning and performance of motor or 

cognitive tasks, from learning new skills to rehabilitation and recovery from disease or 

damage (Cramer et al., 2011; Dayan & Cohen, 2011). Neuroplastic mechanisms such as 

long-term potentiation, long-term inhibition, and homeostatic plasticity allow us to learn 

throughout our lives but also allow stabilization of networks underlying this learning. 

During development there are specific neuroplastic time periods, generally referred to as 

critical periods, during development where there is increased reorganization of neural 

connections in local areas and across the brain (Berardi, Pizzorusso, & Maffei, 2000). 

However, there are other potential plastic time windows throughout the life, specifically, 

following damage or injury where changes are widespread with reorganization of the 
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brain happening on a rapid time-scale compared to regular plasticity. During this time the 

goal is to maximize rehabilitative outcomes to maximize quality of life following damage 

(Bütefisch, 2004; Cramer et al., 2011). 

 Both BCIs and TCS can be used by healthy and the individuals with neural damage 

or improper network activity to alter their brain states. These two categories of use raise 

differing at the concern as well as or have differing brains states. The main issue is how 

the brain state, brain anatomy, brain connectivity interacts with both brain computer 

interface performance and individuals with brain damage, CNS, or PNS technologies in 

the same way. There has been profound hope and some evidence for improving 

pathological symptoms of mental illness as well as rehabilitation following traumatic 

brain injury, stroke, and other neural damage using transcranial current stimulation to 

improve neuronal regrowth as well as reorganization both locally and across networks of 

the brain. Examining the combination of this with transcranial stimulation may allow us 

to maximize rehabilitation within a specified time to maximize rehabilitation and 

outcomes on an individual level. An emerging hypothesis is that combining noninvasive 

brain stimulation with the specific task performance being targeted is required to gain the 

most from the stimulation (Berker et al., 2013; Bikson & Rahman, 2013; Luft, Pereda, 

Banissy, & Bhattacharya, 2014; Reis & Fritsch, 2011).  

Problem Statement:  

 Our approach to the outstanding challenge to improve noninvasive BCI 

performance and learning was to target the user, and the user’s brain, to improve the 

signal generated at the source rather than through later signal processing. With this, we 
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targeted user motivation, with an initial set of experiments where the device controlled 

was a robotic arm rather than a cursor on the computer screen. Following the first set of 

experiments, we shifted the focus to directly targeting the users’ brain with transcranial 

current stimulation to alter the underlying brain activity to improve performance and 

learning. We found promising results, particularly with the neuromodulation approach, 

which opens numerous possibilities to further enhance and improve targeting functional 

areas and networks of the brain in a task specific manner to develop safe, effective 

interventions to modulate brain functions. 

 Chapter 1 of this dissertation gives an overview of a project that examined 

noninvasive sensorimotor rhythm-based BCI continuous control of an assistive device 

robotic arm to evaluate the performance of subjects on move and grasp task, with the 

result illustrating the difficulty of performing a 1D/2D continuous control with grasping, 

even with subjects that perform well on standard tasks 1D/2D tasks. Additionally, one 

subject in the chronic post-stroke phase demonstrated their ability to use a standard BCI 

setup to perform equivalently to healthy subjects on these tasks. 

 Chapter 2 examines the combination of tDCS with sensorimotor rhythm-based BCI 

to investigate how these two technologies interact and their simultaneous effect on the 

brain during BCI tasks following localized stimulation of different polarities. Subjects 

receiving anodal stimulation demonstrated a reduced time to hit targets during 

imagination with the hand contralateral to the stimulated cortex. In addition, following 

cathodal stimulation, alpha power over the stimulated hemisphere was decreased 

compared to alpha and sham stimulation. 
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 Chapter 3 examines connectivity during motor imagination and BCI performance in 

healthy subjects and how these connectivity patterns are altered following tDCS. We 

found that anodal stimulation increases connectivity in a task specific manner within the 

motor imagination network in alpha and beta frequency bands. In addition, we found that 

anodal and cathodal stimulation yield different connectivity changes and directions of 

changes when using within subject comparisons. Connections between regions in the 

motor imagination network were also found to correlate with behavioral measures, 

suggesting future approaches to targeted network neuromodulation. 

 Combining these studies, we found that targeting the user affects their performance, 

though it does not necessarily improve performance. While using physical devices may 

increase motivation to learn and perform the BCI task, the difficulty of dealing with 

physical constraints to arm movement velocity and translation, hand grasp closing speed, 

and perspective in real space decrease performance ability in a continuous complex task. 

Targeting task specific activity with simultaneous BCI control and tDCS yields changes 

in behavioral, electrophysiological, and neural network connectivity following 

stimulation and these changes underlie improved behavioral performance. These results 

suggest future work to optimize stimulation with the aim of altering task specific 

frequency bands of interest and network connectivity to improve behavioral performance. 
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Chapter 1 –  

Noninvasive Control of a Robotic Arm by “Thoughts” as 

Decoded from Scalp Electroencephalogram 

 

Chapter 1 Overview 

Robotic limbs can enable individuals with impaired mobility and motor system 

output to interact with their environment. Many of these individuals do not have the 

motor control necessary to utilize their hands to control an assistive device. Invasive 

cortical BCIs have demonstrated 2D and 3D control of robotic arms in tetraplegia 

patients but the invasive approach greatly limits the number of individuals who can 

utilize the technology. We demonstrate EEG control of a human size robotic arm and 

hand to complete a multi-step grasping tasks. Four healthy and one post-stroke subject 

controlled the arm in two-dimensions to move to a target, grab the target block, and move 

it to a final location using motor imagery (MI) recorded through scalp EEG. Subject 

performance was a maximum of 25% correct for completing two steps, and a maximum 

of 12% for completing all three steps of the task. This demonstrates both successful 

control of a robotic arm in 2D performance of a multi-step task in a time-limited manner 

and the difficulty of this control for all subjects. The primary results of this work were 

published in the Proceedings of the IEEE Engineering in Medicine and Biology – Neural 

Engineering conference in 2013 (Baxter, Decker, & He, 2013). 
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Introduction 

The promise of brain-computer interfaces for studying the brain and developing 

integrated human-machine systems has yet to be fulfilled. BCI technology has been 

successfully used to empower individuals with impaired motor abilities, following stroke, 

neurodegenerative diseases, and spinal cord injuries, to increase their interaction with 

their environment (Jackson & Zimmermann, 2012; Mak & Wolpaw, 2009; Silvoni et al., 

2011). Ongoing research into signal processing (Krusienski et al., 2011), training (Green 

& Kalaska, 2011), novel applications (Daly et al., 2009; Mak & Wolpaw, 2009), and new 

signals and hybrid systems (Allison et al., 2010; Pfurtscheller et al., 2010) continues to 

illustrate the range of possible uses and improvements to the BCIs. Physical manipulators 

are one of the most promising outputs from a BCI because they allow impaired 

individuals to interact with their immediate physical surroundings without assistance 

(McFarland & Wolpaw, 2010).  

Humans have used implanted electrode arrays to control robotic arms in three 

dimensions using an invasive BCI (Collinger et al., 2012; Hochberg et al., 2012). These 

implants have been used for up to five years in humans, though a decrease in the signal 

quality occurs over time (Hochberg et al., 2012). The implantation procedure of this 

approach limits the usefulness to patients that are willing and able to have an electrode 

array implanted into their cortex, and are presently only used in the laboratory as a 

support team is needed to care for and set up the devices. 

EEG-based BCIs are an attractive alternative to invasive recording systems. EEG 

control in three dimensions has been recently shown in virtual cursor (McFarland, 



 

 17 

Sarnacki, & Wolpaw, 2010) and virtual helicopter tasks (Doud, Lucas, Pisansky, & He, 

2011). These virtual objects have been controlled using motor imagination of the arm, 

leg, and tongue combined to control all dimensions simultaneously. Control in a virtual 

task is useful for navigating a cursor or a virtual game, and as a proof of concept for 

control of physical objects, but does not insure an individual will be able to control an 

object in physical space in their immediate surroundings.  

 Controlling and interacting with physical objects is vital to allow a patient to be 

independent in their environment. Interacting with the physical environment is more 

difficult, and is fundamentally different, than controlling a virtual object because physical 

objects need be maneuvered in space with all the physical laws that entails (Green & 

Kalaska, 2011). Numerous studies have examined BCI control of physical objects 

(McFarland & Wolpaw, 2010). Galan and colleagues (Galán et al., 2008) utilized imagery 

for two-dimensional (2D) control of a virtual wheelchair and a remotely controlled 

physical wheelchair using intelligent control strategies. Motor imagery (MI) was 

combined with steady-state visual evoked potentials (SSVEPs) to develop a hybrid 

control system for a two degree-of-freedom robotic arm and hand (Horki, Solis-

Escalante, Neuper, & Müller-Putz, 2011). Other work with robotic arms has included 

control in 1D and 2D translation tasks, though primarily using a remote control setup 

compared to an arm proximal to the user (Horki et al., 2011; McFarland & Wolpaw, 

2010; Wang et al., 2011). ⁠ 

Motor imagery has been shown to improve motor rehabilitation following stroke 

(de Vries & Mulder, 2007) and post-stroke subjects have demonstrated MI-BCI control of 
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a virtual cursor in 1D  (Bundy et al., 2012; Soekadar et al., 2011). As stroke subjects 

regain function, more complex tasks are required to continue to improve recovery as a 

function of their abilities. Complex task planning and implementation for the control of a 

physical object allows for this increased difficulty and further rehabilitation. The use and 

interaction of physical objects with a robotic hand can lead to an engagement of 

embodiment (Velliste, Perel, Spalding, Whitford, & Schwartz, 2008) which causes the 

user to attribute the control or the robotic arm differently than to that of the virtual cursor.  

 We utilized a grasp task experimental setup to evaluate performance when 

subjects perform real-world tasks. The subject was required to maintain control of the 

hand and arm while moving the robotic hand to the target, grasping the block, and then 

moving the block to the final target. We utilized a reduced set of electrodes to examine 

control performance in the situation where an individual would utilize BCI control 

frequently, where the use of fewer electrodes reduces setup time as well as user 

discomfort, both important considerations when designing a system for use in the home.  

 Subjects demonstrated control of a robotic arm along three dimensions using five 

motor imagery combinations. Extending our reductionist approach followed in previous 

work, subjects used motor imagery to control three-dimensions of a robotic arm; two-

dimensions of translation, horizontal and vertical, and opening/closing of the hand, to 

pick up and move blocks. Subjects could control the robotic arm and hand with a 

minimum of five total hours of BCI training. This is demonstrated in both healthy 

subjects and in a single subject post-stroke.  
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Methods 

Experimental Setup 

Subjects: 5 subjects (3 female) were recruited to participate in these experiments (Ages: 

22-56 years). All procedures and protocols were approved by the University of 

Minnesota Institutional Review Board. Four subjects were healthy individuals (S1-S4); 

one subject previously had a subcortical stroke with residual limb impairments (S5). 

Subjects S1-S3 were trained subjects recruited following 5 (1 hour) sessions of 1D and 

2D virtual cursor training. These subjects were able to translate their previous training 

into moving the arm in both 1 and 2 dimensions with a short learning phase. S5 had 

undergone 5 hours of previous virtual cursor BCI training primarily in 1D. One naive 

subject was recruited who was trained using solely the arm task for feedback. All subjects 

participated in at least seven sessions using the arm (Table 1). 

Hardware Setup: A 64 channel Neuroscan cap with SynAmps2 headbox, and SynAmps 

RT amplifier (Neuroscan Inc., Charlotte, NC) were used to record the EEG signal. A 

bipolar EMG setup located on the subject's right extensor digitorum muscle (Ramoser, 

Müller-Gerking, & Pfurtscheller, 2000) was used on at least one experimental session per 

subject to insure subjects were not moving the arms or hands during motor imagery. 

Robotic Arm: The JACO arm (Kinova Robotics, Montreal, Canada), a seven degree of 

freedom human-sized arm with three fingered hand, was used output feedback for all 

experiments. This arm was designed for wheelchair use and thus has safety features that 

enable it to be used in close proximity to a user. The arm was securely mounted on a 

table 72 cm above the ground and the work envelope was restricted to the table with a 
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width of 72 cm depth of 72 cm, and height of 100 cm above the table surface. The arm 

was prevented from hitting the table surface by limiting the work envelope to 2 cm above 

the surface. The arm was controlled in the Cartesian coordinate system and the company 

supplied API was used to calculate the kinematics of arm and hand movement.  

 

Fig. 1. Robotic Arm Setup. Anthropomorphic robotic arm with 6 degrees of freedom 

and 3 finger hand during task performance. A. Illustrates the position at the start of the 

vertical claw task. B. Illustrates the arm position and target position at the start of the 

horizontal claw task. C. Illustrates the hand grasping the target cube and raising it above 

the table. 

 

Experimental Procedure 
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Subjects were seated comfortably in a chair located adjacent to the robotic arm 

facing a computer screen (Fig. 1). They were instructed to relax, keep their head still, and 

to blink as little as possible during the trials. Subjects were free to move their eyes, as 

would be used in the real world when moving a physical effector throughout the 

environment. To control left and right movement, subjects were instructed to imagine 

continuously opening and closing their left or right hand, respectively. To control vertical 

movement, subjects were instructed to imagine continuously opening and closing both 

their left and right hands simultaneously to move up and to relax to move down. To 

control the opening and closing of the hand, subjects were instructed to imagine tapping 

their right foot; this dimension was used as a switch. When a threshold was reached, and 

the hand was in an open state, it closed to a predefined distance, enough to grasp the 

target block. Likewise, if the hand was closed and the threshold was reached, it opened a 

predefined distance. This control design was more straightforward for the user than 

continuous control (Royer & He, 2009) and, with compliant hands, it allowed robust 

grasping of the target object. 

Training: The naive subject was trained solely using the robotic arm movement as 

feedback. Initial robotic arm training for all subjects was on targets composed of colored 

plastic balls. Balls were placed 28 cm left or right of the hand and 28 cm above and 

below the hand. Training consisted of 3 minute runs of 7 second trials; the inter-trial 

interval was 4 seconds and pre-feedback time was 1 second to allow the subject to plan 

their movements prior to the trial starting. The target was randomly selected out of the 

four possible choices and displayed as a colored square on an LCD screen located 
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approximately 90 cm from the subject. Initial training was in 1D horizontal movement. 

Once the subject achieved greater than 70% correct on 4 runs of 3 minutes in one day, 

they were trained in 1D vertical movement. Subjects were considered ‘trained’ following 

performance of 1D horizontal and vertical control of greater than 80% accuracy on a run 

of each type. Trained subjects then performed simultaneous 2D control and claw tasks. 

Tasks: For two-dimensional control tasks, subjects controlled vertical and horizontal 

dimensions simultaneously. Determination of target hit was computed by comparing the 

position of the hand acquired from the arm to the known position of the targets. When 

targets were hit, the trial ended, the arm was reset to the center position and a new trial 

was initiated. 2D control of the claw task were interspersed with simultaneous 2D 

translation tasks.  

Claw Tasks: 2D claw task consisted of either vertical or horizontal movement of the arm 

plus hand opening and closing. Claw tasks consisted of three steps performed in a 

specified order to correctly complete the task. A partial completion of two of the steps for 

a correct trial was recorded. Closing the hand prior to moving to the target position did 

not allow completion of the task. Grasp and translation were controlled simultaneously to 

allow the subject to parallel naturalistic limb movement when reaching for an object. The 

target was a 4cm by 4cm by 4cm, 25g weighted foam cube. Trials were 13 seconds long 

with a 4 second inter-trial interval to allow the arm to reset to the starting position. 

Following each trial, the arm was reset to the initial starting position and the target cube 

was manually placed back at its starting position. Runs were 3 minutes long. Each of 

these claw trials was a timed 2D, three step task, and allowed the subject the ability to 
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error correct. 

Horizontal Claw Task: The hand was centered on the of the workspace table 36 cm from 

the edges and 2 cm above the table with a target located 15 cm to the left or right of the 

center position. During each run, the target block was on the same side, either the left or 

the right. To fully complete the task, the subject was required to: 1. Move the arm from 

the center position to the left or right so the hand can grasp the target. 2. Maintain the 

position of the hand and close the hand. 3. Hold the target block while moving the arm 30 

cm in the opposite direction. 

The area to successfully grab the target was 6 cm as the opposing finger was 2 cm wide 

and the target was 4 cm wide, with a required 1 cm of the finger to contact the target in 

order to successfully grab the cube. 

Vertical Claw Task: The hand was located in the center of the workspace table located 25 

cm from the surface of the table, with a target placed directly below the hand on the 

surface of the table. To fully complete the task, the subject was required to: 1. Move the 

arm from the raised position down to the target 24 cm below the starting position. 2. 

Maintain the position of the hand and close the hand. 3. Hold the block while moving the 

arm 24 cm up. 

Signal Processing  

Online: BCI2000 (Schalk, McFarland, Hinterberger, Birbaumer, & Wolpaw, 2004) 

generated the control signal for a robotic arm. BCI2000 output a position signal through 

UDP to custom C# software where the arm position was controlled by the virtual cursor 
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position in 2D/3D space. The robotic arm was controlled by the provided API and custom 

C# software.  

Electrode Selection: All individuals initially used a 3Hz window around 12Hz for all 

controls. Vertical movement was controlled by the subtraction of C3 and C4; horizontal 

movement was controlled by a subtraction of C3 from C4 and hand grasp was controlled 

by either the addition or subtraction of Cz. This was manually optimized for each 

individual based on performance during their 1D and 2D training sessions (Table 1). 16th 

order autoregressive moving average algorithm as developed for BCI2000 (McFarland & 

Wolpaw, 2008) was used to model the signal in each frequency band (4-30Hz) with 300 

millisecond time windows.  The control signal was normalized for unit variance and zero 

mean to insure the correct learning of the linear classifier. 

Offline: Raw data collected with BCI2000 was processed using custom software utilizing 

EEGLAB (Delorme & Makeig, 2004) in MATLAB (The Mathworks, Inc., MA, USA). 

Data were bandpass filtered from 2 to 110 Hz and the mean was removed. Claw trials 

were analyzed time locked to the correct grasping of the target cube. Full (3-step) correct 

trials were epoched 4 seconds before and 2 seconds after the hand close to include the 

times of interest. Two-step correct trials were epoched 2 seconds before to 0.1 seconds 

after the correct closing of the hand to include the time of interest. Time-frequency power 

over the correct trials was compared to baseline power of the selected channel 1 second 

prior to the start of the trial. 300 millisecond time windows with 75% overlap were used 

to generate the spectrograms.  

 



 

 25 

TABLE 1 

Electrode Selection and Performance Data for all Subjects 

Subject 

Electrodes and 

Frequency Used 

(H:Horizontal Control 

V:Vertical Control 

G:Grasp Control) 

2D  

Vertical 

Claw - 

2 Step 

Vertical 

Claw - 

3 Step 

Horizontal 

Claw - 2 

Step 

Horizontal 

Claw - 3 

Step 

Total Arm 

Performance 

Sessions 

S1 

H:C3/12Hz C4/12Hz 

V:C3/12Hz C4/12Hz 

G:Cz/12 

40.2 29.6 23.8 14.2 5.3 9 

S2 

H:C3/12Hz C4/12Hz 

V:C3/12Hz C4/12Hz 

G:Cz/12 

46.6 19.7 12.4 9.8 1.4 10 

S3 

H:C3/12Hz C4/12Hz 

V:C3/12Hz C4/12Hz 

G:Cz/12 

39.5 30.9 21.8 11.7 4.4 7 

S4 

H:C3/12Hz C4/12Hz 

V:C3/12Hz C4/12Hz 

G:Cz/12 

44.4 28.7 2 7.8 0 7 

S5 

H:C3/12Hz C4/12Hz 

V:C3/21Hz C4/21Hz 

G:Cz/21 

46.9 14.1 0 9.1 2.2 7 

Subject specific electrodes and frequency displayed. Subjects S1-S3 and S5 had 5 

previous sessions of virtual cursor task training. All task values are in percent correct. 

 

Results 

All subjects correctly completed the 2D translation task and could correctly perform at 

least one of the three-step claw tasks (Table 1). Mean task performance for the 2D 

translation task across all subjects was 42.7% correct (Fig. 2). 
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Fig. 2. Robotic arm performance across all subjects. Right graph illustrates mean 

across all healthy subjects. Left graph illustrates the performance of the stroke subject. 

The healthy subjects had more accurate performance than the stroke subject on the 

complex claw tasks. 

 

Vertical Arm Claw:  Mean percent correct on the vertical claw task for completion of two 

steps for all subjects was 26.7 (+/- 5.0%) and three steps had a mean of 18.2 (+/-5.4% 

SD) (Fig. 2). Mean time to grasp for two-step correct trials was 7.616 seconds and for 

three-step correct trials was 7.706 seconds. To correctly complete these trials, the subject 

was required to rapidly switch neural states from ‘rest’, to lower the arm, to ‘foot tap’, to 

close the hand, to ‘both hand grasp’, to raise the arm to the final target position. These 

state switches are illustrated across the control electrodes in the time-frequency plots over 

the four seconds prior to the correct grasp and two seconds after the grasp. This subject 

used 12Hz ERD as the vertical control with electrodes C3 and C4 and 12Hz CZ to signal 

the hand to close. Consistent ERDs were found when averaging an individual’s correct 

trials together. An example of this is shown in the time-frequency plot for subject S1 
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(Fig. 3) of 32 merged correct trials time-locked to the hand closing shows the intentional 

rest state from 0-2.5 seconds characterized by increased synchrony at 12Hz compared to 

baseline. Following this, there was a decrease in synchrony one second prior to correct 

grasp in Cz and the ERD is present on both C3 and C4 post-grasp to move the hand up to 

correctly complete the trial. The topograph plots of the EEG power over the entire scalp 

illustrates the shifting desynchronization over the entire time of interest.  

Horizontal Arm Claw: Mean percent correct for the horizontal claw task for completion 

of two steps for all subjects was 11.7 (+/- 1.9%) and three steps had a mean of 3.5 (+/- 

1.7%) (Fig. 2). Chance level is 2% for full completion and 4% for 2 step completion. 

Mean time to grasp was 8.021 seconds. The time-frequency plot for subject S3 (Fig. 4) of 

5 merged correct trials with the target on the right-side time-locked to the hand closing 

shows the initial desynchronization on C4 to initiate movement to the right, followed by a 

synchronization at Cz initiating a hand close, and synchronization in C4 following the 

target grab leading to movement to the left.  
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Fig. 3. Electrophysiology of up-down robotic arm control. Time-Frequency plot of 

mean event-related power over thirty-two trials of the vertical claw task for a single 

subject (Top). Black line at 4s indicates when the hand closed around the target block in 

the correct position due to the power decrease in Cz ~800ms prior to the grasp. Both C3 

and C4 desynchronized following grasping of the block indicating the intention to move 

the hand up to complete the task. Topographs of power over 500ms time windows 

corresponding to the time-frequency plot (Bottom). 
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 Subject Control: Three subjects could move the arm in the target direction and 

close the hand simultaneously onto the target with maximum hand movement speed and 

without error, resulting in a fluid motion of grasping directly onto the target directly. This 

was performed in two percent of the correct trials. Subjects successfully completed trials 

both by going directly to the target, grasping it, and moving to the end position and by 

overshooting the target, moving the arm back to the target, and back to the end position, 

illustrating the ability to correct errors online in time limited situations (Fig. 5). Time 

range to grasp for correct trials was 1.830 to 11.97 seconds illustrating that subjects could 

both move directly to the target and grasp the cube as well as correct their errors in 

translation and move to grasp the cube after initial translational movement errors. All 

subjects that had previously performed cursor control stated that the physical arm was 

more difficult to control than the virtual cursor. Everyone mentioned that it was difficult 

to focus when the arm was going in the opposite of their intended direction or when they 

were trying to hold the arm in place while grasping.  
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Fig. 4. Electrophysiology of right-left robotic arm control.  Time-frequency transform 

during a trial (Top). The ERD for right movement is present from 0-2.5s on C4. From 3-

3.5s there is an increase in synchronization in Cz initiating the closing of the hand on the 

target block at 4s. At 4s there is an increase in synchronization in C3 which moves the 

arm to the left target area. Color indicates event-related change in power. Topographs of 

power over 500ms time windows corresponding to the time-frequency plot (Bottom) 
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Fig. 5. Trajectory examples during the horizontal claw task for left and right side 

targets. Right side target example illustrates trials where the subject overshot the block, 

then moved the hand back to the block, successfully grabbed it, and moved it to the final 

target location. ‘o’ indicates hand is open. ‘*’ indicates hand is closed. Green lines 

indicate the location of the target block and the final target. 

 

Discussion 

We are extending the field of BCI control from virtual control of digital objects 

(Doud et al., 2011; Yuan, Doud, Gururajan, & He, 2008) to physical devices and effectors 

(LaFleur et al., 2013). In this study, we demonstrated user control of three-dimensions of 
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a human sized robotic arm with EEG based MI-BCI. This work extends previous work 

showing robotic arm control through motor imagery control of translation and using 

hybrid systems (Horki et al., 2011; McFarland & Wolpaw, 2010). We also report 

subjective and objective measures of the difficulty of controlling a physical effector in a 

physical environment, as subjects have a more difficult time controlling the arm than 

previously controlling the virtual cursor in a similar task. One factor to consider when 

controlling an arm in 3D physical space is user perspective and the effects of user 

placement and viewing angle on performance and neural activity. For two trials of the 

horizontal claw task, we placed S3 on the opposite side of the arm and this resulted in 

reduced performance, while performance returned to the initial state upon moving back to 

the original position. Further studies are needed to study the human-computer interaction 

while controlling an object in the physical environment.  

Patients have utilized invasive electrode arrays to successfully maneuver robotic 

arms and hands in three dimensions of translation and grasp (Collinger et al., 2012). As 

control algorithms are trained on the information from the high density electrode arrays, 

and signals are from single and sets of neurons, which both non-human primates and 

humans (Fetz, 2007) can control volitionally, the higher density of information allows for 

faster training and more accurate control compared to noninvasive systems. Noninvasive 

systems have the advantage in not needing a neurosurgical procedure to use thus allowing 

them to be implemented in a more of the population. This work demonstrates the need to 

develop improved control signal discrimination to allow subjects to control increased 

dimensions of arm control, as the completion of real world tasks requires a high 
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dimensionality of accurate control. Current BCI signal processing algorithm development 

primarily focus on demonstrations in one dimensional control (Krusienski et al., 2011). 

Further testing of promising algorithms for 2D and more complex tasks is needed to 

evaluate which may be useful for controlling assistive and prosthetic devices.  

 We demonstrated, for the first time, healthy and stroke subject motor imagery 

control of a human sized robotic arm in two-dimensions in a multi-step task. 

Electrophysiological analysis using time-frequency plots illustrated the rapid sequential 

switching of task performance to complete the task in the required time. Control was 

performed by both healthy subjects and a stroke subject illustrating the feasibility of 

EEG-based robotic arm control in two-dimensions. The use of BCI control for a robotic 

arm proximally to a subject would be of great use to individuals that are unable to extend 

their arms to reach to interact with objects in their environment. In addition, the use of an 

anthropomorphic arm could increase motivation and rehabilitative potential for post-

stroke subjects that are undergoing motor imagery rehabilitation training. Recent work 

decoding 2D and 3D limb movements noninvasively (Bradberry, Gentili, & Contreras-

Vidal, 2010; Presacco, Goodman, Forrester, & Contreras-Vidal, 2011) combined with this  

work could be combined for the initial control of a prosthetic limb. Further work with 

prosthetic limb users to understand underlying electrophysiology while subjects control a 

prosthesis is needed to optimize EEG based MI-BCI control. 
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Chapter 2 –  

Sensorimotor Rhythm BCI with Simultaneous High Definition-

Transcranial Direct Current Stimulation Alters Task 

Performance 

 

 

Chapter 2 Overview 

Transcranial direct current stimulation (tDCS) has been used to alter the 

excitability of neurons within the cerebral cortex. Improvements in motor learning have 

been found in multiple studies when tDCS was applied to the motor cortex before or 

during task learning. The motor cortex is also active during the performance of motor 

imagination, a cognitive task during which a person imagines, but does not execute, a 

movement. Motor imagery can be used with noninvasive brain computer interfaces 

(BCIs) to control virtual objects in up to three dimensions, but to master control of such 

devices requires long training times.  

The objective of this study was to evaluate the effect of high-definition tDCS on 

the performance and underlying electrophysiology of motor imagery based BCI. We 

utilized high-definition tDCS, to investigate the effect of stimulation on motor imagery-

based BCI performance across and within sessions over multiple training days.  

We report a decreased time-to-hit with anodal stimulation both within and across 

sessions. We also found differing electrophysiological changes of the stimulated 

sensorimotor cortex during online BCI task performance for left vs. right trials. Cathodal 
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stimulation led to a decrease in alpha band power during task performance compared to 

sham stimulation for right hand imagination trials. In addition, anodal and sham subjects 

had an increase in discriminability between left and right trials following stimulation. 

These results suggest that unilateral tDCS over the motor cortex differentially affects 

cortical areas based on task specific neural activation. These findings were published in 

Brain Stimulation in 2016 (Baxter, Edelman, Nesbitt, & He, 2016). 

 

 

Introduction  

 

Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation 

approach wherein a low level of current is applied through scalp electrodes into the brain 

(Nitsche & Paulus, 2001). Essentially, tDCS is considered to modulate the resting 

membrane potential of neurons within the generated electric field. This results in an 

increase or decrease in excitability based on neuron location and orientation with respect 

to the field (Stagg & Nitsche, 2011). Initial studies characterized polarity specific 

differences in cortical effects utilizing transcranial magnetic stimulation (TMS) to elicit 

motor evoked potentials (MEPs) in the hand. Nitsche and Paulus (Nitsche & Paulus, 

2001) examined the effects of anodal tDCS over the motor cortex and found MEPs 

elicited by TMS were increased in amplitude, suggesting greater cortical excitability 

following the stimulation, while cathodal stimulation decreased MEP amplitude, 

suggesting decreased cortical excitability (Nitsche & Paulus, 2001). Other studies have 

since characterized the effects of electrode polarity and electrode placement using in vitro 

and in vivo models (Dmochowski, Datta, Bikson, Su, & Parra, 2011; Johnson et al., 
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2013; Kabakov et al., 2012; Stagg & Nitsche, 2011). In studies with healthy humans, 

tDCS has been found to improve (or impair) task performance based on stimulation 

parameters with applications involving numerical learning (Iuculano & Cohen Kadosh, 

2013), memory (Javadi, Cheng, & Walsh, 2012), and attention (Pope & Miall, 2012). 

tDCS has exhibited both acute effects lasting an hour and longitudinal effects lasting 

from several days to months when examining performance measures as outcome at 

follow-up (Nitsche & Paulus, 2001; Reis et al., 2009).  

The BCI field has developed noninvasive online systems that utilize sensorimotor 

rhythms (SMRs) modulated by motor imagination to control virtual and physical objects 

with the goal of expanding this control to clinical populations (Cassady, You, Doud, & 

He, 2014; Doud et al., 2011; Edelman et al., 2015; He et al., 2015, 2013; LaFleur et al., 

2013; McFarland et al., 2010; Wolpaw & McFarland, 2004; Yuan & He, 2014). 

Importantly, many people with motor neuron damage are not able to control their limbs 

due to loss of motor control pathways, but can still generate cortical activity 

corresponding to the hand or limb movement by performing motor imagery (MI) (Kübler 

et al., 2005; Wolpaw & McFarland, 2004). Motor Imagery is a cognitive task consisting 

of kinesthetically imagining a motor movement while not executing the movement. The 

electrophysiological signature of MI performance is an event related desynchronization 

(ERD), a decrease in power relative to baseline, in the alpha (8-13 Hz) and/or beta (13-30 

Hz) bands in the hemisphere contralateral to the imagined movement, and an event 

related synchronization (ERS) in the ipsilateral hemisphere (Pfurtscheller & Lopes da 

Silva, 1999). These alpha and beta oscillations over the motor and sensorimotor cortex 
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are referred to as sensorimotor rhythms SMRs. However, MI-based BCI is not without its 

challenges including lengthy training times which increases user burden and findings 

indicating 20% of healthy subjects may not be able to learn to self-modulate SMRs to 

control BCIs with current technology (Blankertz et al., 2010).  

 The brain networks underlying motor execution overlap with those that underlie 

motor imagery ( Lotze & Halsband, 2006) and motor learning tasks have been 

extensively used to evaluate the behavioral effects of tDCS. Anodal stimulation over the 

motor cortex has resulted in a faster learning rate for implicit ( Nitsche et al., 2003) and 

explicit motor learning (Stagg et al., 2011) as well as retention of a learned motor 

paradigm (Galea, Vazquez, Pasricha, de Xivry, & Celnik, 2011; Reis et al., 2009). Using 

cathodal stimulation, Nitsche and colleagues and Stagg and colleagues found an opposite 

or no effect in using these same motor learning paradigms. As a result, these studies and 

others (see Madhavan & Shah, 2012; Reis & Fritsch, 2011) conclude that applying 

anodal tDCS over the motor cortex can improve behavioral motor learning across motor 

tasks.  

The effects of tDCS on motor imagination are largely unknown due in part to 

inconsistent findings in the literature. Initial studies suggested increased ERD resulting 

from MI performance following anodal stimulation in small cohorts of both healthy 

(Matsumoto et al., 2010) and stroke subjects (Kasashima et al., 2012). More recently, 

Lapenta and colleagues combined tDCS stimulation with MI found an opposite effect; 

anodal stimulation decreased the ERD (Lapenta, Minati, Fregni, & Boggio, 2013). 

Combining high-definition tDCS (HD-tDCS) with EEG of MI before and after high-
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definition anodal tDCS found similar results, a decrease in beta band ERD in the 

stimulated hemisphere (Roy, Baxter, & Bin He, 2014). In addition to the effect of tDCS 

on motor imagery, there have been multiple studies examining MI-BCI performance with 

tDCS. An initial study of anodal tDCS prior to BCI performance found an increased ERD 

over the stimulated motor cortex during BCI performance of contralateral hand motor 

imagination following stimulation, but no change in performance within a single session 

(Wei, He, Zhou, & Wang, 2013). Using trained subjects, Soekadar and colleagues found 

no change in performance within a session for those who received anodal stimulation 

compared to the sham group (Soekadar, Witkowski, Cossio, Birbaumer, & Cohen, 2014). 

Given the current state of this research, further work needs to be done to clarify how 

tDCS acutely and longitudinally affects subjects’ ability to modulate their SMRs. 

Recently, the electrophysiological network effects of tDCS have begun to be 

evaluated using simultaneous EEG and MEG (Roy et al., 2014; Soekadar et al., 2013). 

HD-tDCS systems use more electrodes, and smaller electrodes, than the standard two 

electrode tDCS configuration to improve the targeting of the cortical area of interest 

(Edwards et al., 2013; Kuo et al., 2013). These characteristics allow for online recording 

of the EEG during stimulation and online BCI performance (Edwards et al., 2013; Roy et 

al., 2014). Pharmacological and behavioral evidence suggests that tDCS application 

during, as compared to before or after, the learning of a new motor task results in an 

increased learning rate and increased performance.  

With these technical developments, our aim is to better understand stimulation 

timing and task performance on MI-based BCI ability and the underlying 
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electrophysiology by combining EEG and HD-tDCS. We utilized HD-tDCS to examine 

the effect of multiple sessions of simultaneous high-definition tDCS and SMR-BCI on 

subject learning of right and left hand BCI tasks within and across sessions in BCI-naïve 

healthy subjects. We hypothesized that simultaneous anodal tDCS over the left primary 

motor cortex will improve BCI performance during and after stimulation compared to 

sham and cathode subjects. In addition, we hypothesize that within a session, anodal and 

cathodal HD-tDCS will differentially alter SMR power during task performance.  

Methods  

Experimental Setup 

 

Subjects: 29 healthy subjects (14 female; 26 right handed) naïve to MI-BCI 

control were recruited to participate in these experiments (Age: 18-44 years; Mean: 24.1 

years; SD: 5.6 years). Subjects were blinded to their group condition and were pseudo-

randomized into three groups: anodal, cathodal, and sham stimulation. Subjects 

participated in three experimental sessions of their assigned condition. All procedures and 

protocols were approved by the University of Minnesota Institutional Review Board. 

Hardware Setup: A 64-channel Biosemi EEG cap with active electrodes and an 

ActiveTwo amplifier were used to record the EEG signal at 1024 Hz (BioSemi, 

Amsterdam, Netherlands). A tDCS device with a high-definition (4x1) tDCS adapter was 

used to deliver 2 mA of current to the center electrode with four return electrodes 

(Soterix Medical, NY, USA). Conductive gel (Signa Gel, Cortech Solutions) was applied 

to reduce electrode offsets to below 30 mV for EEG electrodes and impedances under 1 

kΩ for tDCS electrodes. The EEG cap was adapted to fit HD-tDCS electrodes adjacent to 



 

 40 

EEG electrodes arranged per the international 10/20 system. The polarity of the center 

electrode is indicated by the subject group condition; the combined surround electrodes 

received the opposite current. The center electrode was placed between C3/CP3 and 

surround electrodes were placed between CP3/P3, C1/FC1, C5/FC5, and C3/FC3 at a 

radius of 3.5 cm from the center electrode (Figure 6). For anodal and cathodal conditions 

the stimulation consisted of a 30 second ramp up, 20-minute constant current and 30 

second ramp down. For the sham condition, the device ramped up over 30 seconds and 

then immediately ramped down over 15 seconds. At the end of the 20-minute stimulation 

window, the device was ramped up and down over 45 seconds. 

Experimental Procedure 

Subjects were seated in a chair 90 cm from an LCD monitor where experimental 

stimuli were displayed. Subjects were instructed to remain still during the experimental 

trials. BCI2000 software was used to present experimental stimuli and record EEG data. 

Subjects were instructed to kinesthetically imagine opening and closing their respective 

hand, or a similar action such as squeezing a ball, unilaterally based on the target 

location. The trial structure was the same for all BCI trials and allowed for baseline rest 

(3 second inter-trial interval), planning (3 seconds), and online performance recordings (6 

seconds maximum) (Fig. 6). Subjects performed four runs of 18 trials of the left/right 

BCI task before stimulation (Pre-Stim). Following this pre-stimulation block, the tDCS 

system was turned on and stimulation was started. During stimulation, subjects 

performed 5-6 runs depending on individual resting time (During Stim). The tDCS device 

was then turned off and the subject immediately performed four runs of BCI trials (I-Post 
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Stim) followed by a visual oddball task for 13 minutes to engage the subject while 

allowing a rest from the BCI task. Finally, subjects performed a final four runs of the 

session (D-Post Stim). Time between sessions was at least 48 hours. 

Data Collection/BCI Control 

The autoregressive filter implemented in BCI2000 was used to calculate the 

power in the frequency band of interest using a 16th order model with a time window of 

160 ms (McFarland & Wolpaw, 2008). Power in the 11-13 Hz range at C3/C4, when 

possible, was used to control the cursor with the control signal calculated based on a 

linear classifier with inputs composed of the positively weighted power in C4 and the 

negatively weighted power in C3. During stimulation, using C3 was not possible on all 

experimental days due to stimulation artifacts, and therefore one of the 9 surround 

electrodes was used instead of C3 to increase the signal-to-noise ratio in the controlling 

electrodes. Electrodes saturated by stimulation were removed on a session by session 

basis and voltages were later spherically interpolated during offline processing. 
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Fig. 6. Simultaneous BCI and tDCS task design and experimental setup. 

Experimental session: the subject performs 4 runs of 18 trials before stimulation, 

undergoes 20 minutes of stimulation and BCI trials, performs 4 runs after stimulation, 

performs a 13-minute visual oddball experiment with right hand response, and performs 4 

runs delayed after stimulation (lower left). Setup of HD-tDCS electrodes (black circles) 

embedded within the 64 channel EEG cap (lower right). Single trial sequence of events: 

after the target is presented for 3 seconds, a red ball appears on the screen and moves 

based on the SMR control signal for a maximum of 6 seconds, and followed by a 3 

second inter-trial interval (upper panel). 

 

Signal Processing 

Raw data were high pass filtered within hardware at 1Hz and 60Hz notch filtered. 

Offline processing was performed with custom scripts utilizing the EEGLAB toolbox 

(Delorme & Makeig, 2004) in MATLAB (The Mathworks, Inc., MA, USA). Data was 

low pass filtered at 110 Hz and the mean of each channel was removed. Electrodes were 
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re-referenced to the common average reference and downsampled to 250 Hz. 

Independent Component Analysis (fast-ICA) (Hyvarinen, 1999) was run on concatenated 

data from all non-stimulation blocks. Components corresponding to eye movement, eye 

blink, and muscle artifact were removed. Data was then epoched into trials; those 

contaminated with artifacts during baseline or task performance not removed by ICA 

were discarded. Data from each channel were then transformed into their time-frequency 

representation using a 1Hz band Morlet wavelet and the power in each time window and 

frequency band was computed (Qin & He, 2005). For the EEG collected during 

stimulation, ICA did not completely remove all stimulation artifacts in surrounding 

electrodes and resulted in a difference between the during-stimulation block and the pre-

/post-stimulation block power that could not be solely attributed to electrophysiological 

responses to stimulation. Therefore, we do not directly compare left hemisphere 

electrophysiological results between these time blocks. 

Analysis 

 For analysis of pre-stimulation data, we removed the first run as the control signal 

normalizer was not yet adapted to the subject for that day. Therefore, we included 54 

left/right trials for Pre-Stim, 90-108 trials for During Stim, 72 for I-Post Stim, and 72 for 

D-Post Stim. 

Primary performance outcome measures include percent valid correct (PVC) and 

time-to-hit (TTH) the correct target. The PVC is defined as the number of trials in which 

the subject hit the correct target divided by the sum of hit and miss trials, with the aborted 

trials not included. The time-to-hit was defined for correct trials as the time elapsed from 
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the appearance of the ball to when the ball hit the correct target.  

Primary electrophysiological outcome measures include electrode baseline power, 

electrode online power during task performance, and the event-related power in the alpha 

(8-13 Hz) band. Analysis of electrophysiological data was only performed on correct 

trials. We specifically examined sensorimotor electrodes C3/C4/CP3/CP4 for each of the 

electrophysiological measures. In addition, we calculated the pseudo-online control 

signal (C4 power - C3 power) during the task performance period. The trial-by-trial 

event-related power change, normalized to the baseline power (Gert Pfurtscheller & 

Lopes da Silva, 1999; Yuan et al., 2008). The baseline was defined as the 1 second of the 

inter-trial interval prior to the target appearing. The online power used was the mean 

power over the task window. We calculated the correlation value between the power and 

right vs. left hand trials as a measure of the discriminability for individual electrodes 

(Muller, Krauledat, Dornhege, Curio, & Blankertz, 2004). 

When the measure was normally distributed, we utilized a three-level hierarchical 

linear model (HLM) with random effects across subjects, groups, and blocks. ANOVA 

and t-test analyses were performed post-hoc. When non-normally distributed, we 

collapsed the data along specific dimensions (session or block) and used Kruskal-Wallis 

tests, with Wilcoxon rank-sum tests Bonferroni corrected for post-hoc analysis. To 

measure longitudinal effects, we defined each block within a session as the mean of the 

subject values within each group for each time-point. To measure within session effects, 

we corrected values to the pre-stimulation values for that session. Depending on the 

measure, this correction was either normalization to or a subtraction of the pre-
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stimulation value from the post-stimulation values.  

Results  

Effects of tDCS on Performance Measures 

Percent valid correct (PVC) is a measure of the accuracy of performance. Using a 

hierarchical linear model, we found an initial difference in PVC performance between 

stimulation groups for right hand trials (p = 0.002) and left hand trials (p = 0.019). For 

right hand trials, post-hoc analysis resulted in an overall difference between anodal 

stimulation and cathodal stimulation groups (p = 0.048) and an interaction effect of 

session by group for anode and cathode (p = 0.002). For left hand trials, post-hoc analysis 

resulted in a significant interaction effect of session by group for anodal and cathodal 

stimulation groups (p = 0.018). Anodal subjects had higher baseline performance and had 

higher performance overall, therefore we baseline subtracted the pre-stimulation value of 

first session. With this correction, there was no significant difference in PVC based on 

condition for either left or right hand trials (Fig. 7).  

The absolute time-to-hit (TTH) was not significantly different between 

stimulation groups in either left or right hand trials (Table 2).  When normalizing the 

time-to-hit to each group’s initial baseline value, there was a significant difference in 

right hand trials between the three groups (p = 0.039). Post hoc analysis found a 

difference between the anodal group and the cathodal group (p = 0.01); the anodal group 

had a significantly decreased time-to-hit for right hand trials (Fig. 8). For right hand trials 

within a session there was a significant difference between groups at the delayed post-

stimulation time block (p = 0.003); post-hoc pairwise comparison resulted in a significant 
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difference between anodal and cathodal groups (p = 0.003), and anodal and sham groups 

(p = 0.004) (Fig. 9). There was no significant difference for left hand trials. 

 

 
Fig. 7. Longitudinal baseline subtracted percent valid correct. Percent valid correct 

across time for left and right hand trials with the baseline from each individual first 

session pre-stimulation block subtracted from the values at later time points. Group PVC 

did not significantly change over the three sessions. Values: Mean +/- S.E. 

 
Fig. 8. Longitudinal normalized time to hit. Time to successfully hit right and left hand 

targets within experimental sessions normalized to subject initial baseline prior to 

stimulation. The anodal group displayed a reduced time-to-hit for right hand trials 

compared to the cathodal group. There was no difference for left hand trials. Values: 

Mean +/- S.E. *p<0.05 for Kruskal Wallis test. 
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Fig. 9. Acute normalized time to hit. Time to successfully hit right and left hand targets 

within experimental sessions normalized to the pre-stimulation baseline for each session. 

The anodal group had a reduced time-to-hit for right hand trials following stimulation at 

the delayed time point for right hand but not left hand trials. Values: Mean +/- S.E. 

*p<0.05 for Wilcoxon rank sum test. 

 

Right Hand Time-To-Hit (ms) Pre-Stim I-Post Stim D-Post Stim 

Anode 3325 ± 167 2933 ± 87 2686 ± 163 

Sham 3191 ± 142 3005 ± 160 2906 ± 90 

Cathode 3130 ± 173 2946 ± 116 3165 ± 193 

Table 2: Mean time to successfully hit right hand imagination trials across 

blocks. Values: Mean +/- S.E. 

 

Effects of tDCS on Electrophysiological Measures 

 We examined the event-related power following stimulation within sessions and 

across sessions and found no significant difference between stimulation groups at C3, 

CP3, C4 or CP4 for both left hand and right hand trials. We examined trial baseline alpha 

power within and across sessions normalized to the pre-stimulation power between 
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stimulation groups and found no significant difference within sessions at C3, C4, or CP4 

following stimulation. When normalized to the pre-stimulation baseline power, there 

were within session differences between groups at CP3 at the delayed time point (p = 

0.023), but no significant pairwise comparisons with post-hoc testing. 

There were changes in alpha power during task performance across all groups 

over the course of a session. To visualize these changes bilaterally across the motor strip, 

we normalized the power at each electrode to the pre-stimulation value within each 

session (Fig. 10). We quantitatively characterized these changes at each electrode by 

directly comparing the values across groups at the post-stimulation time points. There 

were group differences in alpha power within sessions in the C3 and CP3 electrodes for 

right hand trials. For electrode C3, there was a difference in alpha power between cathode 

and sham groups immediately following stimulation (p = 0.0125). At the delayed time 

point there was a difference between all groups (p = 0.04) (Fig. 11). Post-hoc analysis 

resulted in a significant difference between the sham and cathodal groups at the delayed 

time point (p = 0.007). There was also a significant difference between groups over all 

blocks (chi-squared = 6.67, p = 0.036) with a post-hoc difference between sham and 

cathodal groups (p = 0.004). For left hand trials, there is no significant difference 

between the stimulation groups at any time points (immediate post-stim, p =.20; delayed 

post-stim, p = 0.07), but there was a trend for the cathodal group to have lower power 

than the sham and anode groups. Similar results are found in electrode CP3 for right hand 

trials with a significant group difference at the delayed post-stim time point (p = 0.04) 

with post-hoc difference between sham and cathode (p = 0.007). We did not find any 
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difference in C4/CP4 electrodes for right or left hand trials, respectively, immediately 

post-stimulation (C4: p = 0.34; p = 0.64) or delayed post-stimulation (C4: p = 0.43; p = 

0.65).  

 
Fig. 10. EEG topograph of alpha band power changes. Mean alpha power during task 

performance in the task blocks after stimulation normalized to the pre-stimulation power 

for left and right hand trials. For right hand trials, cathodal stimulation decreased the 

alpha power in the stimulated hemisphere during task performance immediately 

following stimulation compared to the anodal and sham groups. Colors represent power 

normalized to pre-stimulation baseline. Black circles represent tDCS electrodes located 

over the left sensorimotor cortex. 
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Fig. 11. Acute changes in alpha power following HD-tDCS. Mean alpha power during 

task performance normalized to pre-stimulation trial power for successful right hand and 

left hand trials in the C3 electrode. There is decreased alpha power in the cathodal group 

compared to the sham group during right hand task performance in the C3 electrode 

immediately after stimulation and at the delayed time point. There is no significant 

difference for left hand trials. Values: Mean +/- S.E. *p<0.05 for Wilcoxon rank sum test. 

**p<0.05 for Kruskal Wallis test. 

 

We found a difference between stimulation groups with measures combining 

electrodes and trial directions. For the pseudo-control signal, we examined the change 

over time within a session and found that there was a significant difference immediately 

following stimulation between the groups for right hand trials when normalized to the 

pre-stimulation baseline (p = 0.047). Though there was no difference in post-hoc pairwise 

comparisons when correcting for multiple comparisons, a trend towards an increased 
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control signal for the anode group compared to sham was present (p = 0.025). There were 

no differences for left hand trials between groups. There was an increase in 

discriminability in C3 for anodal subjects at delayed post-stimulation (p = 0.008), and an 

increase for sham subjects immediately post-stimulation (p = 0.014) and delayed post-

stimulation (p = 0.003). For C4 we found a similar pattern for the sham and anode 

groups, respectively, at the delayed time point (Anode: p =0.012; Sham: p =0.005). 

Cathodal subjects did not show any increase in discriminability for either of these 

electrodes. 

Discussion  

  

We report the results of the first study, to our knowledge, of motor imagery-based 

BCI with simultaneous left sensorimotor HD-tDCS on behavioral and 

electrophysiological measures across multiple learning sessions. Stimulation alters 

electrophysiology and behavior during BCI performance based on task specific neural 

activation within and across experimental sessions.  

The primary behavioral effect of anodal HD-tDCS over the left sensorimotor 

cortex was a reduced time to acquire right hand imagination targets both within sessions 

after stimulation and across three sessions on multiple days. Previous studies did not 

report the effect of tDCS on BCI task timing as timing was not variable (Soekadar et al., 

2014; Wei et al., 2013). For motor learning tasks examining the speed of performance, 

Nitsche et al. (Nitsche et al., 2003) used a serial reaction time task with left M1 

stimulation and right hand movement and found anodal subjects to have a decreased 

reaction time compared to cathodal and sham stimulation. Our results parallel this result, 
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though in a different paradigm where timing is not the specific target of training. In 

addition, similar to previous studies, we found no direct effect on the accuracy for either 

left or right hand trials.  

Anodal tDCS is thought to depolarize pyramidal neurons that generate the 

synchronous signal recorded with EEG. Two ways this may affect the sensorimotor 

network utilized during MI-BCI include: the depolarization leads to greater overall 

synchrony as more neurons are likely to fire together, or that this resting synchrony is not 

significantly affected by tDCS, but nonsynchronous firing, which yields the ERD, may be 

affected. To evaluate the support for these hypotheses, we examined baseline power 

changes, task based power changes, and the ERD/ERS.  

We found no difference in the mean ERD/ERS at the primary electrodes of 

interest (C3/CP3/C4/CP4) across groups following stimulation when normalized to the 

pre-stimulation event-related power. Previous electrophysiological studies found mixed 

effects on the ERD following tDCS stimulation. Initial MI work found an increase in 

ERD of the stimulated hemisphere (left M1) when performing MI (Kasashima et al., 

2012; Matsumoto et al., 2010) and MI-BCI (Wei et al., 2013) whereas others found no 

change in the ERD for MI, MI-BCI, or motor observation (Lapenta et al., 2013; Soekadar 

et al., 2014). Our study design differed from these previous studies in multiple ways; we 

applied stimulation during learning over three sessions, and in the context of a single 

session, subjects performed the BCI task before, during, directly after, and thirty minutes 

after stimulation. The specific timing of stimulation relative to task performance has been 

found to have a significant effect on the outcome of the stimulation for motor tasks; 
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simultaneous performance and stimulation have yielded the greatest effect (Reis & 

Fritsch, 2011).  

We found differing effects on the baseline power and online power during task 

performance. There was no significant difference post-stimulation in the baseline period 

of the trials which would suggest that tDCS is not affecting this alpha activity prior to 

task performance. We found a difference in alpha power between the stimulation groups 

during right hand task performance across blocks at electrodes C3 and CP3. This 

difference was composed of a decreased alpha power during right hand trials for cathodal 

stimulation compared to sham stimulation, where anodal and sham stimulation both 

increased following the stimulation block. We also found an increase in discriminability 

for the sham and anode groups in C3 and C4, but no increase in the cathodal group. 

Combined, these results suggest that cathodal stimulation reduces a subject’s ability to 

modulate their SMR during task performance compared to sham stimulation. This also 

suggests there is not an overall change in alpha power following stimulation but rather a 

task specific effect. In addition, when calculating our pseudo-control signal, we found a 

difference in the control signal for right hand trials between groups with a trend for an 

increased control signal in the anodal group compared to the sham group. For right hand 

imagination, we expect the left sensorimotor cortex to have decreased power relative to 

the right and anodal stimulation resulted in an increase in this signal compared to the 

sham stimulation. 

There is a large degree of individual variability for both MI-BCI performance and 

responses to non-invasive brain stimulation (Berker et al., 2013; Bestmann et al., 2015; 
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Blankertz et al., 2010; Hammer et al., 2012). We did not individually target the tDCS 

based on subject specific anatomy or functionality, targeting the area of maximum 

ERD/ERS during motor imagination. This could have resulted in inaccurate targeting of 

the stimulation area on the individual level, particularly with HD-tDCS which restricts 

the stimulated area compared to the standard two electrode tDCS configuration. Others 

have found subject specific targeting of non-invasive neuromodulation to be vital for 

treating neurological disorders (Fox et al., 2014). For the BCI learning, we did not 

individualize parameters for each subject, rather we used the 11-13 Hz frequency band 

and fixed electrodes (C3/C4) for all subjects, though there can be variability in electrodes 

or frequencies bands that subjects use to control the BCI. Additionally, we did not use a 

source-analysis based filter the EEG control signal which may lead to improvements in 

performance by solving the inverse problem (Edelman, Baxter, & He, 2016; Kamousi, 

Liu, & He, 2005; Qin, Ding, & He, 2004).  

 We may see differing effects compared to previous studies due to a host of 

parameters, including the stimulation time, the amplitude of stimulation, the timing of 

stimulation, as well as the electrode montage (Moliadze, Atalay, Antal, & Paulus, 2012). 

The variability across study design and parameters within MI and BCI performance, and 

across tDCS studies, in general, suggest significant avenues for future investigation to 

optimize stimulation for the target task. Overall, the behavioral and electrophysiological 

results combined suggest that anodal tDCS is differentially affecting right and left hand 

motor imagination. Using noninvasive electrophysiological recordings during and after 

stimulation is a promising way of further understanding the effects of tDCS stimulation 
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on brain networks, as without these recordings, we cannot understand the underlying 

physiological changes that result in the vast number of behavioral changes reported in the 

literature. 
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Chapter 3 –  

Transcranial Direct Current Stimulation Alters Brain 

Connectivity during Motor-Imagery Based Brain-Computer 

Interface Control 

 

Chapter 3 Overview 

Transcranial direct current stimulation has been shown to affect motor and 

cognitive task performance and learning when applied to brain areas involved in the task. 

Targeted stimulation has also been found to alter connectivity within the stimulated 

hemisphere during rest. However, the connectivity effect of the interaction of endogenous 

task specific activity and targeted stimulation is unclear. Here we examined this 

interaction during a 1D sensorimotor rhythm-based BCI task combined with high-

definition tDCS. We collected two sets of data from healthy subjects who participated in 

three BCI-tDCS sessions. Analysis of the first set investigated the effect of anodal 

stimulation over multiple session. Analysis of the second set investigated intersubject 

variability between anodal, cathodal, and sham stimulation. Connectivity analysis showed 

altered connections bilaterally between frontal and parietal regions, and these alterations 

occur in a task specific manner; this difference is illustrated by connections between 

similar cortical regions altered differentially during left and right imagination trials. 

Using finite element modeling we show that current flow from HD-tDCS is focused 

under the stimulation electrodes with limited current flowing to the contralateral 
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hemisphere, which suggests the stimulation connectivity effects are due to anatomical or 

functional connections between affected regions rather than the direct effect of tDCS 

current on non-targeted regions. In addition, we found that connectivity correlates with 

behavioral measures. These results suggest that targeting tDCS to affect connectivity and 

understanding how the stimulation this interacts with task specific endogenous activity 

should be combined to maximize the targeted effect. 

 
Introduction 

Transcranial direct current stimulation (tDCS) of the human brain has been 

increasingly investigated since the resurgence of research into the effects of noninvasive 

electrical brain stimulation in the late 1990s (Bestmann et al., 2015; Nitsche & Paulus, 

2000; Paulus & Opitz, 2013). tDCS consists of injecting current of a maximum of 4 mA 

into the head of a subject through multiple electrodes located on the scalp or 

extracephalically. Modeling studies using both standard two-electrode and multi-

electrode configurations have found that a low level of current reaches the cortex, and 

depending on electrode configuration, deeper structures, with levels that have been 

shown in vitro to affect neuronal firing (Bikson et al., 2004b; Kabakov et al., 2012; Kuo 

et al., 2013; Opitz et al., 2016; Sadleir et al., 2010). These neuronal effects most likely 

stem from a variety of sources including membrane depolarization and hyperpolarization 

of the dendrites and axons of pyramidal cells as well as secondary effects on membrane 

resistance (Paulus & Rothwell, 2016; Stagg & Nitsche, 2011). Behaviorally, the effects of 

tDCS on the motor system has been extensively studied and has been found to affect 

motor performance and learning when stimulating the motor network (Buch et al., 2017; 
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Reis et al., 2009; Reis & Fritsch, 2011). The in vivo effects of tDCS on endogenous 

resting and task specific brain oscillations is less well-understood, and has only recently 

begun to be investigated with EEG and MEG (Bergmann, Karabanov, Hartwigsen, 

Thielscher, & Siebner, 2016; Notturno, Marzetti, Pizzella, Uncini, & Zappasodi, 2014; 

Roy et al., 2014; Soekadar et al., 2013, 2014).   

An emerging hypothesis relating the effect of noninvasive neuromodulation to 

brain activity utilizes a long-term potentiation rationale for targeting brain areas that are 

specifically active during a task or rest (Bikson & Rahman, 2013). Previous work found 

specific effects based on task related activation found using functional magnetic 

resonance imaging (fMRI). Fox et al examined the effects of transcranial magnetic 

stimulation (TMS) targeting  and found specifically that if the areas targeted overlapped 

with correlated or anticorrelated resting state networks, there was an effect on 

neurological symptoms in patients (Fox et al., 2014). Further work targeting resting state 

activity in the motor network with tDCS found increased stimulation efficacy with anodal 

stimulation of correlated areas as compared to anodal-cathodal stimulation of correlated 

areas (Fischer et al., 2017). Clark and colleagues found effects during task performance, 

targeting areas that show increased BOLD signal with anodal stimulation and those areas 

with a decreased BOLD signal with cathodal stimulation and have found improvements 

in visual attention tasks targeting parietal, prefrontal, and temporal areas, with activation 

and polarity specific effects (Clark et al., 2012).  

Simultaneous stimulation of involved areas during motor performance and 

learning has specifically led to improvements in performance compared to stimulation 
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prior to, or after, task performance (Buch et al., 2017). Recent work by our group found a 

decrease in time to hit and an increase in alpha and beta band power following 

simultaneous tDCS over the sensorimotor cortex during motor imagery based BCI 

performance (Baxter et al., 2016). We found acute differences between stimulation types 

over three groups of subjects, with each subject receiving a single stimulation type over 

three sessions. While these results demonstrated the effects of anodal and cathodal 

stimulation over multiple days, significant intersubject variability in response to 

stimulation has been reported due to neurotransmitter levels, genetics, brain geometry, 

and ongoing individual brain states (Antal et al., 2010; Krause & Cohen Kadosh, 2014); 

this variability remains a significant issue in neuromodulation (Ammann, Lindquist, & 

Celnik, 2016; Mordillo-Mateos et al., 2012; Wiethoff, Hamada, & Rothwell, 2014).  

The development of noninvasive brain computer interfaces has allowed 

individuals with motor dysfunctions to control computers and devices in the lab (He et 

al., 2015; Mak & Wolpaw, 2009; Millán et al., 2010; Scherer & Pfurtscheller, 2013; 

Wolpaw, McFarland, Neat, & Forneris, 1991) and in the home (Sellers, Mcfarland, 

Vaughan, & Wolpaw, 2010) in real-time using self-modulated brain rhythms or external 

stimuli. A predominant paradigm for continuous control of an output device is using 

motor imagination with sensorimotor rhythm modulation. To voluntarily modulate their 

sensorimotor rhythms, subjects kinesthetically imagine moving a body part without 

executing the movement. This imagination engages similar networks to motor execution 

and generates an event related desynchronization in alpha (8-13 Hz) or beta (15-30 Hz) 

frequencies in the sensorimotor cortex underlying the imagined body region which 
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corresponds to a local decrease in power in the affected frequencies (Lotze & Halsband, 

2006; Pfurtscheller & Lopes da Silva, 1999). An event related synchronization also may 

occur in contralateral sensorimotor regions. A recent meta-analysis of fMRI data found 

premotor and somatosensory regions predominantly active during motor imagination as 

well as more distributed areas in the frontal and parietal cortices  including the inferior 

frontal gyrus, premotor cortex, supplementary motor area, primary motor cortex, primary 

somatosensory cortex, and superior parietal cortex (Hétu et al., 2013). While fMRI yields 

precise localization of indirect measure of neural activity, the temporal resolution is on 

the order of seconds which does not allow us to examine most oscillatory dynamics. The 

temporal resolution of EEG is on the order of milliseconds however standard analysis of 

EEG data on the sensor level does not allow for high spatial resolution.  

Source imaging which involves solving the inverse problem of mapping EEG 

sensor activity to the brain using Maxwell’s equations and the physical properties of head 

tissues has been developed in the last few decades (Cincotti et al., 2008; Hamalainen & 

Sarvas, 1989; He et al., 1987). Based on the specific algorithm for performing this 

transformation,  modeling and event-related potential studies have found localization 

errors of 7 mm or less (Im, Gururajan, Zhang, Chen, & He, 2007; Michel et al., 2004). 

Source imaging analysis of motor imagination both without and with feedback has been 

demonstrated to have higher signal-to-noise ratio than sensor data, which can lead to 

improved motor imagination classification (Edelman et al., 2016; Kamousi, Amini, & He, 

2007; Kamousi et al., 2005; Qin & He, 2005; Yuan et al., 2008). While source based 

analysis allows us to examine how brain areas are active over time, more explicit analysis 
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of the interaction of different brain areas are needed to functionally understand how 

information flows within the network.  

There are multiple families of methods that have been used to examine undirected 

and directed connectivity during cognitive tasks using both direct EEG/MEG and indirect 

fMRI/functional near-infrared spectroscopy (fNIRS) measurements. These include 

models with underlying assumptions regarding the cortex and anatomical connections, 

such as dynamic causal modeling, as well as data driven approaches where a model is fit 

to the data, and the model is analyzed, such as multivariate autoregressive model analysis 

using Granger Causality time-based methods (Friston, Moran, & Seth, 2013), or 

frequency based methods such as the directed transfer function (DTF) and partial directed 

coherence (PDC) (Astolfi et al., 2007; Kamiński & Blinowska, 1991; Sameshima & 

Baccala, 2001).   

Electrophysiological and hemodynamic techniques have been used to evaluate 

changes in brain connectivity during and following tDCS (Luft et al., 2014). Connectivity 

analysis using EEG following transcranial current stimulation was initially performed by 

Polania et al. found that after tDCS during a motor task, there was an increase in 

intrahemispheric connectivity in the alpha, beta and high gamma frequencies (Polanía, 

Nitsche, & Paulus, 2011). Further studies examining effects on the motor network found 

brain state dependent effects following stimulation (Feurra et al., 2011; Notturno et al., 

2014). fMRI studies have examined stimulation based changes in cortical and subcortical 

connectivity. Polania et al. found increased functional connectivity between the left 

motor cortex and the ipsilateral thalamus and caudate nucleus following anodal 
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stimulation (Polanía, Paulus, & Nitsche, 2012). Hunter et al. found an increase in 

connectivity strength across the default mode networks that included the superior parietal 

region following stimulation of the parietal region (Hunter et al., 2015). Sehm et al. found 

resting state networks effects of unilateral and bilateral primary somatosensory anodal 

stimulation both during and after stimulation (Sehm et al., 2012). Further work 

examining both task specific (Meinzer et al., 2012) and resting state has shown similar 

effects due to anodal stimulation (Amadi, Ilie, Johansen-Berg, & Stagg, 2014; Keeser et 

al., 2011; Peña-Gómez et al., 2012). Combined, these results suggest anodal stimulation 

increases connectivity near the stimulation electrode as well as to more distant sites intra- 

and interhemispherically, though the specific effects and regions affected are dependent 

on the task being performed, the networks involved in the task, and the regions connected 

to the stimulated area. 

The regions underlying motor imagination have been evaluated using connectivity 

methods to examine the interaction of frequency bands in areas of interest, though 

generally confined to the sensorimotor cortex (Hamedi, Salleh, & Noor, 2016; Kus et al., 

2006). Previous work examined time and frequency based measures such as Granger 

causality and coherence metrics and found connections both unilaterally and bilaterally 

between sensory motor cortex and frontal areas during motor imagination (Hamedi et al., 

2016). There may be specific differences between motor imagination as performed in 

these studies and motor imagery brain computer interfaces performance in later studies 

and in the present study due to the visual feedback based on performance, as the feedback 

will change the brain states and the time course of brain patterns. More recent work has 
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examined sensor-based and source based connectivity using independent components in 

order to examine at the discriminatory ability for BCI control of connectivity features, in 

comparison to power and frequency based features and found little to no improvement 

using connectivity features  (Billinger, Brunner, & Müller-Putz, 2013). 

There is a disconnect between the work performed early on looking at a 

neuroscientific basis of motor imagination and how features develop while subjects are 

performing motor imagination and classification and discrimination used for online BCIs. 

Sensorimotor rhythm-based BCIs are a useful experimental protocol as unilateral hand 

imaginations generally yield different bilateral signals generated by the sensorimotor 

cortex and if stimulation interacts with ongoing oscillations it can be evaluated by 

comparing the laterality of imagination.  

The aim of this study was to determine connectivity changes during sensorimotor 

rhythm-based BCI control following simultaneous HD-tDCS of the sensorimotor cortex.  

We analyzed data recorded during sensorimotor rhythm BCI performance while subjects 

controlled a moving cursor on the screen prior to and following anodal stimulation of the 

left sensorimotor cortex. We collected two data sets to evaluate this effect: data set one 

consisted of five subjects who received anodal stimulation over three sessions; data set 

two consisted of eight subjects who received anodal, cathodal, and sham stimulation over 

three sessions; this set enabled subject specific effects of tDCS and reduce variability by 

eliminating intersubject differences between stimulation groups. 

 We used a data-driven approach to determine regions-of-interest during BCI 

control across the cortex, calculated the connectivity between these regions, and 
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determined the changes that resulted from the tDCS. In addition, we examined the 

relationship between performance and connectivity measures to inform how information 

flow and connectivity of networks underlying motor imagination correlate with 

behavioral outcomes.  By combining the connectivity changes after stimulation and the 

correlations of connectivity values with performance, we aim to inform the functional 

targeting of networks of interest to maximize stimulation effects and develop multifocal 

closed loop-noninvasive stimulation on a subject specific level.  

Methods 

Experimental setup 

Data set one: Data analyzed was a subset from a set of experiments previously 

reported (Baxter et al., 2016). In short, five right-handed healthy subjects (3 female) 

naive to MI-BCI control participated in these experiments (Age: 22-24 years; Mean: 22.6 

years; SD: 0.8 years). These subjects were selected because they performed proficiently 

and achieved >70% accuracy. Each subject attended three experimental sessions where 

they received anodal stimulation according to the experimental setup described below. 

Data set two: Eight healthy subjects (3 male; ages: 19-55, mean: 27.7; 7 right 

handed) participated in this study. Four subjects had previous BCI and tDCS experience, 

four subjects were naïve to tDCS and BCI. Each subject participated in three stimulation 

sessions during which twenty minutes of 2 mA anodal, cathodal, and sham stimulation 

was delivered while subjects performed sensorimotor rhythm-based BCI control. 

Data set three: Ten healthy subjects participated in this study. All subjects were 

naïve to BCI, motor imagination, and tDCS. Each subject participated in three 

stimulation sessions during which twenty minutes of 2 mA anodal, cathodal, and sham 
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stimulation was delivered while subjects performed motor imagination without feedback. 

All other aspects of the task were consistent with the BCI setup and methods were 

identical therefore in the rest of this section we do not differentiate between MI and BCI. 

All procedures and protocols were approved by the University of Minnesota 

Institutional Review Board. 

A 64-channel Biosemi EEG cap with active electrodes and an ActiveTwo 

amplifier were used to record the EEG signal at 1024 Hz (BioSemi, Amsterdam, 

Netherlands). A tDCS device with a high-definition (4x1) tDCS adapter was used in a 

Laplacian configuration to deliver 2 mA of current to the center electrode with four return 

electrodes (Soterix Medical, NY, USA). Conductive gel (Signa Gel, Cortech Solutions) 

was applied to reduce electrode offsets to below 30 mV for EEG electrodes and 

impedances under 1 kΩ for tDCS electrodes. The EEG cap was adapted to fit HD-tDCS 

electrodes adjacent to EEG electrodes arranged per the international 10/20 system. The 

center electrode (anode/cathode) was placed between C3/CP3 and surround electrodes 

(cathodes/anodes) were placed between CP3/P3, C1/FC1, C5/FC5, and C3/FC3 at a 

radius of 3.5 cm from the center electrode. Active anodal and cathodal stimulation 

consisted of a 30 second ramp up, 20-minute constant current and 30 second ramp down. 

For the sham condition, the device ramped up over 30 seconds and then immediately 

ramped down over 15 seconds. At the end of the 20-minute stimulation window, the 

device was ramped up and down over 45 seconds. 

Subjects were seated in a chair 90 cm from an LCD monitor where experimental 

stimuli were displayed. Subjects were instructed to remain still during the experimental 



 

 66 

trials. BCI2000 software was used to present experimental stimuli and record EEG data. 

Subjects were instructed to kinesthetically imagine opening and closing their respective 

hand unilaterally based on the target location. The trial structure consisted of a baseline 

rest period (3 seconds), planning phase (3 seconds), and online performance (6 seconds 

maximum). Subjects performed 72 trials of the left/right BCI task before stimulation 

(Prestim); the first 18 trials were removed as at the start of each session the normalizer 

needed to adjust for the subject and session. Following this, the tDCS system was turned 

on and stimulation was started. During stimulation, subjects performed 90-108 trials 

depending on individual resting time between runs. The tDCS device was then turned off 

and the subject immediately performed 72 trials (Post0) followed by a visual oddball task 

for 13 minutes to engage the subject in a controlled task, while allowing a rest from the 

BCI task. Finally, subjects performed 72 trials during the delayed time period from 

approximately 25 to 37 minutes post-stimulation (Post25). Subjects participated in three 

sessions with the time between sessions at least 48 hours.  

The BCI control system used the autoregressive filter implemented in BCI2000 

was used to estimate the 11-13 Hz power at C3/C4 which was used, when possible, to 

control the cursor with the control signal calculated based on a linear classifier with 

inputs composed of the positively weighted power in C4 and the negatively weighted 

power in C3. A normalizer was used with the classifier to reduce any directional bias in 

the cursor movement due to a subject’s difference in relative power between C3 and C4. 

After each trial, the normalizer removed the offset by subtracting the mean and scaling 
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the classifier output to unit variance based on the weighted sum of C3 and C4 during the 

online period of the preceding 30 seconds. For further details see Chapter 2. 

Signal processing 

Raw data were high pass filtered within hardware at 1Hz and 60Hz notch filtered. 

Offline processing was performed using custom scripts utilizing the EEGLAB toolbox 

(Delorme & Makeig, 2004) in MATLAB (The Mathworks, Inc., MA, USA). Data was 

low pass filtered at 110 Hz and the mean of each channel was removed. Electrodes were 

re-referenced to the common average reference and downsampled to 250 Hz. 

Independent Component Analysis (fast-ICA) (Hyvarinen, 1999) was run on concatenated 

data from all non-stimulation blocks for each session. Components corresponding to eye 

movement, eye blink, and muscle artifact were removed (Jung et al., 2000). Data was 

then epoched into trials. We visually examined the EEG time course data and removed 

electrodes that displayed a drift from their mean over time and spherically interpolated 

their activity (Delorme & Makeig, 2004); these were primarily prefrontal or temporal 

electrodes. Those trials that were contaminated with artifacts during baseline or task 

performance, respectively, not removed by ICA were discarded. Following removal and 

interpolation of bad channels, and removal of trials with significant artifactual activity, 

we referenced the data to a common reference and removed channel means. 

For the mean baseline values used to characterize the noise for source imaging, 

we included all clean trials remaining after artifact rejection and preprocessing. The one 

second prior to the appearance of the target, during the inter-trial interval, was used as the 

baseline. It is unlikely that subjects performed motor imagery accurately for the entire 

control period during every trial, therefore the peak control period for each trial was 
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selected and analyzed. For each correct trial, we calculated the difference in power 

between C3 and C4 in the alpha band within a sliding 500ms time window when subjects 

were controlling the BCI. For analysis, we removed the first 500ms of the trial, as there 

was frequently an ERP artifact due to the cursor appearance, as well as the final 250ms of 

the trial, as there was frequently an additional artifact. The data within the 500ms time 

window that contained the largest power difference was then used for the analysis of the 

online data. The time courses were detrended and standardized prior to model fitting and 

further analysis. 

Source analysis 

The BEM forward model was calculated using OPENMEEG (Gramfort, 

Papadopoulo, Olivi, & Clerc, 2010) with relative conductivity values of Skin/Skull/Brain: 

(1/.0125/1) using a quasistatic approximation mapping 64 electrodes to 15002 dipoles 

covering the entire cortical surface. A common head model based on the Colin27 head 

was used for all source analysis with electrodes located in the Biosemi 64 channel EEG 

configuration. with M indicating the EEG sensor measured values, G indicating 

the gain matrix from the forward problem mapping of noiseless data from the dipole 

sources to the sensors, and D indicating the dipole current source density. As this is an 

underdetermined problem, we employed Tikhonov regularization with the weighted 

minimum norm approach to estimate the dipole current density distribution using 

Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The weighted minimum 

norm solution is given by  
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where  is the estimated dipole cortical current density, W is the weight matrix,  is the 

regularization parameter, and  is the identity matrix (Grech et al., 2008). Where 

 with  denoting the Kronecker product and  being the norm of the 

columns of G.  

The alpha power during the trial and baseline period was computed using 1 Hz 

resolution Morlet wavelets. The real and imaginary components were separately used to 

calculate the inverse for each set of values for each trial. To calculate the noise 

covariance matrix for the inverse calculation, the baseline data from one second prior to 

the start of the trial was mean subtracted on a trial by trail basis. The noise covariance 

was calculated for each trial and the final matrix was the mean of all artifact free trial 

matrices for each specific block. To increase the robustness of the solution, we assumed 

covariance between channels was zero and used the diagonal of the matrix. The 

orientation of dipoles on the cortical surface were constrained perpendicular to the 

surface under the assumption that the primary source of the EEG is coherent postsynaptic 

potentials across populations of pyramidal neurons that are arranged perpendicular to the 

cortical surface (Buzsáki et al., 2012).  

ROI Selection 

Our ROI selection method utilized pipeline similar to our previous work (Yuan et 

al., 2008). The time courses of each electrode was transformed into its time-frequency 

representation using a 1Hz band Morlet wavelet and the power in each time window and 

frequency band (from 1-50 Hz) was computed (Qin & He, 2005). Mean amplitude at each 

sensor in the alpha band (8-13 Hz) was calculated. The real and imaginary parts were 

separated. Source imaging was then performed with the source amplitudes calculated for 
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the real and imaginary parts separately. The real and imaginary cortical current density 

(CCD) amplitudes were combined to compute a total frequency-specific CCD. 

Group level ROI selection was performed iteratively based on the mean CCD 

across all subjects for all sessions in each data set separately. First, all dipoles were 

assigned an alpha-band score based on the mean CCD across subjects and sessions which 

was calculated at each dipole over the 500ms of maximum control signal for each trial. 

The dipole with the largest alpha-band score was taken as the center of the first ROI. The 

extent of the ROI was taken as other dipoles within a 2 cm radius that had an alpha-band 

score of at least one-quarter of the center dipole. The alpha-band score of all dipoles 

within a 3 cm radius was then set to zero, and the largest alpha-band score of those 

remaining was selected and this proceeded iteratively until the top ten ROIs were 

determined. ROIs to analyze further for connectivity were selected from the 

aforementioned set based on knowledge of active areas during motor imagination and 

BCI task performance (Hétu et al., 2013; Lotze & Halsband, 2006) and were limited to 

the frontal and parietal cortices. ROI were determined separately for left and right hand 

imagination. 

Data set one (Fig. 12):  For left hand imagination, the center of the ROIs were 

located in: 1. Left premotor cortex (pM), encompassing sections of the premotor and 

primary motor cortices; 2. Left lateral primary somatosensory cortex (LS1), 

encompassing sections of the lateral primary motor and somatosensory cortices; 3. Left 

medial primary motor cortex (mM1), encompassing sections of the medial primary motor 

cortex and posterior supplementary motor/premotor cortex; 4. Right lateral primary 
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motor cortex (M1), encompassing sections of the lateral primary motor, primary 

somatosensory, and premotor cortices; 5. Left posterior parietal cortex (PPC); 6. Left 

supplementary motor area (SMA), encompassing sections of the SMA bilaterally.  For 

right hand imagination, the center of the ROIs were located in: 1. Right lateral primary 

motor cortex (M1), encompassing sections of primary motor, primary somatosensory, 

and posterior premotor cortices; 2. Left premotor cortex (pM), encompassing sections of 

the premotor and lateral primary motor cortices; 3. Right posterior parietal cortex (PPC), 

encompassing sections of the posterior parietal and medial primary somatosensory 

cortices; 4. Left primary somatosensory cortex (S1), encompassing primary 

somatosensory and motor cortices; 5. Left posterior parietal cortex (PPC); 6. Right 

supplementary motor area (SMA), encompassing sections of SMA bilaterally. ROIs were 

similar for data set two and are illustrated in the results. 

 

Fig. 12. Group regions of interest for left and right hand imagination. Black sphere 

indicates the center of the ROI. M1: primary motor cortex; MM1: medial primary motor 

cortex; SMA: supplementary motor area; pM: premotor cortex; S1: primary 
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somatosensory cortex; LS1: lateral primary somatosensory cortex; PPC: posterior parietal 

cortex 

 

 

Subject specific ROIs on a session by session basis were determined by 

calculating the largest alpha-band scores across cortical dipoles for each subject within 

each session, within each of the global ROIs. The ROI activity time course was 

calculated by taking the mean of the dipoles within a 5 mm radius around the peak 

dipole. These time courses were used as a source-based virtual channels for analysis. 

These virtual channels were utilized for fitting the multivariate autoregressive model 

(MVAR) followed by analysis using the non-normalized and normalized directed transfer 

function. An overview of the processing pipeline is illustrated in Fig. 13. 

Connectivity analysis 

The multivariate autoregressive model is defined by 

 

Where  are the k time series at time t and 

 are the k white noise values at time t, and  

 for j = 1,…,p are model parameters derived from the data 

E(t) is the uncorrelated white noise input driving the system with zero mean. The number 

of channels, k, was determined based on the number of ROIs chosen for connectivity. 

Model order, P, was determined using the AIC with the ARfit toolbox (Schneider & 

Neumaier, 2001) with each trial in each block being independently fit, then the mean of 
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all trials per block taken as the order for all trials in that block, and each trial refit using 

the specified model order for that block. For most trials, cross and autocorrelation across 

20 time lags exceeded the 2/sqrt(t) threshold, which is a measure of the goodness of fit of 

the MVAR model, under ten percent of the time  (Ding, Bressler, Yang, & Liang, 2000). 

The directed transfer function calculates the connectivity between regions of 

interest for each frequency of interest. The directed transfer function evaluates the 

directed influence from one channel to another based on MVAR model fit to the data ( 

Kamiński, Ding, Truccolo, & Bressler, 2001; Kamiński & Blinowska, 1991). 

 

Where H is the transfer matrix defined in the frequency domain as  

 

This can then be normalized to the total inflow to each channel yielding the normalized 

directed transfer function 

 

To assess the significance of the connectivity on a trial by trial basis, we used a 

surrogate phase shuffling method (Theiler et al. 1992, He et al. 2011). In short, we 

transformed the time domain data into the frequency domain using a fast Fourier 

Transform, normalized the power at each frequency, and shuffled the phase across 

frequencies, multiplied these shuffled phases by the original frequency power, and 

applied the DTF to the inverse FFT of this shuffled data with the same model order as the 

original data. This procedure was repeated 1000 times for each trial to calculate a 
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distribution of DTF values, and a significance of 0.05 was used to compare the original 

data to the shuffled phase distribution data. 

Statistics 

Data set one: 

To evaluate changes in connectivity following stimulation, we used a generalized 

linear model with fixed effects of block, and random effect of subject with session and 

block nested within each subject. A Gamma link function was used as it was found to 

empirically fit the data better than Gaussian or logit functions using the Akaike 

information criterion (AIC). P values were corrected for each measure using the false 

discovery rate to correct for the number of comparisons which was calculated as the 

number of connections with significant differences across blocks multiplied by two, for 

the planned comparison of Prestim to Post0 and Prestim to Post25.  

To evaluate changes in the number of statistically significant trials, we applied the 

Freidman test, with post-hoc Wilcoxon-signed rank for pairwise comparisons FDR 

corrected for planned comparisons between pre-stimulation and post-stimulation 

conditions.  

A generalized linear model with the fixed effects of each connectivity value and 

random effect of subject with levels by session and block was used to examine the 

relationship between behavioral measures and connectivity. A Poisson link function was 

used when analyzing the number of correct trials; for time to hit, a Gamma link function 

was used as this empirically fit the data well. The p value was adjusted for multiple 

comparisons across all fixed effects using the false discovery rate.  

Data set two:  
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The pre-stimulation normalized DTF value was subtracted from the post-

stimulation values for each session. The mean of the change of Post0 and Post25 was used 

for analysis to evaluate the change between pre-and post-stimulation. To evaluate 

changes in connectivity following stimulation between different stimulation polarities, we 

used a general linear model with fixed effect of session, and random effect of subject 

with session and block nested within each subject. Single sample t-tests were calculated 

for each condition to evaluate if the change was nonzero. 

 

 
Fig. 13. Data analysis processing pipeline. The included time frequency transform is an 

example of a correct trial of right hand imagination, the white bar indicates when online 

feedback began. The sensor level topograph illustrates alpha band activity during an 

example trial. The source imaging distribution illustrates the mean alpha power 

distribution across all subjects for right hand imagination. ROI selection is then 

performed based on previous studies. The peak ROIs are found for each subject each 
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session and trial specific time courses are extracted and fit with a multivariate 

autoregressive model to which the directed transfer function is applied. 

  

Finite Element Model of HD-tDCS 

ANSYS version 14 (ANSYS Inc., PA, USA) was used for 3D modeling and Finite 

Element Method (FEM) based electromagnetic simulation (Silvester & Ferrari, 1996; 

Zhang, Zhu, & He, 2010). The DUKE head model from the Virtual Family (Christ et al., 

2010) was imported and constructed in ANSYS, by a hexahedral element with the mesh 

size of 2×2×2 mm3. Head segmentation (19 head tissues) was provided along with the 

head model, and their corresponding conductivity values were taken from literature 

(Sadleir et al., 2010) and assumed to be isotropic. Electrodes were localized on the scalp 

surface in the configuration as performed in our experiments with the surround electrodes 

located 3.5cm from the center electrode. 2.0 mA of current was injected into the center 

electrode while surround electrodes each had -0.5 mA of current injected. 

 

Results 

Data set one  

Across frequency bands, there were more changes in connectivity for right hand 

imagination than for left hand imagination following left sensorimotor HD-tDCS. Total 

inflow to and outflow from ROIs in the alpha band changed based on laterality of hand 

imagination as measured by the normalized DTF. Ipsilateral pM and S1 for left hand 

imagination and ipsilateral M1 and PPC for right hand imagination contributed greater 

outflow compared to other ROIs (Fig. 14). There was a trend towards an increase in the 
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outflow following anodal stimulation from the sensorimotor cortex ipsilateral to the 

imagined hand irrespective of stimulated hemisphere for both left and right hand 

imagination; however, this was only significant for right hand imagination. For left hand 

imagination, there were significant increases in inflow to the left PPC and SMA 

following stimulation. For right hand imagination, there was increased inflow to the left 

pM, S1, and PPC following stimulation at both Post0 and Post25, and an increase to the 

right PPC post-stimulation. There was an increase in inflow in the beta band to the left 

PPC, right M1 and PPC following stimulation (Fig. 15). There was also an increase in 

outflow from the SMA at Post0. For left hand imagination in the beta band, there was a 

difference in outflow from right M1 and left PPC but there were no significant post-hoc 

comparisons between pre- and post-stimulation. 
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Fig. 14. Alpha band normalized DTF total flow for each ROI. (A) Change in 

connectivity from the pre-stimulation time point mapped onto the peak dipole of each 

ROI. (B) Absolute connectivity values for each block within each session. For left hand 
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imagination (Left) there was a significant increase in the left PPC and SMA inflow 

following stimulation at the indicated time points. For right hand imagination (Right) 

there was increased inflow to left pM, S1, and PPC, and to right PPC following 

stimulation at both the immediate post and delayed post time points. There was a 

significant increase in right M1 outflow following stimulation. Total inflow to the ROI 

(top) and total outflow from the ROI (bottom). Bar color indicates the block: pre-

stimulation (blue), Post0 (red), and Post25 (black). Values are mean across subjects across 

blocks; error bars are standard error across subjects. ** p<0.05 across blocks, * p<0.05 

FDR corrected post-hoc between pre-stimulation and post-stimulation blocks. 

 

 
Fig. 15. Beta band normalized DTF total flow for each ROI. For left hand imagination 

(Left) there was a significant difference in outflow from the right M1 and left PPC. For 

right hand imagination (Right) there was increased inflow to the left S1 and PPC and to 

the right PPC following stimulation. The SMA showed increased outflow directly 
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following stimulation. Bar color indicates the block: pre-stimulation (blue), Post0 (red), 

and Post25 (black). Values are mean across subjects across blocks; error bars are standard 

error across subjects. ** p<0.05 across blocks, * p<0.05 FDR corrected post-hoc between 

pre-stimulation and post-stimulation blocks. 

 

Directed connections between the ROIs in the alpha band display further 

differences due to HD-tDCS based on the laterality of hand imagination (Fig. 16). For 

left hand imagination, there was a significant difference between SMA and left PPC but 

there were no significant post-hoc difference between pre- and post-stimulation. For right 

hand imagination, there was a significant increase in connectivity from the right M1 to 

the right PPC and from the right M1 to left pM. There was also a significant increase in 

connectivity between the SMA and left pM at both post-stimulation time points. In the 

beta band for both left and right hand imagination, there was increased connectivity from 

right M1 to the left pM at Post25 (Fig. 17). For right hand imagination, there was an 

increase from SMA to the left pM at both post-stimulation time points.  
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Fig. 16. Alpha band normalized DTF flow between each ROI pair. For left hand 

imagination (Left) there is a difference in connectivity across session blocks from the 

SMA to the left PPC. For right hand imagination (Right) there was increased connectivity 

from the right M1 to right PPC and the left pM following stimulation. There was also 

increased connectivity from the SMA to the left pM at both time points following 

stimulation. Bar color indicates the block: pre-stimulation (blue), Post0 (red), and Post25 

(black). Values are mean across subjects across blocks; error bars are standard error. ** 

indicates p<.05 across blocks, * indicates p<.05 FDR corrected post-hoc between blocks 

between pre-stimulation and post-stimulation blocks. 
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Fig. 17. Normalized DTF values across time. Alpha (top) and beta (middle) band 

changes in connectivity prior to and after stimulation for right and left hand imagination. 

Red indicates and increase in connectivity based on the values included in the table. 

Values are mean across subjects across blocks. All included connections had p<0.05 

across all blocks. * indicates p < 0.05 post-hoc between pre-stimulation and post-

stimulation blocks. 

 

To evaluate the significance of the connectivity, we calculated, on a trial by trial 

basis, if each connection was statistically significant based on surrogate phase shuffling. 

There were significant changes in the number of significant trials following stimulation 

(Fig 18). For left hand imagination, there was a change in statistically significant trials 

from left mM1 to the left pM and SMA, from left lateral S1 to left PPC, and from SMA 
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to left pM with trends towards increasing connectivity at Post0 and a return to baseline or 

decrease at Post25. For right hand imagination, there were bidirectional changes between 

left pM and left SMC with trends towards increased significant trials post-stimulation and 

from left PPC to left pM and right PPC with a trend towards increased significant trials at 

Post25. There were no significant pairwise post-hoc changes following stimulation. 

 
Fig. 18. The percentage trials with significant alpha band connectivity between 

ROIs. For left hand imagination (Left) there was a change in significant trials from left 

mM1 to the left pM and SMA, from left lateral S1 to left PPC, and from SMA to left pM. 

For right hand imagination (Right) there were bidirectional changes between left pM and 

left SMC and from left PPC to left pM and right PPC. Bar color indicates the block: pre-

stimulation (blue), Post0 (red), and Post25 (black). Values are mean across subjects across 

blocks; error bars are standard error. ** indicates p<.05 across blocks. 

 

To examine the relationship between alpha band connectivity values and 

behavioral performance metrics we utilized a generalized linear model with each 
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normalized connectivity value as a fixed effect within the same model. Overall, specific 

normalized connectivity values were correlated with behavioral outcome measures. For 

right hand imagination trials, inflow to SMA was significantly correlated with increased 

correct trials (β=3.59, p < 0.01 FDR corrected). Outflow from left pM (β=-1.54, p < 0.05 

FDR corrected), left S1 (β=-1.62, p < 0.05 FDR corrected), and right PPC (β=-1.21, p < 

0.05 FDR corrected) correlated with decreased correct trials. For left hand imagination 

trials, inflow to the left LS1 was correlated with fewer correct trials (β=-1.53, p < 0.05 

FDR corrected). Outflow from left pM (β=1.57, p < 0.05 FDR corrected), left LS1 

(β=0.98, p < 0.05 FDR corrected), and right M1 (β=2.18, p < 0.05 FDR corrected) 

correlated with an increased number correct. Inflow to right M1 (β=-4072, p < 0.05 FDR 

corrected) and outflow from left PPC (β=5769, p < 0.05 FDR corrected) correlated with 

the time to hit correct targets.  
Multiple directed connectivity values for both hand imaginations were correlated 

with changes in the time to hit correct targets (Fig. 19). For left hand motor imagination 

connections from left LS1 to right M1 correlated with a decreased time to hit while 

connectivity from left LS1 to left PPC correlated with an increased time to hit. For right 

hand motor imagination connections from right M1 and PPC to left pM and S1 correlated 

with an increased time to hit. Bidirectional left PPC-SMA connections correlated with a 

decreased time to hit. For both hand imaginations connections from ipsilateral pM/M1 to 

SMA correlated with a decreased time to hit. 
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Fig. 19. Beta scores between normalized connectivity values in the alpha band and 

the time to hit correct trials. For left hand motor imagination (Left) connections from 

left LS1 to right M1 are correlated with a decreased time to hit while connectivity from 

left LS1to left PPC correlated with an increased time to hit. For right hand motor 

imagination (Right) connections from right M1 and PPC to left pM and S1 correlated 

with an increased time to hit. Input to left pM also correlated with an increased time to 

hit. Bidirectional left PPC-SMA connections correlated with a decreased time to hit. For 

both hand imaginations connections from ipsilateral pM/M1 to SMA correlated with a 

decreased time to hit. Red indicates an increased time to hit, blue indicates a reduced time 

to hit. p < 0.05 for all displayed connections with FDR correction for multiple 

comparisons. 

 

 

Data set two 

The source distribution of alpha power differs following the different stimulation 

conditions (Fig 20). When comparing the effect of anodal stimulation between data sets 
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one and two, there are similarities in an increase in inflow to the left motor and parietal 

regions and an increase in outflow from the right motor regions. However there are also 

differences, specifically the inflow and outflow from SMA for the three condition 

subjects, which shows an increase in inflow and decrease in outflow following 

stimulation (Fig. 21).  

The mean of the baseline subtracted Post0 and Post25 connectivity values 

illustrated the effect of stimulation on motor imagery networks based on laterality of 

hand imagination (Fig 22). Outflow from the left sensorimotor cortex/PPC differed 

between stimulation types for left hand imagination with the anodal group having 

significant decreases in outflow compared to sham and cathode. For right hand 

imagination, the inflow to the left sensorimotor cortex/PPC differed between stimulation 

conditions, with cathodal stimulation having a significant decrease compared to the 

anodal stimulation, which showed an increase.  
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Fig 20. Source distribution of alpha power normalized to pre-stimulation 

baseline. The stimulation conditions differentially modulate the power in the alpha band 

following stimulation across the brain bilaterally.  
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Fig. 21. Comparison of anodal stimulation connectivity between data sets for right 

hand imagination. Total inflow and outflow to the mean of Post0 and Post25 within 

subjects across anodal (blue), cathodal (red), and sham (black) stimulation between the 

two data sets with the mean of the Three Sessions subjects (left) and Three Conditions 

subjects (right). There are similarities with increased inflow to left motor and parietal 

regions and increased outflow from right motor cortex. However, there is a difference in 

SMA inflow/outflow. Values: Mean and +/- SE. ** p < 0.05 across blocks; *(above) p < 

0.05 pairwise post-hoc between blocks; *(below) p < 0.05 one-sample t-test. 
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Fig. 22. Change in ROI alpha band total inflow and outflow following stimulation. 

Baseline subtracted total inflow and outflow to the mean of Post0 and Post25 within 

subjects across anodal (blue), cathodal (red), and sham (black) stimulation. Outflow from 

left SMC/PPC differed between stimulation types for left hand imagination and inflow 

differed for right hand imagination. Connections following anodal stimulation differed 

from baseline more often than following cathodal or sham stimulation. Values: Mean and 

+/- SE. ** p < 0.05 across stimulation types; *(above) p < 0.05 pairwise post-hoc 

between stimulation types; *(below) p < 0.05 one-sample t-test. 

 

 

Data set three 

  

 There were differences in total inflow and outflow between motor imagination 

without feedback and performance of the BCI task with feedback (Fig. 23). During right 



 

 90 

hand imagination, MI shows greater outflow from the contralateral hemisphere. During 

left hand imagination, MI shows greater inflow to the left SMC/PPC. During both 

imaginations, MI has greater inflow to the left premotor cortex.  

 There were also differences in the effect of task type in the connectivity response 

to stimulation. Anodal stimulation has a differential effect on the change in outflow from 

SMA during left hand imagination, with BCI showing an increase in outflow and MI 

showing a decrease in outflow. There is also a difference in the left PPC with BCI 

showing an increase and MI showing a decrease in inflow (Fig. 24). For cathodal 

stimulation, there is a differential effect on left SMC, with BCI showing a decrease in 

inflow compared to MI (Fig. 25). There were no significant differences following sham 

stimulation or for other ROIs.  

 
Fig. 23. Comparison of overall connectivity between BCI and MI. There are 

significant differences between BCI performance of motor imagination with feedback 
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and MI performance without feedback. During right hand imagination, MI shows greater 

outflow from the contralateral hemisphere. During left hand imagination, MI shows 

greater inflow to the left SMC/PPC. During both, MI has greater inflow to the left 

premotor cortex. BCI (blue) and MI (red). Values: Mean and +/- SE. *p < 0.05 between 

groups. 

 
Fig. 24. Comparison between BCI and MI of the change in connectivity following 

anodal stimulation.  During left hand imagination, there are differential effects on the 

outflow from SMA and inflow to left PPC. During right hand imagination, there are no 

significant differences between groups. BCI (blue) and MI (red). Values: Mean and +/- 

SE. **p < 0.05 between groups. 
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Fig. 25. Comparison between BCI and MI of the change in connectivity following 

cathodal stimulation.   During left hand imagination, there are no significant differences 

between groups. During right hand imagination, there is a significant difference in inflow 

to the left SMC between groups, following stimulation. BCI (blue) and MI (red). Values: 

Mean and +/- SE. *p < 0.05 between groups. 

 

 

FEM 

Qualitative distribution of the current over the cortex illustrates localized targeting 

of HD-tDCS (Fig. 26). Quantitative modeling illustrates the distribution of current 

density across the skin, skull, CSF, and within the brain. The peak current density 

calculated within the FEM in grey matter under the electrodes of interest in the left 

(stimulated) hemisphere: C3: 0.161 A/m2 CP3: 0.132 A/m2 PO5: 0.007 A/m2. Peak 
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current density in white matter: C3: 0.492 A/m2 CP3: 0.356 A/m2 PO5: 0.005 A/m2 (Fig. 

27). 

 

Fig. 26. FEM model of HD-tDCS. Qualitative distribution of current flow during HD-

tDCS over the left sensorimotor cortex. Peak currents are confined to cortical regions 

with the extent of the Laplacian, 4 x 1, spatial configuration. Red circle indicates center 

active electrode and blue circles represent return electrodes.  
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Fig. 27. Coronal sections of quantitative FEM model. The current distribution across 

head and brain tissues at electrodes from anterior to posterior. C3 and CP3 are within the 

4 x1 electrode region. Peak current is at the skin, CSF, and cortical gray matter near the 

stimulating electrodes. Colors indicate the natural log of total current density within each 

voxel. 

 

Conclusion 

Unilateral high-definition tDCS during motor imagery based brain computer 

interface performance has bilateral connectivity effects. Connectivity, and these 

stimulation effects, differ based on the laterality of hand imagination, with an increased 

effect on connectivity when performing right hand imagination, contralateral to the 

stimulated hemisphere. These results suggest that tDCS interacts with ongoing 
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endogenous oscillations and affects communication between brain areas involved in the 

task being performed. 

Directed connectivity measures yield information on total and relative influence 

between ROIs. During right hand imagination, the left sensorimotor cortex 

desynchronizes (and vice versa for left hand imagination), which is characterized by a 

decrease in power in the alpha band. This decrease in power is due to networks within the 

sensorimotor cortex altering their firing patterns when activated by the motor imagination 

task, this is referred to as event-related desynchronization (ERD). Concurrent with this 

ERD, we found a high degree of outflow from within the hemisphere ipsilateral to the 

motor imagination, from the pM and PPC during right hand imagination and from pM 

and SMC for left hand imagination. Following stimulation, this outflow increased for 

right hand imagination and trended towards an increase for left hand imagination. For 

right hand imagination, there was an increase in inflow to the stimulated hemisphere in 

the pM and SMC, and increased inflow bilaterally to the PPC. This suggests that the 

integration of the stimulated sensorimotor cortex, and stimulated hemisphere more 

generally, into the motor imagination network is increased following anodal stimulation; 

this increased information flow within the network could lead to previously reported 

improved behavioral performance, such as reduced time to hit following anodal 

stimulation (Baxter et al., 2016). This also suggests that the stimulation after-effect is task 

specific and alters connectivity in a task specific manner, in this case, regardless of the 

location of the stimulation electrode to the outflow region. It is unclear if the effect is 

based on the same physiological basis however as the increase in inflow is bilateral in the 
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right-hand imagination case and unilateral in the left-hand imagination case. These results 

illustrate the network effects of stimulation on regions not directly targeted and that these 

effects are use dependent. Using resting state fMRI, Polania and colleagues found 

increased connectivity between the stimulated left primary motor cortex, and subcortical 

structures of the ipsilateral thalamus and caudate nucleus (Polanía et al., 2012). As the 

thalamus has widespread cortico-cortical; connections, this could be a pathway through 

which the intrahemispheric changes in connectivity occur.  

Computational modeling of transcranial direct current stimulation has been 

extensively performed. Our experimental setup specific model supports previous 

simulation results (Kuo et al., 2013) where HD-tDCS yields biologically affective 

cortical distribution of current in the stimulated region with a low level of current also 

reaching subcortical structures, the contralateral hemisphere and more anterior and 

posterior electrodes in the prefrontal and co-parietal regions. In addition, it supports the 

connectivity results in suggesting that there is a network effect due to stimulation rather 

than a direct effect of the stimulation on distant cortical regions. 

Multiple studies have examined the interactions of stimulation with motor 

execution on connectivity. Polania et al examined connectivity at the EEG sensor level 

using graph theory measures and found increased connectivity in the alpha band within 

the left hemisphere during a right hand motor task following anodal stimulation over the 

left primary motor cortex (Polanía et al., 2011). For right hand imagination, we did not 

see significant increases in the DTF values within the left hemisphere, but we did see 

changes in the percentage of trials showing significant connectivity within the left 
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hemisphere, with a trend towards an increased percentage of significant trials post-

stimulation  In addition, Polania and colleagues found no change or decreased 

interhemispheric connectivity based on specific electrodes in the alpha band following 

stimulation, whereas we report the opposite. Notturno and colleagues examined 

functional connectivity following tDCS with the active electrode over the left primary 

motor cortex and found no effect on coherence during motor movement between C3 and 

any other electrode following 20 minutes of 1mA anodal or cathodal stimulation, though 

they did not look at pairwise coherence between other electrodes (Notturno et al., 2014). 

We found an overall increase in inflow to the left SMC during right hand imagination 

following stimulation, primarily driven by right cortical output. An explanation for the 

previously found lack of effect by Notturno and colleagues may be the relationship 

between the timing of stimulation and task performance. These previous studies 

performed stimulation during rest whereas we had subjects perform the task simultaneous 

with stimulation. During sensorimotor rhythm modulation for controlling a BCI, the 

control signal is generated from both hemispheres whereby there may be increased 

interaction between the two during task performance. Combining this with stimulation 

may then increase both ipsilateral and contralateral connectivity due to task specific 

activity. These differences highlight the importance of context with stimulation, whereby 

differing activity during stimulation leads to differing aftereffects of the stimulation on 

task specific activity 

 Within the second data set, we examined differences between anodal, 

cathodal, and sham stimulation on the same subjects. We report opposing effects of 
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anodal and cathodal stimulation on the left SMC/PPC, a region directly affected by 

stimulation, which suggests differential interactions of the stimulated network with 

laterality of hand imagination. The region is synchronized with left hand imagination and 

desynchronized with right hand imagination and these results suggest the stimulation is 

interacting to affect this network based on the underlying activity. Anodal stimulation 

increases information flow to the area during right hand imagination, when sub-networks 

within the cortex are not synchronously active, while it decreases outflow when the 

networks are synchronous; the opposite is true for cathodal stimulation, which suggests 

an impairment of differential connectivity to/from the stimulated area with cathodal 

stimulation. 

 During motor imagination during the peak control period, we found changes in 

connectivity both intra and interhemispherically. The connectivity of motor imagination 

during BCI varies based on the laterality of imagination. These differences and 

connectivity patterns are likely due to event related synchronization and 

desynchronization across the motor cortex and these interactions with the rest of the 

motor imagery network through cortico-cortical connections both intrahemispherically 

and across the corpus callosum between the two hemispheres connecting the motor and 

parietal cortices (Feurra et al., 2011; Gao, Duan, & Chen, 2011; Karabanov, Chao, Paine, 

& Hallett, 2013). There are many regions showing increased BOLD during motor 

imagination (Hétu et al., 2013) and there is a large degree of interconnectivity within the 

sensorimotor cortex bilaterally, including the premotor, motor, and parietal cortices (Gao 

et al., 2011). Our results show similar relative connectivity when examining the 



 

 99 

normalized inflow and outflow compared to the work of Gao et al. We see similar trends 

for right hand motor imagination with high inflow compared to outflow to the left M1 

and S1 and a greater amount of outflow compared to inflow for the right M1 and pM. For 

left hand imagination, we see higher inflow to the right M1 than outflow, and see higher 

outflow for the pM and SMC. Other work primarily examined changes in connectivity 

between rest and motor imagination. During right hand motor execution, Notturno et al. 

found increased coherence compared to rest in the low alpha band between left M1 and 

right S1 and left M1 and left pM, reduced coherence between left M1 and left PPC, and 

increased high alpha and beta coherence between left M1 and the contralateral cortex 

(Notturno et al., 2014). Kus et al. found a decrease in beta outflow from sensorimotor 

cortex contralateral to finger execution or imagination during task performance compared 

to baseline (Kus et al., 2006). Athanasiou et al. examined connectivity in the alpha band 

during motor imagination and found information flow from contralateral to ipsilateral M1 

and SMA to ipsilateral M1 (Athanasiou, Lithari, Kalogianni, Klados, & Bamidis, 2012). 

We did not compare rest to task performance so we cannot directly compare these 

changes in connectivity, however we see an opposite pattern of high connectivity both 

pre- and post- stimulation, from the ipsilateral to contralateral SMC and from SMA to the 

contralateral M1.  

A significant difference between previous studies examining the connectivity during 

motor imagination is that, in this current study, subjects received feedback during the 

imagination performance. In addition, we examined the connectivity at the peak control 

signal time window for each trial, when the alpha power difference between the two 
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hemispheres is largest. With this, we do not assume that the subject is performing the 

motor imagination robustly over the entire control time window, and empirically, with 

untrained subjects it is unlikely that they are performing the imagination for the entire 

available time period. Within this time window of peak difference, we find high influence 

from ipsilateral to the contralateral hemisphere, from the region of high synchrony to that 

of low synchrony. The outflow from the ipsilateral hemisphere is different between motor 

imagination and SMR-BCI with feedback, where we see an increase outflow from the 

ipsilateral hemisphere and decreased outflow from the contralateral hemisphere with 

feedback. We cannot differentiate the driver of this difference, if it is learning or 

feedback specific, but there is a difference between these two experimental paradigms 

where the underlying task is the same. This difference in overall connectivity between the 

tasks also suggests reasoning behind a differential effect of stimulation on connectivity 

during these tasks.  

Differential changes between motor imagination and SMR-BCI were evident after 

cathodal and anodal stimulation. Bortoletto and colleagues examined performance and 

MEP size following a left thumb abduction task, where the effect of anodal stimulation 

on fast, with learning, vs. slow, without learning, abduction were differentiated. They 

argued that the effect differed due to the task specific learning, and found a decrease in 

MEP size when combining learning with anodal stimulation and the opposite effect when 

combining anodal stimulation with activation without learning (Bortoletto, Pellicciari, 

Rodella, & Miniussi, 2015). Bortoletto and colleagues argue their results support a neural 

noise hypothesis of stimulation whereby during the task without learning, anodal 
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stimulation increases the signal, and with learning, the signal is already high and anodal 

stimulation reduces this. While we do not examine excitability directly, we do see 

increased outflow during motor imagination without learning, which, if it is taken as a 

measure of excitability, would parallel the results seen by this previous study. However, 

there are significant differences between these studies as in this current study, subjects 

only receive feedback within the BCI condition, whereas in the study by Bortoletto and 

colleagues, subjects received feedback in both conditions.  

From present knowledge of connectivity during motor imagination we know the 

primary motor cortex as well as the supplementary motor area, and parietal cortex, are 

involved in motor imagination and this network may include prefrontal cortex as well, in 

particular, when receiving feedback. How an increase in connectivity amongst these areas 

inform the behavior is unclear as the connection from SMA to sensorimotor and premotor 

areas are suggested to influence the inhibition of movement execution during motor 

imagination (Kasess et al., 2008). The parietal areas are involved in attention as well as 

visual motor transformation or performing visual motor tasks (Andersen & Buneo, 2002). 

We instructed subjects to perform kinesthetic imagination but they may also perform 

visual imagination which may involve a more complex motor task; for example, throwing 

a ball, opening a door handle, or any task that additionally involves the imagination of the 

upper limb and some type of object may involve parietal areas. Andersen et al. have 

developed brain computer interface devices using parietal reach and grasp areas in non-

human primates as well as initial work with humans showing that subjects can control a 
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robotic device based on movement, intention, and imagination using solely parietal areas 

(Aflalo et al., 2015; Hauschild, Mulliken, Fineman, Loeb, & Andersen, 2012).  

  We found specific connectivity features to correlate with change in performance 

as measured by the number of correct trials and the time to hit correct targets. For both 

left and right hand imagination, connectivity from ipsilateral premotor/motor to SMA 

correlate with a decreased time to hit. For left hand motor imagination connections from 

left lateral sensorimotor to right motor correlates with a decreased time to hit whereas for 

right hand motor imagination connections from right motor and sensorimotor cortices to 

left premotor and sensorimotor correlate with an increased time to hit. This non-

symmetric effect may reflect specific connections due to the right handedness of subjects 

studied where the left hemisphere is dominant and contralateral influence impairs motor 

imagery performance. Bidirectional left parietal-SMA connections and left parietal to 

right motor correlate with a decreased time to hit, whereas output from left parietal to left 

premotor correlates with an increased time to hit illustrating the differential effects of the 

parietal cortex on the motor imagination network. To the best of our knowledge, this is 

the first study examining connectivity change following tDCS and correlating 

connectivity to behavioral performance to examine how planned targeting of the network 

with stimulation could be used improve performance.  

Using directed network connectivity there are strong correlation between 

connection in the parietal cortex and imagination and timing of correct trials. We do not 

attempt to predict performance based on these connectivity measures but rather use this 

correlation to examine how the network interacts at this peak control signal and how that 
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correlates timing and performance for the trial overall. Previous work examined offline 

motor imagery classification between right hand and foot imagery of features derived 

from independent component using connectivity, frequency, and power-based metrics 

and found that connectivity features presented similar discriminatory performance as 

frequency based metrics and found little difference between different connectivity 

measures including directed transfer function, coherence, partial directed coherence 

among others (Billinger et al., 2013). This study did not report specific connectivity 

features used for classification so we were unable to compare connectivity results. In 

addition, this work did not examine the relationship between connectivity and subsequent 

BCI performance using band power features. Overall, previous work has not examined 

the interaction of connectivity measures with performance but has rather examined how 

connectivity changes during task performance and if connectivity based classifiers can be 

used to improve classification accuracy. 

Our results support the hypothesis that tDCS interacts with ongoing endogenous 

brain activity in an activity/task-specific manner. During motor imagination, there is a 

decrease in alpha power in the contralateral sensorimotor cortex due to a 

desynchronization in the underlying networks, with areas involved in the imagination 

decoupling from surrounding areas. Based on unilateral sensorimotor stimulation, we see 

differing interactions of the stimulation aftereffects on network connectivity based on the 

laterality of hand imagination. The effects of targeting network connections and the most 

efficacious methodology to do this using TCS is still unclear. We may hypothesize that 

regions that we aim to increase connectivity between should be stimulated via anodal 
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stimulation, to increase excitation and therefore increase the probability of correlating the 

firing in these areas, however the timing of the firing is of importance as the timing of 

input onto a neuron and subsequent firing of that neuron can induce long-term 

potentiation or long-term depression, other parameters being equal (Müller-Dahlhaus & 

Ziemann, 2015). Future work to examine the time dynamics of connectivity and 

behavioral output will be useful in determining stimulation strategies to optimize 

performance and develop closed-loop bidirectional BCIs. 
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Conclusion and Future Directions 

The results of this work suggest a way forward using a combination of 

electrophysiology and noninvasive neuromodulation to target local activity and network 

connections. A combination of modeling and network analysis during brain states of 

interest, be they task specific or symptomatic, with stimulation likely will lead to local 

and network effects that improve the behavioral outcome be it due to inhibition or 

potentiation of local and network neural activity. Using this approach, computational 

psychiatry has been proposed to improve patient symptoms and outcomes though much 

work is still required to validate this proposed framework for neuropsychiatric illnesses 

and the maximum possible effect size and optimal treatment regimens are unknown 

(Huys, Maia, & Frank, 2016; Stephan et al., 2015). 

Closed-loop targeting based on local activity and network connections in which a 

control system uses ongoing electrophysiological recordings to direct and trigger 

simulation are beginning to be proposed following the lead of deep brain stimulation 

(Afshar et al., 2012; Dangi, Orsborn, Moorman, & Carmena, 2013; Herron, Denison, & 

Chizeck, 2015; Little & Brown, 2012; Priori, Foffani, Rossi, & Marceglia, 2013). 

Commercial products have already been developed by device manufacturers with the 

capability of combining EEG and TCS, though there have not yet been published peer-

reviewed studies using these devices for closed-loop stimulation. 

The combined possibilities of using multifocal targeting of network activity and 

connections for specific tasks with closed-loop stimulation will yield an increased 

understanding of brain dynamics across brain states, from behavioral task performance to 
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neuropsychiatric disorders, and should open new approached to treating these disorders, 

possibly when combined with cognitive training. While the current results illustrate how 

tDCS interacts and alters endogenous oscillatory activity, using a similar strategy with 

tACS expands targeting possibilities, and parameter space, to specific frequencies. While 

current distribution during tDCS is highest in the cortex, tACS has recently been shown 

to allow for targeting deeper structures without affecting surface tissue (Grossman et al., 

2017). While the recent era of noninvasive neuromodulation spans from the introduction 

of TMS in the early 1980s to the rediscovery of TCS in the late 1990s, the potential of the 

field to improve patient quality of life has been demonstrated in the past decade. 

Combining this stimulation with BCIs to provide feedback will allow for functional 

targeting of task specific brain regions and connectivity for rehabilitation and possibly 

enhancement of performance. With ongoing studies and further refinement of techniques, 

we will likely be able to optimize stimulation for individual subjects with specific 

conditions to target specific symptoms.  
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