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Spintronic devices operating with pure spin currents represent a new paradigm in nanoelec-
tronics, with higher energy efficiency and lower dissipation as compared to charge currents.
This technology, however, will be viable only if the amount of spin current diffusing in a
nanochannel can be tuned on demand while guaranteeing electrical compatibility with other
device elements, to which it should be integrated in high-density three-dimensional architec-
tures. Here, we address these two crucial milestones and demonstrate that pure spin currents
can effectively propagate in metallic nanochannels with a three-dimensional curved geometry.
Remarkably, the geometric design of the nanochannels can be used to reach an independent
tuning of spin transport and charge transport characteristics. These results put the founda-
tion for the design of efficient pure spin current based electronics, which can be integrated in
complex three-dimensional architectures.

Keywords: spintronics, non-local spin valves, curved nanoarchitectures, geometrical control, electrical and
spin resistance

A number of next-generation electronic devices, includ-
ing memory elements and transistor circuits, rely on spin
currents. Pure spin currents1–7 transfer only spin angular
momentum and therefore have the additional advantage
that the electronic devices can operate with low power
dissipation. A pure spin current can be generated using
the coupling between charge and spin transport across
the interface of a ferromagnet with a contiguous param-
agnetic nanochannel. The efficiency of the spin injection
across this interface can be optimized by improving the
interface quality and the device structure. The prop-
agation of the pure spin current along the nanochan-
nel is instead related to its spin relaxation length. In
conventional metals and small-gap semiconductors, the
dominant spin relaxation mechanism corresponds to the
so-called Elliot-Yafet mechanism,4,8,9 which dictates that
the spin relaxation length is strictly locked to the resis-
tivity of the metallic paramagnet. This, in turn, severely
compromises the applicability of pure spin currents to
technologically relevant modern electronics, which neces-
sitates the individual matching of spin and charge resis-
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tances in order to achieve efficient coupling of spin and
charge degrees of freedom.8,10,11

Here, by using a combination of experimental investi-
gations and theoretical analysis, we show that spin and
charge resistances can be independently tuned in metal-
lic nanochannels. Importantly, this is realised even in the
absence of any external electric or magnetic gating,12,13

and it is totally different in nature to the spin-charge sep-
aration phenomenon in Tomonaga-Luttinger liquids.14,15

Our strategy relies on the possibility to grow metallic
nanochannels with a strongly inhomogeneous nanometer-
scale thickness, t. The size-dependent resistivity, ρ, of the
metallic channels16 yields a different local behaviour for
the sheet resistance ρ/t and the spin relaxation length
λ ∝ 1/ρ [c.f. Fig. 1(a-c)]. As a result, an appropriate en-
gineering of the nanochannel thickness allows to design
nanochannels where one can achieve independent tuning
of spin resistance without affecting the total charge re-
sistance, and vice versa. This capability allows for the
design of an element with simultaneous matching of spin
resistance to a spin-based circuit, e.g. for efficient spin
injection,8,10,11 and matching of charge resistance to a
charge-based circuit, e.g. for efficient power transfer. The
control of spin and charge resistances is fundamental to
spintronics, as it enables practical magnetoresistance in
two terminal devices17 and the concatenability and re-
duced feedback in spin logic architectures.18,19
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As a proof of concept, we demonstrate modulation of
spin currents and of charge currents in lateral non-local
spin valves1 with ultrathin metallic channels directly
grown on curved templates [c.f. Fig. 1(d,e)], thereby al-
lowing us to achieve efficient spin current propagation in
three-dimensional nanoarchitectures. This is of immedi-
ate relevance when considering a practical implementa-
tion of spintronics. On the one hand, transport of pure
spin currents in non-local spin valves is at the heart of
multiple proposals of spin-based logic architectures,18,19

and thus of potential technological impact. On the other
hand, the use of curvature to independently control spin
and charge impedances in multi-terminal devices adds a
novel approach for their efficient integration with com-
plementary metal oxide semiconductor (CMOS) transis-
tors that optimizes device reliability and endurance.20

Finally, as CMOS technology scales down to 10 nm fea-
tures or less, there are increasing efforts in the develop-
ment of three-dimensional CMOS microelectronics that
can overcome the limitations of Moore’s law. This is sim-
ilar with regards to spintronics and its integration with
CMOS. Such efforts have been led by the thinning and
3D stacking of several chips, initially integrating CMOS
and spin-based memories21 and later extended to het-
erogeneous chips.22 A completely different approach is
to change the architecture itself to be three-dimensional.
Until now, the realisation of vertical flow of spin informa-
tion via three-dimensional channels has been based solely
on the movement of magnetic domain walls, by applying
current23 or magnetic field,24 with a recent implementa-
tion based on depositing magnetic material on the side-
wall of deep trenches.25 Our work on curved nanoarchi-
tectures for pure spin current devices delves into territory
so far only explored for charge-based technologies. While
being conceptually simple and potentially cheap, it offers
the possibility of high density three-dimensional integra-
tion over that in conventional spin current devices.

Curved templates were created in the form of trenches
in a silicon dioxide substrate. Increasing the height of
the trenches A [c.f. Fig. 1(d,e)] led to channels with in-
creasing curvature, allowing us to systematically explore
the effect of channel geometry. To create the trenches we
used focused ion beam (FIB) etching, where the geometry
of the trenches was controlled by varying the FIB milling
times. Each sample consists of two lateral spin valve de-
vices: one device with the spin transport channel across
the trench, resulting in a curved device, and another on
the flat part of the substrate, serving as a reference de-
vice. The spin valve devices were prepared by multi-
step e-beam lithography, e-beam evaporation of materi-
als and resist lift-off techniques, as described in Ref. 26.
Permalloy (Ni80Fe20, Py) nanowires, with a thickness of
20 nm, were used as the ferromagnetic electrodes. Injec-
tor and detector Py electrodes were designed with dif-
ferent widths (80 nm and 100 nm) to achieve different
coercive fields. The injector-detector in-plane separation
(L) was 500 nm for all the devices, except for the one
with the largest trench height (A = 270 nm) which had a

separation of 700 nm. For the spin transport channel we
used an aluminium (Al) nanowire, with a width of 100 nm
and a nominal thickness of 50 nm. The Al channel was
evaporated following a short in-situ ion milling step to
remove surface oxide and resist contamination from the
Py electrodes, resulting in Al/Py ohmic contacts with a
resistance-area product lower than 10−15 Ω.m2. Fig. 1(f)
shows a scanning electron microscope image of one of the
fabricated curved spin valve devices.

All electrical measurements were performed with the
sample in a high vacuum environment, within a liquid
helium cryostat. The electrical resistance of the Al chan-
nel was measured by the four-probe method, with the
current applied between the two ends of the Al chan-
nel and the voltage drop measured between the injector
and the detector electrodes. For the non-local spin valve
measurements, the electrical connections are schemati-
cally shown in Fig. 1(f). Here, an alternating current
(I) source, with a magnitude of 400 µA and frequency
of 13 Hz, was connected between the injector electrode
and the left end of the Al channel. The non-local voltage
(V ) at the detector electrode, with reference to the right
end of the Al channel, was measured by a phase sensitive
lock-in technique. A magnetic field was applied along
the length of the Py wires during these measurements to
configure the injector and detector electrodes in a parallel
(P) or an anti-parallel (AP) state, corresponding to two
distinct levels of the non-local resistance (RNL = V/I).
The spin valve signal (∆RNL) is then given by the dif-
ference of the non-local resistance between parallel and
anti-parallel configurations, ∆RNL = RP

NL − RAP
NL . The

measurements were carried out at room temperature and
at 4.2 K to study spin transport in channels with increas-
ing curvature. The extraction of ∆RNL via this standard
low-frequency first-harmonic lock-in technique serves to
accurately extract the pure spin current signal and ex-
clude any role of induction or thermoelectric effects.1,26

The non-local spin valve measurements are shown in
Fig. 2(a). The resulting modulation of ∆RNL with A is
plotted in Fig. 2(b). ∆RNL is maximum for the refer-
ence spin valves with A = 0 and shows little change for
trenches with A < 50 nm, limited by device to device
variation. However, for increasing trench heights above
≈ 100 nm we observe a strong decrease in ∆RNL, until it
is fully suppressed for the trench with A = 270 nm. On
the other hand, the measured four-probe charge resis-
tance of the curved channel between the injector and de-
tector electrodes exhibited an opposite trend, as observed
in Fig. 2(c). Here, a steep increase in resistance (R) is
seen for trenches with height greater than ≈ 100 nm. A
similar behaviour was observed at room temperature [see
Supporting Information Section 1].

The contrasting behaviours of both the spin valve sig-
nal and charge resistance offer direct evidence of the ef-
fect of the curved geometry introduced by the trench.
We have first checked that both the strong suppression
of ∆RNL and the steep increase of R with increasing A
cannot be explained just by considering the increase in
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FIG. 1. Concept of geometrical control of spin current and curved device architecture. (a-b) Schematics of two
different spin transport channels, each composed of three elements in series. The elements of the channel in (a) are identical,
representing a homogeneous channel, resulting in a total charge resistance R0 and a spin current Is. The channel in (b) is
inhomogeneous, with components having different thicknesses and resistivities (ρ), and still with a total charge resistance R0.
However, its spin resistance is differently modulated with the thickness, resulting in a different spin current as compared to
the homogeneous channel in (a). (c) Distinct role of channel thickness (t) on the modulation of sheet resistance ρ/t and of the
spin relaxation length (λ), leading to distinct scaling of charge and spin resistances. (d-e) Transmission electron microscope
(TEM) cross-sections of Al channels grown on trenches of different geometries, characterized by the trench height A and the
full width at half maximum. Top-view of an Al channel grown across a trench is shown in the scanning electron microscope
(SEM) image in the inset of panel (e). (f) SEM image of a spin valve device with a curved Al channel across a trench. The
electrical connections for non-local spin valve measurements are also depicted.

the channel length due to the curved geometry. To prop-
erly describe both of these behaviours we have there-
fore developed a theoretical model which is applicable to
devices, where the local channel geometry explicitly im-
pacts on both charge and spin transport properties. Here
the key ingredient is the consideration of the dominant
Elliot-Yafet spin relaxation mechanism. The main out-
come of this approach is depicted by the dotted lines in
Fig. 2(b-c), where quantitative agreement with the exper-
imental results is achieved. In the following discussion we
introduce this theoretical model.

To develop an accurate description of the channel we
rely on the knowledge of its geometry from TEM imag-
ing (Fig. 1). We observe how at the steep walls of the
trench the film thickness was reduced, relative to its
nominal thickness. This variation in thickness is de-
termined by the e-beam evaporation technique used to
grow the film, where nominal thickness is only achieved
when the Al beam impinges on the substrate at normal
incidence. With this direct evidence of thickness inho-
mogeneity, we have incorporated it in our description of
the curved channel by modelling the trench profile as a
Gaussian bump with FWHM of ≈ 100 nm, as shown in
Fig. 3(a). The resulting thickness of the Al channel in the
local surface normal direction n̂ then becomes intrinsi-
cally inhomogeneous. We describe the Gaussian bump as

h(x) = Ae−x
2/(2σ2), where the x coordinate is measured

with respect to the maximum trench height position. We
next consider that the top surface of the evaporated Al
film assumes the same profile with hT(x) = t0+h(x), and

FIG. 2. Non-local spin valve signal and channel re-
sistance measurements and modelling. (a) Spin valve
measurements at T = 4.2 K for devices with different chan-
nel geometries. The black arrow indicates the direction of
increasing trench height, A. The spin signal ∆RNL decreases
with increasing A. (b) ∆RNL as a function of A. The ex-
perimental data and the modelling result are shown as solid
spheres and dotted line, respectively. The shaded region in
grey represents the uncertainty due to device to device vari-
ation. (c) Experimental data and modelling results for the
charge resistance (R) of the channel, for different A.
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t0 the nominal thickness. With this, the total volume of
the evaporated Al channel does not depend on the geom-
etry of the trench, and it is given by t0Lw where w is the
channel width, and L the distance in the x̂ coordinate
between injector and detector. In order to subsequently
derive the local thickness profile, we write the line ele-
ment

ds2 =

[
1 +

(
dh(x)

dx

)2
]
dx2,

which allows to express the arclength measured from the
injector electrode as

s(x) =

∫ x

−L/2

√
1 +

(
dh(x′)

dx′

)2

. (1)

The channel length between injector and detector is given
by L′ ≡ s(L/2). Furthermore, the local thickness profile

can be obtained by requiring
∫ L′

0
t(s)ds ≡ t0L. This re-

lation is satisfied for a local thickness profile, which, in
terms of the x coordinate can be expressed as

t(x) =
t0√

1 +

(
∂h(x)

∂x

)2
.

The equation above in combination with Eq. 1 corre-
spond to the parametric equations for the local thick-
ness t(s). This, in turn, allows to find the local be-
haviour of the resistivity ρ(t). The total charge resis-
tance of the Al channel can be then calculated by using

R =
∫ L′

0
ρ(s)/[t(s)w]ds.

A proper modelling of the charge and spin transport
properties therefore requires to explicitly consider the
thickness dependence of the resistivity.16 We do so by
employing the Mayadas-Shatzkes (MS) model,27 which
accounts for the increase of electrical resistivity of the
thin channel due to electron scattering at grain bound-
aries. Assuming that the thickness in the local surface
normal of the Al channel corresponds to the smallest di-
mension between grain boundaries, the MS model pro-
vides us with a functional form of the resistivity as a
function of the thickness, reading:

ρ0
ρ(t)

= 3

[
1

3
− α

2
+ α2 − α3 log

(
1 +

1

α

)]
, (2)

where ρ0 is the resistivity of bulk Al, and α = λe C/[t(1−
C)] can be determined from the knowledge of the elec-
tronic mean free path, λe, and the empirical reflectivity
coefficient, C. We estimate the latter by using the value
of the room-temperature mean free path λe = 18.9 nm
and bulk Al resistivity ρ0 = 2.65 × 10−8 Ω m,28 and
our experimental average resistivity at room temper-
ature for reference Al channels of nominal thickness,
ρ(t0) = 8.9× 10−8 Ω m. We thereby obtain a reflectivity
coefficient C ' 0.82. For the reference devices, we got a

device to device statistical variance of ≈ 2 Ω, of the same
size as the symbol for A = 0 in Fig. 2(c). A statistical
variance in the reflectivity coefficient of ±0.04 allows us
to account for this device to device variation. Consider-
ing the scattering related to grain boundaries to be tem-
perature independent, the obtained reflectivity coefficient
can be further used to model the thickness dependent re-
sistivity at low temperature, which we calibrate using our
experimental average resistivity for reference channels at
4.2 K, ρ(t0) = 5.6× 10−8 Ω m. The values of resistivities
considered above are consistent with the range of values
observed for thin Al films in previous studies.26 The en-
suing behaviour of the charge resistance as a function of
the trench height fits nicely with our experimental results
[c.f. Fig. 2(c)].

To obtain the inhomogeneous profile of the spin re-
laxation length, we use the fact that the latter can be
expressed as λ =

√
τsD, where D is the diffusion coeffi-

cient and τs is the spin relaxation time. Using the Ein-
stein relation, D = 1/(ρ e2NAl), with NAl the density of
states in the channel at the Fermi level, we can therefore
predict the thickness dependence of the diffusion con-
stant. Moreover, the Elliot-Yafet mechanism predicts a
scaling of the spin relaxation time, τs ∝ τp ∝ 1/ρ, where
τp is the momentum relaxation time. These considera-
tions yield λ ∝ ρ−1, and allow to consider the ansatz for
the thickness dependence of the spin relaxation length
λ(t) = λ0ρ0/ρ(t), whose functional form is uniquely de-
termined by Eq. 2, while the unknown λ0 is fixed by
requiring the spin relaxation length at the nominal thick-
ness to be equal to that measured in reference devices,
λ0 = 660 nm at 4.2 K.26 The ensuing spin relaxation
length along the curved Al channel is shown in Fig. 3(b),
with a behaviour that is clearly inverse to that of the
resistivity.

The spin valve signal is determined by the spin re-
laxation length and resistivity of the channel, which are
both intrinsically inhomogeneous. This intrinsic inho-
mogeneity impedes the calculation of the spin signal us-
ing the simple analytical framework originally introduced
by Takahashi and Maekawa for homogeneous channels.29

For this reason, we have thereby extended the model by
fully taking into account the inhomogeneity of the spin
relaxation length along the channel [see Supporting In-
formation Sections 2 and 3]. With this approach, we find
a closed expression for the spin accumulation signal in
the ohmic contact regime, which reads:

∆RNL =
4p2F

(1− p2F)2
R2

F

RN

e
−

∫ L′
0

1
λN(s′)ds

′

1− e−2
∫ L′
0

1
λN(s′)ds

′
, (3)

where w is the channel width, L′ is the distance between
injector and detector along the arclength ŝ, λN is the
equal spin relaxation length at the injector and detec-
tor, RN = ρNλN/wt, RF is the resistance of the ferro-
magnetic electrode with length λF (λF being the corre-
sponding spin relaxation length), and pF is the current
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FIG. 3. Geometry-induced tuning of charge resis-
tance and spin resistance. (a) The trench geometry is
modelled as a Gaussian bump and the profile of the Al chan-
nel across the trench is mapped out. The trench height (A)
and the unit vector ŝ along the arclength of the Al film,
perpendicular to the local surface normal n̂, have been illus-
trated. (b) Calculated variation of the spin relaxation length
in Al along s at 4.2 K. (c-d) 2D colour maps illustrating
the modulation of charge resistance (c) and spin resistance
(d) with the channel geometry, considering a template in the
form of a Gaussian bump with height A and full width at
half maximum 2

√
2 log 2σ as that in (a). Both the charge

(R) and the spin (∆RNL) resistances have been normalized
by the respective values for a reference flat channel. A con-
tour line representing R/Rref = 3.0 (thick black) in panel (c)
has been projected onto panel (d), and a contour line repre-
senting ∆RNL/∆R

ref
NL = 0.5 (thick blue) in panel (d) has been

projected onto panel (c). (e) 3D plot of the contour line for
∆RNL/∆R

ref
NL = 0.5 mapped onto the values of R/Rref from

panel (c). (f) A similar 3D plot of the contour line represent-
ing R/Rref = 3.0 mapped onto the values of ∆RNL/∆R

ref
NL

from panel (d). These results highlight the independent tun-
ing of spin resistance for a constant charge resistance, and
vice versa, via nanoscale design of the template geometry.

polarization of the ferromagnetic electrodes. The latter
two quantities can be obtained from the spin signal in
reference flat devices. Therefore, the knowledge of the
local behaviour of the spin relaxation length allows us to
obtain ∆RNL as a function of the trench height. For the
case of a homogeneous channel the integral in the expo-
nents simplify to L/λN and Eq. 3 reproduces the usual
theory.29 By considering the same statistical variance in
the reflectivity coefficient, C, derived from the charge
transport above, we find a striking agreement between

the theoretical results and the experimental spin valve
data, as shown in Fig. 2(b). The latter serves as experi-
mental validation of our generalized diffusive spin trans-
port model for inhomogeneous channels here presented.
This in turn allows us to identify the dominant physical
properties controlling spin transport in three-dimensional
architectures, where inhomogeneity is directly controlled
by the local geometry.

The analytical expression obtained in Eq. 3 allows us to
interrogate in an efficient manner a broader phase space
of geometrical variations of curved templates, e.g. as the
Gaussian bumps described in Fig. 3(a-b). The resulting
2D maps for charge resistance and spin resistance, due
to the exploration of the phase space of Gaussian bump
height A and full width at half maximum 2

√
2 log 2σ, are

shown in Fig. 3(c-d). A key observation is the distinct
scaling of the charge resistance and the spin resistance
due to geometric control, evidenced by the different con-
tour lines in both 2D maps. We highlight this difference
by mapping a contour line from each 2D map into the
other, resulting in 3D plots shown in Fig. 3(e-f). Here, we
observe the direct tuning of spin resistance independent
of the charge resistance, and vice versa, via the nanoscale
design of the template geometry. This hitherto unex-
plored approach to control the ratio of spin resistance to
charge resistance, even within a single material system,
has the potential to aid in the design of future circuits
based on pure spin currents.8

Our curved-template approach enables control of the
ratio of spin resistance to charge resistance in individual
nanochannels, while allowing the fabrication of a spin-
tronic architecture via a single deposition of the channel
material. For flat homogeneous nanochannels the need
of multiple deposition steps for each desired thickness
would rapidly lead to an impractical fabrication process.
Therefore, it is relevant to consider how simply tuning the
length in flat homogeneous nanochannels, which is practi-
cal via lithography, compares with curved inhomogeneous
nanochannels at the same nominal thickness. For a flat
nanochannel to achieve a charge resistance R/Rref = 3.0,
its length must be increased to 3 times that of a refer-
ence channel, which leads to a spin resistance29 of only
∆RNL/∆R

ref
NL = 0.17. This is significantly lower than

the value of up to 0.52 obtained in Fig. 3(f), and is one
example of the general advantage offered by curved in-
homogeneous channels for efficient individual control of
spin and charge resistances [see Supporting Information
Sections 4 and 5]. Spatial inhomogeneity below the char-
acteristic length scale for spin transport, FWHM . λ,
combined with control of thickness down to the charac-
teristic length scale for charge transport, t . λe, has been
a hitherto unrecognised physical approach to enable such
an efficient control within the context of Elliot-Yafet spin
relaxation.4,8,9

Using lateral non-local spin valves, we have demon-
strated that an appropriate geometric design of metal-
lic nanochannels yields spin resistance changes at con-
stant electrical resistance and vice versa. Although spa-
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tially inhomogeneous nanochannels can be created in pla-
nar structures,30 our approach, using three-dimensional
nanoarchitectures with a designed curved profile, intrin-
sically provides the necessary control to achieve the in-
dependent tuning of spin and charge resistances. Note
that for planar structures there are other methods for
controlling spin and charge currents. These rely on novel
nanoscale materials, or heterostructures thereof, to gain
functionality by active use of electric field,31–34 drift
current35,36 or proximity-induced spin relaxation.37,38

Such methods are highly relevant for current research,
though their integration with current technologies is lim-
ited by their requirement of novel materials or low tem-
peratures. In contrast, we expect our geometrical ap-
proach to be completely generic and thus applicable
to other non-magnetic materials exhibiting a dominant
Elliot-Yafet spin relaxation mechanism, e.g. Cu, or het-
erostructures thereof.4,9,30 The combination of geometri-
cal control and novel nanoscale materials is an interesting
avenue for future spintronic technologies.

Recent works have explored technologically relevant
curvilinear nanoarchitectures that transport vertically
domain walls for magnetologic applications.23,25 Oth-
ers have used curved templates pre-structured via self-
assembly of nanostructures, which allows the nanoscale
tuning of microstructure, thickness, and magnetic
anisotropy of the deposited magnetic curved films.39

Geometrical effects can trigger new functionalities
both in semiconducting40–44 and superconducting45 low-
dimensional systems. The geometrical control of pure
spin currents demonstrated in this work can thus inau-
gurate the search for novel effects in spintronic devices
using other ultrathin curved materials like semiconduc-
tors and superconductors.
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