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ABSTRACT: We report a general visible light-mediated 
strategy that enables the construction of complex C(sp3)-
rich N-heterospirocycles from feedstock aliphatic ketones 
and aldehydes with a broad selection of alkene-containing 
secondary amines. Key to the success of this approach was 
the utilization of a highly-reducing Ir-photocatalyst and or-
chestration of the intrinsic reactivities of 1,4-cyclohexadi-
ene and Hantzsch ester. This methodology provides 
streamlined access to complex C(sp3)-rich N-heterospiro-
cycles displaying structural and functional features rele-
vant to fragment-based lead identification programs. 

Growing evidence suggests that an increasing number of 
aromatic rings in lead compounds can result in greater at-
trition rates amongst pharmaceutical candidates due to 
poor solubility, bioavailability and pharmacokinetics.1 
However, libraries of lead-like structures often comprise 
compounds with predominantly C(sp2)-rich scaffolds. 
Consequently, the assessment of structurally distinct li-
braries of C(sp3)-rich small molecules displaying diverse 
polar functionality could help to identify new lead candi-
dates in fragment-based screening approaches that may ex-
hibit enhanced physical and biological properties.2 In con-
sidering the design of novel C(sp3)-rich small molecules 
for fragment-based approaches,3 it is noticeable that con-
formationally restricted scaffolds show highly reproduci-
ble results in in silico screening programmes; the well-de-
fined spatial orientation of molecular features in a candi-
date compound often leads to increased binding affinities. 
One approach towards limiting structural flexibility within 
C(sp3)-rich small molecules is through the introduction of 
a spirocycle.4 In comparison to aromatic scaffolds, fine-
tuning the structural and functional features in these frame-
works offers an alternative means through which to probe 
interactions with target binding sites by variation of ring 
size, adjusting electronic properties and manipulating sub-
stituent effects.5 As a result, spirocyclic motifs displaying 
polar functionality are emerging in pharmaceutical agents 
and lead compounds (Figure 1a).4 

Despite the attractive properties offered by rigid satu-
rated polar spirocyclic scaffolds, access to diversely func-
tionalized variants mainly relies on multistep alkyl- and ac-
ylative methods.5 Notable advances on these approaches 

include dearomatization-based strategies, using Pd, Ir or Fe 
catalysts,6a-c which harness the intrinsic reactivity of teth-
ered (hetero)arene building blocks for the generation of a 
selection of spirocyclic N-heterocycles with different ring 
sizes. Bode and co-workers produced a range of spirocy-
clic N-heterocycles using their SnAP technology;6d,e 

Figure 1. The evolution of the cyclization strategy 

 
Gibbs free energy calculated by DFT-methods (UPW6B95-

D3BJ/def2-QZVP). Hydrogens removed for clarity. 
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iminium ion formation between amino-stannane reagents 
and cyclic ketones enables a stoichiometric copper(II)-
triggered cyclization to access free(NH)-secondary amino-
spirocyclic products. To complement these approaches, we 
reasoned that a photocatalytic strategy7 based on an intui-
tive retrosynthetic disconnection of tertiary amine-based 
N-heterospirocycles directly to feedstock ketones and read-
ily available alkenyl-derived secondary amines could be 
realized through the intermediacy of an a-amino radical 
(Figure 1b).8 The structurally distinct C(sp3)-rich polar N-
heterospirocycles generated by such a catalytic transfor-
mation would be of great interest to practitioners of syn-
thetic and medicinal chemistry.  

We envisioned that visible-light-mediated photocatalytic 
single-electron reduction of an alkyl-iminium ion (int-I, 
Figure 1c), formed from the condensation of a saturated 
cyclic ketone with a secondary alkyl amine, would form a 
cyclic-tertiary a-amino radical (int-II). Addition of this a-
amino radical to an appended alkene on the amine compo-
nent would give rise to a substituted pyrrolidine-based spi-
rocyclic scaffold. Recent work from our group established 
a photocatalytic platform for the addition of nucleophilic 
a-amino radicals (formed from the corresponding iminium 
ions) to electron-deficient olefins.9 Critically, however, a 
catalytic manifold for the addition of all-alkyl substituted 
a-amino radicals to unactivated alkenes remains an un-
solved problem, principally due to the mismatched elec-
tronics and low thermodynamic driving force for such a re-
action. The lone pair on the nitrogen atom stabilizes the a-
amino radical but also renders it nucleophilic. Therefore, 
its addition to an unactivated alkene is polarity-mis-
matched and produces an alkyl radical (int-III) with no sta-
bilizing substituents that, in turn, can undergo the reverse 
reaction to reform the a-amino radical via C–C bond b-
scission. Indeed, the use of SmI2, a strong stoichiometric 
reductant, was required to trap related alkyl radicals via or-
ganosamarium intermediates following addition to unacti-
vated alkenes.10 However, the metal waste produced in 
these reactions and frequent need for highly dilute condi-
tions has hindered the wider application of this type of pro-
cess.11 We, therefore, questioned whether an alkyl radical 
could be selectively intercepted in a milder fashion by way 
of a hydrogen-atom transfer (HAT) reaction and in prefer-
ence to HAT to the a-amino radical. 

Herein, we detail the successful realization of these ideas 
through the development of a streamlined strategy for the 
synthesis of complex C(sp3)-rich N-heterospirocycles from 
readily available secondary amines and ketones enabled by 
visible-light photocatalysis. Key to the success of this strat-
egy was the utilization of a highly reducing Ir-photocata-
lyst and orchestrating the intrinsic reactivities of 1,4-cyclo-
hexadiene and Hantzsch ester, which facilitated controlled 
generation and fate of the radical intermediates present in 
the reaction. Under optimized conditions, the process com-
bines a range of feedstock aliphatic ketones and aldehydes 
with alkene-containing secondary amines to forge complex 
C(sp3)-rich N-heterospirocycles displaying structural, 
functional and physical features that are likely to be attrac-
tive in fragment-based lead identification programs.  

We began our investigations by testing reaction condi-
tions based on our previously established photocatalytic 

process.9 Using amine 1a and cyclobutanone (2a) as sub-
strates, 1mol% of Ir(ppy)3 and 2.0 equivalents of Hantzsch 
ester, we were encouraged by the formation of spirocycle 
3a in 30% yield and only trace amounts of the correspond-
ing reductive amination product (Table 1, entry 1). Follow-
ing extensive optimization, we found that the use of 1,4-
cyclohexadiene as an additive (entry 2) and a more reduc-
ing photocatalyst Ir(dMeppy)3 ([E1/2

red(IrIV/*IrIII)]= –1.86 
V vs SCE in CH2Cl2) (entry 3) improved the yield to 
97%.12 We reasoned that the use of 1,4-CHD as a HAT-
donor in high concentration would restrict the role of 
Hantzsch ester to turning over the Ir(IV) species formed 
after single-electron reduction of the iminium ion, while 
the more reducing photocatalyst would provide a stronger 
driving-force for the reduction step. A series of control ex-
periments showed that the yield of the reaction dropped to 
24% in the absence of 1,4-CHD (entry 4); to 43% without 
the Hantzsch ester (entry 5); and to trace amounts without 
photocatalyst or light or in the absence of both 1,4-CHD 
and Hantzsch ester (entries 6,7).  
 

Table 1. Selected optimization dataa 

 
Entry Catalyst Hantzsch 

(equiv) 
1,4-CHD 
(equiv) Yield % 

1 Ir(ppy)3 2.0 – 30 
2 Ir(ppy)3 2.0 7.5 45 
3 Ir(dMeppy)3 2.0 7.5 97 
4 Ir(dMeppy)3 2.0 – 24 
5 Ir(dMeppy)3 – 7.5 43 
6 – 2.0 7.5 trace 
7 Ir(dMeppy)3 – – trace 

aReactions employed a 40 W Blue Kessil lamp & yields calcu-
lated by GC assay with dodecane as internal standard. 

Having evaluated the reaction conditions, a range of com-
mercially available ketones (Table 2) were reacted to af-
ford N-heterospirocycles 3a-3i. Aldehydes also reacted to 
afford the corresponding pyrrolidines (3j-3m), with the 
syn-isomer of 3k being the major diastereomer. The reac-
tion was amenable to heterocyclic ketones, with a series of 
saturated N-heterocyclic readily transformed into rigid, 
C(sp3)-rich and polar bis-N-heterospirocyclic scaffolds 
with orthogonal protecting groups on the two nitrogen at-
oms (3n-t), facilitating further derivatization. The reaction 
to form azetidine-derived spirocycle 3p could be per-
formed on a gram-scale, even with a reduced catalyst load-
ing of 0.5 mol%, forming the product in a 63% yield; the 
N-groups in 3p could also be selectively deprotected for 
further derivatization.13 Such derivatives are frequently 
employed as b-turn mimetics for GPCR protein binding 
where the orthogonality of the two nitrogen substituents is 
key to achieve the desired turn-characteristics.14 While the 
Ir(dMeppy)3 photocatalyst had proven optimal for reac-
tions using electron-rich ketones (to form 3a-3e, 3i, 3l), 
higher yields were observed for electron-deficient ketones 
(to form 3f-3h, 3j-3k & 3m-3t) using the less-reducing 
[Ir(dMeppy)2{dtbbpy}]PF6 photocatalyst.  
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Table 2. Scope of photocatalytic synthesis of N-heterospirocycles. 

	

	
aReaction using Ir(dMeppy)3. bReaction using [Ir(dMeppy)2{dtbpy}]PF6. c0.5mol% [Ir]. 
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We next assessed N-substituted alkenylamines, (3u-3an), 
where useful functional groups such as sulfonamide, N-
Boc-piperidine, heteroaryl motifs (3u-3ab) and a less nu-
cleophilic aniline (3ac) could be built into the spirocycle 
products. Substitution on the alkene was tolerated (3ad-
3ah), introducing valuable functionality such the ester and 
gem-difluoro in useful yields. Whilst no cyclized product 
was observed from attempts at reacting N-benzyl allyl 
amine (to afford azetidine-based spirocycles), a piperidine 
scaffold 3ai could be assembled via a 6-exo cyclization, 
further expanding scope of the process. Homoallylic 
amines containing a–substitutents were effective in the cy-
clization process with both aldehydes and functionalized 
alicyclic ketones, in some cases with surprisingly high di-
astereoselectivities 3aj-3an. We found that the exception-
ally hindered spirocycles 3ao & 3ap could be accessed in 
49% & 47% yield respectively, affording access to a class 
of compounds that are challenging to synthesize using clas-
sical C–N bond-forming methods.6e,15,16 
Figure 2. Cyclization on alkynes & amine derivatiza-
tions 

aReaction using Ir(dMeppy)3. bReaction using 
[Ir(dMeppy)2{dtbpy}]PF6. 

Next, we questioned whether we could apply the a-amino 
radical to a cyclization process with simple alkynes, afford-
ing N-heterospirocycles carrying a useful alkenyl handle 
for further functionalization. N-benzyl 4-aminobutyne de-
rivatives smoothly reacted with a range of cyclic ketones 
furnishing the desired spirocycles 4a-g in 53–73% yield 

(Figure 2a). Finally, the alkenyl handle of 4d could be deri-
vatized through a difluorocyclopropanation to afford 6 in 
72% yield, whose structure comprises three different sized 
ring-systems and two adjacent spirocyclic centres, as well 
as different oxidative transformations (5 & 7, Figure 2b).17 
Figure 3. Mechanistic studies 

 
aYield determined by GC assay with dodecane as internal 

standard. bYield determined by 1H NMR with 1,1,2,2-tetrachloro-
ethane as internal standard. 
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of the excited state of the Ir(dMeppy)3 photocatalyst in 
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comparison to Hantzsch ester (Figure 3c). As a result of 
these studies and those outlined in our optimization (Table 
1), we propose a tentative mechanism for the reaction 
which begins with visible-light excitation of Ir(dMeppy)3 
to Ir(dMeppy)3* (Figure 3c). Single-electron reduction of 
the iminium ion (Int-I) by Ir(dMeppy)3* forms the a-amino 
radical (Int-II), which engages the pendant alkene in a 5-
exo-trig cyclization to form an alkyl radical (Int-III); HAT 
from 1,4-CHD to the alkyl radical then forms N-heterospi-
rocycle 3. The oxidized Ir(IV)(dMeppy)3 species is re-
duced to the active catalyst by single-electron transfer from 
the Hantzsch ester, closing the catalytic cycle. 

In summary, we have developed a visible-light mediated 
process to enable the facile synthesis of heterospirocyclic 
compounds from readily available starting materials. The 
photoredox strategy offers an intuitive retrosynthetic dis-
connection for difficult-to-access C(sp3)-rich N-heterospi-
rocyclic scaffolds that may be of interest to practitioners of 
both synthetic and medicinal chemistry.  
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