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Abstract

Fuel economy standards are a key measure to increase the rate of effi-
ciency improvements in passenger cars. The fuel consumption of vehicles
can be improved in three ways: incremental technical efficiency improve-
ments within powertrain technologies, market shifts to more efficient types
of powertrains and by limiting increases in the size and performance of
vehicles. This study quantifies the effect of each of these three drivers
on the fuel consumption of British vehicles between 2001 and 2018 using
driver-reported data on real-world fuel consumption. Analysis shows the
introduction of EU fuel economy standards in 2008/09 had little effect on
the rate of real technical efficiency improvements in British vehicles. In-
stead of adopting technical improvements at a higher rate or limiting the
size and power of vehicles, these results suggest vehicle manufacturers met
emissions standards by increasing the divergence between laboratory tests
and real-world fuel consumption. This study adds to the growing liter-
ature calling for official test procedures to be representative of real-world
driving.

1 Introduction

Reducing the demand for energy is key to reaching current climate targets |1].
According to the International Energy Agency , the transportation sector has
the highest potential for cost efficient energy intensity improvements of all sectors
in the energy system, yet global emissions in the sector continue to increase due
to both growing demand and the slow rate of energy intensity improvements |3].
Numerous governments around the world have imposed fuel economy standards
on light duty passenger vehicles in efforts to increase the rate of efficiency im-
provements . Measuring the impacts of these policies on vehicle efficiency is
essential to ensure their effectiveness.
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Fuel economy standards set targets for type-approval (tested) vehicle COq
emissions (gCO2/km) or fuel consumption (L/100km or mpg) in order to track
progress in energy efficiency. However, these measures are only a partial way
to quantify real engineering efficiency improvements in vehicles, for two distinct
reasons.

Firstly, potential energy savings from technical efficiency improvements (such
as improved combustion, lubrication, transmission) can be offset by vehicle at-
tributes that are detrimental to vehicle fuel economy, such as increasing vehicle
size and power. By solely tracking improvements in gCO2/km or L/100km, it is
challenging to estimate the technical efficiency improvements deployed over the
time period of study, as they may have been masked by other vehicle attributes.

Secondly, testing procedures used to determine type-approval fuel consump-
tion have been shown to be unrepresentative of real-world driving, particularly in
the EU and other countries using the ‘New European Drive Cycle’ (NEDC) [5,/6].
This means that apparent efficiency improvements in testing may not materialise
under real-world driving conditions.

Quantifying real technical efficiency improvements, and the lost potential
energy savings due to increasing vehicle size and power, can help policy-makers
measure the effectiveness of past policies and ensure future targets maximise
reductions in fuel consumption.

2 Literature Review

Several authors have sought to decompose changes in fuel consumption into tech-
nical efficiency improvements and the impact of changes in vehicle attributes.
Technical efficiency improvements (TEI) can be quantified in terms of the hypo-
thetical fuel consumption that vehicles could have attained had vehicle attributes
remained constant from a past year. The difference between this hypothetical
fuel consumption and the real observed trend can be thought of as the effect
that changes in vehicle attributes had on fuel consumption. This approach uses
regression models, similar to equation [I}, to explain the variance in fuel consump-
tion of vehicles each year using a selection of vehicle attributes. Year fixed effects
are used to quantify annual improvements in fuel consumption, independent of
vehicle attributes such as size and power.

In(FC)y =Ty + Pln(Xy) + € (1)

Where FC'is the observed fuel consumption of vehicle ¢ in year ¢, T" are year
fixed effects/dummy variables which take the value of 1 in year ¢ and 0 otherwise,
X is a vector of vehicle attributes such as power, size or weight, 3 is a vector of
their respective regression coefficients and € is an error term.

Some of the first authors to use this technique were Sorrell |7] and Kwon et
al. [8] who aimed to quantify technical efficiency improvements in the UK market
between 1983-90 and 1978-2000 respectively. However, data limitations at the
time meant that only the effect of engine capacity could be assessed. Knittel



[9] and Mackenzie & Heywood [10] later investigated technical improvements in
passenger cars in the USA using a larger number of vehicle attributes. Together
they showed that during times of high oil price, the rates of TEI increased and
size and power increases slowed.

Fuel economy standards may also stimulate increasing rates of technical ef-
ficiency improvements. Hu & Chen [11] and Klier & Linn [12] studied the EU
market between 1975-2015 and 2005-2010 respectively and reported higher rates
of TEI after the introduction of binding EU emissions standards in 2008/09.

Some past studies [9-11] focussed on comparing the hypothetical fuel con-
sumption had all vehicle attributes remained constant, to the average fuel con-
sumption of available models. This neglects the effect of shifts in vehicle sales.
If the type of vehicles on the market remains similar, but vehicle sales shift to
larger cars (as has been the case in almost all countries [4]), increases in vehicle
attributes will have been considerably more than the average of vehicles available
for sale might indicate.

Matas et al. [13] applied similar methods to the Spanish vehicle market
between 1988-2013 and sales-weighted results. Other notable improvements in-
clude adequately treating petrol and diesel vehicles separately. If two different
technologies have different regression coefficients, then grouping them together
in one regression can lead to a misleading model. It also makes it impossible
to distinguish between technical improvements within technologies and shifts in
sales to more efficient powertrain technologies. In Europe, diesel powertrain sales
are dropping precipitously [4]; failing to treat powertrains separately would res-
ult in real technical efficiency improvements within powertrains being masked by
the shift back to petrol engines.

Regression coefficients for hybrid and electric vehicles are likely to be even
more different to conventional engines due to regenerative braking. This reduces
the importance of vehicle weight and size on fuel consumption as inertia losses
from braking can be recouped by charging the battery. This increases the im-
portance of treating each powertrain separately as performed by Matas et al. [13].
However, this subtly changes the questions that can be answered from ‘to what
degree have technical efficiency improvements been spent on vehicle attribute
increases rather than improving fuel consumption?’ to only answering the ques-
tion for each powertrain type separately. This means that the effect of shifting
sales between powertrains is missing and the rate of TEI can only be quantified
for each powertrain rather than for the whole population of vehicles sold.

To address this limitation in past literature, this study proposes a novel
decomposition technique to combine the powertrain specific results. This final
step allows for changes in average fuel consumption of all new vehicles to be split
between three competing factors:

e Technical Efficiency Improvements (TEI) within a given powertrain
technology (fig. ); these are quantified as the incremental reduction
in average fuel consumption of vehicles, holding vehicle attributes (such
as power and size) constant. TEI are driven by engineering innovation
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such as light-weighting, improved combustion, lubrication and aerodynam-
ics and once learnt are unlikely to be lost. TEI are therefore almost always
unidirectional [14]; the energy intensity of a vehicle with the same vehicle
attributes such as power, size and accessories will tend to improve over
time as greater R&D pushes engineering developments to an economic or
physical limit [15].

e Technology Switching (TS) between different powertrain technologies
(fig. [B); Diesel vehicles offer a more efficient alternative to petrol-engined
vehicles of similar size and performance, as do hybrid and electric vehicles
[4]. Policies to incentivise sales of one technology over another tend to rely
on subsidies (e.g. diesel fuel is taxed less than petrol in many European
countries), efficiency labelling schemes and taxes (e.g. registration taxes
for electric cars may be lower). Unlike TEI, technology switching is not
necessarily unidirectional; in the EU, consumers shifted towards more ef-
ficient diesel powertrains between 2000-2014 but have since reverted back
to petrol vehicles in light of the 2015 diesel scandals.

e Vehicle Attribute changes (VA) within a powertrain technology (fig.
); quantified as the increase in energy intensity from changing vehicle
attributes such as power, size and number of accessories in vehicles (such
as air conditioning, heated seats and infotainment systems).

A Technical Improvement B Technology Switching C Vehicle Attribute change

t0

Energy Intensity (Energy/km)

Vehicle Attributes Vehicle Attributes Vehicle Attributes

Figure 1: Energy intensity of vehicles (shown as points with trend lines) can
change over time (from t0 to t1) in 3 different ways: Technical Efficiency Im-
provements within a given technology, TEI (A), Technology Switching, TS (B)
and Vehicle Attribute changes, VA (C). Examples of TEI in vehicles include
improving vehicle aerodynamics and engine combustion. TS involves chan-
ging from e.g. petrol to diesel or hybrid vehicles, VA covers increasing vehicle
power/performance and size.

Vehicles having a similar relationship between vehicle attributes (such as
power and size) and fuel consumption are assigned to a single ‘technology’. This
paper limits itself to separating technology groups by powertrain type (petrol,
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diesel and hybrid). In this context, the relationship between vehicle attributes
and fuel consumption within a technology are assumed to be constant over time.
Any changes in this relationship can only occur via ‘Technology Switching’ (T'S)
between different technologies.

Research in this sphere is yet to address real-world fuel consumption reported
by drivers, which has been found to be considerably higher than manufacturer-
quoted, type-approval values. Tietge et al. [6] sourced driver reported estimates
of vehicle fuel consumption from 1.3 million different vehicles, 15 different pub-
licly available sources and 8 different countries in the EU. The authors found
that the average real-world fuel consumption of vehicles available in 2001 was
8% higher than manufacturer reported, type-approval values and by 2017 this
gap had risen to 39%. Stewart et al. [16] suggest the majority of this grow-
ing divergence is due to an increasing degree of exploitation of test ‘flexibilities’
by manufacturers. These include testing vehicles with lower weight and rolling
resistance than the equivalent vehicles sold on the road [17]. Other factors ex-
plaining the increasing gap include vehicles being sold with a greater number
of auxiliaries, which are not included in type-approval testing (air conditioning,
infotainment systems), and technologies which have a greater impact on fuel
consumption in testing than in real-world conditions such a stop-start ignition.
Past authors [11,/13] who used type-approval data to quantify technical efficiency
improvements (TEI) noted that their findings may be biased due to the increas-
ing divergence with real-world data, but there is yet to be a concerted effort to
quantify this effect.

This study quantifies trends in technical efficiency improvements of vehicles
in Great Britain between 2001 and 2018 using similar methods to past studies
and splitting between different types of powertrains. Building upon past work,
this study adds three major novel contributions. The first is including a separate
regression for hybrid powertrain vehicles, in addition to the petrol and diesel
vehicles studied in past work. Secondly, a new decomposition method is applied
to isolate the importance of powertrain technology switching (TS), as well as ag-
gregating technical efficiency improvements (TEI) and vehicle attribute changes
(VA) which could previously only be quantified at the powertrain level. Finally,
this study accounts for real-world fuel consumption, thereby showing trends of
real technical efficiency improvements of British vehicles.

These contributions are relevant to policy-makers as they show the magnitude
of real-world energy intensity improvements over the period, as well as the po-
tential efficiency improvements had vehicle attributes remained constant. This
allows for insights into the effectiveness of vehicle emissions standards (which
became binding in 2008/09 in the EU [18§]) at stimulating technical efficiency
improvements or limiting vehicle attribute increases.



3 Method

This study investigates newly registered vehicles in Great Britain from 2001 to
2018. A dataset is built from several publicly available sources and matched
together, details are provided in section [3.1] Next, multivariate regressions are
used to isolate annual technical efficiency improvements for each powertrain type,
as explained in section [3.2] Finally, annual changes in sales-weighted average fuel
consumption are decomposed using log mean divisia index (LMDI) methods into
technical efficiency improvements, powertrain switching and vehicle attribute
changes, explained in section [3.3

3.1 Compiling a vehicle database for Great Britain

The dataset used in this paper is created by matching vehicle sales data to
other information on vehicle technical characteristics. Vehicle sales data is
sourced from the UK Department for Transport (DfT) [19]. This provides an-
nual new registration data at manufacturer and detailed model level (includ-
ing some trim level characteristics) for vehicles sold in Great Britain between
years 2001 and 2018. Using regular expressions, the fuel type, transmission
type (Manual/Automatic) and some entries of engine power, turbo-charging and
driven-wheels could be extracted for each model. Other technical details for
vehicles are limited in this dataset, with no information given for engine capa-
city, vehicle mass, fuel consumption or dimensions. For years 2010-17, these
additional variables are added from the European Environment Agency (EEA)
dataset |20], which has the same unique model names as the DfT data allowing
for an exact match of each model.

Data from the UK Vehicle Certification Agency (VCA) [21] is used to find
the remaining fuel consumption values and engine size of vehicles. This data
contains official type-approval (tested) fuel consumption of new vehicles sold in
the UK, for each year between 2001 and 2018. Vehicle model names differ in this
dataset to the DfT data, therefore ‘fuzzy’ matching algorithms are used to find
the best match for each vehicle. Vehicles are screened by manufacturer, sales year
fuel type and any other known technical details such as engine capacity, power,
hybridisation, turbocharging, drivenwheels and transmission, before being given
a score based on the similarity of model names. If the score is above a user-
defined threshold the best match is selected, and then manually screened for
errors. Further missing information on variables such as weight and engine power
is supplemented with publicly available online technical datasets [22], also using
the fuzzy matching algorithms and based on the range of years each model variant
was sold in. High-level trends are compared to external sources for validation
[41123].

To present trends in the British vehicle market and ensure the dataset ad-
equately covers all types of vehicles, cars are grouped into one of seven size seg-
ments: City Car, Medium Car, Small Sedan, Large Sedan, SUV/MPV (Sports
Utility Vehicle/Multiple Passenger Vehicle), Sports and Small SUV. This is
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achieved with clustering and classification algorithms, based on vehicle dimen-
sions and body types (further details in the appendix). The fuel consumption
of each vehicle is expressed as litres/100km tested over the NEDC combined
cycle and converted to gasoline equivalent for all vehicles (one litre of diesel is
equal to 36.1/33.5 litres of gasoline based on the respective energy contents of
the fuels). Vans and caravans are removed due to limited publicly available fuel
consumption data. Registrations of non-new vehicles are also removed.

The ‘New European Drive Cycle’ (NEDC) used for type-approval testing is
known to be unrepresentative of real-world driving [5,6]. However, there are still
no official government sources of real-world fuel consumption available to use
in its place. Real-world fuel consumption data for this study is instead sourced
from three online publicly available websites: Honest John [24], Fiches-Auto [25]
and Spritmonitor [26], which have also been used in past work investigating the
growing divergence between type-approval and real-world fuel consumption [6,
27]. All three websites host user-submitted data and are based in the UK, France
and Germany respectively, summary statistics of the real-world fuel consumption
data used in this study are shown in table [T}

Tietge et al. |6] showed the gap between type-approval fuel consumption and
real-world driving conditions was consistent across datasets, despite possible dif-
ferences in driving habits and weather conditions between countries. The authors
also showed the gap to be comparable between data sources from automotive
magazines, which tested new vehicles in a more standardised format (controlling
for weather conditions etc.) and with national surveys designed to be represent-
ative of the population as a whole, assuaging fears of self-selection bias.

‘ Honest John ‘ Fiches-Auto ‘ Spritmonitor (Sample)
5753 3279 1915

No. Vehicles

No. User Entries | 159544 61804 -

Table 1: Summary statistics of real-world data sources. Vehicles are present in
multiple sales years. Spritmonitor user entries were not collected as each user
submits numerous mileage and fuel readings. Fuel consumption data for vehicles
not present on the Honest John and Fiches-Auto webistes was sourced from a
sample of the full Spritmonitor database.

Fiches-Auto and Honest John data are matched to the vehicle sales data
using fuzzy matching scripts by sales year, manufacturer, model, engine capacity
and any other available technical information such as power and drivenwheels.
For example, a 2015 VW Golf TSI 1.8L in the DfT registration data would be
matched with the appropriate car from the Honest John dataset sold between
e.g. 2014 and 2017. Any remaining vehicles without real-world fuel consumption
estimates were manually entered from Spritmonitor, in particular for early years
where Honest John and Fiches-Auto lacked coverage. Overall, 92% of vehicle
registrations in each year were given a real-world fuel consumption estimate, this
covers over 80% of registrations in each vehicle segment (apart from the sports
segment) to ensure a representative sample. Figure [2[ shows the real-world fuel
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consumption source attributed to each vehicle as a share of registrations each
year in the data. For most of the data, vehicles were attributed a match in both
the Honest John and the Fiches-Auto data. In these cases the average of the two
is taken. In section the sensitivity of the results to the choice of real-world
fuel consumption data is investigated and further analysis of the uncertainty
associated with real-world data is included in the appendix.

100
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B None

[ spritmonitor
50 [l Honest John

" Honest & Fiches
B Fiches-Auto

25

Share of Registrations %

0
2002 2005 2008 2011 2014 2017

Figure 2: Source of real-world fuel consumption data as a share of new regis-
trations. Data from Honest John and Fiches-Auto are matched to vehicle sales
data. For a large share of vehicles, both Honest John and Fiches-Auto data are
available (Honest & Fiches). Spritmonitor data is manually entered to bring
real-world fuel consumption coverage to over 92% in each year. The remaining
vehicles could not be attributed a real-world fuel consumption estimate (None).

3.2 Using multivariate regressions to isolate technical im-
provements

In this study, a regression model similar to previous work [9,[10,[13] is used to
disaggregate changes in fuel consumption between changes in vehicle attributes
(such as size and power) and technical efficiency improvements (TEI) over time
for each powertrain type (equation . The effect of each vehicle attribute in the
model is determined from the regression coefficients. TEI is determined from the
year fixed effects (T}, eqn. [1|) and is expressed as the change in fuel consumption
had vehicle attributes remained constant at 2001 levels. The model is run for
petrol, diesel and petrol hybrid vehicles separately as regression coefficients are
not the same between each type. Battery electric, plug-in hybrid and other
fuel type vehicles are not present in large enough quantities to yield statistically
significant results.

The fuel consumption of a vehicle is broadly dictated by powertrain losses (a
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function of engine size, power, torque and technology such as turbocharging and
fuel type) 28], transmission inefficiencies (a function of number gears, transmis-
sion type and drivetrain) and passive system losses [29] from aerodynamic drag
(drag coefficient C'p and frontal area), tyre friction (mass and tyre friction coef-
ficient), inertia losses (mass), as well as driving style, which impacts many of the
above.

Data on tyre friction and drag coefficients for each vehicle are not publicly
available, nor are they reliable given that manufacturers can take advantage of
flexibilities in testing procedures, allowing for drag and rolling resistance coeffi-
cients to be improved [30].

The torque and number of gears for each vehicle was not available in the
data used in this paper and vehicle weight data could not be associated with a
sufficient number of vehicles at detailed model level to attain a representative
sample (only 76% of vehicles could be given a weight value). However, this is
not an issue. In order to predict real-world fuel consumption, vehicle weight is
likely to be associated with a high degree of error. Vehicles are allowed to be
type-approved with levels of weight equivalent to the ‘reference’ model. This
avoids the weight of accessories such as air conditioning, infotainment systems
and electric seats [17]. This means the weight of vehicles on the road can be
considerably different to type-approval values (without accounting for the fact
certain vehicles may allow for more average passengers and luggage). Vehicle
dimensions on the other hand are far less subject to variation between testing
and the real world. Since frontal area and length are highly correlated with
weight (correlation coefficients 0.72 and 0.81 respectively), the dimensions can
also be used as a proxy for weight.

Using engine capacity in the regression captures improvements from a given
engine capacity using less fuel. However, technical improvements from engine
downsizing, which allow for a reduced engine capacity because more power can
be extracted, cannot. For this reason engine rated power is used instead.

The independent variables in each regression model are chosen to capture
technical efficiency improvements to the greatest extent given data constraints
and with an effort to ensure variables are consistent between type-approval and
real-world conditions. The variables used are: rated power, frontal area (the
product of width and height), vehicle length as well as whether the vehicle has
a manual/automatic transmission, four wheel drive or a turbocharger. Tests
for multicollinearity show variance inflation factors are below 2.1 [31]. Breusch-
Pagan tests showed heteroskedasticity in the model residuals (meaning the model
is less accurate for larger, more powerful vehicles) and therefore standard errors
are corrected to ensure heteroskedastic consistency [32].

These regressions quantify the fuel consumption that petrol, diesel and petrol
hybrid vehicles could have had if their size, power and other vehicle attributes
had remained constant at 2001 levels. This allows for an insight into the technical
efficiency improvements in each powertrain type. However, to understand the
magnitude of technical efficiency improvements for all vehicles (i.e. not split by
powertrain type), decomposition techniques are required; these are explained in
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the following section.

3.3 Decomposition techniques to isolate the drivers of
changing fuel consumption

To better interpret the results of the regressions, a decomposition technique
is used to split changes in sales-weighted average fuel consumption of all new
vehicles in the UK into three separate components (all expressed in units of fuel
consumption, L./100km). These are: technical efficiency improvements within
powertrain technologies (ATEI), a structural technology shift in sales between
powertrains (ATS) and a change in fuel consumption due to vehicle attribute
changes (AVA). By using decomposition techniques, any change in fuel con-
sumption (AFC), can be split into the sum of these three drivers as shown in
equation 2

AFC = ATEI + ATS + AVA (2)

Decomposition techniques have been well studied and applied to a variety of
fields [33] with various proposed methods to allocate changes between different
terms. Methods are favoured if they avoid a residual term (i.e. the left hand
side of equation [2| perfectly equals the right) and are symmetrical (i.e. splitting
a change in energy intensity from [; to I, gives the same result as from I to
I;). The Log Mean Divisia Index (LMDI) decomposition technique is used in
this study as it satisfies these criteria.

Past work [34] used this technique to decompose a change in energy intensity
into two terms: changes in energy intensity within subcategories and changes in
the volume/importance of subcategories. In this study, the LMDI technique is
expanded to include the three drivers in equation

The average fuel consumption in year t is equal to the product of a technical
index, Tech (equal to e’ where T} are the year fixed effects from equation 7
the share of sales S of each powertrain p and the fuel consumption that vehicles
would have had in the absence of technical efficiency improvements (the final
term in eqn. 3)).

FCy,

FCt = Z Techt’p X St,p X Tech
t.p

p

(3)

By taking the derivative with respect to time ¢, discretising for non-continuous
data between time ¢ and t 4+ 1 and rearranging, the following equations can be
derived (full derivation is included in the appendix):

ATEI = FC, x exp[Zw; X m(%ﬁil)] ~ FC, (4)
p D
ATS = FC; x e:vp[Zw; X ln(%)} - FC, (5)
P pt
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Where wy is a weighting function originally proposed by Vartia and Sato
[35,[36] and widely used in other LMDI studies [34,[37]. This decomposition is
performed for both type-approval fuel consumption and real-world fuel consump-
tion to compare the magnitude of the drivers.

4 Results & Discussion

Disaggregating vehicle fuel consumption into the underlying drivers of change,
highlights trends in the British vehicle market and aids in retrospective policy
assessment. This section is organised as follows: section [4.1] shows trends in the
British vehicle market between 2001 and 2018, section presents the results
of the multivariate regression models and section discusses the results of the
decomposition analysis allowing for new insights into the real rates of technical
efficiency improvements in vehicles.

4.1 Trends in the British Vehicle Market 2001-2018

The market shares of different vehicle size segments in the British market have
varied with time as shown in figure [3] In the years before the financial crisis
of 2008/9, city and medium cars accounted for over half of the British market,
though their market share was dropping steadily in favour of the SUV/MPV
segment and small sedans. The shock of the financial crisis caused the total
number of registrations to drop sharply between 2008 and 2011. Sales suffered
in particular in the larger vehicle segments meaning smaller segments increased
as a share of the total. However, since the financial crisis the share of smaller
vehicles has again begun to drop, partly due to increased popularity of the small
SUV segment. Figure [3[suggests that since 2001, SUV/MPV type vehicles took
market share from large sedans, while small SUVs acquired market share from
the city and medium car segments.
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Figure 3: Trends in British vehicle size segment market share 2001-2018.

Figure A shows the sales-weighted, type-approval fuel consumption of each
segment over the period. Whilst the fuel consumption of all segments has been
improving over time, the shifts in sales to the larger segments, which have higher
fuel consumption, has reduced the potential for energy efficiency improvements.
Figure [4B shows the share of diesel powertrains in each size segment. Diesel
powertrains saw a rapid uptake between 2001 and 2012, particularly in the lar-
ger size segments. This stimulated improvements in segment average fuel con-
sumption. However, after the diesel-gate scandal in 2015 , the share of diesel
powertrains across all segments has dropped. The average power and frontal
area of all size segments also increased over the period.
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Figure 4: Trends in sales-weighted, type-approval fuel consumption (NEDC) (A)
and diesel shares (B) of British vehicles 2001-2018 by size segment.
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4.2 Regression Results

The regression models presented in table [2|isolate the effects of vehicle attributes
on fuel consumption and thereby leave technical efficiency improvements in the
year fixed effects (table A2 in SI). Using these fixed effects, the hypothetical
fuel consumption had vehicle attributes in each powertrain remained constant at
2001 levels can be quantified.

It can be seen that regression coefficients vary between different powertrain
technologies highlighting that split regression models are indeed needed. Coeffi-
cients in the regression using type-approval fuel consumption data are of similar
size to past estimates; although true comparisons can only be made between
models using the same explanatory variables. The variance explained by the de-
pendent variables (R? coefficients) is lower than in past studies [9,10,13]. This is
likely due to two factors. The first is that the present study uses a larger number
of vehicles than many previous studies, thereby including the full spectrum of
vehicle designs; vehicles with high residual fuel consumption not explained by
the model are found to have atypical designs (e.g. the Land Rover Defender,
which has unusually low power for its size). The second is that the year fixed
effects are based on vehicle sales year (like that of Matas et al.) rather than
vehicle model year (like that of Knittel and Mackenzie €& Heywood). The year
fixed effects for petrol hybrids are only statistically significant after 2008 and
after 2013 for type-approval and real-world fuel consumption respectively.

The regressions for real-world fuel consumption of petrol and diesel vehicles
have a lower R? coefficient than those using type-approval data, due to the
inherent noise in real-world estimates from a variety of factors that affect fuel
consumption outside of laboratory testing conditions, such as driving style and
weather (see [39] for a comprehensive breakdown). The models are nonetheless
able to give an insight into the magnitude of technical efficiency improvements
over the period studied.
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Type Approval | Petrol Diesel Hybrid
(Intercept) -6.915 (0.11)**  -14.912 (0.127)** -3.982 (0.84)***
log(kw) 0.401 (0.002)***  0.289 (0.003)*** 0.406 (0.009)***
log(Area) 0.425 (0.008)***  0.977 (0.008)*** 0.271 (0.058)***
log(Length) 0.12 (0.008)*** 0.142 (0.012)***

Manual -0.021 (0.001)***  -0.067 (0.001)***

AWD 0.033 (0.002)***  0.066 (0.002)*** 0.119 (0.031)***
Turbo -0.077 (0.001)***

R? 0.841 0.771 0.858

R2adj 0.841 0.771 0.854
Observations 49034 36313 717

Real World Petrol Diesel Hybrid
(Intercept) -8.808 (0.105)***  -13.893 (0.107)*** -9.51 (0.749)***
log(kw) 0.334 (0.002)***  0.34 (0.002)*** 0.368 (0.008)***
log(Area) 0.589 (0.008)***  0.96 (0.007)*** 0.66 (0.052)***
log(Length) 0.093 (0.008)***  0.019 (0.01)*

Turbo -0.031 (0.001)***

R? 0.753 0.759 0.885

R2adj 0.753 0.759 0.882
Observations 47212 36219 733

Table 2: Regression results using equation [1| for Petrol, Diesel and petrol Hybrid
vehicles separately. Dependent variable is the natural log of type-approval fuel
consumption (litres of gasoline equivalent/100km), standard errors for each coef-
ficient are included in parentheses. Independent variables are vehicle power (kw),
frontal area (m?), vehicle length (m), transmission type (Manual/Automatic),
four wheel drive (AWD) and turbo-charging (Turbo). Each model also includes
year fixed effects which are presented in the appendices. Statistical significance
of t-tests: * p<0.05, ** p<0.01, ** p<0.001

The regressions isolate year-on-year technical efficiency improvements which
can be used to quantify the hypothetical fuel consumption that vehicles could
have attained had vehicle attributes remained constant at 2001 levels (table [3).
This is shown in figure |5| for each type of powertrain and both type-approval and
real-world data. Comparing this hypothetical case to the trends in sales-weighted
fuel consumption shows the amount that technical efficiency improvements were
offset by increases in size and power.

Over the period studied, the gap between type-approval and real-world fuel
consumption grew for all three powertrains investigated. In 2001, sales-weighted
real-world fuel consumption for petrol, diesel and petrol hybrid vehicles was 4%,
4% and 5% higher than type-approval fuel consumption respectively. By 2018
this gap grew to 34%, 36% and 35% higher. These results are similar to the
non-sales-weighted results presented by Tietge et al. [6] for the EU.
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2001 2018

Diesel HEV Petrol Total | Diesel HEV Petrol Total
Power (kw) 75 53 74 74 116 84 97 102.8
Area (m?) 2.6 2.5 2.5 2.5 2.9 2.7 2.7 2.8
Length (m) 4.4 4.3 4.1 4.2 4.6 4.4 4.2 4.4
TA FC (L/100km) 6.5 5.1 7.5 7.3 5.1 3.9 5.3 5.2
RW FC (L/100km) 6.8 5.4 7.8 7.6 6.9 5.2 7.0 7.0
Share (%) 17% 0% 83% 100% | 28% 4% 69% 100%
Registrations (x103) | 436 0.6 2066 2502 | 569 73.1 1418 2060

Table 3: Sales-weighted average statistics of vehicles split by powertrain type
(Petrol, Diesel and Petrol Hybrid vehicles). Engine power (kw), frontal area
(m?), vehicle length (m), type-approval fuel consumption (TA FC), real-world
fuel consumption (RW TC) and percentage share and number of registrations.
All fuel consumption in litres of gasoline equivalent per 100km.
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= = Const. Vehicle Attributes
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Figure 5: Changes in sales-weighted type-approval and real-world fuel consump-
tion (FC) between 2001 and 2018 (solid lines) for A= Petrol vehicles, B= Diesel
vehicles, C= Petrol Hybrid vehicles. Also shown is the hypothetical fuel con-
sumption vehicles could have attained had vehicle power and size and other
vehicle attributes remained constant at 2001 levels (dashed). Hypothetical fuel
consumption for Petrol Hybrid vehicles is only shown where year fixed effects are
statistically significant at the p<0.05 level.
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The real-world fuel consumption of petrol cars improved by just 0.8 L/100km
over the time period; had TEI been maximised, fuel consumption could have
improved by 1.6 L/100km, instead size and power increases (table [3)) offset 54%
of this potential. The real-world fuel consumption of diesel vehicles increased
from 2001 by 0.1 L/100km, TEI could have reduced fuel consumption by 1.4
L/100km but this was more than offset by vehicle attribute increases.

The fuel consumption of hybrid vehicles increased sharply in 2005/06 as large
hybrid powertrain SUVs entered the market which had previously only featured
small sedan type vehicles such as the Toyota Prius. Had vehicles remained at the
size and power of a 2001 Toyota Prius, the average real-world fuel consumption
could have been 4.2 L,/100km instead of the observed 5.2 L/100km average.

4.3 Decomposition Results

This section presents the results of the LMDI decomposition which splits changes
in British average fuel consumption into the contributions from TEI, TS and VA
using the powertrain specific results shown in figure [5] Figure [A shows type-
approval fuel consumption in 2001 and 2018 and the magnitude of TEI, TS
and VA over the period. Between 2001 and 2018, technical efficiency improve-
ments contributed to reducing type-approval fuel consumption by 3.0 L/100km.
Switching from petrol to diesel and hybrid vehicles improved fuel consumption
by 0.2 L./100km. The relatively meagre gains from sales shifts in powertrains are
due to two factors. The first is that the average fuel consumption of petrol and
diesel vehicles was relatively similar, particularly in later years. The second is
that hybrid vehicles had a low effect due to their low market share which was
just 4% of sales in 2018.

If vehicle attributes had remained constant at 2001 levels in each powertrain
(table , type-approval fuel consumption could have improved from 7.3 L/100km
in 2001 to 4.1 L/100km in 2018. Instead, increasing vehicle size and power led
to a 1.1 L/100km deterioration in type-approval fuel consumption.

Over the 18 year period, real-world average fuel consumption improved by
just 0.65 L/100km (fig[oB). The effects of the technology switching has been
similar between the real-world and type-approval cases, as have the effects of
vehicle attributes changes. Real-world technical efficiency improvements on the
other hand were just 1.6 L/100km meaning that 60% of TEI has been offset by
increasing vehicle attributes.
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Figure 6: Decomposition of changes in British vehicle fuel consumption between
2001 and 2018, A = Type-approval, B= Real-world. TEI= Technical efficiency
improvements within a powertrain technology (petrol, diesel and hybrid), TS=
Technology switching between different powertrain technologies and VA=Vehicle
Attribute changes in power and vehicle size. Hybrid vehicles are only included
when year fixed effects are statistically significant at p<0.05.

Figure[7A shows yearly trends in sales-weighted type-approval and real-world
fuel consumption. The rate of improvement in type-approval fuel consumption
increased after 2008-09 coinciding with mandatory EU emissions standards sug-
gesting they were effective at improving vehicle fuel consumption. However,
real-world fuel consumption trends offer a contrasting picture, with a limited
improvement between 2001 and 2018. Between 2016-18 the average fuel con-
sumption of British vehicles deteriorated, both for type-approval and real-world.
Disaggregating these changes in fuel consumption into the underlying drivers can
help to explain these trends.

Figure shows the change in fuel consumption (FC) since 2001 and the
cumulative change in TEI, TS and VA for both real-world and type-approval
data (also shown in table A3). The sum of the contributions of TEI, TS and
VA in any year in figure is equal to the change in FC (see eqn. [2)). Vehicle
attribute increases continue to offset technical efficiency improvements, and at
an increasing rate in later years.

Examining the rates of technical efficiency improvements calculated using
type-approval data reveals two findings. The first is that TEI accelerates after
the introduction of EU emissions standards in 2008/09 as reported by Klier
& Linn for vehicles in the EU. However, this trend is less significant for
real-world data. This suggests the introduction of the EU emissions standards
increased the use of test flexibilities rather than driving real increases in the rate
of TEL Secondly, the rates of TEI using type-approval data slow in 2017/18,
but this effect is again not evident with real-world data. This could be due to
manufacturers reducing the exploitation of test flexibilities in order to comply
with the incoming World Harmonised Light Vehicle Test (WLTP) cycle which
will become mandatory from 2019 in the UK.
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Figure 7: A= Trends type-approval fuel consumption (NEDC) and reported real-
world fuel consumption. Both are sales-weighted and converted to litres of gas-
oline equivalent/100km. B= Trends in Technical efficiency improvements (TEI),
Technology switching (TS), vehicle attribute changes (VA) and sales-weighted
fuel consumption (FC) split by type-approval and real-world fuel consumption.
Results are expressed as the cumulative change since year 2001.

4.4 Sensitivity of data source

Over half of vehicles were attributed a real-world fuel consumption estimate from
both the Honest John and Fiches-Auto datasets (see fig. [2). For these vehicles,
there is a choice between preferring British data, French data or using the average
of both (as performed in the preceding sections). This section investigates the
sensitivity of this choice.

Figure shows the sales-weighted percentage difference between real-world
and type approval fuel consumption for all vehicles, split by preference towards
Honest John or Fiches-Auto data for vehicles with multiple matches. Between
2001 and 2008 both datasets show similar levels of divergence. However, in later
years the divergence grows more rapidly when using the French dataset. The
data limits the analysis of this difference but reasons could include the increasing
penetration of air conditioning and its likely higher use in France.

Figure shows how the choice of real-world fuel consumption data for
vehicles with multiple matches influences TEI following the decomposition ana-
lysis for all vehicles. The rates of improvement (in L/100km per year) of fuel
consumption and TEI are also detailed in table |4 and averaged over one of
three periods for ease of interpretation: 2001-2008 before the introduction of
EU COs emissions standards, 2008-2016 the period following the introduction
of the standard and 2016-2018, the period following diesel-gate in which the
average fuel consumption of British vehicles worsened. A preference of British
data (Honest John) means the rates of improvement in both fuel consumption
(FC) and technical efficiency improvements (TEI) increase slightly post 2008.
However, the main conclusion remains that real world rates of TEI remain well
below those calculated using type approval data and the introduction of EU CO,
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Figure 8: A= Percentage Divergence between real-world fuel consumption and
type approval data and B=TEI using real-world data for all vehicles, split by
preference towards Honest John data, Fiches-Auto data and the average of both
for vehicles with multiple matches.

FC TEI
Source 2001-08 2008-16 2016-18 | 2001-08 2008-16 2016-18
TA -0.13 -0.17 0.07 -0.17 -0.22 -0.02
RW Fiches-Auto | -0.05 -0.03 0.05 -0.09 -0.09 -0.05
Honest John | -0.05 -0.07 0.06 -0.1 -0.12 -0.07
Average -0.05 -0.05 0.05 -0.09 -0.1 -0.06

Table 4: Comparison of average improvement rates (L/100km per year) in aver-
age fuel consumption (FC) and Technical Efficiency Improvements (TEI) using
both type approval (TA) and real-world (RW) data. Real-world data is split by
a preference toward using Fiches-Auto data, Honest John data and the average
of both sources.

4.5 Limitations

The decomposition analysis isolates the hypothetical fuel consumption that vehicles
could have attained if their vehicle attributes in each powertrain remained at 2001
levels (table [3)). It also isolates the fuel consumption lost to increases in vehicle
attributes in each powertrain. However, when two powertrains have different
average vehicle attributes, then technology switching also entails a measure of
VA. Switching from an average petrol car to an average diesel car involves an
improvement in engine efficiency but also a slight increase in average vehicle size
and power. This means the magnitudes of TS and VA are likely to be conser-
vative. This cannot be captured using the decomposition used in this paper and
merits further consideration.
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Next, users of the real-world fuel consumption websites likely upload inform-
ation on vehicles which have a range of ages. A model year 2017 vehicle on the
websites is likely to have been relatively new when the user uploaded their fuel
consumption estimates, this may not be the same for a 2001 year vehicle. This
raises two sources of potential bias: 1. driver type bias; an older vehicle could
be owned by a different type of driver who drives their vehicle in a different way
(e.g. more urban vs. rural driving) 2. vehicle age bias; if the vehicle is older and
has higher cumulative mileage, it could have different technical characteristics
compared to when it was new (e.g. engine wear and tear).

The real-world fuel consumption data for this paper reports the average fuel
consumption reported by all users for each model of vehicle. The data did not
include individual user entries with the age of the vehicle at the time it was
reported meaning vehicle age cannot be explicitly controlled for. When reporting
data to all three websites, users select whether they were driving in mostly urban
environments, mostly rural or mixed. The data sourced for this paper only
used mixed data. This will reduce potential driver type bias, though some may
remain and is an inevitable product of this type of data, which benefits from
large samples but lacks standardised test conditions. It is possible that drivers of
older vehicles also have a different average driving style to those of newer vehicles
(e.g. more aggressive or more eco-driving). Tietge et al. [40] investigate this and
show users of the Spritmonitor database report relatively constant driving styles.
There is no reason to believe this would be different for the other two data sources
used in this paper.

Regarding vehicle age bias, there is relatively little literature reporting the
effect of cumulative vehicle mileage or age on vehicle fuel economy. The only
paper we are aware of is Greene et al. [41] in which the authors investigate real-
world fuel economy of vehicles as they age in the USA. The authors show that
the fuel economy of gasoline vehicles improves by approximately 2% in a vehicle’s
first 20,000 miles (which is around 2 years of driving) before remaining within
1% of a saturation value. Interestingly, the fuel economy of hybrid vehicles is
found to gradually worsen over time (by 1% after 20,000 miles and 3% after
150,000 miles), potentially due to battery degradation. If these findings were to
hold for British vehicles, it could introduce vehicle age bias for hybrid vehicles
in particular. However, given that hybrid vehicles make up a negligible share of
vehicle sales in the UK (4% in 2018) and the fuel consumption of gasoline vehicles
stabilises after approximately 2 years, vehicle age bias is unlikely to affect the
rates of TEI reported in this paper or the main finding regarding the response
to EU CO, standards in 2008/09. Quantifying the impact of cumulative mileage
and age on vehicles in Europe, and diesel vehicles in particular, is nonetheless
an interesting avenue for future work.
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5 Conclusions and Policy Implications

Ensuring that fuel economy standards are effective at driving real efficiency im-
provements is essential to reduce CO, emissions from vehicles. The new frame-
work presented in this paper allows for changes in vehicle fuel consumption to
be split into three underlying drivers: incremental technical efficiency improve-
ments, market shifts between powertrain types and the effect of increasing vehicle
attributes such as power and size. By quantifying these effects using driver-
reported, real-world fuel consumption data, the success of policies aiming to
stimulate efficiency improvements can be evaluated.

Between 2001 and 2018 real technical efficiency improvements could have
reduced fuel consumption by 1.6 L/100km, instead 60% of this potential was
offset by increasing size and power of vehicles. The introduction of EU fuel
economy standards in 2008/09 had little effect on the rate of real technical ef-
ficiency improvements in British vehicles. These results suggest that instead of
adopting technical improvements at a higher rate or limiting the size and power
of vehicles, manufacturers met emissions standards by increasing the divergence
between laboratory tests and real-world fuel consumption.

The real-world fuel consumption of new British vehicles deteriorated in 2017
and 2018. Three main policy strategies are suggested to avoid this continuing.
The first is to increase the rates of technical efficiency improvements in power-
trains. This can be stimulated by ensuring fuel economy standards are based on
a drive-cycle that is representative of real-world driving, to avoid the exploita-
tion of test flexibilities. The WLTP test is expected to be a step in the right
direction compared with the outgoing NEDC, but Stewart et al. |16] suggest the
gap between type-approval and real-world driving under WLTP will increase over
time.

The second strategy is to reduce vehicle size and power by further increasing
registration taxes on larger vehicles. This can also be aided by making tests more
representative of real-world driving. Tietge et al. [6] found that sedans have a
higher gap between type-approval and real-world fuel consumption than smaller
cars. Making tests more representative of real-world fuel consumption would
therefore push larger vehicles into higher registration tax bands (this is particu-
larly the case for small sedans in fig. A2 in the SI). The final strategy to improve
fuel consumption is to increase technology switching by further stimulating the
adoption of hybrid and electrified vehicles, for example, through a bonus-malus
subsidy system.

Future work could extend this analysis to countries such as Japan and the
USA, which do not use the NEDC cycle for type-approval testing procedures,
to investigate whether the rate of real-world technical efficiency improvements
increased in response to fuel economy standards. This analysis could also include
electric and plug-in hybrid vehicles as more data becomes available.
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