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Abstract. Consider a vector bundle over a Kähler manifold which admits a

Hermitian Yang-Mills connection. We show that the pullback bundle on the

blowup of the Kähler manifold at a collection of points also admits a Her-
mitian Yang-Mills connection, for Kähler classes on the blowup which make

the exceptional divisors small. Our proof uses gluing techniques, and is hence

asymptotically explicit. This recovers, through the Hitchin-Kobayashi corre-
spondence, algebro-geometric results due to Buchdahl and Sibley.

1. Introduction

A basic problem in Kähler geometry is to determine which Hermitian vector
bundles admit Hermitian Yang-Mills connections. Initially motivated by physics,
these connections play an important role in the moduli theory of vector bundles,
as they give a canonical choice of connection. The goal of the present work is more
concrete: we give a new, reasonably explicit, construction of Hermitian Yang-Mills
connections.

We begin with a compact n-dimensional Kähler manifold X with Kähler metric
ω, and a Hermitian vector bundle (E, h) on X. Let p ∈ X be a point, and denote
by π : BlpX → X the blowup of X at p with exceptional divisor F . For each ε > 0
sufficiently small, the class [π∗ω]− εc1(F ) is a Kähler class and we shall define an
explicit Kähler metric ωε ∈ [π∗ω] − εc1(F ), which away from a neighbourhood of
F is simply π∗ω. Similarly we shall define an explicit Hermitian metric hε on π∗E
which is simply π∗h away from a neighbourhood of F . Our main result is as follows:

Theorem 1.1. Suppose (E, h) admits a Hermitian Yang-Mills connection. Then
for all ε > 0 sufficiently small, the pullback (π∗E, hε) admits a Hermitian Yang-
Mills connection with respect to ωε.

The Hermitian Yang-Mills connection on E induces a holomorphic structure,
which in turn induces a holomorphic structure on π∗E. The holomorphic structure
induced from the Hermitian Yang-Mills connection produced by the result above is
biholomorphic to this holomorphic structure.

The proof of this result uses gluing techniques which go back at least to the work
of Taubes [18], and which have been applied to problems in Kähler geometry by
Arezzo-Pacard [2], Arezzo-Pacard-Singer [3], Székelyhidi [16] and others.

The existence of a Hermitian Yang-Mills connection on π∗E is in fact independent
of choice of Kähler metric within a fixed Kähler class. Thus Theorem 1.1 proves
the existence of a Hermitian Yang-Mills with respect to any Kähler metric within
the class [π∗ω]− εc1(F ). What we wish to emphasise here is that our construction
is essentially explicit in the limit ε→ 0 for our choice of hε and ωε.

Theorem 1.2. Consider the Burns-Simanca metric ωBS on Bl0 Cn, together with
the pullback of the trivial vector bundle on Cn with the flat Hermitian metric. Set
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ωε to be a gluing of ω, away from a neighbourhood of p, and ωBS on a ball around
F . Similarly let hε be a gluing of h to the flat metric. Then with respect to these
metrics and for all ε > 0 sufficiently small, the Hermitian Yang-Mills connection on
π∗E is a small perturbation of order ε of the pullback of the Hermitian Yang-Mills
connection on E.

The key property of the Burns-Simanca metric on Bl0 Cn that we use is that it
is asymptotically flat, see for example [17, Section 8.1.2]. Moreover, it is defined
completely explicitly. For applications to physics, it is of great importance to have
explicit solutions of the Hermitian Yang-Mills equation; we refer to [1, 8] for a
sample of recent work in this direction. Thus starting with an explicit Hermitian
Yang-Mills connection on E, our construction gives an explicit construction of such
connections of the pullback of E to BlpX up to terms of order ε. In particular
our construction gives asymptotically explicit Hermitian Yang-Mills connections
on infinitely many Kähler manifolds of distinct topological type.

A small variant of our construction gives the following:

Theorem 1.3. Denote by π : Blp1,··· ,pm X → X the blowup of X at a collection of
points p1, · · · , pm ∈ X, and let F1, . . . , Fm be the corresponding exceptional divisors.
Then for any constants a1, · · · , am > 0 there exists a ε0 > 0 such that for all
ε ∈ (0, ε0) the pullback π∗E admits a Hermitian Yang-Mills connection with respect
to any Kähler metric ωε in the class π∗[ω]− ε (a1[F1] + · · ·+ ak[Fm]).

We leave the details to the interested reader; the only subtlety is that one must
blow up all points simultaneously rather than simply iterating Theorem 1.1. The
reason is that iterating one would obtain Hermitian-Einstein metrics only with
respect to classes of the form

π∗[ω]− (ε1a1[F1] + · · ·+ εkak[Fm]) ,

where the maximal value of εi depends on the particular value of ε1, · · · , εi−1.
Theorem 1.3 says that we can avoid this dependence, and produces Hermitian-
Einstein metrics with respect to Kähler classes in any direction into the Kähler cone
beginning from π∗[ω]. With appropriate choices of Hermitian and Kähler metrics,
the Hermitian Yang-Mills connections produced by Corollary 1.3 can again be made
explicit up to terms of order ε.

The renowned Hitchin-Kobayashi correspondence, proved by Donaldson [6, 7]
and Uhlenbeck-Yau [19], states that the existence of a Hermitian Yang-Mills con-
nection on E is equivalent to slope polystability of the corresponding holomorphic
structure on E. Thus Theorem 1.1 recovers the following algebro-geometric result,
which is a classical result of Buchdahl in the case of surfaces [5], and a recent result
of Sibley in arbitrary dimensions [15]:

Corollary 1.4. Suppose E → (X, [ω]) is a stable holomorphic vector bundle over
a Kähler manifold. Then the pullback bundle π∗E is stable on (BlpX, [ω]− εF ) for
all ε > 0 sufficiently small.

Conversely, if π∗E is stable with respect to [ωε], it is straightforward to see that
E is itself stable with respect to [ω] [5]. It would be interesting to understand this
result from the point of view of Hermitian Yang-Mills connections.

It is worth emphasising again that, while the Hitchin-Kobayashi correspondence
abstractly produces a Hermitian Yang-Mills connection, it provides no information
whatsoever as to what the connection looks like. By contrast, our technique gives
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very precise information. Buchdahl used the algebro-geometric result above to give
a reasonably explicit study of the moduli space of stable vector bundles in certain
situations [5]; it seems possible that Theorem 1.1 could be used to give an even
more detailed study of such moduli spaces.

A brief outline of the strategy of Theorem 1.1 is as follows. From our gluing pro-
cedure, we obtain an approximate solution Aε which is simply the Chern connection
of hε with respect to the pullback holomorphic structure. The aim is to perturb this
connection by an element of the complex gauge group in order to obtain a genuine
solution. To achieve this, we use the contraction mapping theorem. For this to
apply, the heart of the matter is to obtain appropriate bounds on the inverse of
the linearisation of the Hermitian Yang-Mills operator in certain weighted Hölder
spaces which we construct.

Finally, we end with a discussion of some analogues and extensions of Theorem
1.1 that would be worth studying. First of all, one could study the corresponding
problem for Hermitian Yang-Mills connections which are singular along a divisor
D ⊂ X, which corresponds to parabolic stability of the vector bundle. The analo-
gous problem for constant scalar curvature Kähler metrics with prescribed singu-
larities along a divisor was studied in the PhD thesis of the second author [13].
Secondly, it seems likely that there is an analogue of Theorem 1.1 for Higgs bun-
dles. Thirdly, a much studied problem in Kähler geometry has been the existence
of extremal Kähler metrics on blowups [3, 16]; the analogy for vector bundles is
direct sums of slope stable vector bundles of different slopes. Applying Theorem 1.1
to each of the simple components will provide canonical connections on blowups,
so our result applies verbatim in this setting. Fourthly, we expect an analogue of
Theorem 1.1 to hold for arbitrary Hermitian manifolds, which are not necessar-
ily Kähler. While our proof suggests a strategy for proving this, some of our key
estimates break down if X is not Kähler. Lastly, we expect that an analogue of
Theorem 1.1 holds for blowups along arbitrary complex submanifolds, due to the
recent work of Seyyadali-Székelyhidi on extremal Kähler metrics on such blowups
[14].

Outline: We begin in Section 2 with some standard definitions and results from the
study of Hermitian Yang-Mills connections. Next in Section 3 we define weighted
Sobolev and Hölder spaces of sections of vector bundles, and establish some of their
basic properties. We use these weighted norms in Section 4 to obtain the estimates
on the inverse of the linearisation of the Hermitian Yang-Mills operator. We put
the pieces together in Section 5 to prove Theorem 1.1 by a contraction mapping
argument.

Acknowledgements: The authors would like to thank Ben Sibley for helpful
discussions. The second named author is thankful to the CIRGET who support his
postdoctoral position.

2. Preliminaries on Hermitian Yang-Mills connections

We refer to [10] for an introduction to Hermitian Yang-Mills theory. Let X be
a compact Kähler manifold of dimension n with Kähler metric ω. Fix a complex
vector bundle E of rank m on X together with a Hermitian metric h on E.
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Definition 2.1. We say that a connection A which is compatible with h is a
Hermitian Yang-Mills connection if

F 0,2
A = 0,

iΛωFA = c · IdE ,

where Λω : Ω2(EndE) → Ω0(EndE) is the adjoint of the Lefschetz map, IdE ∈
Ω0(EndE) is the identity section, and c is the topological constant defined by

c = n

∫
X
c1(E).[ω]n−1

m
∫
X

[ω]n
.

The first condition implies that A is integrable, i.e. defines a holomorphic struc-
ture on E. The covariant derivative splits as dA = ∂A + ∂̄A, with integrability
ensuring that ∂̄A is induced from a holomorphic structure on the vector bundle.
Hermitian Yang-Mills connections are unique, if they exist, and hence form a canon-
ical choice of connection on a Hermitian vector bundle [12, Proposition 2.2.2].

An equivalent point of view is to fix a holomorphic vector bundle E and search
instead for a canonical Hermitian metric.

Definition 2.2. We say a Hermitian metric h is Hermitian-Einstein if

iΛωFh = c · IdE(2.1)

for some constant c, where Fh is the curvature of the Chern connection induced
from the holomorphic structure on E.

So one can either fix a Hermitian vector bundle and search for a canonical con-
nection, or one can fix a holomorphic vector bundle, and search for a canonical
Hermitian metric, which then induces the Chern connection. On occasion it will
be useful to take this perspective instead.

The complex gauge group, denoted GC, is the group Γ(GL(E,C)). Fixing a
Hermitian metric h on E, for f ∈ GC it acts on the space of connections by

dAf = f∗ ◦ ∂A ◦ (f∗)−1 + f−1 ◦ ∂̄A ◦ f,(2.2)

where f∗ denotes the adjoint of f computed with respect to h. This action is
such that Af is the Chern connection with respect to the holomorphic structure
f−1 ◦ ∂̄A ◦ f . We say that connections A, Â are gauge equivalent if there exists
an f ∈ GC such that Af = Â. Remark that gauge equivalent connections define
biholomorphic holomorphic structures.

An object of central importance in the present work will be the linearisation
of the Hermitian Yang-Mills operator. To calculate this, we first need some more
additional notation. As above, we let A be an integrable connection, compatible
with h, on the vector bundle E. Set

(2.3) H = GC ∩ Γ (EndH(E, h)) ,

where EndH(E, h) denotes the space of Hermitian endomorphisms of (E, h). We
will set Q to be the tangent space of H at IdE , so that Q is the vector space
consisting of Hermitian endormorphisms of E. Define the operator Φ : H → Q by

Φ(f) = iΛωFAf ,

so that Af is a Hermitian Yang-Mills connection if and only if Φ(f) is a multiple
of the identity.
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Lemma 2.1. [10, Theorem 7.4.20] The differential dΦIdE : Q → Q of Φ at the
identity is given, for a ∈ Q, by the Laplacian

dΦIdE (a) = ∆AEndE
a.

Explicitly, we have

∆AEndE
= iΛω

(
∂AEndE

∂̄AEndE
− ∂̄AEndE

∂AEndE

)
.(2.4)

Note that there is also another Laplacian operator, defined using the formal
adjoint of dA, which is given by

ΥA = d∗AdA.(2.5)

The two are equal if and only if A is weakly Hermitian Yang-Mills, i.e. satisfies
equation (2.1) with the constant c replaced by a function [12, Lemma 1.2.5].

Recall that a holomorphic vector bundle is simple if E cannot be written as A⊕B
for holomorphic vector bundles A,B on X. We shall use this concept through the
following:

Lemma 2.2. [12, Lemmata 1.2.5, 1.2.6] Suppose the holomorphic structure ∂̄A
is simple. Then the kernel of the Laplacian ΥA consists of constant multiples of
the identity, and the image is the L2-orthogonal complement to this kernel. In
particular, ΥA is an isomorphism when restricted to sections of EndE with mean
zero.

It is clear that, to prove Theorem 1.1, it is enough to prove it in the case the
induced holomorphic structure on E is simple. Thus for the remainder of the present
work, we assume this is the case.

3. Weighted spaces

Our aim in this section is to define weighted Hölder spaces for sections of vector
bundles over X\{p} and BlpX, and to study some of their properties. The spaces
we define are completely analogous to the corresponding function spaces, as used
in [2, 3, 16].

We first recall the definition of the Hölder space Ck,α(X,E). Since X is compact,
we can cover X by a finite number of charts Ui. Picking a partition of unity
ϕi subordinate to this cover, for a section s of E we can consider ϕis as a map
Ui ⊆ Cn → Cm, where m is the rank of E. For each i one has the usual Ck,α-norm
‖ϕis‖Ck,α of the map ϕis, and we define

‖s‖Ck,α = max
i
‖ϕis‖Ck,α .

This notion is independent of choice of atlas up to equivalence.
Denote Xp = X\{p}. For Ck,α(Xp, E) we make a similar definition, except we

take one of the charts to be around p and alter the definition of the Ck,α-norm
in this chart. We can assume this chart is a ball B2 of radius two, and that the
remaining charts cover the complement of the image of the ball B1 of radius one.
Over B2, we can identify E with Cm, and so the restriction to B∗2 = B2\{0} of a
section s of E over Xp can be considered as a map B∗2 → Cm. For each δ ∈ R and
r ∈ (0, 1), we denote by sδr : B̄2 \B1 → Cd the map

sδr(z) = r−δs(rz).(3.1)
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Definition 3.1. We define the Ck,αδ -norm on sections of E over Xp to be

‖s‖Ck,αδ (Xp,E) = ‖s‖Ck,α(X\B1,E) + supr∈(0,1)‖sδr‖Ck,α(B2\B1,Cm),

and let Ck,αδ (Xp, E) be the space of Ck,αloc -sections of E|Xp that have finite Ck,αδ -
norm.

We next define weighted Hölder norms for sections of the trivial vector bundle
of rank m over the blowup π : Bl0 Cn → Cn. Note that the region π−1(Cn \ {0})
in Bl0 Cn can be identified with Cn \ {0} ⊆ Cn via π. We will let ζ denote the
coordinates on Bl0 Cn \ π−1(0) arising from this identification. We will apply this
in particular to the annular region π−1 (B2 \B1) ∼= B2 \B1.

For a smooth map f : Bl0 Cn → Cm we can define the weighted norm as

‖f‖Ck,αδ (Bl0 Cn,Cm) = ‖f‖Ck,α(π−1(B1),Cm) + supr∈(1,∞)‖fδr ‖Ck,α(B2\B1,Cm).

The space Ck,αδ (Bl0 Cn,Cm) is then the space of Ck,αloc -maps to Cm which have finite
such norm.

We can also restrict this norm to subsets. In particular, for subsets of the form
π−1(Ba) with a > 2, it becomes

‖f‖Ck,αδ (π−1(Ba),Cm) = ‖f‖Ck,α(π−1(B1),Cm) + supr∈(1, a2 )‖fδr ‖Ck,α(B2\B1,Cm).(3.2)

For each a and δ, this norm is equivalent to the usual Ck,α-norm on π−1(Ba), but
the constant of equivalency cannot be made independent of a.

We can now define the relevant Hölder norm for BlpX using a combination of
the above two norms. Recall from the above that z are the coordinates around p
and ζ are the coordinates away from the exceptional divisor in Bl0 Cn. We will
identify the annular regions ε ≤ |z| ≤ 1 and 1 ≤ |ζ| ≤ ε−1 by letting ζ = ε−1z, so
we can think of this region as both a subset of X and of Bl0 Cn via this coordinate
change. Thus we think of BlpX as consisting of three regions:

• BlpX \ π−1 (B1(p)), which can be identified with X \ (B1(p)).
• π−1 (B1(p) \Bε(p)), which is the annular region described above.
• π−1 (Bε(p)), which is the region |ζ| ≤ 1 in Bl0 Cn.

For a section s of E over BlpX, we will let s̃δε denote the map

s̃δε : ζ 7→ ε−δs(εζ)

from the region |ζ| ≤ 1 in Bl0 Cn to Cm. We also let sδr be the section of E over
B2(p) \B1(p) ⊆ X given as in equation (3.1).

Definition 3.2. We define the Ck,αδ -norm on sections of E over BlpX to be

‖s‖Ck,αδ (BlpX,E) = ‖s‖Ck,α(X\B1,E)+

+ sup
r∈(ε,1)

‖sδr‖Ck,α(B2\B1,E) + ‖s̃δε‖Ck,αδ (π−1(Bε(p)),Cm).

An important point to note is that the norm depends on ε. An equivalent
description, as in the function case [17, p167], is as follows. Let rε = εκ where
κ = n−1

n . Let γ be a smooth function R → [0, 1] which is zero for x ≤ 1 and 1 for

x ≥ 2. Define γ1(z) = γ( |z|rε ) and γ2 = 1 − γ1. Then an equivalent norm is given
by:

‖s‖Ck,αδ (BlpX,E) = ‖γ1s‖Ck,αδ (Xp,E) + ε−δ‖γ2s‖Ck,αδ (π−1(B1),Cm).
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As in the function case [17, p. 167], the Ck,αδ spaces do not actually depend on δ,

as they simply consist of locally Ck,α sections. Instead the weight δ only affects the
norm. Again as in the function case, for two weights δ < δ′ one has the inequalities

‖s‖Ck,αδ (BlpX,E) ≤ ‖s‖Ck,α
δ′ (BlpX,E) ≤ ε

δ−δ′‖s‖Ck,αδ (BlpX,E).(3.3)

We will also briefly require weighted Sobolev spaces, although only on X \ {p}.
Let ρ be a smooth positive function on Xp, which equals the radius function r in
B∗1(p) and 2 on the complement of B2(p).

Definition 3.3. We define the

(i) L2
δ-norm by

‖s‖2L2
δ(Xp,E) =

∫
Xp

|s|2hρ−δωn,

(ii) and the W 2,k
δ -norm by

‖s‖W 2,k
δ (Xp,E) =

k∑
j=0

‖∇ks‖L2
δ−j(Xp),

where we are using the Hermitian metric h and the Kähler metric ω to calculate the

pointwise norm |∇ks| of ∇ks. We then define W 2,k
δ (Xp, E) to be the completion of

smooth compactly supported sections of E on Xp under this norm.

We now describe main properties of the various weighted norms that we will
require.

Lemma 3.1. Let E,F be bundles over X. For the weighted spaces on Y = Xp,
Y = Bl0 Cn or Y = BlpX, the map

Ck,αδ (Y,E)× Ck,αδ′ (Y, F )→ Ck,αδ+δ′(Y,E ⊗ F )

given by taking the tensor product of sections is continuous. In the case of Y =
BlpX, the constant such that

‖s⊗ t‖Ck,α
δ+δ′ (Y,E⊗F ) ≤ c‖s‖Ck,αδ (Y,E) · ‖t‖Ck,α

δ′ (Y,F )

can be chosen independently of ε.

Proof. The C0-estimates on the scaled regions hold as the (i, j)th-component (s⊗
t)(i,j) of s⊗ t satisfies

(r−(δ+δ′)s⊗ t)(i,j)(rz) = r−δs(rz) · r−δ
′
t(rz)

≤ ‖s‖Ck,αδ (Y ) · ‖t‖Ck,α
δ′ (Y ).

For the higher estimates, applying the Leibniz rule gives(
r−(δ+δ′)∇(s⊗ t)

)
(i,j)

(rz) = (r−δ∇s(rz))r−δ
′
t(rz)) + (r−δs(rz))r−δ

′
∇t(rz))

≤ 2‖s‖Ck,αδ (Y ) · ‖t‖Ck,α
δ′ (Y ),

which implies the required estimates. The argument for the estimate in the region
π−1(Bε) when Y = BlpX follows in exactly the same manner.

The last part concerning the case of Y = BlpX follows because the constants
above do not depend on what range r lies in, and so are independent of ε. �
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We also need to know when the Hölder spaces are guaranteed to be contained in
the Sobolev spaces.

Lemma 3.2. We have an inclusion

Ck,αδ (Xp, E) ⊆W 2,k
δ′ (Xp, E)

if and only if δ′ < 2δ + 2n.

Proof. This follows immediately from the expression of the volume form in R2n in
spherical coordinates. �

4. Linear theory

As we have seen in Lemma 2.2, when E is simple, the operator ΥA on EndE
has kernel and cokernel given by constant multiples of the identity. In particular,
once it is shown that π∗E is simple (see Proposition 4.7), this holds for the pullback
bundle over the blowup. Taking care of the cokernel, we can then construct a one-
sided inverse of ΥAε associated to the metric ωε, for each ε. The goal of this section
is to prove Theorem 4.6, which gives a corresponding statement along with bounds
for these inverses of the Laplacian ∆ independently of ε in the weighted norms. We
prove this by applying similar results for the Laplacian on Xp and Bl0 Cn, so we
begin by considering these two cases. Note that on the blow-up, ΥAε and ∆ now
differ, but their difference becomes small when ε→ 0.

4.1. Linear theory on Xp. The goal of this section is to prove a Fredholm The-
orem for the Laplace operator ∆ on EndE → Xp associated to the Kähler metric
ω on Xp and the Chern connection of the Hermitian metric h. To emphasise the
weighted spaces we are working in, we will write the Laplacian

∆δ : Ck+2,α
δ (Xp,EndE)→ Ck,αδ−2(Xp,EndE)

with a subscript to denote the weight. Our aim is to prove:

Theorem 4.1. The operator ∆δ is Fredholm apart from the discrete sets of indicial
roots Z \ (2− 2n, 0). Moreover, if δ is not an indicial root, then

Im(∆δ) = Ker (∆2−2n−δ)
⊥.

The strategy is to show that near p the operator is a perturbation of the Eu-
clidean Laplace operator, which simply acts component-wise on endomorphisms of
E. We then apply the Lockhart-McOwen theory and regularity theory to finish the
proof.

Pick a cutoff function γ which equals one on B1 and zero on X\B2. Then for

a section s ∈ Ck,αδ (Xp,EndE), by extending by zero we can consider γs to be a

section γs ∈ Ck,αδ (B∗2 ,Cm
2

). For γs, we can compute its Laplacian also with respect
to the Euclidean Laplacian ∆Euc induced by the flat metric on the trivial bundle
over B∗2 .

Lemma 4.2. We have
∆δs−∆Eucγs ∈ Ck−2,α

δ .

Proof. We begin by finding the difference between the two Laplace operators. We
can identify the total space of E|B2(p) with B2(0) × Cm ⊆ Cn × Cm. We will
let z1, · · · , zn be the coordinates on the base, and w1, · · · , wm be the coordinates
on the fibres. A section of EndE over B2 can be identified with a matrix (ψij),
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say, where i, j ∈ {1, · · · ,m}. If s is a section of E, we can write it as s(z) =
(s1(z), · · · , sr(z)) ∈ Cm over B2.

The covariant derivative dA associated to a connection A on E can be written
on B2 as

dA = d+A

for some A ∈ Λ1(Cm). In our case, this is the Chern connection of h, and so A is
in fact a (1, 0)-form. The induced covariant derivative dAEndE

on EndE is given by

dAEndE
(ψ) = dA ◦ ψ − ψ ◦ dA,

which near p equals

d ◦ ψ − ψ ◦ d+A ◦ ψ − ψ ◦ A.

By the Leibniz rule we have

d

∑
j

ψijsj

 =
∑
j

(d(ψij)sj + ψijdsj)

∈ Cm ⊗ Λ1(Cn).

Thus near p, the covariant derivative dAEndE
((ψij)) (s) for a section s of E has lth

component equal to

(dAEndE
((ψij)) (s))l =

∑
j

(d(ψlj)sj + [A, (ψpq)]ljsj) .

so

dAEnd ((ψij)) = (d(ψij) + [A, (ψpq)]ij) .

Next note that

dA = ∂A + ∂̄A

= (∂ +A) + ∂̄

is the decomposition of dA into its (1, 0) and (0, 1) components, since A is the Chern
connection of E. Thus

∂A∂̄A(ψ) = ∂A
(
∂̄(ψij)

)
= ∂∂̄(ψij) + [A, ∂̄(ψpq)]ij .

and

∂̄A∂A(ψ) = ∂̄A (∂(ψij) + [A, (ψpq)]ij)
= −∂∂̄(ψij) + ∂̄ ([A, (ψpq)]ij) .

Since

[A, ∂̄(ψ)]− ∂̄ ([A, ψ]) = [ψ, ∂̄A],

we thus have from equation (2.4) that

∆AEndE
(ψ) = Λω

(
2∂∂̄(ψ) + [ψ, ∂̄A]

)
.(4.1)

The first term is simply the Laplacian associated to the metric ω acting componen-
twise. Since we are working in holomorphic normal coordinates with resepect to ω,
it follows from the claim in the function case (see e.g. [17, p. 162]) that the difference
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between this operator and the Euclidean Laplace operator acting component-wise
lies in C0,α

δ . We thus need to show that the operator

ψ 7→ [ψ, ∂̄A]

maps C2,α
δ to C0,α

δ . For this we use the standard local formula for A as

A = h̄−1∂h̄,

see for example [9, p. 177] Thus

∂̄A = h̄−1∂̄∂h̄+ ∂̄
(
h̄−1

)
∧ ∂h̄.

Since h lies in Ck,α0 for any k, it follows from the multiplicative properties of the

weighted norms that Λω[ψ, ∂̄A] ∈ Ck,αδ whenever ψ is. �

Remark that a priori ∆δs − ∆Eucs ∈ Ck−2,α
δ−2 . The improvement given in the

Lemma above will enable us to reduce to the Euclidean setting in our proof of
Theorem 4.1.

Proof of Theorem 4.1. By using Lemma 4.2, we can apply the theory of Lockhart-
McOwen [11]. The Fredholm property in Theorem 4.1 is then a consequence of
this: ∆δ is Fredholm if and only if the Euclidean Laplace operator is, which is true
if and only if δ is not an indicial root of the Laplacian.

For the characterisation of the image in terms of the kernel with a different
weight, we apply the regularity theory in weighted spaces. This says that if we
solve ∆δ(s) = t in the sense of distributions, with t ∈ C0,α

δ−2 and s ∈ L2
δ′ such that

δ′ < 2δ + 2n, then s ∈ C2,α
δ .

We can identify the dual of L2
δ′ with L2

−δ′ via the L2-inner product. The image

of ∆δ′ in L2
δ′ is then the orthogonal complement of the kernel of the adjoint

∆∗δ′ : L2
−δ′ =

(
L2
δ′
)∗ → (

W 2,2
δ′+2

)∗
of ∆δ′ . But if s ∈ L2

−δ′ is in this kernel, then it solves

∆δ′(s) = 0

in the sense of distributions. So by the regularity theory, s will lie in any weighted
space C2,α

τ such that C2,α
τ ⊂ L2

−δ′ , i.e any τ satisfying 2τ + 2n > −δ′.
We apply this to δ′ = 2δ + 2n− 4− ε. Then C2,α

δ ⊂W 2,2
δ′+2 and moreover

Im
(

∆δ : C2,α
δ → C0,α

δ−2

)
= Im

(
∆δ : W 2,2

δ′+2 → L2
δ′

)
∩ C0,α

δ−2,

again by the regularity theory. So by the discussion of the previous paragraph,
picking τ = 1

2 (ε− 2n− δ′) = ε+ 2− 2n− δ, we have

Im
(

∆δ : C2,α
δ → C0,α

δ−2

)
= (ker ∆ε+2−2n−δ)

⊥ ∩ C0,α
δ−2.(4.2)

But since δ is not an indicial root, neither is 2 − 2n − δ, and so there is an open
interval about 2− 2n− δ for which the kernel of ∆δ does not change. In particular,
when ε is chosen sufficiently small, we may replace ε+ 2− 2n− δ with 2− 2n− δ
in equation (4.2), which is what we wanted to show. �
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The weights relevant to us are δ ∈ (2− 2n, 0). Applying Theorem 4.1 to weights
in this range, we see that the kernel of ∆δ equals the kernel with weight 0, which is
simply the kernel of ∆δ on the whole of X, which is just C · IdE . Since 2− 2n− δ ∈
(2−2n, 0) if δ ∈ (2−2n, 0), it follows that the image is the orthogonal complement

to the same kernel, i.e. the elements of C0,α
δ−2 whose average is 0. We have just

proved:

Corollary 4.3. Let δ ∈ (2− 2n, 0). Then ∆δ is Fredholm with kernel C · IdE and
image

Im ∆δ = (C · IdE)
⊥ ⊂ C0,α

δ−2(Xp,EndE).

4.2. Linear theory on Bl0 Cn. On Bl0 Cn we require the following result regarding
the Laplacian operator acting on sections of the trivial vector bundle.

Theorem 4.4. Suppose δ /∈ Z \ (2− 2n). Then the Laplacian operator

∆δ : Ck+2,α
δ (Bl0 Cn,Cm)→ Ck,αδ−2(Bl0 Cn,Cm)

of the rank r trivial vector bundle with its flat metric over Bl0 Cn with the Burns-
Simanca metric is Fredholm. Moreover,

Im ∆δ = (Ker ∆2−2n−δ)
⊥
.

The proof is to reduce to the function case. This is possible since we are using
the flat Hermitian metric on the trivial bundle. The Chern connection then simply
becomes the operator d acting component-wise, and so the Laplacian operator
associated to the flat metric is simply the Laplacian operator on functions associated
to the base metric acting on each component. For the result in the function case,
see [17, Theorem 8.6] and the references therein.

The weights which will be relevant to us are the negative weights. For these we
require the following.

Corollary 4.5. Suppose δ < 0. Then the kernel of

∆δ : Ck+2,α
δ (Bl0 Cn,Cm)→ Ck,αδ−2(Bl0 Cn,Cm)

is trivial.

Again this is a direct consequence of the result for the case m = 1.

4.3. Linear theory on BlpX. On BlpX we are considering the bundle π∗E, where
π : BlpX → X is the blow-down map. To simplify notation, we will also denote the
pullback bundle by E. We will let ωε and hε be a base metric and bundle metric,
respectively, which will both depend on ε and which we will now define.

The base metric is defined as in [16]. This uses the Burns-Simanca metric on
Bl0 Cn whose associated Kähler form η can be written as

η = i∂∂̄(|ζ|2 + ψ(ζ)),

where ψ = O(|ζ|4−2n) if n > 2 and ψ = log(|ζ|) if n = 2, where ζ = ε−1z. Recall
also that ω can be written as

ω = i∂∂̄(|z|2 + ϕ(z)),

where ϕ = O(|z|4).
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Recall that rε = εκ where κ = n−1
n . We have let γ be a smooth function

R → [0, 1] which is zero for x ≤ 1 and 1 for x ≥ 2. Further we let γ1(z) = γ( |z|rε )

and let γ2 = 1− γ1. The metric ωε ∈ [π∗ω]− εc1(F ) on BlpX is defined to be

ωε =


ω on X \B2rε

i∂∂̄
(
|z|2 + γ1(z)ϕ(z) + ε2γ2(z)ψ(ε−1z)

)
on B2rε \Brε

ε2η on π−1(Brε)

(4.3)

The point of choosing κ to be n−1
n is that the Kähler potential above then is O(|z|4),

independently of ε, in the annular region. In other words, we have that

γ1(z)ϕ(z) + ε2γ2(z)ψ(ε−1z) = O(|z|4),(4.4)

where the O(|z|4)-term is understood to be independent of ε.
The bundle metric hε is defined similarly, using the flat metric hflat on the trivial

rank r bundle over Bl0 Cn. More precisely, if h denotes the bundle metric on E → X
and γ1 and γ2 are the cut-off functions of the previous section, then we set

hε =


h on X \B2rε

γ1h+ γ2hflat on B2rε \Brε
hflat on π−1(Brε)

(4.5)

We will later use the following bound on the γi:

‖γi‖C4,α
0 (BlpX) ≤ c.(4.6)

The first operator of interest in this section is essentially the Laplace operator
∆ε = ∆ε,EndE associated to the Chern connection Aε,EndE for the Hermitian metric
hε on π∗E → BlpX. Letting q be some arbitrary, but fixed, point in X \ {p}, the
main result is the following.

Theorem 4.6. Let δ ∈ (2− 2n, 0). Then the operator ∆̃ε : C2,α
δ (BlpX,EndE)→

C0,α
δ−2(BlpX,EndE) given by

f 7→ ∆ε(f)− trq(f) · IdE
is an isomorphism. Moreover, the inverse of ∆̃ε has bounded operator norm,
‖∆̃−1

ε ‖ ≤ C, independently of ε.

The proof of this uses an analogous technique to the work of Biquard-Rollin [4].
We follow the strategy of Székelyhidi in the context of the linearisation of the scalar
curvature on Kähler manifolds [17, Theorem 8.14].

Note that the main content of this theorem is the bound on the inverse of ∆̃ε.
It will follow from the simplicity of π∗E that ∆̃ε is an isomorphism as BlpX is

compact and the spaces Ck,αδ are nothing but the usual Ck,α-spaces with a different,
but equivalent norm, for each ε. To ensure that the vector bundle Laplacian is
invertible for π∗E, we use the following.

Proposition 4.7. Suppose E is a simple vector bundle over a complex manifold
X, and let p : Y → X be a bimeromorphic morphism. Then p∗E is simple.

Proof. The largest analytic Z ⊂ X such that Y \p−1(Z) ∼= X\Z satisfies dimZ ≤
dimX − 2 since X is smooth and p is bimeromorphic. Suppose p∗E ∼= A ⊕ B
for holomorphic subbundles A,B. The direct images p∗A, p∗B are coherent by
Grauert’s Theorem, and on X\Z we have an isomorphism p∗A ⊕ p∗B ∼= E. Then
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since p∗A ⊕ p∗B and E are coherent sheaves which are isomorphic away from Z,
which has codimension two, they must be isomorphic on all of X as X is smooth.
This contradicts the fact that E was assumed to be simple, giving the result. �

We apply this to the map π : BlpX → X to conclude that π∗E is a simple
holomorphic vector bundle. It then easily follows as above that, after adding the
term trq · IdE , the similarly defined operator Υ̃ε is an isomorphism. To conclude

that ∆̃ε also is an isomorphism, we would then need to show that the difference
between the two operators becomes small as ε→ 0. We will however just consider
∆̃ε directly, but it will be clear (see the proof of Lemma 5.2) that this difference
does indeed go to 0 with ε.

Before beginning the proof of Theorem 4.6, we will first prove the following

Schauder estimate. For ease of notation, we write Ck,αδ for Ck,αδ (BlpX,EndE)
throughout the proof.

Lemma 4.8. There exists a constant c > 0, independently of ε, such that

‖s‖C2,α
δ
≤ c

(
‖∆̃ε(s)‖C0,α

δ−2
+ ‖s‖C0

δ

)
.(4.7)

Proof. First note that on the region away from the exceptional divisor, the usual
Schauder estimates imply that we have the bound

‖s‖C2,α(X\B1) ≤ c
(
‖∆̃ε(s)‖C0,α(X\B1) + ‖s‖C0(X\B 1

2
)

)
,

and the restriction of the weighted norm to M \B 1
2

is equivalent to the usual Hölder

norm with the constant of equivalency depending only on δ, not ε. Note that the
operator ∆̃ε is the same for all values of ε < 1

2 , so c is independent of ε.
Secondly, the preimage of Bε is the region |ζ| ≤ 1 thought of as a subset of

Bl0 Cn. Since the annular region on which we are matching the Kähler metrics and
Hermitian metrics gets larger and larger thought of as a subset of Bl0 Cn, for ε > 0
sufficiently small the metrics on the region |ζ| ≤ 2 are always the Burn-Simanca
metric and the flat Hermitian metric. Thus we get a bound

‖s‖C2,α({|ζ|<1}) ≤ c
(
‖∆̃ε(s)‖C0,α({|ζ|<1}) + ‖s‖C0({|ζ|<2})

)
,

with c independent of ε. When we scale, we introduce a factor of ε2 on ∆̃ε(s),
which implies that the above inequality gives us that we have a bound

‖s‖C2,α
δ (π−1(Bε))

≤ c
(
‖∆̃ε(s)‖C0,α

δ−2(π−1(Bε))
+ ‖s‖C0

δ (π−1(B2ε))

)
,

with c independent of ε.
Finally, for the annular region, note that we could define an equivalent norm to

the Ck,αδ -norm by

‖s‖Ck,α(X\B1,E) + sup
r∈(ε,1)

‖sδr‖Ck,α(B3\B 1
2
,E) + ‖s̃δε‖Ck,αδ (π−1(Bε(p)),Cm),(4.8)

i.e. we are enlarging the annular regions in the middle term. The constant of
equivalency depends on δ, but not on ε. Next recall that ωε and hε are uniformly
equivalent to the Euclidean metric and the flat metric, respectively, on the annular
region. Thus r−2∆̃ε(s

δ
r) has a uniform estimate on the Ck,α-norm of its components

and its constant of ellipticity. The factor r−2 arises because ∆̃ε is a second order
operator.
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In particular, the local Schauder estimates imply that

‖sδr‖C2,α(B2\B1,E) ≤ C
(
‖r−2∆̃ε(s

δ
r)‖C0,α(B2\B1,E) + ‖sδr‖C0(B3\B 1

2
,E)

)
,

where C is independent of ε. Taking supremums and using that equation (4.8) de-
fines an equivalent norm with constant of equivalency independent of ε, we precisely
obtain the estimate (4.7). �

We will now improve the above bound to show that the term ‖s‖C0
δ

is superfluous.

This precisely gives a bound on the operator norm of ∆̃−1
ε , which is what is needed

to complete the proof of Theorem 4.6.

Proof. We will prove that we do not need the term ‖s‖C0
δ

in the estimate (4.7)

by contradiction. So suppose this cannot be removed. Then we can find sequence
εi > 0 tending to zero and sections si of EndE over BlpX with ‖si‖C2,α

δ
= 1 and

‖∆̃εi(si)‖C0,α
δ−2

<
1

i
.(4.9)

This implies that there is a C > 0 such that∣∣∣∣∣
∫

BlpX

〈∆̃εi(si), IdE〉ωnεi

∣∣∣∣∣ < C

i
.

Since ∆ is self-adjoint and contains C · IdE in its kernel, the integral of 〈∆(si), IdE〉
is 0, and so we obtain the estimate

| trq(si)| <
C

i
.

Since our sequence satisfies ‖si‖C2,α
δ

= 1 on BlpX, we have uniform bounds for

the si on the regions X \ Bεi . By Arzela-Ascoli, for any β < α we can extract a

subsequence that converges locally in C4,β
δ to a section s of EndE over Xp. By the

above, this section satisfies that trq(s) = 0 and that ∆̃ω(s) = 0. It then follows
from Corollary 4.3 that s is 0.

Next note that equations (4.7) and (4.9) imply

1 ≤ c

i
+ c‖si‖C0

δ
.

Thus

1

c
− 1

i
≤ ‖si‖C0

δ
,

which in turn implies that the sequence si has C0
δ -norm bounded below away from

zero. Moreover, as ‖si‖C0
δ
≤ ‖si‖C2,α

δ
= 1, the sequence is also bounded from above

in this norm.
If we then rescale the si so they satisfy that ‖si‖C0

δ
= 1, these properties then

imply that

‖si‖C2,α
δ

< C(4.10)

and that both ‖∆εi(si)‖C0,α
δ−2
→ 0 and si → 0 in C2,α

loc (Xp,EndE).

Next, we will make use of the functions

% = %ε : BlpX → R
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given by

%(x) =


1 if x ∈ BlpX \ π−1(B1)

|z(x)| if x ∈ π−1(B1 \Bε)
ε if x ∈ π−1(Bε)

Here we are using the coordinate z on the annular region π−1(B1 \ Bε) as before.
For notational simplicity, denote %i = %εi .

Note that ‖si‖C0
δ

= ‖%−δi si‖C0(BlpX,EndE), so for each i there is a point qi ∈
BlpX such that

|%−δi (qi)si(qi)| = 1.(4.11)

Since |si(qi)| → 0, this then implies that %−δi (qi) → ∞. Thus, as δ < 0, we also

have %i(qi)→ 0. We separate the two cases when ε−1
i %i(qi) is bounded and not. As

we will see, this corresponds to whether or not the points qi, thought of as points
in Bl0 Cn using the ε-dependent charts, remain bounded or not.

We first consider the case that ε−1
i %i(qi) is bounded. Recall that we have the

coordinates ζ = ε−1z on the neighbourhood of the exceptional divisor in the blowup.
That ε−1

i %i(qi) ≤ r then says that |ζ(qi)| ≤ r. Thus we can choose a subsequence
such that the points ζ(qi) converge to a point q ∈ Bl0 Cn.

Through our coordinate charts ζ, the si can be thought of as sections of

Cm
2

→ π−1
(
Bε−1

i
(0)
)
⊆ Bl0 Cn.

Moreover, since the norm ‖ · ‖C2,α
δ

on BlpX for the parameter ε is equivalent to

‖γ1 · ‖C2,α
δ (Xp,EndE) + ε−δ‖γ2 · ‖C2,α

δ (Bl0 Cn,Cm2 ), estimate (4.10) gives a a uniform

C2,α
δ bound on ε−δi si increasing subsets of Bl0 Cn whose union covers the whole of

Bl0 Cn.
We can then choose a subsequence of ε−δi si, which we still denote by the same

index, converging in C2,α
loc to a section s of Cm2 → Bl0 Cn. The bounds on the ε−δi si

then imply that s ∈ C2,β
δ (Bl0 Cn,Cm

2

) for some β < α.

The pair (ε−2
i ωεi , hεi) converges to (ωBS , hflat) on Bl0 Cn. Thus as the si solve

∆εi(si) = 0, the limit s is a solution of ∆(s) = 0, where ∆ is the Laplace operator
associated to (ωBS , hflat). Since ε−1

i %i(qi) ≤ r and δ < 0, we have %δi (qi) ≥ rδ.

Therefore, by equation (4.11), |s(q)| ≥ rδ. But on C2,β
δ (Bl0 Cn,Cm

2

), Corollary 4.5
gives that this Laplacian has trivial kernel, and so this is a contradiction.

To complete the proof we must show that the case when ε−1
i %i(qi) is unbounded

also leads to a contradiction. Recall that %i(qi) → 0, so the only possibility then
is that infinitely many qi lie in π−1(B1 \Bεi). Thus we can choose a subsequence,
which we still denote by the same index, such that %i(qi) = |z(qi)| for all i.

Now choose 0 < ri < Ri such that ε−1
i ri|z(qi)| → ∞ and Ri|z(qi)| → 0. By our

assumptions, it then follows that ri → 0 and that Ri → ∞. We will identify the
annular region

{x ∈ BlpX : ri|z(qi)| ≤ |z(x)| ≤ Ri|z(qi)|}

with the annulus

Ai = BRi(0) \Bri(0) ⊆ Cn \ {0}
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by rescaling. Note that the qi, thought of as points in the latter annulus, then
all lie on the unit sphere in Cn \ {0}. So we can choose a convergent subsequence
qi → q ∈ S2n−1 ⊆ Cn \ {0}.

Next, the metrics ( 1
|z(qi)|2ωεi , hεi) on EndE ∼= Cm2

over Ai converge to (ωeucl, hflat)

locally uniformly on Cn \ {0} to any order. This follows by our choice of the ri and
Ri. The latter ensures that the parts coming from ω on X approach the Euclidean
metric, as ω is approximately Euclidean near p and the balls BRi|qi| become smaller
and smaller balls around p. The former ensures the same from the terms coming
from the asymptotically flat Burns-Simanca metric, as the annular region thought
of as a subset of Bl0 Cn lies in the complement of π−1(Bε−1

i ri|z(qi)), which becomes

a larger and larger subset of Bl0 Cn as i increases.
The Laplace operators corresponding to the weight εi therefore converge to the

Laplace operator associated to (ωeucl, hflat) on Cm2 → Cn \ {0}.
Also, the sections |z(qi)|−1si on Ai have C2,α

δ (Ai,Cm
2

)-norm which is uniformly

equivalent to the C2,α
δ (B|z(qi)|Ri) \ B|z(qi)|ri),EndE)-norm of the si. Since the si

satisfy the estimate (4.10), this therefore implies that the sections |z(qi)|−1si satisfy
the same estimate on Ai as well. We can then extract a subsequence of |z(qi)|−1si
converging to a section s of Cm2

over Cn \ {0} locally in C2,β for some β < α. The

uniform bound on the C2,α
δ (Ai,Cm

2

)-norm of |z(qi)|−1si then implies that s has

finite C2,β
δ -norm.

Thus we get a function s : Cn \{0} → Cm2

in C2,β
δ (Cn \{0},Cm2

) which satisfies
∆(s) = 0, where ∆ is the Euclidean Laplacian acting on each component separately.
Moreover, since %i(qi) = |z(qi)| for all i, equation (4.11) implies that |s(q)| = 1.
But for any weight which is not an indicial root, this Laplacian is an isomorphism.
Thus ∆(s) = 0 implies that s = 0 and so s(q) = 0 6= 1. Hence no such s can
exist. This means that we cannot have that ε−1

i %i(qi) is unbounded either, and this
completes the proof of the result. �

5. Proof of the main result

Having developed the linear theory, we are now ready to prove the main theorem.
The strategy of the proof is analogous to Székelyhidi’s method in the setting of
extremal Kähler metrics [16], see also [17, Chapter 8]. To ease notation, in this

section we will often denote Ck,αδ (BlpX,EndE) simply by Ck,αδ , where as usual we
are taking δ ∈ (2− 2n, 0).

We briefly recall the setup of our problem. On π∗E → BlpX we have a family
of hermitian metrics hε and also a family of Kähler metrics ωε. On (E, h) →
(X,ω) we have a canonical connection A - the Hermitian Yang-Mills connection -
which induces a holomorphic structure on E. This induces a holomorphic structure
on π∗E, hence we obtain a Chern connection for this holomorphic structure with
respect to each hε. We will denote this connection by Aε. For each element of the
complex gauge group f ∈ Γ(GL(E)), we obtain a new connection Afε as usual by
setting

dAfε = f∗ ◦ ∂Aε ◦ (f∗)−1 + f−1 ◦ ∂̄Aε ◦ f.

As in equation (2.3), motivated by the linearisation calculation, we shall set

Hε = GC ∩ Γ (EndH(E, hε)) ,
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where EndH(E, hε) denotes the space of Hermitian endomorphisms of (E, hε). With
this notation in place, the equation we wish to solve is

iΛωεFAfε = cε · IdE ,

where cε is the only possible topological constant and f ∈ Hε.
We wish to solve the equation using the contraction mapping theorem by rephras-

ing the equation above as a fixed point problem. For this to have any hope, we
need solutions of the equation to be unique. As it stands, this is not the case: if
f ∈ GC is a solution, then so is cf , for any non-zero constant c. We avoid this issue
by modifying the equation we wish to solve. As in the previous section, pick a point
q ∈ BlpX sufficiently far away from the exceptional divisor. We shall instead try
to solve the equation

iΛωεFAfε = c0 · IdE + trq(f) · IdE ,

which has no such issue: if a solution exists, we are forcing trq(f) = m(cε − c0).
To see how we can view this equation as a fixed point problem, we expand the

operator FAfε as

iΛωεFAfε = iΛωεFAε + Lε(f) +Qε(f)

for some non-linear operator Qε(f). Here, since we are restricting to Hermitian
endomorphisms, the linearisation Lε(f) = ∆Aε,EndE

(f) is the Laplacian, by Lemma
2.1. The equation can then be viewed as

Lε(f)− trq(f) · IdE = c0 · IdE −iΛωεFAε −Qε(f).(5.1)

The left hand side of equation (5.1) is nothing but the operator L̃ε as in Section

4.3. By Theorem 4.6, this operator has an inverse L̃−1
ε and so the equation we wish

to solve is

f = Nε(f),

where

Nε : C2,α
δ (BlpX,EndH(E, hε))→ C2,α

δ (BlpX,EndH(E, hε))

is the operator

Nε(f) = L̃−1
ε (c0 · IdE −iΛωεFAε −Qε(f)) .(5.2)

We now prove a series of lemmata that will contain the key estimates for the
proof of Theorem 1.1. We start by giving an estimate on the annular region for the
connection Aε.

Lemma 5.1. With Aε as above, in the annular region B2rε \Brε there is a C > 0,
independently of ε, such that

‖Aε −A‖Ck,α2
≤ C.

Proof. To prove this estimate, we use the local formula for Aε as d+Aε, where Aε
is the matrix-valued (1, 0)-form given by

Aε = h̄−1
ε ∂

(
h̄ε
)

(5.3)

and we are thinking of hε as a matrix.
In the annulus B2rε \Brε , hε is given by

hε = γ1h+ γ2hflat.



18 RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

By [20, Lemma 5.2], we can choose a local frame for E such that h = hflat up to an

element of C2,α
2 , so we may may replace h with hflat in our estimate.

By definition γ1 + γ2 = 1, and equation (4.6) gives that ‖γi‖C2,α
0
≤ c. Thus the

multiplicative properties of the weighted norms proved in Lemma 3.1 imply that
hε also agrees with hflat up to an element of C2,α

2 , and hence so does h−1
ε . Thus we

may take h−1
ε to be the identity in the estimation of equation (5.3).

Next, by the Leibniz rule we have

∂h̄ε = γ1∂h̄+ (∂γ1)h̄+ (∂γ2)h̄flat + γ2∂h̄flat

= γ1∂h̄+ (∂γ1)h̄+ (∂γ2)h̄flat.

But γ2 = 1− γ1, so

(∂γ1)h̄+ (∂γ2)h̄flat = (∂γ1)
(
h̄− h̄flat

)
.

Again h̄ − h̄flat ∈ C2,α
2 , hence the multiplicative properties of the weighted norms

imply that

(∂γ1)h̄+ (∂γ2)h̄flat ∈ C2,α
2 .

Moreover, the norm of this element can be bounded above independently of ε,
because of the multiplicative properties and the bound on the norm of the γi in
equation (4.6). This gives the desired result. �

Next we use this to show that the approximate solution is small.

Lemma 5.2. Suppose δ ∈ (2−2n, 0). Then there are constants C, ε0 > 0 such that
for all ε ∈ (0, ε0),

‖N (IdE)‖C2,α
δ (BlpX,EndE) ≤ Cr

2−δ
ε .

Proof. The quantity we wish to estimate is

Nε(IdE) = L̃−1
ε (c0 · IdE −ΛωεFAε) ,

sinceQε(IdE) is zero. Note first that by Theorem 4.6, L̃−1
ε is bounded independently

of ε, thus it suffices to establish the bound

‖c0 · IdE −iΛωεFAε‖C0,α
δ−2
≤ Cr2−δ

ε

for some C > 0. Also, on BlpX \ π−1 (B2rε), ΛωεFAε = c0 · IdE , so we have to
prove the above bound in the region π−1(B2rε) near the exceptional divisor. We
consider the terms c0 · IdE and ΛωεFAε separately.

For c0 · IdE , we need to estimate

sup
r∈(ε,2rε)

‖(IdE)δ−2
r ‖Ck,α(B2\B1) + ‖(IdE)δ−2

ε ‖Bl0 Cn .

Remark that δ ∈ (2− 2n, 0), so in particular 2− δ > 0. As (IdE)δr = r2−δ IdE , the
supremum in the first term above is attained at the largest value of r, which is 2rε.
This gives that

sup
r∈(ε,2rε)

‖(IdE)δ−2
r ‖Ck,α(B2\B1) = c1r

2−δ
ε

for some fixed constant c1 independent of ε. Similarly,

‖(IdE)δ−2
ε ‖Bl0 Cn = ε2−δc2

for some fixed constant c2 independent of ε.
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By definition r2−δ
ε = ε2−δε(1−κ)(δ−2). Together with δ − 2 < 0 and 1 − κ > 0,

this gives that ε2−δ < r2−δ
ε , implying the required bound on IdE .

Finally, we must show that ΛεFAε satisfies the desired bound and it is here that
we apply Lemma 5.1. Noting that FAε vanishes inside π−1(Brε) and rε > ε, we
need to estimate

sup
r∈(rε,2rε)

‖(ΛωεFAε)δ−2
r ‖C0,α(B2\B1) = ‖ΛωεFAε‖C0,α

δ−2(B2rε\Brε ).

In other words, we must show there is a constant c > 0 such that

‖ΛωεFAε‖C0,α
δ−2(B2rε\Brε ) ≤ cr

2−δ
ε .(5.4)

By Lemma 5.1, the difference between the curvatures FAε and FA on the annular
region is O(|z|2), independently of ε, where as above A is the Chern connection of
the Hermitian-Einstein metric on E → X. Thus the multiplicative properties imply
that there is a constant c1 > 0 such that

‖ΛωεFAε‖C0,α
δ−2(B2rε\Brε ) ≤ c1

(
‖ΛωεFA‖C0,α

δ−2(B2rε\Brε ) + r2
εr

2−δ
ε

)
.(5.5)

The factor r2
εr

2−δ
ε being, up to a constant multiple, the norm of |z|2 in the annular

region B2rε\Brε . Since rε → 0, this factor is bounded above by r2−δ
ε . So to establish

the desired inequality, all that remains is to bound ‖ΛωεFA‖C0,α
δ−2(B2rε\Brε ).

On the annular region under consideration, setting ωε = ω + i∂∂̄φε, equation
(4.4) implies the bound ‖φε‖C4,α

δ
≤ c2r4−δ

ε for some constant c2. Therefore by [17,

Lemmata 8.13 and 8.19], the contraction operators Λωε and Λω differ by c3r
4−δ
ε in

the δ−2 weighted operator norm on B2rε \Brε . Applying this to FA and using the
multiplicative properties of the norm, we get that

‖ΛωεFA − ΛωFA‖C0,α
δ−2(B2rε\Brε ) ≤ c3r

4−δ‖FA‖C0,α
0 (B2rε\Brε )

≤ c4r4−δ
ε

for some constant c4 > 0. To establish the desired inequality (5.4), by the above
and (5.5), it suffices to show that a similar inequality holds for

‖ΛωFA‖C0,α
δ−2(B2rε\Brε ).

But since iΛωFA = c0 · IdE , this reduces to the first case treated above. This
completes the proof. �

Next we show that a small change in the connection gives a small change in the
linearised operator. For f ∈ Hε, we will let Lε,f denote the linearised operator
associated to the connection Afε instead of Aε, so that Lε,IdE = Lε. We will also

use the C2,α
δ → C0,α

δ−2-norm, which is simply the operator norm between the two
indicated weighted spaces.

Lemma 5.3. There exist c, C > 0 such that if f ∈ Hε satisfies ‖f − IdE ‖C2,α
0
≤ c,

then

‖Lε,f − Lε‖C2,α
δ →C0,α

δ−2
≤ C‖f − IdE ‖C2,α

0
.

Proof. For s ∈ C2,α
δ (EndE), by definition of the Laplacian ∆ε,EndE we need to

estimate (
∂Afε ∂̄Afε − ∂̄Afε ∂Afε − ∂Aε ∂̄Aε + ∂̄Aε∂Aε

)
(s).
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We only present the argument for(
∂Afε ∂̄Afε − ∂Aε ∂̄Aε

)
(s),

as the argument for the remaining terms is similar.

Let f̃ denote f − IdE and let v denote f−1− IdE . Recalling the definition of the
action of f on dAε in equation (2.2) and using that f∗ = f for f ∈ Hε

∂Afε = f ◦ ∂Aε ◦ f−1,

∂̄Afε = f−1 ◦ ∂̄Aε ◦ f.

Thus, noting that f−1 ◦ f−1 = (IdE +v) ◦ (IdE +v) = IdE +2v + v ◦ v, we see

∂Afε ∂̄Afε =f ◦ ∂Aε ◦ f−1 ◦ f−1 ◦ ∂̄Aε ◦ f

=f̃ ◦ ∂Aε ◦ ∂̄Aε ◦ f̃ + 2f̃ ◦ ∂Aε ◦ v ◦ ∂̄Aε ◦ f̃ + f̃ ◦ ∂Aε ◦ v ◦ v ◦ ∂̄Aε ◦ f̃

+ f̃ ◦ ∂Aε ◦ ∂̄Aε + 2f̃ ◦ ∂Aε ◦ v ◦ ∂̄Aε + f̃ ◦ ∂Aε ◦ v ◦ v ◦ ∂̄Aε
+ ∂Aε ◦ ∂̄Aε ◦ f̃ + 2∂Aε ◦ v ◦ ∂̄Aε ◦ f̃ + ∂Aε ◦ v ◦ v ◦ ∂̄Aε ◦ f̃
+ ∂Aε ◦ ∂̄Aε + 2∂Aε ◦ v ◦ ∂̄Aε + ∂Aε ◦ v ◦ v ◦ ∂̄Aε .

The important point to note is that if we choose f̃ = f − IdE sufficiently small in

the C2,α
0 -norm, then there is a C1 > 0 such that ‖v‖C2,α

0
≤ C1‖f̃‖C2,α

0
. Using the

multiplicative properties of the norm, all of the terms above except ∂Aε ◦ ∂̄Aε can
then be bounded by some constant multiple of

‖f̃‖C2,α
0
· ‖∂Aε ◦ ∂̄Aε‖C2,α

δ →C0,α
δ−2

.

But since ∂Aε ◦ ∂̄Aε is a bounded operator, by possibly increasing the constant, we

can bound this term by a constant times ‖f̃‖C2,α
0

. It follows that the same holds for

the induced connection on endomorphisms of E, and this completes the proof. �

This in turn allows us to show that the non-linear operator Nε is a contraction
with a specific constant in a ball around IdE .

Lemma 5.4. There exists a c > 0 such that if f, f ′ ∈ Hε satisfy

‖f − IdE ‖C2,α
0
, ‖f ′ − IdE ‖C2,α

0
≤ c

then

‖Nε(f)−Nε(f ′)‖C2,α
δ
≤ 1

2
‖f − f ′‖C2,α

δ
.

Proof. First note that

Nε(f)−Nε(f ′) = L̃−1
ε (Qε(f

′)−Qε(f)) .

By the boundedness of L̃−1
ε , it suffices to show that we can make the norm of

Qε(f
′)−Qε(f)

as small a multiple of ‖f − f ′‖C2,α
δ

as we like if we make f and f ′ sufficiently close

to IdE .
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The mean value theorem implies that we can find a t ∈ [0, 1] such that s =
tf + (1− t)f ′ satisfies

Qε(f
′)−Qε(f) = DQε,s(f

′)−DQε,s(f)

= DQε,s(f
′ − f)

= (Lε,s − Lε) (f ′ − f).

Here we are using the s ∈ Γ (EndH(E, hε)) so that the linearised operator really is
the Laplacian.

By Lemma 5.3, if the C2,α
0 -norms of f − IdE and f ′ − IdE are sufficently small,

we have

‖Lε,s − Lε‖C2,α
δ−2
≤ C‖s− IdE ‖C2,α

0

≤ C
(
t‖f − IdE ‖C2,α

0
+ (1− t)‖f ′ − IdE ‖C2,α

0

)
≤ C

(
‖f − IdE ‖C2,α

0
+ ‖f ′ − IdE ‖C2,α

0

)
So by possibly requiring that the C2,α

0 -norms of f − IdE and f ′ − IdE are even
smaller, we can make this constant as small as we like. This provides the required
bound for Nε, as required. �

We now have all the components required to finish off the proof of Theorem
1.1. We want to obtain a solution by applying the contraction mapping theorem,
so we need to show that there is a choice of δ such that for all ε > 0 sufficiently
small, there is a neighbourhood of IdE in C2,α

δ (BlpX,EndH(E, h)) to which the
contraction mapping theorem applies. This is the content of the Proposition below.

Proposition 5.5. Let c be the constant in Lemma 5.4. Let Vε be defined by

Vε = {s ∈ C2,α
δ (BlpX,Hε) : ‖s− IdE ‖C2,α

δ
≤ cε−δ}.

If δ ∈ (2 − 2n, 0) is chosen sufficiently close to 0, then there exists a ε0 > 0 such
that for all ε ∈ (0, ε0), the map Nε restricted to Vε is a contraction and Nε maps
Vε into Vε.

Proof. First note that as δ < 0, the relationship between the different weighted
norms in equation (3.3) implies that for s ∈ Vε,

‖s− IdE ‖C2,α
0
≤ εδ‖s− IdE ‖C2,α

δ

≤ c.
and so Lemma 5.4 applies. In particular, Nε is a contraction on Vε.

By Lemmata 5.4 and 5.2, there is a C > 0 such that

‖Nε(s)‖C2,α
δ
≤ ‖Nε(s)−Nε(IdE)‖C2,α

δ
+ ‖Nε(IdE)‖C2,α

δ

≤ 1

2
‖s− IdE ‖C2,α

δ
+ Cr2−δ

ε

≤ c

2
ε−δ + Cr2−δ

ε .

To show that Nε(s) ∈ Vε if ε is sufficiently small, it therefore suffices to establish
the bound

Cr2−δ
ε ≤ c

2
ε−δ.



22 RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

So it suffices to show that

r2−δ
ε = εδ

′
ε−δ

for some δ′ > 0, i.e. that

(2− δ)n− 1

n
> −δ.

This is equivalent to

δ > 2(1− n),

which can clearly be achieved while still having δ < 0, since n > 1. This completes
the proof. �
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