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Abstract 

Objective: ​The aim of this study was to determine whether machine           

learning could reduce the number of examinations the radiologist         

must read by using a machine learning classifier for interpreting          

negative mammograms that it is confident in, and offloading or          

deferring the uncertain predictions to a radiologist for interpretation. 

Methods: ​Mammograms were obtained from a private imaging        

dataset containing over 7,000 patients collected through six NHS         

Breast Screening Program centers throughout the UK. A convolutional         

neural network in conjunction with multi-task learning was used to          

extract imaging features from mammograms that mimic the        

radiological assessment provided by a radiologist, the patient’s        

non-imaging features and pathology outcomes. A deep neural        

network was then used to concatenate and fuse multiple         

mammogram views to predict both a diagnosis and a         

recommendation of whether or not additional radiological assessment        

was needed.  

Results: 10-fold cross-validation was used on 2000 randomly selected          

patients from the dataset; the remainder of the dataset was used for            
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convolutional neural network training. While maintaining an       

admissible NPV of 0.99, the proposed model was able to reduce 34%            

(95% confidence interval, 25-43%) and 91% (95% CI: 88% - 94%) of            

the negative mammograms from the radiologist for test sets with a           

cancer prevalence of 15% and 1%, respectively. 

Conclusion: ​Machine learning was leveraged to successfully reduce the         

number of negative mammography examinations that radiologists       

need to examine without degrading diagnostic accuracy. 

 

Introduction 

The total number of screening mammography examinations       

conducted in the US alone is nearly 40 million annually and increasing            

[1]. Moreover, as examination volumes and time of interpretation         

increase with newer screening technologies such as digital breast         

tomosynthesis (DBT), radiologists will be forced to read more patients          

in less time [2]. Since a large majority of mammograms a radiologist            

examines are negative, machine learning methods that could triage a          

subset of examinations as negative with extremely high accuracy and          

refer the rest to a breast imager could significantly reduce the daily            
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interpretive workload of radiologists, freeing up time to focus on more           

suspicious examinations and diagnostic work-ups.  

Recent advances in artificial intelligence, particularly deep learning,        

have led to significant improvements in computer-aided diagnosis        

(CAD) and decision support [3] but have not yet provided mechanisms           

for effectively reducing the number of examinations that a radiologist          

reads. The most popular CAD-based methods are centered around         

improving detection and diagnostic performance through CAD [4], but         

still require manual examination and validation by an expert         

radiologist. This comes with the overhead of additional CAD software          

interfacing for the radiologist, which has been shown to significantly          

increase the average reading time per patient [5]. 

Unlike related works using convolutional neural networks (CNNS)        

for mammography that attempt to completely automate and replace         

the radiologist [6-12], we depart from these methods by exploring a           

more conservative approach. Specifically, we explore a hybridized        

approach of mammography triage where some mammograms are        

autonomously diagnosed as being negative by a machine learning         

classifier and the remaining exams are read by a radiologist. 
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To address this, we extended and modified the implementation of          

Man and Machine Mammography Oracle (MAMMO) that was        

presented in Kyono et al. [13]. MAMMO was originally developed as a            

clinical decision support system that aimed to reduce the number of           

patients (both positive and negative) the radiologist read by relying on           

the decisions of a machine learning classifier for diagnosing         

mammograms that it was confident in, and offloading or deferring the           

uncertain decisions to a radiologist. However, in this study we          

redesigned MAMMO into a new system (Figure 1), called Autonomous          

Radiologist Assistant (AURA), which aimed to reduce the negative         

patient workload for the radiologist while sustaining a high negative          

predictive value (NPV).  

The purpose of this proof-of-concept study was to determine         

whether the AURA system could autonomously triage patients        

between a machine learning classifier and a radiologist to effectively          

reduce the number of negative mammograms that a radiologist reads          

while maintaining an admissible NPV (greater than 99%). 
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Methods 

Study Population 

The ​Tommy ​dataset was originally compiled to determine the         

efficacy and diagnostic performance of DBT in comparison to digital          

mammography and was collected through six NHS Breast Screening         

Program (NHSBSP) centers throughout the UK [14]. It is a rich and            

well-labeled dataset with over 7,000 patients (over a 1,000 malignant)          

who received diagnostic mammograms, and includes radiological       

assessments, density estimates (​µ ​= 38​.​2, ​σ ​= 20​.​7), age at           

examination (​µ ​= 56​.​5, ​σ ​= 8​.​75), and pathology outcomes from core            

biopsy or surgical excision. The ​Tommy ​dataset does not include          

ethnicity or socioeconomic breakdown, and was therefore not        

factored in this study. 

Although not all patients in the ​Tommy ​dataset underwent biopsy          

or had a later follow up examination, each patient underwent expert           

radiologist interpretation of both DBT and mammography modalities        

that significantly reduced the likelihood of false negative readings by          
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as much as 15-30% [14]. Patient distributions for age, breast density,           

and dominant radiological features are shown in Table 1.  

The ​Tommy ​dataset was designed to challenge the radiologist with          

overlapping breast tissue cases. The patient criteria for selection were          

one of the following: 1) women recalled after routine breast screening           

between the ages of 47 and 73, or 2) women with a family history of               

breast cancer attending annual screening between ages of 40 and 49.           

Mammograms were read by over thirty radiologists with at least 2           

years of experience reading 5000 mammograms or more per year. 

 

Multi-task feature extraction 

The ability for CNNs to learn complex spatial relationships and          

learn subtle and intricate pixel-based patterns make them a perfect          

tool for learning from radiological images [15]. The first step involved           

training a CNN using multi-task learning (MTL) to predict both the           

diagnosis and radiological assessments given a single mammogram        

image. Syeda-Mahmood [16] demonstrated the importance of       

incorporating clinical knowledge with medical imaging to improve        

clinical inference. Motivated by this, MTL was used to predict the           

radiological assessments for each mammogram to learn refined        
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feature representations and improve classification performance of the        

primary task, diagnosis, by obligating the CNN to learn the radiological           

assessment known to be associated with cancer. There were five          

other auxiliary tasks, which are shown as the outputs of Step 1 (Figure             

1) and include the mammographic sign (e.g. circumscribed mass,         

spiculated mass, asymmetrical density, etc.), mammographic suspicion       

(similar to BI-RADS), mammographic conspicuity (either not visible,        

barely visible, not clear, or clearly visible), estimated breast density          

from a 10-cm VAS (visual analogue scale), and patient age at reading.            

Both breast density and patient age were included as auxiliary tasks           

because of their known associations with breast cancer [17, 18].          

Training details regarding CNN architecture, hyperparameters, and       

image preprocessing were implemented from Kyono et al. [13]. 

 

Autonomous diagnosis 

The second step of AURA involved autonomous diagnosis of a          

patient by considering all four mammogram views, rather than one          

view as done in Step 1. This was done by training a classifier that takes               

as input the CNN predicted multi-task outputs (MTO) for each of a            
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patient’s mammogram views and their non-imaging features to issue a          

patient-level diagnosis. We chose to combine multiple mammogram        

views by concatenating over the CNN predicted MTO, rather than the           

penultimate dense layers as done by Carnerio et al. and Geras et al.             

[8,19]. This provided a couple noteworthy advantages. First, the MTO          

were extracted imaging features that emulated the radiological        

assessment and are what the radiologist would naturally consider         

when reading multiple mammogram views, such as asymmetries in         

breast density between left and right mammogram views [20].         

Second, by pre-training our CNN in the first training phase, the MTO            

served as a refined feature space for combining mammogram views          

that improves performance in limited data scenarios commonly        

encountered in the medical imaging domain. 

 

Autonomous assessment 

The objective of Step 3 was to determine whether the diagnostic           

prediction made in Step 2 could be trusted, while also considering the            

patient’s non-imaging features, such as age, and the radiological         

predictions of the CNN from Step 1. The primary design goal of AURA             

was to reduce the number of negative mammograms the radiologist          
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interprets by offloading examinations to a machine learning classifier         

(Step 2) while preserving a desirable NPV (greater than 99%). It is            

important to note that the NPV of AURA is representative over the            

collaborative system comprised of AURA autonomously diagnosing       

some partition of the cases and the radiologist diagnosing the rest. A            

loss function presented in Kyono et al. [13] was used to satisfy this             

constrained optimization that takes into consideration the       

performance of the radiologist. The uncertainty of decisions was         

calculated using dropout and test-time augmentation [21, 22].        

Dropout was performed at a rate of 0.4 per dense layer and test-time             

augmentation was performed at 50 random samples per patient. 

 

Validation of Performance 

To evaluate the performance of AURA for ​patient triage​,         

experiments were conducted on the ​Tommy ​dataset. 10-fold        

cross-validation was performed on 2000 randomly selected patients        

from the ​Tommy ​dataset and the remainder was used for CNN           

training. Specifically, the dataset was split into 10 even groups (folds),           

with each model tested on one fold, validated on another, and trained            
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on the remaining folds. This was repeated 10 times over each unique            

test set to provide a more stable and bias free model estimate. In             

deep learning, a validation set is used for determining model fitness           

and to find a stopping point for model training, while a test set is              

reserved for evaluating model performance.  

To ensure the 2,000 patient subset was a proportional subset of           

the entire dataset, we maintained the dataset’s 15% malignancy rate          

through the test set as well, by randomly sampling 300 malignant           

patients and 1700 normal patients from the entire dataset. Each of           

the cross-validation folds maintained the same 15% cancer prevalence         

as well.  

To demonstrate the impact of cancer prevalence on the outcome          

of patient triage by AURA, AURA was applied on reduced cancer           

prevalence subsets, where cancer patients were randomly removed        

from each cross-validation test set to obtain the desired prevalence,          

specifically 1% and 5%.  

Models were saved and evaluated at the point with the highest           

area under the receiver operating characteristic curve (AUROC). The         

performance of AURA ​patient triage ​was evaluated by investigating         

the number of patients that AURA deferred to the radiologist while           
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still satisfying an admissible NPV (greater than 99%). Additionally, to          

better understand the patient distributions that AURA successfully        

diagnosed, an evaluation of patient triage by attributes, such as breast           

density or age, was investigated. The odds ratio for each patient           

demographic examined was calculated using logistic regression       

analysis to identify the likelihood of AURA correctly identifying         

negative cases. 

 

 

Results 

For mammograms to autonomously bypass radiologist viewing,       

AURA must perform at some minimum NPV. In clinical practice, a           

desirable NPV is greater than 99%. Figure 2 shows various desired           

NPV operating points with the respective maximum number of         

patients that AURA was able to filter from the radiologist while           

maintaining the desired NPV (​x​-axis) for three stratifications of cancer          

prevalence (15%, 5%, and 1%). It is important to note that the            

reported NPV of the AURA system is comprised of both the AURA            

machine learning classifier and a radiologist.  
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At a cancer prevalence of 15%, AURA is expected to correctly           

diagnose approximately 34% (95% CI: 25% - 43%) of the patients while            

maintaining a NPV of at least 99%. The number of patients AURA            

filters are significantly improved when considering a cancer        

prevalence closer to screening distributions such as the 1% prevalence          

(Figure 2), where nearly 91% (95% CI: 88% - 94%) of the patients are              

screened from the radiologist. In summary, the data in Figure 2 shows            

that the number of patients that AURA filters is increased by either            

lowering the NPV threshold or by a decrease in cancer prevalence.           

Since the NPV threshold is likely not to change, this suggests that            

AURA should be favored in populations with lower cancer prevalence,          

i.e., screening populations. 

AURA had a higher odds ratio of negative classification and NPV for            

patients that had attributes associated with lower likelihoods (or         

suspicion) of cancer, i.e., patients with lower breast density, patients          

with low visual conspicuity in their mammograms (suspicious regions         

are not clearly defined), patients with no suspicious imaging features          

in their mammograms, patients recalled by assessment (rather than         

family history), and younger patients (Table 2).  
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Similar to the odds ratio and NPV results, when investigating the           

patient populations that AURA filtered (and was confident in         

diagnosing) from the radiologist (Table 2), it was discovered to          

correlate with the same attributes associated with lower likelihoods of          

cancer, except for breast density. AURA chose to autonomously         

diagnose a higher percentage of patients with breast densities in the           

25% to 50% range. This is justified by a lower cancer prevalence and a              

higher demographic of these cases existing in the dataset population          

(Table 1). The latter would result in more samples available for           

training and improving the AURA classifier. 

 

Discussion 

In this work, we showed the potential for improving the radiologist           

workflow using machine learning that is currently not explored in the           

current literature and practice. We presented the AURA system on a           

private mammography dataset and demonstrated that the AURA        

system could autonomously triage patients between a machine        

learning classifier and a radiologist to effectively reduce the number of           

negative mammograms that a radiologist reads while maintaining an         
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admissible NPV (above 99%). It was discovered that AURA filtered          

patients from the radiologist with attributes known to be associated          

with lower likelihoods of cancer, such as younger age, lower breast           

density, etc. (Table 2). 

As far as we know, this is the first study investigating machine            

learning methods for reducing the number of negative mammograms         

a radiologist needs to read without replacing the radiologist entirely.          

In terms of neural network architecture, the closest work to ours is            

the prior study by Kooi and Karssemeijer [9], which investigated the           

impact of dataset and image size on predicting BI-RADS. 

AURA may provide several benefits for radiologists. First, we found          

that AURA was capable of significantly decreasing the workload for          

the radiologist by 34% (95% CI: 25-43%), in a diagnostic setting (15%            

cancer prevalence) and by nearly 91% (95% CI: 88% - 94%) for a             

screening-like setting (1% prevalence). Although the ​Tommy ​dataset is         

comprised of diagnostic mammography and a direct comparison        

cannot be drawn to screening mammography directly, the 1% cancer          

prevalence results show significant promise for applications to        

screening mammography. Second, AURA filters the patients with        

lower likelihoods of cancer from the radiologist, leaving them with          
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more time to focus on the difficult cases that AURA is uncertain about.             

This additional time will allow for better scrutinization of the difficult           

cases, and may reduce the likelihood of misdiagnoses [23]. Lastly,          

AURA provides a palatable solution for incorporating artificial        

intelligence into radiology that does not completely remove the         

clinician from a radiological workflow and strives to do so for only            

particular examinations. 

The current study has several limitations. First, AURA experiments         

were conducted on a mammography dataset originally collected for a          

reader study comparing DBT and digital mammography performance        

and is comprised of a high concentration of patients with overlapping           

breast tissue. Because of this, it is expected that AURA performance           

would improve significantly if performed on a screening population.         

Second, AURA would have benefited from increased image quantity         

and size (for CNN training), which has been demonstrated by Kooi and            

Karssemeijer [9] to improve classification performance in deep        

learning for mammography.  

Lastly, our dataset did not contain annotated regions of interest          

(ROI), and was therefore not leveraged in AURA’s training regime and           

architecture. ROI-based machine learning methods have been shown        
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to improve performance on mammograms on several small datasets         

[6-12, 24-30], and would be expected to improve classification         

performance of AURA as well.  

In addition to validation on larger, population-based imaging        

datasets, future research directions include investigating AURA’s       

potential for patient triage based on differing levels of suspicion for           

cancer. Such a triage system would allow examinations that are most           

likely to have cancer to be interpreted earlier by the radiologist and            

expedite faster recall and diagnostic evaluation [31]. Similarly,        

patients with a higher likelihood of cancer could be seen earlier in the             

day when the radiologist is more alert, thus mitigating misdiagnoses          

associated with fatigue [23]. Lastly, due to the visual similarity          

between DBT images and mammograms, AURA can easily be extended          

and tested on DBT.  

In conclusion, our study demonstrates a proof-of-concept for        

machine learning to be used for improving breast imaging workflow          

for mammogram interpretation. AURA opens the door for realistic         

synergistic relationships between radiologist and machine with       

benefits that surpass those reported in the existing literature, and          
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provides methods for artificial intelligence integration that can be         

integrated into clinical practice in the near term. 
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Figure Legends 

 

 

Fig 1. AURA system level illustration. In Step 1, all four of a patient’s              

mammograms were passed to a multi-task feature extractor, i.e., a          

convolutional neural network (CNN) trained using multi-task learning        

(MTL) to emulate the mammographic predictions of a radiologist. In          

Step 2, the MTL predictions extracted from the individual         

mammograms were fused by a deep neural network to provide a           

multi-view diagnosis on the basis of both a patient’s imaging and           

non-imaging features. Lastly, AURA considered the radiological       

predicted features (CNN multi-task outputs from Step 1), the         

multi-view cancer prediction (from Step 2), and the patient’s         
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non-imaging features to issue a recommendation for ​patient triage ​to          

determine which patients could be autonomously diagnosed. 

 

 

Fig 2.  Percentage of patients that AURA filters from the radiologist 

across various NPV thresholds, as well as various cancer prevalence 

rates.    10-fold cross validation was used and 95% confidence intervals 

are shown. 

 

 

 

Table 1: ​Tommy ​dataset patient distributions for breast density, age,          

mammographic signs, and mammographic conspicuity. 

 

Attribute Value Benign Malignant Prevalence 
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All Patients   6164 1299 17.41% 

Breast 
Density 

(along 10cm 
VAS) 

0%- 25% 1789 454 20.24% 

25%- 50% 2942 554 15.85% 

50%- 75% 1075 231 17.69% 

75%- 100% 358 60 14.35% 

Age 

Under 50 
years 625 51 7.54% 

50-60 years 3963 571 12.59% 
Over 60 
years 1576 677 30.05% 

Mammograp
hic Signs 

No sign of 
cancer 2688 76 2.75% 
Circumscribe
d mass 1469 119 7.49% 
Spiculated 
mass 62 434 87.50% 
Microcalcific
ation 859 319 27.08% 

Distortion 144 145 50.17% 
Assymetrical 
Distortion 87 195 18.22% 

Mammograp
hic 

Conspicuity 

None visible 2036 61 2.91% 

Barely visible 255 59 18.79% 
Visible, but 
not clear 1097 288 20.79% 
Clearly 
visible 2037 871 29.95% 

Case Type 
Assessment 4920 1201 19.62% 
Family 
History 1382 98 6.62% 

 

 

Table 2: AURA Performance at the highest (15%) cancer prevalence.          

The odds ratio of receiving a negative diagnosis was calculated using           

logistic regression analysis. The AURA NPV was calculated as the joint           

NPV of the radiologist and the AURA classifier, where the average           

percentage filtered represents the number of patients that the AURA          
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classifier autonomously diagnosed (the rest received a diagnosis from         

a radiologist).  Each value is shown with a 95% confidence interval. 

 

Attribute Value Odds Ratio AURA NPV 
Avg. % 
Filtered 

Breast 
Density 

(along 10cm 
VAS) 

0%- 25% 
159.21 ± 

65.14 
99.74% ± 

0.15 
31.83% ± 

7.51 

25%- 50% 
91.00  ± 

35.28 
99.59% ± 

0.22 
35.59% ± 

6.16 

50%- 75% 
58.36  ± 

30.95 
99.02% ± 

0.28 
32.09% ± 

8.28 

75%- 100% 
28.85  ± 

21.16 
98.18% ± 

0.33 
29.88% ± 

9.39 

Age 

Under 50 
years 

83.50 ± 
23.13 

99.94% ± 
0.04 

41.82% ± 
11.48 

50-60 years 69.84 ±  6.15 
99.10% ± 

0.40 
36.14% ± 

6.03 
Over 60 
years 11.37 ±  0.68 

92.02% ± 
2.92 

21.93% ± 
5.68 

Mammograp
hic Signs 

None visible 68.10 ±  8.82 
99.85% ± 

0.11 
42.69% ± 

8.11 
Circum. 
mass 40.79 ±  5.56 

98.53% ± 
0.69 

37.11% ± 
8.40 

Spic. mass 0.64 ±  0.05 
34.29% ± 

9.04 
3.80%  ± 

2.04 

Microcalc. 7.07 ±  0.102 
88.23% ± 

3.82 
28.03% ± 

9.24 

Distortion 1.02 ±  0.09 
49.77% ± 

8.22 
11.84% ± 

8.47 
Assym. 
Distortion 

65.88 ± 
13.07 

99.25% ± 
0.26 

29.33% ± 
10.84 

Mammograp
hic 

Conspicuity 

None visible 
189.63 ± 

43.52 
99.93% ± 

0.03 
39.77% ± 

10.76 

Barely visible 
103.67 ± 

50.31 
99.04% ± 

0.19 
32.64% ± 

9.35 
Visible, not 
clear 54.40 ±  8.33 

98.21% ± 
0.45 

28.53% ± 
8.45 

Clearly 
visible 57.16 ±  5.93 

98.36% ± 
0.51 

27.55% ± 
9.09 
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Case Type 
Assessment 0.94 ±  0.02 

48.23% ± 
6.37 

25.20% ± 
4.12 

Family 
History 

138.30 ± 
33.31 

99.42% ± 
0.03 

39.94% ± 
11.70 

 

29 


