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Earth’s surface topography is a direct physical expression of our planet’s dynamics. Most is isostatic,1

controlled by thickness and density variations within the crust and lithosphere, but a significant pro-2

portion arises from forces exerted by underlying mantle convection. This dynamic topography directly3

connects the evolution of surface environments to Earth’s deep interior, but predictions from mantle4

flow simulations are often inconsistent with inferences from the geological record, with little consensus5

about its spatial pattern, wavelength and amplitude. Here, we demonstrate that previous comparisons6

between predictive models and observational constraints have been biased by subjective choices. Us-7

ing measurements of residual topography beneath the oceans, and a hierarchical Bayesian approach to8

performing spherical harmonic analyses, we generate a robust estimate of Earth’s oceanic residual topog-9

raphy power spectrum. This indicates power of 0.5± 0.35 km2 and peak amplitudes of ∼0.8± 0.1 km at10

long-wavelength (∼104 km), decreasing by roughly one order of magnitude at shorter wavelengths (∼103
11

km). We show that geodynamical simulations can only be reconciled with observational constraints if12

they incorporate lithospheric structure and its impact on mantle flow. This demonstrates that both deep13

(long-) and shallow (shorter-wavelength) processes are crucial, and implies that dynamic topography is14

intimately connected to the structure and evolution of Earth’s lithosphere.15

Between Earth’s crust and core lies the mantle, a 2,900 km-thick layer of hot rock that constitutes greater than16

80% of Earth’s volume. Carrying heat to the surface, the convecting mantle is the ‘engine’ that drives our dynamic17

planet: it is directly or indirectly responsible for almost all large-scale tectonic and geological activity [1]. As the18

mantle flows, it transmits normal stresses to the lithosphere — Earth’s rigid outermost shell — that are balanced by19

gravitational stresses arising through topographic deflections of Earth’s surface [2, 3, 4, 5, 6, 7, 8, 9]. This so-called20

dynamic topography is transient, varying both spatially and temporally in response to underlying mantle flow. As a21

result, it is more challenging to isolate than isostatic topography. The relative importance of dynamic versus isostatic22

topography varies according to setting: for example, the elevation of the Himalaya is principally isostatic, due to the23

presence of Earth’s thickest continental crust; but the broad excess elevation of the stable South African craton has been24
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attributed to dynamic topography, generated by mantle upwelling [10]. Dynamic topography is fundamental to Earth’s25

gravitational field [5, 11] and also influences surface processes — including erosion, sediment transport and deposition26

— as recorded by stratigraphic sequences in sedimentary basins and river profiles [12, 13, 14, 15, 16, 17, 18]. It is27

directly connected to changes in sea level and continental flooding: as continents migrate over areas of positive dynamic28

topography, large vertical motions lead to the emergence of entire regions; similarly, encountering negative dynamic29

topography can induce rapid inundation of large areas [19, 20, 21, 22, 23]. Surface processes may also influence mantle30

flow: as the topography evolves, the convecting system must respond to maintain a force-balance [24].31

Given the importance of dynamic topography, a number of attempts have been made to constrain its spatial pattern,32

wavelength and amplitude. There are generally two ways to approach this: (i) estimation of so-called residual topography,33

by removal of the isostatic contribution due to sediments, ice, crust and lithosphere from the observed topography [25, 26,34

27, 28, 9]; or (ii) estimation of the surface deflections arising from mantle flow, via computational simulation (‘predictive35

modelling’) [29, 30, 31, 8, 32, 33, 34]. However, the results obtained using these two approaches are inconsistent.36

Predictive models generally exhibit peak amplitudes of 1–2 km. They are dominated by broad topographic highs37

within the Pacific and African domains, separated by a band of topographic lows extending from Antarctica, through38

the Americas to the Arctic and broadening beneath the Eurasian continent (an example, from [8], is illustrated in39

Fig. 1a). Residual topography estimates, on the other hand, show smaller-scale structure, with key features including40

lows at the Australian-Antarctic Discordance (AAD) and Argentine Basin, and highs under the central and western41

Pacific Ocean, offshore southern Africa, the South China Sea and the North Atlantic (an example, from [9], is displayed42

in Fig. 1b). The discrepancies between these two approaches are consistently seen across a number of independent43

studies [8, 35] and may arise from a combination of uncertainty on key parameters and approximations made within the44

analyses, many of which are common across studies. For example, most existing predictive models do not account for45

the effects of uppermost mantle structure above 225–300 km depth, owing to the difficulties associated with inferring46

density from seismic velocity in the vicinity of Earth’s highly heterogeneous lithosphere. Furthermore, mantle viscosity47

and its depth-dependence are a key material property in mantle flow simulations, but estimates vary by at least an48

order of magnitude. Residual topography estimates also have large uncertainties, principally because the density and49

thickness of Earth’s crust and sedimentary cover, and especially lithospheric thickness variations, are all poorly resolved50

on a global scale [8, 36, 28, 35]. It should also be noted that residual topography estimates cannot often be directly51

compared to dynamic topography predictions, as the former regularly include unresolved isostatic contributions arising52

from lithospheric thickness variations, whereas the latter do not.53

In an attempt to better constrain residual topography, Hoggard et al. (2016) [9] compiled a database of point-wise54

estimates within the oceanic realm. At each point, care was taken to remove the isostatic consequences of variable55

sedimentary loading and crustal thickness from the observed topography, based upon analyses of magnetic anomaly56

patterns and characteristic acoustic architecture in seismic reflection and refraction profiles. Residual depth anomalies57

were subsequently calculated by removing the effects of ocean-floor cooling, using an empirical model [37] (although58
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isostatic contributions, arising from variations in lithospheric thickness and density unrelated to ocean-floor age, were not59

removed). To generate a global spherical harmonic decomposition of residual topography, these point-wise constraints60

were supplemented in the oceans by residual depth measurements from ship-track bathymetry, and on continents by61

a model that transformed free-air gravity anomalies to residual topography assuming a constant value for admittance.62

This database, illustrated in Supplementary Fig. 1, was then used to express Earth’s residual topography in terms of63

spherical harmonic functions, using a regularised least-squares inversion algorithm. This allowed the power spectrum of64

residual topography to be obtained, as illustrated in Fig. 1(e – dotted line). Hoggard et al. (2016) [9] concluded that65

their dataset could be accurately represented up to and including a maximum spherical harmonic degree of l = 30, with66

peak power of 0.1 – 0.3 km2 at l =1 – 3 (i.e. at wavelengths of ∼ 10, 000 km) along with significant residual topography, of67

comparable power, at l =15 – 30 (i.e. at shorter wavelengths of 1,000 – 2,000 km). In light of the sensitivity kernels that68

illustrate how effective density anomalies at different depths and spherical harmonic degree are at creating topography69

[38, 4, 5, 11, 39, 9], such a spectrum implies a major role for shallow mantle structure and flow. This is inconsistent70

with most predictive models, which exhibit significant power at l = 2 and negligible power at shorter wavelengths —71

characteristics that, instead, suggest deep mantle flow as the dominant driver for Earth’s surface response [8, 9].72

These conclusions have been heavily debated. A number of studies indicate that admittance varies with wavelength73

and location, with potential for large dynamic topography in the absence of free-air gravity anomalies [38, 11, 32]. This74

invalidates the continental constraints used by [9], and calls the robustness of their results into question. Nonetheless,75

if one generates a power spectrum using oceanic residual topography measurements only, or uses a model derived from76

CRUST 1.0 [40] on continents, the general character of the power spectrum remains consistent [9]. This is also the77

case using an updated compilation of oceanic (point-wise and ship-track) residual topography measurements, generated78

herein by building on [41] (see Supplementary Information), where the effects of ocean-floor cooling are removed using79

a theoretical plate model rather than an empirical model: the spectrum remains reasonably ‘flat’ (Fig. 1e – solid black80

line). Taken together, these analyses lend continued support to the conclusions of [9].81

In further support of Hoggard et al. (2016) [9], [45] analysed the asymmetric subsidence of mid-ocean ridges, finding82

only ∼ 500 m of long-wavelength dynamic topography. Moreover, recently developed models of mantle dynamics, which83

account for shallow lithospheric structure and small-scale upper mantle convection, display significant power at shorter84

wavelengths (l = 15 − 30) [39, 46], as expected from the aforementioned sensitivity kernels [38, 5, 11, 39, 9]. These85

models, however, continue to generate long-wavelength residual topography that remains at apparent odds with the86

observational constraints, displaying significantly more power at l ≤ 2 [39, 47]. This is also true of a recent model by87

Yang & Gurnis (2016) [32], although they proposed that at least part of the long-wavelength discrepancy arises due to the88

sparse nature of the observational constraints [41]. Their study also demonstrates that the conclusions of [9] are sensitive89

to regularisation choices [44] and suggests that the maximum degree to which a spherical harmonic representation can90

be inferred from the point-wise residual topography measurements is l = 5 [32]. We note that these claims have91

since been refuted [41] and emphasise that the analyses of [9, 41] and [32, 44] are not directly comparable: power92
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Figure 1: Predicted versus inferred topography: (a) simulated present-day dynamic topography from a time-dependent mantle flow
simulation [8]; (b) inferred residual topography from observational constraints [9]; (c)/(d) simulated topography from our instantaneous-flow
models, neglecting (c) and incorporating (d) shallow mantle and lithospheric structure, respectively; (e) spectral decomposition of published
predictive models [29, 30, 31, 42, 8] and observation-based residual topography estimates [9, 41]. Note that predictive models cover Earth’s
surface at high-resolution and have not been regularised, but residual topography estimates have, using an automatic regularisation parameter
selection algorithm [43]; (f) unregularised spectral decomposition of our simulations – spectra computed from the predictive models are not
directly comparable with the observational constraints, since they omit effects introduced by irregular sampling and processing choices [44].
Comparisons that account for these effects are displayed in Fig. 2.

spectra are normalised and scaled differently between studies, and different regularisation approaches are employed; it93

is therefore not surprising that different conclusions are being drawn. Consequently, we find ourselves at an impasse,94

with little agreement on: (i) the spatial pattern, wavelength and amplitude of dynamic topography; and (ii) the relative95

contributions to dynamic topography from shallow and deep mantle flow.96

4



In this paper, we employ a new approach to performing spherical harmonic analyses [43], designed to be less dependent97

on the subjective regularisation choices that have influenced previous studies [9, 41, 32, 44]. This allows us to obtain a98

robust estimate of the power spectrum of Earth’s oceanic residual topography field from an updated compilation of the99

(point-wise and ship-track) dataset of [41]. Through consistent quantitative comparisons between this spectrum and a100

suite of predictive models of mantle dynamics, we reveal how both deep and shallow mantle flow combine to dictate101

Earth’s oceanic residual topography expression. Finally, using these models as a basis, we isolate the flow-related (truly102

dynamic) contribution towards Earth’s residual topography, by estimating the isostatic effects of mapped lithospheric103

thickness variations beneath the world’s oceans.104

The Power Spectrum of Residual Topography105

Our procedure for inferring the power spectrum of topography, closely following that of [9], is described in the Methods.106

It involves a regularised least-squares inversion of observational constraints to fit a spherical-harmonic expansion to the107

topographic signal. As with any such approach, the choice of regularisation can have a significant influence on results.108

To guide such choices, it is helpful to note that the least-squares procedure has a Bayesian interpretation, in which the109

regularisation operator is identified as the covariance matrix of the prior distribution [48, 43]. Thus, the regularisation110

operator encodes our assumptions in the absence of any data, and plays a key role in determining the character of any111

solution. In [9], the regularisation operator was constructed to prefer low-amplitude, smooth solutions. We remark112

that ‘smooth’ can be defined in different ways; [9] chose to penalise both the first derivative of the recovered field and113

the total power contained within it (i.e. the sum of squares of model coefficients). The relative weights assigned to114

each penalty term in this Tikhonov-style regularisation were governed by two tuneable parameters, which we denote115

by α (overall power term) and β (gradient term), as detailed in the Methods. Although [9] did not adopt an explicitly116

Bayesian approach, it is instructive to do so, and generate samples from the prior distribution associated with this117

regularisation. In Supplementary Fig. 2, we show the range of power spectra associated with 106 samples, for different α118

and β pairs: regardless of the values adopted, it is clear that this form of regularisation expresses an a priori preference119

for a relatively ‘flat’ spectrum. The consequences of this are explored via a series of inversions of synthetic datasets and120

observational constraints in the Supplementary Information, with key results illustrated in Supplementary Figs. 3 and121

4. In short, these tests demonstrate that conclusions are predicated upon the assumptions implicit within the form of122

regularisation operator, making it difficult to assess whether the power spectrum of [9] reflects signal in the data, or123

simply the initial biases, as suggested by [44].124

To address this issue, we perform the inversion procedure using a different style of regularisation, which we refer to125

as ‘Automatic Relevance Determination’ (ARD) [43, 49]. This amounts to introducing one regularisation parameter for126

each spherical harmonic degree, and then tuning these to match the statistics of the data (see Methods). By doing so,127

we avoid imposing any constraints upon the expected form of the power spectrum, and allow the data to provide its128
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Figure 2: Power spectra obtained from simulated datasets and observational constraints using inversions regularised with
Automatic Relevance Determination [43, 49]: solid lines denote results from (simulated) datasets with complete, high-density global
coverage; dashed lines represent the mean results obtained using data only at the spot and ship-track locations of observational constraints,
whilst shaded regions represent 50% and 99% confidence intervals around this mean (see Methods). Red colours denote inversions of a
simulated dataset with no shallow structure (Fig. 1c); blue colours depict a simulated dataset with shallow structure present (Fig. 1d);
grey colours represent results obtained from the observational constraints. Each dataset has been independently regularised. We see that
simulations without shallow structure do not contain evidence for significant power above l = 8, whereas the observational constraints require
these shorter-wavelength features. Although the observational constraints have significantly less power at l = 1, and slightly less power
throughout the remainder of the spectrum, they are broadly compatible with our simulation that contains shallow structure.

own definition of ‘smooth’. In Fig. 2, we show results from applying this procedure to the oceanic residual topography129

dataset, with maps of the resulting spherical harmonic model shown in Supplementary Fig. 5. Our analyses: (i) express130

a preference for 0.5 km2 of residual topography power at long-wavelength (l = 2), likely in the range of 0.25 – 0.85 km2,131

with peak amplitudes of 0.8 ± 0.1 km — larger than suggested by [9], smaller than predicted by [32, 44], but within error132

of analyses by [45]; (ii) demonstrate that spectral power decreases by an order of magnitude from l = 2 to l = 30; and133

(iii) support the presence of a low amplitude short-wavelength (l = 15− 30) residual topography component, consistent134

with [9, 41].135

Geodynamical Model Comparisons136

To quantify the relative contributions to our revised power spectrum from shallow and deep mantle flow, we also apply137

the ARD procedure to two end-member geodynamical simulations (see Methods for further details, including model138
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limitations): (i) a simulation that neglects density and thermal heterogeneity in the uppermost 300 km of the mantle,139

with viscosity dependent upon depth only, allowing us to quantify the first-order topographic expression of deeper mantle140

flow (Fig. 1c); and (ii) a simulation constrained by an estimate of lithospheric thickness (Supplementary Fig. 6), which141

allows for the inclusion of shallow density heterogeneity and thermal structure, with viscosity dependent on both depth142

and temperature, thereby accounting for shallow mantle flow and its interaction with the lithosphere (Fig. 1d). The143

predicted topography from the first simulation shares many characteristics with published studies [30, 31, 42, 8, 33],144

displaying long-wavelength topographic highs within the Pacific domain, Southern and Eastern Africa and the North145

Atlantic, with lows extending across Central and South America, Europe, North West Africa and Asia. Spectral power146

displays a clear peak at l = 2, with a rapid drop off at higher l (Fig. 1f). Predictions from the second simulation,147

where the effect of ocean-floor cooling is removed using the plate model of [41], closely resemble those of [39], with148

shorter-wavelength topographic features clearly visible. The Pacific domain, however, is generally associated with a149

topographic high, albeit with a broad low off the west coast of South America and more localised lows in the northeast150

Pacific. Large topographic highs are also visible in the western US, western Antarctica, East Africa, the South China151

Sea, eastern Asia and adjacent to Iceland, with major lows focused along the AAD, the South Atlantic, the southern152

Indian Ocean and southeast of Arabia. Spectral power also peaks at l = 2 (Fig. 1f), but it does not drop off significantly153

at higher l and, in general character, is more consistent with the oceanic residual topography spectrum, albeit displaying154

larger amplitudes as identified by [39]. Both simulations predict more power than the observational constraints at l ≤ 2,155

with this discrepancy largest in the model incorporating shallow structure.156

These predictive models are next sampled at the locations of point-wise and ship-track oceanic residual topography157

estimates, thus enabling fully-consistent comparisons with the observational constraints, whilst the ARD procedure is158

performed independently for each inversion. Strikingly, the simulated dataset without shallow structure shows a sharp159

drop-off beyond l = 8 (Fig. 2): the topographic signal lies below the assumed noise level in the data and, accordingly,160

the ARD procedure determines that higher spherical harmonic degrees can be set to zero without affecting data fit. This161

is in partial support of arguments made by [32, 44], although it is noteworthy that this does not occur when applied to162

the observational constraints, demonstrating the robustness of the inferred short-wavelength residual topography signal.163

The overall characteristics of the residual topography constraints are generally consistent with the simulation incor-164

porating shallow structure. In comparison to the simulation, the observational dataset displays significantly less power165

at l = 1 (an offset of ∼ 0.6 km2), and slightly less power throughout the remainder of the spectrum, but the overall166

trend is well-matched, with the range of plausible models often overlapping (beyond l = 1, the offset is consistently167

below 0.12 km2). When combined, these comparisons demonstrate that: (i) the l = 2 component of residual topography168

is compatible with the l = 2 component of our predictive models, implying a key role for deep-mantle flow in dictating169

Earth’s topographic signature, consistent with [32, 44]; and (ii) although spectral power does decrease by an order of170

magnitude from l = 2 to l = 30, the short-wavelength components are a direct manifestation of lithospheric structure171

and uppermost mantle dynamics, supporting the conclusions of [9]. We therefore return to the standpoint that the172
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long-wavelength components of residual topography, which are principally controlled by deep-mantle flow, dominate173

the spherical harmonic power spectrum. The shorter-wavelength components, dictated by lithospheric structure and174

uppermost mantle flow, are robust, albeit less significant, in terms of spectral power [38, 5]. Critically, the observational175

constraints support a crucial role for both deep and shallow mantle flow in dictating Earth’s surface response.176

Isolating the Flow-Related Component of Residual Topography177

The observational constraints on residual topography utilised here are not solely a consequence of underlying mantle178

flow (i.e. they are not fully dynamic in origin). As stated previously, to account for the effects of ocean-floor cooling179

with age, an age-dependent theoretical plate model has been subtracted from the isostatically (crustal and sediment)180

corrected topography [41]. The same procedure was applied to our simulation that incorporates shallow structure, to181

generate a consistent synthetic estimate of residual topography and, thus, enable direct comparison with the observational182

constraints. However, by doing so, we are assuming that, in the oceans, lithospheric thickness (and density) varies as a183

function of ocean-floor-age only and, hence, are ignoring local deviations about this average behaviour that are apparent184

in Supplementary Fig. 6. Accordingly, the effect of anomalous, non-age-dependent lithospheric thickness variations are185

incorporated into the residual topography estimates. Such variability is likely isostatic in nature [46, 35] and not a direct186

manifestation of present-day mantle flow. Indeed, as stated by [41], observational constraints on residual topography187

represent an upper-bound on the flow-related dynamic topography component.188

Given that our synthetic residual topography field is generally consistent with Earth’s residual topography expression189

(correlation = 0.4), it is of interest to isolate the dynamic (flow-related) component in our simulation, in an attempt190

to better understand this partitioning on Earth. We do so using a simple approach, which assumes that lithospheric191

thickness variations are thermal in origin (poorly constrained compositional variations are neglected) and have an192

isostatic contribution that can be subtracted out (see Methods). Our approximation of the resulting dynamic topography193

field is illustrated in Supplementary Fig. 7: this displays clear differences to the model that omits shallow structure (cf.194

Fig. 1c). These differences are confirmed by an ARD-based inversion (solely within the oceanic realm at the locations195

of spot and ship-track measurements): the general character of the resulting dynamic topography power spectrum is196

broadly consistent with the residual topography spectrum, but distinct from the spectrum of the model neglecting197

shallow structure (Fig. 3a). This indicates that the interplay between upper mantle flow and the base of Earth’s198

heterogeneous lithosphere plays a crucial role in generating dynamic topography and in controlling the character of the199

power spectrum.200

Closer examination of these spectra reveals another important trend (Fig. 3b): within the oceanic realm, at l = 2,201

greater than 80% of the synthetic residual topography signal is related to mantle flow, as opposed to mapped lithospheric202

thickness variations. Conversely, at higher l (particularly at l ≥ 15), greater than 50% of the residual topography signal203

can be attributed to isostatic effects arising from non age-dependent variations in lithospheric thickness. Our approach204
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Figure 3: Dynamic (flow-related) component of synthetic residual topography within the oceanic realm: (a) power spectra of
residual (blue) and flow-related (green) synthetic topography predictions from the model that incorporates shallow structure, using inversions
regularised with ARD [43, 49]. Plotting conventions are as described in caption to Fig. 2, with spectra from a simulation with no shallow
structure, identical to Fig. 2, displayed for ease of comparison. In isolating the dynamic component of residual topography an estimate of
isostatic contributions resulting from variations in lithospheric thickness has been removed from the original synthetic residual topography
field. The ratio between the mean of both power spectra, displayed in (b), demonstrates important differences: at low l, and particularly at
l = 2 (vertical line), most of the synthetic residual topography is dynamic in origin, but greater than 50% of the signal can be attributed to
mapped variations in lithospheric thickness at shorter wavelengths (l ≥ 15).
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is simplified, but these results are intriguing, implying that although oceanic residual topography measurements are a205

reasonable reflection of flow-related dynamic topography at long-wavelength, that is not the case at shorter-wavelengths.206

A corollary to this is that efforts to extract the shorter-wavelength components of flow-related dynamic topography from207

the observational record will only be successful if isostatic effects, arising from variations in the thickness and density208

of Earth’s lithosphere, can be carefully isolated and removed. Doing so will require a comprehensive, multi-scale209

understanding of the structure and composition of Earth’s lithosphere. It is therefore timely that recent studies are210

demonstrating significant progress in this endeavour [50].211

Online Content212

Any additional Methods, Supplementary Figures and Source Data are available in the online version of the paper;213

references unique to these sections appear only in the online paper.214
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Methods325

Global Mantle Flow Simulations – Approach & Limitations: We focus on two end-member simulations of global326

mantle flow. In the first, lateral variations in density and viscosity are ignored in the uppermost mantle (above 300 km327

depth), thus allowing us to quantify the first-order topographic expression of deeper mantle flow. In the second, we328

account for the effects of shallow mantle flow and its interaction with the lithosphere, by incorporating variations in329

density and temperature (and the associated variations in viscosity) for the entire convecting mantle and lithosphere.330

We solve the equations governing instantaneous mantle convection (i.e. the present-day flow-field is computed in the331

context of prescribed density and rheological variations) inside a spherical shell, using a modified version of Fluidity332

[51, 52, 53, 54], recently validated against a range of analytical solutions and benchmarked against published results333

from alternative spherical shell mantle convection codes [55, 56, 57]. In our simulations, the inner radius corresponds to334

the core-mantle-boundary (CMB) and the outer radius to Earth’s surface. Free-slip mechanical boundary conditions are335

specified at each boundary. Consistent with a number of previous models [8, 39, 47], we assume incompressibility and336

the Boussinesq approximation, with phase transitions neglected. Models employ a fixed icosahedral mesh with a lateral337

resolution of ∼ 50 km at the surface. This is extruded in the radial direction, with radial spacing increasing linearly338

from 10 km at the surface to 100 km at the CMB.339

In our first model, density anomalies below 300 km depth are derived from the shear-wave tomography model340

S40RTS [58], using the conversion factor d ln ρ/d lnVS = 0.2. Density variations above this depth are neglected. This341

model includes a simple depth-dependent viscosity, with 5 layers, as illustrated in Supplementary Fig. 8(a). Dynamic342

topography is computed from radial stresses, τrr, at the surface via: h = τrr/(∆ρext · g), where ∆ρext is the density343

contrast between uppermost mantle density and air (continents: 3300 kg m−3) or water (oceans: 2300 kg m−3), and g344

(9.81 m s−2) is the gravitational acceleration (continents are defined as regions where the age-grid of [59] is undefined).345

The surface topography computed from this model is therefore a direct manifestation of flow related normal stresses346

(i.e. it is solely dynamic in origin). As illustrated in Fig. 1(c), topographic predictions share many characteristics with347

several published predictive models [30, 31, 42, 8, 33].348

In our second model, we account for the first-order effects of lithospheric thickness, which allows us to approximate349

density anomalies above 300 km depth, leading to more complete computations of mantle flow and the associated surface350

topography. Lithospheric thickness is estimated using the method first described in [60], in which the depth-averaged351

velocity in the upper mantle (to a depth of 350 km) is assumed to be proportional to lithospheric thickness. In this352

case, the upper mantle Sv model SL2013sv [61] is used as input, with the resulting estimate of lithospheric thickness353

illustrated in Supplementary Fig. 6. Our method reproduces the first-order characteristics of other global lithospheric354

thickness models [62, 50], predicting that the lithosphere is generally thin beneath young oceans and thicker beneath355

older oceans and continents. Within the oceans, there is a general trend of increasing lithospheric thickness with age.356

Within the continents, cratonic regions generally have thicknesses of 250-300 km, with thinner regions found near areas357

of recent or ongoing subduction or rifting (e.g. western USA and eastern Asia, northeastern Africa). We note that358
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lithospheric thickness models derived from SL2013sv have already been successfully applied in global models [39] and359

regional studies of the North American lithosphere [63].360

The conversion of seismic velocity to density inside the lithosphere is complicated by contrasting thermal and chemical361

effects. We take a simple approach, first prescribing a thermal structure within the lithosphere, based upon an error362

function temperature profile that corresponds to the lithospheric thickness model (assuming a thermal diffusivity, κ =363

7.5 × 10−7 m2 s−1). Temperatures are subsequently converted to density using a linearised equation of state: ρ =364

ρ0(1 − α∆T ), where ρ0 = 3300 kg m−3 and α = 2.5 × 10−5 K−1. Continental roots are seismically fast, but are365

likely neutrally buoyant [64, 65]. Accordingly, we follow the approach of [66] and set density anomalies of the mantle’s366

upper 300 km smoothly to zero beneath continental regions, defined as those regions where d lnVS > 4% at 100 km367

depth in the SL2013sv model [61]. Masking out continental roots introduces a compositional anomaly, c, which is unity368

everywhere below 300 km and tends toward zero inside old continental regions. Sub-lithospheric density anomalies are369

derived from S40RTS [58], consistent with our first model. Sub-lithospheric temperatures are also derived directly from370

tomography [58], using the conversion factor ∆T/d lnVS = −80 K/%. For this model, we assume a temperature- and371

depth-dependent viscosity, following the relation: µr · exp [E(0.5− T ∗)], where T ∗ is the non-dimensional temperature,372

E = 18.42, whilst µr varies with depth and is set to ensure a mean viscosity consistent with the first model. Resulting373

viscosities are displayed in Supplementary Fig. 8(b).374

The inclusion of shallow structure, via a lithospheric thickness estimate, implies that the topography computed from375

radial stresses at the surface incorporates subsidence of the ocean-floor. Accordingly, to allow for direct quantitative376

comparisons with our residual topography dataset, the effect of ocean-floor subsidence is subtracted out using an identical377

plate model and ocean-floor age grid. Where the age-grid is undefined (i.e. on continents) we follow [39] and assume378

an age of 175 Myr, such that synthetic topography predictions display no dramatic steps across the continent-ocean379

boundary. Resulting topographies are subsequently adjusted to ensure a global mean of zero. We note that the resultant380

synthetic topography prediction incorporates the effects of non-age-dependent lithospheric thickness variations, as is the381

case for the observational constraints, the significance of which is examined in the main text. As illustrated in Fig. 1(d),382

topographic predictions from the second model closely resemble those of [39], who also incorporate shallow mantle and383

lithospheric structure.384

Whilst this paper focuses on the aforementioned cases, we have analysed a series of simulations, with systemati-385

cally increasing complexity. The starting point is the first model above, which neglects all (density and rheological)386

heterogeneity above 300 km depth. To this, we have added lateral (temperature- and pressure-dependent) variations387

in viscosity throughout the computational domain. The resulting topographic field is illustrated in Supplementary388

Fig. 9(c), with the difference to the starting model highlighted in Supplementary Fig. 9(d). Spectral decomposition389

of both models (Supplementary Fig. 9b, red lines) yields similar results, suggesting that topographic predictions are390

only weakly sensitive to lateral variations in viscosity within the convecting mantle and lithosphere. We note that this391

result is at odds with [67], the reasons for which require further investigation. In Supplementary Fig. 9(f), we illustrate392
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the difference between this model and a model where we incorporate shallow density heterogeneity based upon our393

global estimate of lithospheric thickness (Supplementary Fig. 9e). The difference field closely resembles the full model394

(Supplementary Fig. 9e), demonstrating the dominant role of shallow structure in generating topography, as expected395

from the sensitivity kernels that illustrate how effective density anomalies at different depths and spherical harmonic396

degrees are at creating topography [38, 5, 11, 39]. In Supplementary Fig. 9(g), we explore the effect of a different surface397

velocity boundary condition, prescribing present-day plate velocities from the dataset of [68]. As noted by [39], this398

change has an important effect at long wavelengths (increasing spectral power marginally at l < 5), causing a decrease in399

topography beneath mid-ocean ridges, particularly at fast spreading centres (e.g. the East Pacific rise) and an increase400

in topography within the Western and Central Pacific. It remains unclear whether prescribed or free-slip boundary401

conditions are the most suitable for simulations of this nature: if plate motions are prescribed but are inconsistent with402

the forces acting on these plates, the computed topography may be inappropriate, hence our decision to focus on the403

simulation with free-slip boundary conditions herein.404

We emphasise that fine details of the predicted topography in our simulations and their associated power spectra405

are sensitive to several model parameters. These include: (i) the depth- and lateral-dependence of mantle viscosity,406

which remain poorly constrained [69, 70, 71, 72], and may influence both coupling between upper and lower mantle and407

the transmission of stress across the asthenosphere to the lithosphere; (ii) the seismic tomography model used as basis408

for defining the mantle’s density and thermal structure – although tomographic models now show broad similarity in409

the distribution of heterogeneity at a large-scale [73], they differ in amplitude and in the distribution of smaller-scale410

heterogeneity; (iii) our approach for converting seismic velocity to density and temperature, noting that the constant411

conversion factor used does not account for the non-linear sensitivity of seismic velocity to pressure, temperature,412

composition and phase [74, 75, 76, 77, 78, 79]; and (iv) the lithospheric thickness estimate utilised, variations to which413

will modify how mantle flow interacts with shallow structure [39, 62]. Nonetheless, our models are based upon a414

reasonable set of parameters that allow us to illustrate the likely roles of shallow and deep mantle flow in generating415

Earth’s surface response: our raw numerical predictions are generally consistent with time-dependent and instantaneous416

flow models from published studies [8, 39] as they have been executed in a similar parameter space. With our current417

understanding of the uncertainties surrounding these parameters and the associated sensitivities [30, 39, 47], it appears418

unlikely that our conclusions would be modified substantially. However, we acknowledge that this should be explored, in419

detail, in the future, in both time-dependent models of mantle flow that exploit, for example, time-integrated histories420

of Phanerozoic plate subduction [8] and present-day tomographic constraints [42, 34], and instantaneous flow models421

that better-account for tomographic and mineral physics uncertainties.422

Extraction of Dynamic (Flow-Related) Component from Synthetic Residual Topography Field: The defini-423

tion of dynamic topography excludes topography isostatically supported through crustal thickness variations. However,424

it is less clear whether or not topography supported by density anomalies within the mantle lithosphere, or lithospheric425

thickness variations, should be included [9, 41, 39, 35]. Both the observational constraints on residual topography and the426
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synthetic residual topography estimates utilised herein (for the model with shallow structure) incorporate topographic427

contributions arising from lithospheric thickness and density variations (i.e. deviations from a plate cooling model) as428

well as present-day mantle flow (i.e. dynamic topography directly due to normal stresses imposed by underlying mantle429

flow). It is of interest to isolate the dynamic (flow-related) component in our synthetic residual topography field, in an430

attempt to better understand this partitioning on Earth. To do so, we take the following steps: (i) assuming that litho-431

spheric thickness variations are thermal in origin, we invert our lithospheric thickness model for a map of lithospheric432

age, based upon the half-space cooling approximation (noting that continental regions are assigned a constant age of 175433

Myr); (ii) under the assumption that lithospheric thickness variations make an isostatic contribution towards residual434

topography, we subtract point-wise estimates of subsidence based upon this lithospheric age map and the following435

relationship between age and depth: d = 2.6 + 0.25 (age)1/2 (with age in Myr), with the resulting global topography436

field adjusted to ensure a mean of zero. This differs to subtracting an ocean-floor-age-dependent plate model from437

our topographic prediction, and yields an approximation to the flow-related component of topography, illustrated in438

Supplementary Fig. 7. The associated spherical harmonic spectral decomposition (carried out solely within the oceanic439

realm at the locations of spot and ship-track observational constraints) is displayed in Fig. 3 of the main manuscript.440

Computation of Power Spectra and Uncertainties: Our approach is based on that set out in [9]. We assume that441

the topographic signal can be represented in terms of a spherical harmonic expansion up to degree lmax, omitting the442

spherically-symmetric (degree-0) term. We therefore write f(θ, φ) =
∑lmax

l=1

∑l
m=−l clmYlm(θ, φ), where Ylm is a real443

surface spherical harmonic as defined in Section B.6 of [80]; note that these are normalised to have unit power. We then444

perform a regularised least-squares inversion to recover the [(lmax + 1)2 − 1] coefficients of this expansion. In all cases,445

we invert for a model up to maximum spherical harmonic degree lmax = 50, but plot results only up to l = 30. In doing446

so, we aim to minimise effects arising from spectral leakage [81].447

We follow [48], and note that least-squares inversion can be framed as a Bayesian inference procedure. We use m448

to denote a vector containing all the coefficients clm. Our prior probability distribution for m—that is, our state of449

knowledge before seeing any data—has Gaussian form, with zero mean, and is characterised by a prior model covariance450

matrix Cm. Our vector of observations, d, is assumed to be subject to random noise described by a zero-mean Gaussian451

with covariance matrix Cd. For this study, we assume that the noise has no spatial correlations, so that the covariance452

matrix has non-zero elements only on the leading diagonal; we base these on the uncertainty estimates reported by [9]453

(including in cases where the ‘data’ being inverted are the output of a numerical simulation). Given these assumptions,454

the information obtained from the observations leads us to a posterior probability distribution of Gaussian form centred455

on m =
(
ATC−1

d A + C−1
m

)−1
ATC−1

d d, with covariance matrix
(
ATC−1

d A + C−1
m

)−1
. The matrix A here is defined456

such that [A]ij = Yljmj (θi, φi), where (θi, φi) represents the location associated with the i-th element of d, and where457

lj and mj denote the degree and order of the spherical harmonic coefficient represented by the j-th element of m. The458

power at degree l is then defined as Pl =
∑l

m=−l c
2
lm; this is the quantity we plot when we show spectra.459

To complete the specification of our inversion procedure, it is necessary to define Cm. Our approach here builds on460
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[43], and a full discussion of the issues surrounding regularisation can be found in that study. We employ two different461

forms of model covariance matrix in this paper. The first is as used in [9], and is most conveniently specified by stating462

a parametric form for the inverse covariance matrix, C−1
m = α2I + β2H, where α (overall power term) and β (gradient463

term) are tuneable hyperparameters, I is an identity matrix, and where [H]ij = li(li + 1)δij . As described in [9], this H464

penalises steep gradients in the recovered field. We refer to this form of covariance matrix as ‘Tikhonov-style’. Results465

from inversions of this nature are described in the Supplement. The second form of regularisation employed, which466

we refer to as Automatic Relevance Determination (ARD) following [49], amounts to choosing
[
C−1

m

]
ij

= ξliδij , with467

lmax tuneable hyperparameters ξi. Thus, all spherical harmonics of a given degree (i.e. all m for fixed l) are treated468

identically, but no relationships are enforced between separate degrees. In both cases, a hierarchical Bayesian approach469

described fully in [43] allows us to assess the probability that any particular choice of hyperparameters is consistent470

with the data; we can then identify the most-probable hyperparameters to use in inversion. Results utilising this form471

of inversion, using point-wise and ship-track locations, are included in the main manuscript.472

The posterior distribution provides insight into the extent to which the coefficients clm are constrained by the data.473

While the posterior distribution on coefficients has Gaussian form, the power spectrum depends on the squared coeffi-474

cients, and its posterior follows a generalized-χ2 (i.e., non-Gaussian) distribution. This has a number of counter-intuitive475

features, including the fact that the most-probable spectrum for a given dataset is not necessarily similar to the spectrum476

obtained from the most-probable set of coefficients. To provide a readily-understood quantification of uncertainty on477

spectra produced using Tikhonov-style regularisation, we: (i) generate 1,000 representative hyperparameter pairs (α, β)478

by sampling the hyperparameter probability distribution as described in [43]; (ii) perform an inversion of the dataset for479

each hyperparameter pair, to obtain a posterior Gaussian distribution for each; (iii) generate 100,000 random samples480

from each of these posterior distributions; (iv) convert each of these to a power spectrum; and (v) for each spherical481

harmonic degree, show the ranges spanned by the central 99% of the full set of samples, and the central 50% (i.e. the482

inter-quartile range). Steps (i) and (ii) ensure that our error bars take regularisation uncertainty into account. For ARD483

regularisation, we perform a similar process, except that we approximate the hyperparameter probability distribution484

using a multidimensional Gaussian with covariance inferred from the curvature of the true distribution at its peak (as485

discussed in [43]). This avoids practical difficulties associated with sampling an arbitrary multidimensional distribution.486
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(a) Time-dependent simulation: from ref. 8 (b) Inferred residual topography: from ref. 9

(c) Instantaneous-flow simulation: no shallow structure (d) Instantaneous-flow simulation: with shallow structure

(e) Power spectra (previous studies) (f) Unregularized power spectra (this study)
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