
i 
 

Transparency or Opacity? Re-thinking Video Game Interfaces 

 

 

 

Etienne Brunelle-Leclerc 

 

 

 

A Thesis  

in  

The Department  

of  

Design and Computation Arts 

 

 

Presented in Partial Fulfillment of the Requirements  

for the Degree of Master of Design at  

Concordia University Montreal, Quebec, Canada  

 

 

October 2018 

 

 

© Brunelle-Leclerc, 2018  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Concordia University Research Repository

https://core.ac.uk/display/228203109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

ii 
 

CONCORDIA UNIVERSITY 

 

School of Graduate Studies 

 

This is to certify that the thesis prepared 

By:   Etienne Brunelle-Leclerc 

Entitled:  Transparency or Opacity? Re-thinking Video Game Interfaces 

and submitted in partial fulfillment of the requirements for the degree of 

Master of Design 

complies with the regulations of the University and meets the accepted standards with respect 

to originality and quality. 

 

Signed by the final Examining Committee: 

 

____________________ Chair 

Jonathan Lessard 

____________________ Examiner 

Rilla Khaled 

____________________ Examiner 

Pippin Barr 

____________________ Supervisor 

Jonathan Lessard 

 

Approved by ________________________________________________ 

 Chair of Department or Graduate Program Director 

 

__________ 2018   ________________________________________________ 

     Dean of Faculty  



 

iii 
 

 

ABSTRACT 

 

 

Transparency or Opacity? 

Re-thinking Video Game Interfaces 

 

Etienne Brunelle-Leclerc 

 

This thesis presents the results of a two year research-creation project that sought to address a 

gap in the theorization of video game interfaces. The conceptual framework of game interface 

design borrows several concepts from more established schools of user experience design. 

However in doing so, it also imports the biases that are built into these concepts, i.e. that 

interfaces should always maximize transparency and control. While this holds true for regular 

software, it does not apply to game interfaces where lapses in transparency and control can be 

repurposed as sources of challenge. This leaves designers with no way to adequately represent 

the interface’s contribution to gameplay. This project used a research-creation approach to 

investigate the merits of possibilities that run against the grain of standard interface design 

practice. The creative part of the research (conducted in collaboration with the Lablablab team) 

has produced Hammurabi, a game that leverages the inefficiencies of its interface as the 

centerpiece of its gameplay. Building upon this success, the reflexive part of the research offers 

a new theoretical perspective that proposes to frame game interfaces in terms of opacity as 

opposed to transparency and control as well as concepts and design strategies that will assist 

the work of future designers. 

  



 

iv 
 

ACKNOWLEDGEMENT AND DEDICATIONS 

 

À mes parents, 

  



 

v 
 

TABLE OF CONTENT 

CHAPTER 1: APORIAS IN CURRENT GAME INTERFACE DESIGN THEORIZATION 1 

1.1 INTRODUCTION 1 

1.2 GENERAL APPROACHES TO GAME INTERFACES 6 

1.3 INFORMATION FLOW IN GAME INTERFACES 10 

1.4 DESIGN FRAMEWORKS AND DESIGN RESEARCH 11 

1.4.1 The Usefulness of Frameworks 12 

1.4.2 Design Frameworks as Research Results 13 

CHAPTER 2: MOVING BEYOND STANDARD INTERFACE DESIGN 15 

2.1 INTRODUCING HAMMURABI 15 

2.2 CONCEPTUALIZATION : REMAKING HAMURABI 16 

2.2.1 Viziers 19 

2.2.2 Ministries 19 

2.2.3 Approval 20 

2.2.4 Crises 21 

2.3 PROTOTYPING & ROLEPLAYING 22 

2.4 IMPLEMENTATION 27 

2.4.1 Hammurabi’s Subjective Interface 28 

2.4.1.1 Procedural Dialog Generation with Expressionist 28 

2.4.1.2 From Generativity to Modularity 30 

2.4.1.3 CFG Templates 31 

2.4.2 Hammurabi’s Graphical User Interface 34 

2.4.2.1 Resource Gauges 34 

2.4.2.2 Resource Sliders 38 

2.4.3 The Contrarian Interface 42 

2.5 RECEPTION 43 

CHAPTER 3: TOWARDS AN EXPANDED UNDERSTANDING OF GAME INTERFACES 45 

3.1 BEATING HAMMURABI 45 

3.2 DESIGNING FOR OPACITY 46 

3.3 SUMMARY & DIAGRAM 61 

CHAPTER 4: CONCLUSION 62 

BIBLIOGRAPHY 65 

WORKS CITED 68 



1 
 

CHAPTER 1: APORIAS IN CURRENT GAME 

INTERFACE DESIGN THEORIZATION 

1.1 INTRODUCTION 

In digital media, the user interface is the particular piece of technology (either software, 

hardware or a combination of both) that allows the user to communicate with the computer. 

While the design of the interface is critical to any computer application, it is especially sensitive 

in video games because they vary so widely in both purpose and structure compared to regular 

software. However, interface design is an area where the gaps in our current understanding of 

video game design are especially apparent. This might seem counterintuitive given the wealth of 

information and design knowhow available in related fields such as human-computer interaction 

and user experience design. As we shall see, some of these concepts like Mihály 

Csíkszentmihályi’s flow and Jesse James’s Garrett’s user-centered design strategies for 

computer applications have indeed been explored in the video game design literature, but these 

efforts have yet to acknowledge the significance of the radically different priorities that separate 

the design of video game interfaces from that of regular software. 

 

The inadequacy of existing game design theory is not limited to interfaces. Video games cut 

across disciplines and domains of knowledge in ways that makes them unnervingly resistant to 

theorization. From the perspective of a researcher studying the play and design of video games, 

it often seems as though they take many forms and serve many purposes, all at once. This 

muddled status has led the game design community to borrow concepts from several disciplines 

in order to constitute its own theoretical framework. While this approach has enriched our 

understanding of how video games work in many deeply insightful way, it is not without its 

problems. This initial push for theorization, which ran parallel to the professionalization of video 



 

2 
 

game design and was thus spurred by an urgent need to accumulate a critical vocabulary, has 

left us with a vast array of concepts to draw from when giving form to our inquiries. Still, we 

should not lose sight of the fact these concepts originate from other fields of knowledge each 

with their own history, conventions and epistemological agendas. Therefore, their applicability to 

video game design is limited. In order to drive video game design theory forward, designers and 

researchers need to look closely at how the concepts that they use to frame their inquiries apply 

to games specifically. Rather than to study games from the outside in, using concepts in a top 

down manner to guide our perception of what constitutes a video game, we ought to do the 

reverse and examine the way games reflect upon the concepts we use to describe them in 

order to arrive at a more fine-grained picture of how individual components impact the player’s 

experience. 

 

Several researchers have taken a similar approach to the study of game interfaces and 

interactions. Nicole Lazzaro’s research on emotion in gameplay (2004) does attempt to address 

the interface’s contribution to the aesthetics of gameplay, but only conceives of it in terms of 

enjoyment versus frustration which still frames the game interface as merely a facilitator of 

interaction. Steve Swink’s work on ‘game feel’, which he defines as “the tactile, kinesthetic 

sense of manipulating a virtual object”, offers a set of concepts and methods to design how a 

game’s controls should feel to the player (2008, p.9). In defining and exploring this “aesthetic of 

control”, Swink establishes a bridge between one of the main functions of the 

interface─control─to the aesthetic experience of the game. In her 2013 book titled Gameworld 

Interfaces (MIT Press), Kristine Jørgensen argues that a game’s virtual world is a part of its 

interface since it is an “informational environment designed to support gameplay” (2013, p.9), 

indicating that the relationship between the functionality of the game interface and the aesthetic 

experience of the player is very much a multilayered and complex one.   

 



 

3 
 

These individual efforts show that the video game design community is steadily moving in a 

more holistic direction. That being said, the extent to which this work has trickled down to the 

manner in which game design is being taught and practiced is unclear. In my own experience as 

an undergraduate student in the field of game design, the textbooks that were referenced 

subscribed to a predominantly functional conceptualization of game interfaces. This is 

problematic not because it is incorrect─after all, games interfaces must function in ways that are 

similar to that of regular software─but rather because it obscures the aesthetic dimension of 

interface design in video games. As we shall see, many of the field’s foundational textbooks 

display a surface understanding of the interface’s contribution to the player’s experience. Even 

entire manuals solely dedicated to the design of video game interfaces regard it as a purely 

functional construct and leave much of its expressive possibilities untapped, save for industry-

tested recipes. Moreover, the theories advanced by Swink and Jørgensen have well defined 

domains of applicability: Swink states that his definition of game feel only applies to game that 

prominently feature “real-time control” within a spatial simulation (2008, p.8). Jørgensen’s case 

studies cover a broad range of games, but her definition of the gameworld interface as a 

composite of representational and informational elements (2013, pp.143-144) is most relevant 

to games that are played from a first person or a third person point of view, as is reflected in the 

composition of her corpus. This is not meant a criticism of Swink and Jørgensen’s work. Video 

games come in many shades and forms and we should be equally interested in what sets them 

apart as we are in what connects them. That being said, the limitations of their respective 

theories make them less useful in understanding the relationship between the design of the 

interface and the player’s experience in games where the spatial representation is more 

abstract and where the gameplay does not revolve around the moment-to-moment control of an 

avatar. This research aims to address this issue by providing a more high-level understanding of 

how the interface affects gameplay as well as a set of concepts that will help future designers 

fine-tune the interface of their games to achieve the desired effect. I don’t propose to overhaul 



 

4 
 

the current formalization of interfaces design within the game design literature. Rather, I hope 

that the framework that I propose in this thesis can help bridge the gap between the aesthetic 

dimension of game design and the functional description of game interfaces. 

 

However, this cannot be accomplished simply by analyzing existing games as they rarely 

deviate from standard interface design practice. In order to see beyond this horizon, we need to 

make games that actively challenge the assumptions that are built into our existing frameworks. 

This is where research creation shines as a method. According to Chapman & Sawchuck, “each 

and every research-creation project [...] carries the possibility of acting as an intervention in its 

own right in terms of the specific fields of inquiry, practice, history, et cetera in which it is 

embedded.” (2012, p.19). This kind of “epistemological intervention” may be what game 

interface design needs to escape its current state of theoretical entanglement, so long as it is 

followed up by a reflexive theorization effort that attempts to bridge the gaps between theory 

and practice. In practice, this can take the form of an exercise in contrarian design, similar in 

spirit to Katerina Kamprani’s ‘Uncomfortable’ series (2017) albeit with a sharper focus. Rather 

than explore how everyday objects can be made to evoke discomfort, the goal is here to 

investigate the merits of so-called ‘bad ideas’ by breaking away from the courses of actions that 

are prescribed by design theory. If the resulting designs prove to be effective nonetheless, then 

they point to a flaw in the theory which researchers can then attempt to correct. This approach 

resembles critical design (Dunne, 2006) abusive design (Sicart & Wilson, 2010) and adversarial 

design (DiSalvo, 2012) in that it “challenges the conventions of normative game design” (Sicart 

& Wilson, 2010). However, it does not take an outwardly militant stance regarding the 

ideological dimension of design. The purpose of this research is merely to help game designers 

design games. 

 



 

5 
 

This thesis will be divided in four chapters. In the rest of Chapter 1, I will review the conversation 

around interface design within the video game design literature in order to expose the limitations 

of prevailing theories, namely their reliance on concepts borrowed from other schools of user 

experience design that leave us with an incomplete picture of the interface’s contribution to the 

player’s experience. I will then examine how this contribution can be framed in terms of 

information flow. Next, I will densify the epistemological and methodological foundations of this 

research by looking at other research projects that sought to address weaknesses in existing 

design frameworks. Chapter 2 will feature an in-depth examination of the creative part of this 

research. I will explain how my thesis game Hammurabi (made with the Lablablab research 

group) challenges established interface design practice and recount the challenges that the 

design team faced while operating outside of these conventions. In doing so, I will draw upon 

interviews conducted with fellow designers and developers Christopher Tan and Marc-Antoine 

Jetté-Léger in which we reflected on the game’s pre-production and reception. Hammurabi’s 

development was archived in the form of a git repository which I was able to access after the 

fact in order to reconstruct the iterative process that led to the final game1. After an extensive 

overview of the game’s eighteen month development cycle, I will conclude with an assessment 

of the game’s reception. Last but not least, Chapter 3 will feature this research’s main 

theoretical contribution as I attempt to package the lessons of Hammurabi’s development into a 

game interface design framework that I hope will empower designers that are interested in 

working outside of established frameworks. But before we can come to that, let us first review 

the state of discourse in regards to video games and interfaces. 

                                                
1 This approach takes after the one that Khaled et al. outlined in their 2018 on applied game design research 

methodology. 



 

6 
 

1.2 GENERAL APPROACHES TO GAME INTERFACES 

This section will serve as a review of how the notion of interface is currently construed within the 

video game design literature, especially at an introductory or undergraduate level. We will look 

at several game design textbooks as well as more scholarly perspectives in the works of game 

researchers Kristine Jørgensen, Jesper Juul, Jonathan Lessard and Dominic Arsenault in order 

to accumulate an understanding of the concepts that are used to frame the design of video 

game interfaces. This information will later serve as the basis for a critique of existing video 

game interface frameworks. 

 

Ernest Adams’s Fundamentals of Game Design (New Riders, 2010) is one of the founding 

volumes of video game design. In the chapter dedicated to the user experience, Adams 

acknowledges the importance of the interface’s contribution to the player’s experience, stressing 

its “enormous effect on whether the player perceives the game as satisfying or disappointing, 

elegant or graceless, fun or frustrating” (Adams, 2010). However, Adams’ actual interface 

design framework is derivative, building on “interaction models” and “camera models” prevalent 

in existing games with a sharp focus on navigation which was, by the author’s admission, a 

feature nearly ubiquitous in video games at the time of the book’s writing. Furthermore, Adams 

frames the design of the video game interface with concepts borrowed from another, more 

established school of experience design, citing information architect Jesse James Garrett’s 

book Elements of User Experience (New Riders, 2002). That being said, Adams also calls 

attention to the fact that “a game’s user interface plays a more complex role than does the UI of 

most other kinds of programs” (Adams, 2010). Similarly, he remarks that interfaces meant for 

tools and ones meant for entertainment will inevitably have different design priorities, namely 

that “a video game interface doesn’t tell the player everything that’s happening inside the game, 

nor does it give the player maximum control over the game” (p. 257). Yet, Adams does not push 



 

7 
 

these ideas further, even admonishing “unnecessary innovation” in interface design on the 

grounds that video games genres have evolved a “practical set of feedback elements and 

control mechanisms suited to their gameplay” (p. 257). The approach developed in the coming 

chapters will expand on Adams’s insight into the specificity of the video game interface while 

eschewing its reliance on established gameplay models so as to tighten the focus around what 

video game interfaces can do as opposed to how they usually do it. 

 

Another seminal video game design textbook is The Art of Game Design: A Book of Lenses by 

veteran game designer Jesse Schell (2015). The Art of Game Design takes its subtitle from the 

113 design lenses that Schell introduces throughout the book. Each lens consists of a set of 

questions meant to emphasize how one’s design relates to a central idea or design principle. In 

the chapter titled “Players play games through an Interface” (original emphasis), Schell invokes, 

among others, the lenses of transparency and control. On the topic of transparency, Schell 

states that “Players project themselves into games and on some level disregard that the 

interface is there at all, unless it suddenly becomes confusing” (p.259). Through the lens of 

transparency, an interface that ostensibly makes its presence felt to the player is framed as 

immersion-breaking and thus a failure in design. This view rests on a shallow understanding of 

the player’s experience where ‘immersion’ is likened to a kind of flow state when Laura Ermi & 

Franz Mäyrä (2005) as well as Dominic Arsenault (2005) have shown that immersion is multi-

faceted and doesn't only emerge from "seamless interaction". The video game design literature 

makes abundant reference to flow states, which describe an optimal state of consciousness 

characterized by “a sense that one is engaging challenges at a level appropriate to one’s 

capacities” as well as “clear proximal goals and immediate feedback” (Nakamura & 

Csikszentmihalyi, 2002). Jesse Schell explicitly references the concept of the flow channel as 

defined by Csikszentmihalyi in his discussion of focus (2015, p.119). One of the design lenses 

associated with this discussion is the Lens of Flow. In Fundamentals of Game Design, Ernest 



 

8 
 

Adams claims that a well-balanced game should consider the player’s skill level so as to 

produce an experience that is neither too easy or too hard (Adams 2010, p.359).  

 

My thesis game Hammurabi demonstrates that the player’s experience doesn’t have to be 

optimal to be enjoyable and that game interfaces can enhance gameplay in manners that goes 

beyond functionality (this topic will be discussed at length in chapters 2 and 3). In his discussion 

of control, Schell asserts that “the goal of the interface is to make the player feel in control of the 

experience.” Here, the underlying assumption seems to be that the more agency players have 

over the outcome of a game, the more they will care about it. This is rather misleading, since 

giving the player total control over the outcome would obviously result in a game where failure 

states are non-existent. In the words of Jesper Juul, most games involve “the player working 

toward a goal, either communicated by the game or invented by the player, and the player 

failing to attain that goal” (2013, p.14, added emphasis). Although a minority of games manage 

to find an audience without explicitly challenging the player (walking simulators come to mind), 

the fact is that the overwhelming majority of games do, which shows how fundamental the 

relationship that unites challenge, failure and reward is to the appeal of video games as a 

medium. This casts the notion of player agency in a new light as it rather seems as though 

players prefer to earn their ability to control the game’s outcome rather that have it be 

surrendered to them from the beginning. What’s more, a game like The Sims (Maxis, 2000) 

leverages the transparency of its interface and the level of control that it provides in a manner 

very different from The Walking Dead (Telltale Games, 2012). Transparency and control are 

thus better understood as key variables of the player’s experience that should be tuned with 

care and precision in order to produce the desired effect, rather than simply maximized at every 

opportunity. 

 

 



 

9 
 

Game Design Essentials: Interface Design by Jeannie Novak and Kevin Saunders (Delmar 

Cengage Learning, 2004) is the only game design textbook solely dedicated to the design of the 

video game interface. Novak and Saunders view the interface as a purely functional construct 

that is fundamentally decoupled from the game to which it is attached. Its purpose is to facilitate 

interaction and to allow the game to be “played as designed”. The authors also stress that an 

interface should be generally ‘user-friendly’ and accessible to people that suffer from disabilities, 

but any further discussion of the interface’s aesthetic value is limited to the visual appeal of the 

GUI assets. Like Schell and Adams, this way of framing interface design takes after older and 

more established schools of user experience design such as those found software engineering 

and web development where interfaces are abstracted down to their most functional 

constituents: control and feedback. Once again, these concepts become problematic when 

directly applied to video games for the simple reason that video game interfaces do much more 

than facilitate interaction. Rather, they modulate interaction in a manner that serves the game’s 

expressive aims. In the words of Ian Bogost, video games “are not tools that provide a specific 

and solitary end, but experiences that spark ideas and proffer sensations” (Bogost, 2008). While 

a video game interface still has to function, the set of criteria that define success and failure can 

vary wildly from one game to the next, which indicates that functionality might not be the best 

angle from which to approach this topic. Likewise, we cannot simply default to a criterion of 

efficiency since, as Ian Bogost has argued, video games can leverage inefficiencies in their 

interfaces to aesthetic ends (Bogost 2008 cited in Lessard & Arsenault 2016). What’s more, by 

thinking of games and interfaces as separated, we are effectively training ourselves to overlook 

the interface’s contribution to the player experience, which creates a blind spot in our thinking. 

As a result, we currently lack the necessary conceptual and aesthetic vocabulary to make this 

contribution salient. 

 

 



 

10 
 

Kristine Jørgensen’s work on gameworld interface brings up another limitation of current video 

game interface design frameworks, namely that they subscribe to a narrow definition of what an 

interface is. For example, Novak and Saunders’s discussion of video game interfaces only 

covers extradiegetic indicators such as progress bars, mini-maps, targeting reticles, menu 

screens, etc. However during actual gameplay the player’s interactions with the game are not 

limited to those elements. This lack of overlap between our definitions for interface and 

interaction is problematic, given the former’s role in mediating the latter. In order to better 

understand this relationship, a broader definition is needed. As Lessard and Arsenault 

suggested, anything that “participates in the bidirectional information flow between the player 

and the game” can be said to constitute an interface between the player and the game (2016). 

This opens a game-design oriented research field for interfaces that would look at a large 

spectrum of features. This project begins this work by choosing one of the most salient: 

information flow. 

1.3 INFORMATION FLOW IN GAME INTERFACES 

The authors of game design handbook Rules of Play (2003) propose two ways of thinking about 

information in games. The first refers to information theory, where information is a measure of 

the player’s freedom of choice at a given decision point, while the second uses Celia Pearce’s 

model in which game state information is either known to all players, known to some players, 

unknown to all players, or known only to the game. From a design perspective, information 

theory is useful in modeling the player’s knowledge of the game state and extrapolating their 

behavior assuming rational decision-making. Since players are almost never privy to the entirety 

of the game state, the information theory model also allows designers to draw the line between 

what is known to the player and what is not. Pearce’s model makes this distinction even more 

explicit as it allows designers to track how information is transferred across its four categories 



 

11 
 

throughout the game. Thus, in both cases the discussion of information effectively doubles as a 

discussion of uncertainty. 

 

One could argue that the authors of Rules of Play call upon theories of information in order to 

get a handle on its elusive converse. As veteran game designer Greg Costikyan argued in his 

book titled Uncertainty in Games (2013), uncertainty is fundamental to the appeal of all games, 

be they video games, board games, card games, or even sports. Costikyan’s book consists in 

an inventory of sources of uncertainty in games. Lessard and Arsenault identify that two of 

these sources are of particular relevance to the study of interfaces: hidden information, where 

the game deliberately provides the player with information that is incomplete or outright 

inaccurate, and performative uncertainty, which creates a gap between the player’s intent and 

the result of her actions (2016). These sources of uncertainty overlap nicely with the main 

functions of the interface as defined by Novak Saunders: control and feedback. Indeed, the 

video game interfaces emerges as a powerful source of uncertainty in and of itself. Put another 

way, what separates a video game interface from that of a regular piece of software is that it 

deliberately introduces uncertainty in the flow of information between the player and the game in 

a manner that fosters compelling gameplay, and it is this fundamental difference that existing 

video game interface frameworks have failed to address. 

 

1.4 DESIGN FRAMEWORKS AND DESIGN RESEARCH 

So far, I have argued that the interface design frameworks found in game design textbooks do 

not account for the specificity of the video game interface. This is problematic because by 

framing these interfaces in a manner that does not accurately describe how they affect 

gameplay, we are limiting our ability to acknowledge and anticipate these effects during the 



 

12 
 

design process. However, it is one thing to point out a flaw in the current formulation of an 

aspect of video game design theory and another entirely to go about remedying it. In order to 

better understand how to address this issue, we first need stop and think about what design 

frameworks are, what they do and how they are produced. 

1.4.1 The Usefulness of Frameworks 

Ostensibly, design frameworks are sets of heuristics and concepts that assist in the design 

process. In their 2017 paper titled Gaps of Uncertainty: a case for experimentation in serious 

game design frameworks, Niels Quinten, Steven Malliet and Karin Coninx shed insight on 

exactly how they accomplish this. Referring to Donald Schön’s theory of the reflexive 

practitioner, Quinten et al. frame the design process as a conversation between the designer 

and the materials that make up the design situation where solutions and problems emerge 

concurrently. In their critique of existing serious game design frameworks, Quinten et al. indicate 

a general tendency to disregard this improvisational nature of design in favor of rigid 

frameworks that collapse the design process into a kind of ‘flowchart’ where every path runs 

from the familiar to the predictable. Quinten et al. make a strong case for the importance of 

preserving uncertainty in the design process, noting that the process through design innovates 

“more fitting or novel solutions” is fundamentally exploratory, iterative and unpredictable. 

Consequently, the purpose of design frameworks is not to eliminate uncertainty from the design 

process, but rather to “encourage designers to embrace untraversed paths that can lead to 

unexpected yet invaluable results.” Put another way, design frameworks help designers come to 

grips with difficult problems by providing an approximate picture of the materials that make up 

the design situation, but they should not overtly steer them towards a particular solution. This is 

especially helpful in cases where the materials are abstract, ill-defined or ontologically removed 

from the designer’s direct experience. The authors of Rules of Play argue that game design is 

one such case when they describe it as “second order design” (p.168), meaning that designers 



 

13 
 

do not directly ‘make’ gameplay but rather create the mechanics that, when acted upon by 

players, combine to produce gameplay2. 

1.4.2 Design Frameworks as Research Results 

Quentin et al. go beyond mere critique as they also propose their own serious game design 

framework which, in the author’s perspective, encourages designers to explore the “design 

possibilities” that lay at the intersection of video games, learning and training. This result is 

especially important to the present discussion for two reasons. First, we have to acknowledge 

the possibility that design frameworks, no matter how open, may very well come with built-in 

‘biases’. Just like Quentin et al.’s framework is in a manner of speaking ‘tailored’ to the design of 

games that mobilize their teaching power to effect some kind of real world change, other 

frameworks may lead designers to formulate design problems in a manner that converges on a 

similarly specific set of solutions. For better or worse, resorting to a design framework will 

necessarily narrow the range of trajectories that a designer can take through what other 

researchers have referred to as the “space of possible design solutions” (Khaled et al. 2018). 

This helps better define both the scope and the interest of this research. Since design 

frameworks have a specific domain of applicability, the concepts that are introduced in chapter 3 

of this thesis only apply to a portion of the possibility space of the video game interface. 

However, their value resides in how they attempt to map a part of this possibility space that 

current design frameworks mark as terra prohibita. 

 

The work of Quentin et al. provides a precedent as well as a blueprint for how this kind of 

research can be undertaken. The authors based their serious game design framework on their 

own experience with designing serious games. That is to say they used design as an 

                                                
2 This ontological divide is further widened by the fact that video game mechanics have to be 

implemented in software form before the designer can assess the quality of the resulting gameplay. 



 

14 
 

experimental method to develop a way of talking about the specific type of design problems that 

they were interested in. This is an example of research through design, an aspect of design 

research that uses design as a means to address a research question (Frankel & Racine, 

2010). There are several reasons to turn to research through design in order to produce a 

design framework. For starters, it helps ensure that design theory remains in touch with the 

realities of design─a framework is more likely to be useful if designers are directly involved in its 

formulation. Also, there is a strong affinity between the nature and purposes of design 

frameworks and the epistemological agenda of research through design, which Peter Downton 

describes as a “a vehicle for acquiring and shaping knowing that assists in future design 

activities” (Downton, 2003, quoted in Frankel & Racine, 2010). That is the epistemological 

stance that this research has taken. I adopted a contrarian design approach in order to 

problematize the manner in which video game design textbooks frame the design of video game 

interfaces and used this experience to propose a set of concepts that describe alternative ways 

in which game interfaces can foster, enhance and even create gameplay. The next chapter will 

be dedicated to the project that served as the practical basis for this contribution. I will introduce 

the project, demonstrate its relevance to the problematique, and provide an overview of its 

development to serve as context for what is to follow.  



 

15 
 

CHAPTER 2: MOVING BEYOND STANDARD 

INTERFACE DESIGN 

2.1 INTRODUCING HAMMURABI 

Hammurabi is the first game to be produced as part of Interfaces Subjectives, a FRQSC-funded 

research creation project that “re-frames virtual interactive characters as ‘subjective interfaces’ 

with the purpose of highlighting original affordances for interactive storytelling through 

conversation” (Lessard & Arsenault, 2016). The relevance of subjective interfaces to this 

research operates on many levels. For starters, re-framing the characters as interfaces 

broadens the definition of what a video game interface is beyond the domain of input 

peripherals and GUI widgets (in a manner not unlike Jørgensen’s gameworld interfaces). 

Lessard and Arsenault also underline the specificity of video game interfaces when they remark 

that “much in contrast to HCI experts, the bulk of the game designer’s work is to actually 

complicate interaction in interesting ways” (2016). Moreover, they directly invoke the concepts 

of uncertainty and information flow as they refer to subjective interfaces as “a diegetically 

grounded way to design a game’s information flow” whose value as game mechanics would be 

decided by whether or not they afforded “original and interesting ways to make interaction 

uncertain” (Lessard & Arsenault, 2016). As the first subjective interface game, Hammurabi 

embodies a break from established interface design conventions. It is also a game that explicitly 

problematizes information flow between the player and the game as the very foundation of its 

gameplay. Both of these characteristics make it a good case study for investigating possibilities 

that are marginalized by current theories. 

 

I was involved in Hammurabi’s development for the entirety of its duration. Due to my having 

more development experience than the other members of the design team, I was informally cast 



 

16 
 

in a lead design role during pre-production. As such, I am well positioned to articulate how 

Hammurabi and its development reflect on the current state of the video game design literature 

as it pertains to interface design. In this chapter, I will provide a summary of the game’s 

eighteen months development cycle while highlighting elements that are especially relevant to 

this research. I will start by outlining the project’s original design proposition: remaking 

management sim forerunner Hamurabi3 (Dyment, 1968) and explain how we had to alter the 

original game’s design in order to accommodate the project’s ambitions and constraints. As I 

explained in Chapter 1, this part of the project was recovered through interviews conducted with 

other members of the Lablablab team. Moving on, I will describe the main challenges that the 

team had to overcome throughout the game’s development as well as the manner in which we 

chose to approach them. In doing so, I will examine several prototypes that were retrieved from 

the project’s git repository and show how successive iterations converge toward the final game. 

Finally, I will conclude with an assessment of the game’s reception. 

2.2 CONCEPTUALIZATION: REMAKING HAMURABI 

In their 2016 paper that outlined the project’s theoretical foundations, Lessard & Arsenault 

propose three scenarios that could be compatible with subjective interfaces: meddling, 

investigation and leadership. While all three of these scenarios leverage a lack of information 

that makes the result of the player’s actions uncertain, the leadership scenario gave us the 

opportunity to work from an existing game: Hamurabi also known as The Sumer Game 

(Dyment,1968). This was deemed advantageous for several reasons. First, it allowed us to pour 

our efforts into the design of the subjective interface itself. Since we were going to be working 

on the first subjective interface game using largely untested technology, it felt prudent to keep 

                                                
3 The title of the original game was spelled with a single ‘m’─Hamurabi. However when developing the 
remake, the Lablablab team opted for the more commonly accepted spelling of Hammuruabi. 



 

17 
 

the scope as small as possible4. Working from an existing game also afforded the possibility of 

comparing the game to its predecessor, which provided added context for evaluating the impact 

of our design decisions. Secondly, we were specifically interested in seeing what form 

Hammurabi’s subjective interface would take and how its presence would affect the rest of the 

game’s design. 

 

Hamurabi (hereafter referred to as Hammurabi 1968 for the sake of clarity) had a very 

rudimentary interface. It was originally developed for the PDP-8 minicomputer whose sole 

output device consisted of a teletype printer, meaning that the game data was printed at runtime 

rather than displayed on screen. Although many later versions ran on machines equipped with 

computer terminals, the game’s output remained entirely textual. Its premise is simple: the 

player is cast in the role of Hammurabi, king of Babylon from 1792 to 1750 BCE, and must 

manage the resources of the city in order to survive their ten year reign while scoring the 

highest possible amount of points. The game includes three key resources: population, land and 

grain. Grain is used to feed the population, plant crops and acquire new land which is used to 

plant crops and can be sold back for grain. That being said, the maximum amount of land that 

the player can seed is also limited by population, since a unit of population can only work ten 

acres of land per turn. Population is also tied to the game’s losing condition, as it the game ends 

once it falls below a certain threshold. The city can be struck by plagues, which dramatically 

reduce its population. Rats also periodically raid the player’s grain stores, although this is more 

of an annoyance rather than a full blown crisis. The player must correctly invests the resources 

at their disposal in order to grow Babylon’s reserves and keep a large enough population to be 

safe from plagues. 

                                                
4 The original Hammurabi is a small game whose entire code can fit in a single (finely printed) page. 



 

18 
 

 

In order to adapt the game to the needs of the project, we first had to reverse engineer its rules 

and mechanics. We did this by keeping track of how the different resource values changed 

during gameplay. This allowed us to build an approximate model of the game’s internal 

economy which was then refined over several play sessions. This ‘black-box testing’ approach 

certainly would not work with most contemporary management games, but luckily for us 

Hammurabi 1968 was simple enough that we managed to accurately reproduce its runtime 

behavior in a matter of days5. Once we had an accurate picture of the game’s underlying 

architecture, we had to tackle our first design challenge: what should Hammurabi’s subjective 

interface look like? What should it do? Moreover, we were already aware that the design of a 

subjective interface was heavily dependent on how the underlying game handled characters, 

challenge and information, but how those very qualities would react to the addition of a 

subjective interface was still unclear. Would rules and mechanics need to be altered? And if so, 

which ones and how? 

                                                
5  This work was completed before the team became aware the the entirety of Hammurabi 1968’s source 

code was available online. That being said, the game was simple enough that reverse engineering it by 
interpreting its source code (as opposed to the black-box testing approach) would not have resulted in a 
deeper insight or a meaningful amount of time saved. 



 

19 
 

2.2.1 Viziers 

In Hammurabi 1968, the line at the top of the game’s output at the beginning of the turn reads 

“Hammurabi: I beg to report to you,” The game thus characterizes itself as an ongoing 

exchange between Hammurabi and a royal advisor whose job is to report on last turn’s events. 

As pre-production on the Hammurabi remake got underway (hereafter referred to as simply 

Hammurabi), the design team was keenly aware that we would need to broaden the distance 

between the player and the game state in order to leave room for the subjective interface. In 

other to achieve this, the team picked up on the idea of the royal advisor and expanded on it. 

Rather than having the player be directly in control of the game’s mechanics, several ‘viziers’ 

were added to serve as semi-autonomous intermediaries that carried out the player’s orders 

and reported back on the results. Each viziers thus functioned as a subjective interface in its 

own right, with their individual capacities, dispositions and temperaments determining the 

degree to which their actions conformed to the player’s instructions as well as the thoroughness 

and accuracy of their reports. The decision was made to add more than one vizier because 

doing so would allow more opportunity to experiment with characterization.  

2.2.2 Ministries 

Adding the viziers meant that a system would need to be put in place that allowed the player to 

assign them tasks. To that end, the individual operations that the player could perform in the 

original game, namely (1) allocating grain to plant crops, (2) feed the population and (3) invest in 

the land trade, were grouped into three related ministries of agriculture, welfare, and warfare. 

The game’s main loop was starting to take shape, as the turn would begin with advisors 

reporting on the result of their actions, whereupon the player would assign each viziers to a 

ministry and divide up their available resources amongst them. 



 

20 
 

 

The addition of the ministries had the noticeable side effect of compartmentalizing the game 

state in a manner that reduced the amount of information available to the player. At this point in 

pre-production, the game only included two viziers, meaning that the player would have to tend 

to one of the ministries themselves and leave the rest up to the viziers. By rendering certain 

parts of the game state inaccessible to the player, their attention was effectively being funneled 

towards the viziers’ dialog as the player had no other way of knowing what was going on in the 

other ministries. Consequently, the player’s ability to interpret the vizier’s feedback by building 

up a mental model of their motivations and concerns rapidly emerged as a central feature of 

Hammurabi’s gameplay. 

 

2.2.3 Approval 

Since a large portion of the information that the player received was now susceptible to be 

deformed by the viziers’ subjective view of the game world which made the game far trickier to 

play, the viziers’ states, goals and capacity for independent action needed to be meaningfully 



 

21 
 

related to the game’s outcome in order for this added resistance to be framed as a challenge 

rather than an annoyance. Therefore, the decision was made to add a fourth key resource to the 

game’s internal economy: approval. As with the viziers themselves, this idea was not entirely 

new. The flavor text that accompanies Hammurabi 1968’s “game over” screen suggests that the 

player has been dethroned as a result of losing the people’s favor. Once again, the team took 

this idea and expanded on it, elevating it from narrative salad dressing to what became one of 

the game’s core mechanics. From that point on, each character (including the player) had an 

approval score that would rise and fall in response to the character’s actions. If at any point the 

player’s approval score fell below that of one of the viziers, the latter could, if so inclined, 

overthrow the player which would result in a game over. This added a layer of political intrigue 

to a gameplay that primarily revolved around resource management, which resulted in a game 

that had far more interesting stories to tell. From the player’s perspective, the game became 

about walking the fine line between having a prosperous kingdom and having prosperous viziers 

where having both or neither made for a short playthrough. 

2.2.4 Crises 

The final major change that was made to Hammurabi 1968’s design during pre-production was 

the addition of a crises system. As with viziers and approval, the team expanded on an idea that 

was present in the original game. That is, the plague event where a sizable percentage of the 

city’s population was instantly wiped out by disease. The team liked how plagues added a 

element of tension to the otherwise monotonous resource management gameplay. On the other 

hand, it was found that plagues incentivized a degenerate play pattern where the player would 

wait for a plague to strike, then sell a portion of the land they could no longer work to 

dramatically inflate their grain stores. Since a less populous city had a proportionally lower grain 

upkeep, players that abused this mechanic could easily coast on their large grain stores until the 

end of the game’s ten turns length. This was a rather obvious and heavily contrived optimal 



 

22 
 

strategy that rendered the rest of the game’s challenges moot. To counter this, the team added 

several types crisis that targeted all of the game’s resources rather than only population, making 

stockpiling one or the other more of a gamble than a sure investment. 

 

In summary, the design of the original game was significantly altered in order to align with the 

project’s goals. Viziers were added to serve as intermediaries between the player and the game 

and information flow was restricted to make it necessary for the player to go through the viziers 

in order to interact with the game state. The approval score was introduced in order to make the 

viziers’ states and motivations more relevant to the game’s outcome, and new crises types were 

added to eliminate the problematic play patterns that were caused by plagues. As a side note, it 

is interesting to note that none of those additions were entirely absent from the original game. At 

this point in pre-production, the game’s overall architecture was already well-defined. The next 

challenge in line was the design of the subjective interfaces themselves. How exactly would the 

viziers influence the game’s outcome? What actions would they be able to take? How would 

they communicate with the player? And, perhaps more critically, how would their own state be 

reflected in the quality of the information that they passed on to the player? 

 

2.3 PROTOTYPING & ROLEPLAYING 

In order to decide on how best to answer these question, the team turned to roleplaying as a 

prototyping technique. This is not without precedent: researchers at UCSC’s Expressive 

Intelligence Studio devised a “computationally-assisted live-acted prototype” in order to “guide 

content creation” for another game (Ryan et al., 2015). In Hammurabi’s case, two members of 

the design team would play as the viziers, while a third (or an outside participant) would play as 

the king. This presented several advantages. Roleplaying is well-suited to the design of games 



 

23 
 

that have a strong fictional component or systemic games that attempt to simulate the behavior 

of fictional characters. It allowed the team to rapidly experiment with characterization and 

delivery without getting bogged down with implementation details. In addition, the exploratory 

nature of roleplaying was a good fit for the project’s rather experimental direction. We were able 

to rapidly get a sense of how and when the game became fun and explore these possibilities in 

a fast and improvisational way, which was especially helpful at a time when the team was still in 

the process of apprehending the value of subjective interfaces as game mechanics. Since 

Hammurabi’s turn-based gameplay did not rely on an elaborate visual representation, 

roleplaying did not require a notable imaginative leap on the part of the participants. Most 

interactions between the participants consisted of dialog, which could easily be recorded and 

compiled for the design team to later parse through. That being said, even at this very early 

stage the game involved enough number crunching and partitioning of information to make 

roleplaying sessions grind down to a snail’s pace. Some form of software support was needed 

in order to speed things up. The game was thus implemented in Google Spreadsheet, and the 

design team used its collaborative features to turn it into a multiplayer platform while the 

conversations between the king and the viziers were held (and archived) in a dedicated Slack 

channel. 



 

24 
 

 
The screen capture above features only a small fraction of the spreadsheet prototype. Showing it in its entirety would 
be rather impractical as it consists of seven sheets with the ‘master sheet’ (which hosts all of the game’s background 

computations) stretching to 561 rows. 
 

 
The screen capture above shows an excerpt from the archived roleplay sessions. 

 

After approximately two months of weekly role-playing sessions, the team was able to isolate 

several emerging trends. First of all, it quickly became apparent that overly agreeable viziers 

made for rather boring and needlessly tedious playthroughs. The inefficiencies of subjective 

interfaces are not inherently meaningful or interesting─they require conflict and intrigue to come 



 

25 
 

alive. The team realized that the viziers were at their most effective when they were trying to 

further their personal agendas, especially when those agendas pitted them against one 

another─or against the player. Some the game’s most memorable moments occurred when the 

viziers were referencing one another in their exchanges with the player, offering backhanded 

compliments or indulging in outright slander. This development was especially interesting from 

an interface design perspective since it opened up a new information channel through which the 

subjective interfaces could reveal critical game state information without breaking character. For 

example, if vizier A was on the verge of securing enough popular support to stage a coup, vizier 

B would tip the player off, giving them enough time to undo vizier A’s plot.  

 

By tracking what conversations between viziers and the king usually revolved around, the team 

found that the viziers’ dialog was limited to a handful of topics, namely the particular operations 

that were conducted in the ministries that they were tasked to oversee, the current state of the 

city as whole, the vizier’s own state (including their disposition towards the player, the other 

vizier or their current occupation), and the state of the other vizier. However since the exact 

details of the viziers’ character were never exposed to the player, the game frequently crossed 

the line from opacity to imperviousness as the player simply had no idea of what to expect from 

the viziers. In order to remedy this, the viziers were given strong personality traits that were 

clearly expressed in their dialog. If a vizier was curt but generally forthright in manner, the player 

was less worried about them being untruthful in their reports. Likewise, giving the viziers’ ‘tells’ 

or singular speech patterns that indicated they were possibly lying or incorrect was an effective 

way to keep players in the loop.  

 

The team also experimented with personality modeling techniques in a bid to make the viziers’ 

behavior more system driven. However, those techniques were invariably found to be too 

reductive, especially as the game began to rely more heavily on characterization. The final 



 

26 
 

game includes a vestige of these efforts in the form of a half implemented ‘traits’ system where 

viziers would react to the player’s actions depending on where they landed relative to their 

personal values. Although it initially showed some promise, the system was never finalized 

because its purpose and complexities did not translate to the player’s experience in a 

meaningful way. What’s more, as the team became more comfortable working with subjective 

interfaces, we recognized of the importance of properly managing the game’s underlying 

complexity (this idea will be discussed at greater length in Chapter 3). In the case of 

Hammurabi, it was found that increasing complexity made it harder and harder for the player to 

know why things were happening. This is better explained in terms of information flow. 

Subjective interfaces rely on deliberately restricting information flow in a manner that engages 

the player’s problem-solving skills. When the output of too many systems is funneled into the 

interface’s limited ‘information bandwidth’, it becomes saturated and the feedback it provides 

goes from merely noisy (which is expected for a subjective interface) to outright unintelligible. 

This indicates that subjective interfaces may work better when the amount of information flowing 

from the game to the player is low, and one way to way to achieve this is to limit the game’s 

underlying complexity6. Many of the systems that were developed during Hammurabi’s 

prototyping phase did not make it to the final implementation, and many of those that did were 

later scoped down as resources were funneled towards core features.  

 

In summary, prototyping and roleplaying allowed us to refine our design problem into to the 

following : how can we reveal just enough to give the player a sense that there is more going on 

under the hood than what appearances suggest, all the while keeping them guessing and 

engaged? And how do we do this while establishing and maintaining characterization since any 

illusion of subjectivity breaks down the moment subjective interfaces stop being believable as 

                                                
6 Interestingly, another counter-intuitive design solution in light of general game design manuals that 

usually advocate for increased complexity. 



 

27 
 

characters? As we shall see in the next section, the solution that the team produced was heavily 

contingent on the particular technology that was used to support the game’s final software 

implementation. 

2.4 IMPLEMENTATION 

Game development is very much a multi-pronged battle and to cover the entirety of 

Hammurabi’s development would extend beyond the scope of this thesis. This next section will 

focus on the areas that are most relevant to the subject matter of this research, namely the 

design of Hammurabi’s interface. Both its subjective and graphical components will be covered 

in that order since it mirrors the chronology of the game’s development. As the team moved 

away from the prototypes and into development proper, Hammurabi’s design was significantly 

scoped down. Players could no longer directly control one of the ministries. This had major 

implications for information flow since denying the player direct access to the ministries 

effectively removed an important information channel from the game. Rather than choose what 

part of the game state they wanted to expose for the next turn, players now shuffled viziers 

across the ministries and cross-checked their fragmentary and often contradictory reports in 

order to assemble an approximate picture of the game state. If we think of subjective interfaces 

as characterized by a twofold nature as both characters and interfaces, this accentuated their 

role as interfaces. From that point on, characterization came as a second to more pressing 

concerns of playability. As we will see shortly, this is reflected in the design of the system that 

generated the viziers’ dialog. 



 

28 
 

2.4.1 Hammurabi’s Subjective Interface 

2.4.1.1 Procedural Dialog Generation with Expressionist 

The viziers’ dialog needed to represent their individual perspective on the game state, but 

Hammurabi is a dynamic and unpredictable game. In order for the viziers’ to be able to respond 

adequately to all the situations that could arise during gameplay, they required an equally 

dynamic (and unpredictable) procedural dialog generation system. This was a pivotal moment in 

the project since the technical challenges of dialog generation ate up the bulk of the team’s 

resources for the rest of the game’s development. In order to give the viziers voices, we 

established a partnership with UC Santa Cruz researcher James Ryan who was working on an 

experimental text generation tool called Expressionist. More precisely, Expressionist is a tool for 

authoring context-free grammars or CFG’s. CFG’s are simple computational structures that 

allow the generation of a large number of sentences (upwards of 1030 in some of the more 

elaborate grammars) from a relatively limited set of rules and textual components. In practice, 

CFG’s function like phrasal templates or sentences that contain one or more empty spaces that 

users may later substitute with words or data. In the case of CFG’s, empty spaces can be filled 

with other phrasal templates, and this process can be repeated an arbitrary amount of times. As 

an example, let us imagine a CFG that is designed to talk about the properties of certain 

animals. The initial template might look like “The [animal] is [property]” where [animal] and 

[property] have built in rules for substitution that determine what they can be replaced with in the 

final expression. The output of this grammar might be something like “The cat is black” or “The 

dog is hungry.” What distinguishes Expressionist from similar tools such as Kate Compton’s 

Tracery (2014) is a feature that allows the user to markup certain textual components (such as 

[animal] and [property] in the example above) with metadata or ‘tags’. To go back to our 

example, this would allow us to specify what kind of animal we want to talk about. By tagging 

the word ‘cat’ with a distinct piece of metadata, we can then write a separate piece of software 



 

29 
 

that looks at all the possible outputs of the grammar and select only the ones that talk about 

cats7. In other words, the possibility space of Expressionist’s grammars is effectively 

searchable. This provided a degree of authorial control and flexibility that no other tool could 

match.  

 

That being said, Expressionist was always meant to be the front end of a fully functional text 

generation system. It allows users to author CFG’s but as I said above, a second piece of 

software─called a ‘productionist’─is needed that takes in the grammars and processes them in 

order to produce actual sentences. Since this processing is highly application-specific, 

designing and implementing this productionist was the first technical challenge that 

Hammurabi’s developers had to overcome. From a high level design perspective, the 

productionist had to monitor key game state variables and search the CFG’s that contained the 

viziers’ dialog for content that matched the situation. However since the viziers were intended to 

be unreliable, several strategies were explored to give the productionist more flexibility in 

negotiating the match between the viziers’ dialog and the game state configuration that it was 

meant to represent. Initially, the team settled on a solution where the productionist tolerated 

content that did not match the underlying game state so long as it did not result in an outright lie. 

This is best explained with an example. The game was designed so that the variable that 

described the state of Babylon’s grain reserves could only be in one of three possible states at 

any one time: low, medium or high. In a situation where Babylon’s reserves were low, the 

productionist would exclude content that referred to the grain reserves’ other possible states 

(medium or low). The rest would be treated as normal, meaning that the vizier could talk about 

the city’s low grain reserves… or really anything else. This was deemed to offer an acceptable 

compromise between serendipity and coherence. In practice however, the CFG authors rapidly 

                                                
7 Admittedly, this is a gross simplification. For a more in-depth discussion of CFG’s, Expressionist and 
how they were used in Hammurabi and other game projects, see Ryan et al. (2016) and Lessard et al. 
(2017). 



 

30 
 

converged towards an authoring style that made this feature more or less superfluous. The 

reasons were twofold: first, these behaviors made debugging and iterating exponentially 

harder.8 The limitations of Expressionist’s authoring environment simply did not allow the 

authors to make efficient use of this more probabilistic feature. Secondly, it made the game too 

difficult to play. The viziers’ feedback was often eccentric to the point of arbitrariness and 

players tended to disregard it entirely. In the final game, the vizier’s unreliability is almost 

entirely realized through the authors’ writing.  

2.4.1.2 From Generativity to Modularity 

This adjustment maximized the amount of control that individual authors could exert on the 

feedback that the viziers would provide. They also meant that the final game would fall 

somewhat short of the team’s original ambitions, at least in the extent to which it made use of 

the generative power of CFG’s in producing the vizier’s dialog. As Lessard et al. reported in a 

previous paper that described the CFG’s authoring pipeline in more details, dialog generation in 

Hammurabi steadily moved away from generativity as development progressed (Lessard et al, 

2017). The final implementation is better described in terms of modularity, or “the use of discrete 

units, called modules, to assemble larger structures” (Grinblat, 2017, original emphasis). This is 

because the amount of time and resources that the team would have needed to dedicate 

towards designing and implementing a convincing, system-driven characterization solution 

would have been out of proportion to its contribution to the player’s experience. 

 

The project’s trajectory is symptomatic of the tension that is intrinsic to procedural content 

generation, that is the necessity to reach a compromise between authorial control (or author 

agency) and what we may call procedural agency. Half the work of a procedural content 

                                                
8 This is an inescapable aspect of working with emerging or untested technology. In most cases, the 

optimal tools and techniques have yet to be invented. 



 

31 
 

generation system is managing the generator’s output. In a large majority of cases, raw 

unfiltered outputs just won’t do. As Kenny Bachus noted, such outputs rapidly begin to exhibit 

similarities that betray the generator’s built-in patterns (Backus, 2017). Worse, homogeneous 

and pattern-riddled content rapidly stops being interesting to players. As Bachus puts it, “we 

want generators to make something a human would make, or something we didn’t expect would 

be made [...] We want to be pleasantly surprised” (Backus, 2017). This is especially true of 

procedurally generated dialog where homogeneous outputs can damage the characters’ 

believability. In order to make a convincing procedural dialog generator for, say, allowing the 

player to have passing conversations with the inhabitants of a small town, a relatively simple 

approach would be to author a set of parameters that allowed for a very wide range of possible 

outcomes and to pair it with a set of checks and heuristics designed to break up patterns and 

similarities. Different projects however call for varying levels of authorial and procedural agency. 

A subjective interface needs to be believable as a character whilst allowing the player to play 

the game. This means that in practice the system has to generate dialog that is at once an 

accurate reflection of the game state and something that the player would expect the character 

to say. In other words, it needs to say just the right thing in just the right way. This amount of 

constraints as well as the impracticality of working at a higher level of abstraction combined to 

steer the project further and further away from generativity. 

 

2.4.1.3 CFG Templates 

Since the design team included three CFG authors, it was decided that each author would be 

responsible for one of the game’s three viziers. This allowed us to explore different authoring 

approaches as we were still familiarizing ourselves with Expressionist. However as development 

progressed, the limitations of the available authoring tools became more and more apparent. 

The lack of adequate debugging tools made it difficult for individual authors to track down and 



 

32 
 

resolve problems in the grammars. More often than not, solving these problems required the 

attention of two or more members of the team. Likewise, the limitations of Expressionist’s 

authoring environment (namely the absence of key usability features such as an undo 

command, a search function or the ability to organize symbols into a hierarchical structure) 

made it hard to iterate on existing grammars, especially as they ramped up in complexity. As a 

result, when characters would start to behave erratically, the authors often chose to scrap the 

faulty grammars and start over. This state of things quickly led to the development of a set of 

standard authorial practices that eventually coalesced into a CFG template that served as the 

basis for every new grammar. On top of making it easier for the authors to work together to 

resolve technical issues since they no longer had to learn each other’s authoring logic, the 

template also allowed them to get new grammars up to speed quicker. That being said, the 

presence of the template is reflected in the system’s outputs in that most of them loosely adhere 

to a structure where the viziers introduce themselves, give their report, and conclude with a 

statement that hints at their current moods and preferences. While this could be seen as an 

undesirable generative artifact, the particulars of Hammurabi’s setting help mitigate this 

issue─after all, it stands to reason that the communication between a king and his advisors 

would be somewhat formulaic. The grammars were also designed to leverage this pattern in a 

manner that strengthened characterization. For example, the reports of the vizier called Tamraz 

rigorously stick to the template which befits his stringent personality, whereas the other more 

iconoclastic viziers take much more liberties with it. Below is an example of how the viziers’ 

reports can differ in form as well as in tone even when they reference the same game state 

configuration. In this particular case, the viziers are reporting on the state of the welfare ministry 

after a particularly difficult year that saw a locust plague eat its way through the kingdom’s grain 

reserves, resulting in massive starvations. 

 



 

33 
 

Doumbaf Tamraz Cassandra 

“Long story short, a fat bunch 

of’em starved, pardon the 

pun. I’d tell you how many 

but... y’a know, numbers, me, 

that’s really never gonna 

happen.” 

“Feeding people is going to 

be difficult since locusts ate 

our grain. Despite the crisis, I 

fed them. Just not enough... 

The Gods are doing this 

because you are a prick.” 

“Your majesty, our population 

isn’t going to make it if we 

keep neglecting it like this.” 

 

 

As we can see, the viziers’ outputs differ a great deal. Doumbaf does not even mention the 

locusts since they did not affect him directly. Both Tamraz and Cassandra blame the player for 

the kingdom’s misfortunes, but Tamraz at least offers a hint of how the events of the last turn 

might factor into the player’s future decisions. Cassandra is uncharacteristically laconic, but this 

is an aspect of her whimsical character.  

 

In the final implementation, each vizier consists of several CFG’s that govern their decision-

making and dialog. The system achieves its goal of making interaction uncertain in several 

ways. The viziers introduce an element of ‘delegated input’ where the player’s commands are 

entered in the form of instructions that the viziers then carry out to the best of their abilities. The 

uncertainty lies in how the viziers’ performance is influenced by their personal preferences and 

competences which can fluctuate as the game progresses. Those values are never exposed to 

the player who instead must intuit them by paying careful attention to the manner in which the 

viziers report on the result of their actions. When the project was still in pre-production, the team 

had hoped that the subjective interface would carry all of the game’s feedback. As we shall see 

in the next section, it soon became clear that several key variables would need to be exposed in 

the game’s graphical interface because players needed a baseline of reliable information in 

order to properly contextualize the feedback provided by the viziers9. As a consequence, the 

                                                
9 The final game features a ‘voice of the people’ mechanic that was added late in development 

specifically to give players more data to contrast against the feedback provided by the viziers. 



 

34 
 

nature of the information carried by the vizier’s feedback evolved as development went along. 

Rather than serving as an interface to the game’s internal economy as per the project’s original 

premise, the vizier’s became interfaces to their own state as well as (perhaps most importantly) 

to each other’s state. This particular configuration was selected because it made the game 

playable and engaging, but it also meant that a significant portion of the game’s information flow 

would need to be handled by the game’s graphical user interface. 

2.4.2 Hammurabi’s Graphical User Interface 

This where the contrarian aspect of Hammurabi’s design truly came to the fore. Until then, the 

inefficiencies introduced by the subjective interfaces could have been offset by a sufficiently 

transparent and functional graphical user interface. However, the design team went very much 

in the opposite direction. As we shall see shortly, every successive iteration of Hammurabi’s 

GUI reduced clarity and transparency rather than magnify them. The final GUI configuration 

features a drag and drop operation that allows the player to assign the viziers to the ministries, a 

button to advance to the next turn as well as a turn indicator. These were left relatively 

untouched throughout development because they were deemed essential to the game’s 

playability. The last two features however─the resources gauges that tell the player how much 

resources they have and the resource sliders that allow them to allocate resources to each of 

the ministries─were designed and redesigned many times over, with each passing iteration 

made to be less functional than the previous one. As we shall see, the final solutions both skirt 

the line between dysfunctional and nonfunctional. 

2.4.2.1 Resource Gauges 

Perhaps ironically, the first Unity Engine implementation of the game had an interface not at all 

dissimilar to that of the Google Spreadsheet prototype. As we can see in figure 1, the player 



 

35 
 

allocated resources to ministries by inputting numerical values and the current values for 

population, acreage and grain stores were exposed.   

Figure 1 

After testing, it became apparent that giving the player access to those values made the game a 

little too transparent in a way that damaged the overall experience. For example, let us imagine 

a scenario where the player allocates 1000 grain to the agriculture ministries on turn 1. On turn 

2, they get 2000 grain back as crop yields and thus understand that the agriculture mechanic 

works by multiplying the allocated grain value by an integer. If the player then allocates 1500 

and gets back 2700, she can deduce that the vizier must have pocketed the missing grain. In 

other words, since Hammurabi’s internal economy is so simple, exposing key game state values 

as raw numbers meant that the player could easily reconstruct the game’s internal operations by 

performing rudimentary mental calculations, thus making the subjective interfaces transparent 

and thus superfluous. It also created frustration in players who chafed at being unable to punish 

the corrupt viziers. Clearly, the interface needed to be more opaque in order for the game to 



 

36 
 

work as intended. Certainty was not something we could afford to provide players with. That 

being said, some key game state variables still needed to be exposed in order for players to be 

able to make reasonably informed decisions. For starters, they needed to be able to gauge how 

much population remained in the city, since this value was tied to the game’s primary losing 

condition. Likewise, they needed to have a way to tell if the grain stores were abnormally low 

because this would require them to alter their decision-making. Since exposing these values 

directly had proven detrimental, they would need to be represented through a visual 

approximation. In figure 2, we can see an early iteration of this idea where the grain and 

population values are expressed as stacks of identical icons. 

 

Figure 2 

While this was a step up from raw numbers in terms of opacity, clever players could still intuit 

how much of a given resource each individual icon was worth and work out the game’s 

operations from there. Moreover, the identical icons were deemed to be damaging to the 

game’s visual appeal. In figure 3─which features the game’s final GUI assets─the grain and 



 

37 
 

population gauges are composed of icons of different sizes and shapes that toggle on or off as 

the amount of resources that the player has at their disposal fluctuates.  

 

Figure 3 

The heterogeneous assemblages of icons were designed to prevent the player from 

approximating the actual amounts of grain or population they had left and instead only allow 

them to evaluate whether their stocks were threading downwards or not. Since they represent a 

significant step down in both the clarity and the quality of the feedback provided, these gauges 

are anathema to standard UI design practice. Yet they are integral to how Hammurabi realizes 

its intended gameplay. 



 

38 
 

 2.4.2.2 Resource Sliders 

As raw numbers were being phased out of the game’s output, inputting resource budgets as 

numerical values became increasingly awkward. As we can see in figure 4, sliders were added 

to the interface relatively early in the implementation phase.  

 

Figure 4 

Although the actual numerical values were still displayed in the input fields, the team was 

already experimenting with more manual methods of input10. Figure 5 shows a later iteration of 

this particular input mechanic where the numerical values have been removed and the sliders fill 

up with the appropriate resource.  

                                                
10Sliders also helped alleviate the computational burden that previous iterations of the interface placed 

upon players. For example, in order to allocate an adequate amount of grain to the welfare ministry, 
players had to multiply their current population value by the amount of grain that a single unit of 
population requires to survive until next turn. Consequently, players who were less proficient at mental 
calculations often had to play the game with a calculator in hand. 



 

39 
 

 

Figure 5 

Later still in figure 6, the sliders work jointly with the grain gauge at the bottom left to allow the 

players to divide up the available grain amongst the three ministries (the grain icons disappear 

when a slider is pushed to the right, indicating that an undisclosed amount of grain has been 

allocated to the corresponding ministry).  



 

40 
 

 

Figure 6 

However, the ministries are more than mere resource drains. Each of them presents the player 

with the potential to either maintain or add to their current stocks of grain, land or population. In 

that respect, they function more like transactions where the player invests a certain amount of 

resources in order to achieve a desired result. In Hammurabi 1968, the player could estimate 

the result of a particular transaction by looking up the relevant game state variables and 

performing the necessary calculations in their head. Since those values are not exposed in the 

remake’s interface, the design team needed to find another way to allow players to anticipate 

the outcome of their actions. This turned out to be a persistent and difficult problem. In the case 

of the agriculture ministry─certainly the most straightforward of the three─the solution was 

relatively simple. When the player allocates grain to agriculture, grain icons disappear from the 

grain gauge at the bottom left. As the amount of grain invested increases, ‘ghost icons’ (icons 

with their alpha channel set to semi-transparency) begin to peek up from behind the regular 

icons. These ghost icons represent the expected return on the player’s investment. That is, the 



 

41 
 

amount of grain they should get back barring extraordinary circumstances or vizier meddling. 

This particular solution is on display in figure 7.  

 

Figure 7 

A similar solution was used for the welfare ministry, with the exception that the input slider was 

also modified to reflect the proportions of fed and unfed citizens given the amount of grain 

allotted (also in figure 7). The warfare ministry was a more complicated affair. The other two 

ministries had both an input slider and a resource gauge for the design team to work with, 

whereas the warfare ministry’s input slider doubled as its gauge. Worse, the warfare transaction 

takes in not one but two separate resources (land and grain) and involves a conversion between 

the two11. In the final game, the full length of the ministry slider represents all the land that exists 

in the game. The part on the left of the thumb is filled with flags and represents the portion of 

existing land that the player currently controls (see figure 7). By moving the thumb along the 

                                                
11 As a reminder, the player can perform two separate actions through the warfare ministry: they can 

either invade new land at the cost of grain or cede land in exchange for grain. 



 

42 
 

slider, the player can increase or decrease the amount of land they control. If the player slides 

the thumb to the left─therefore ceding land in exchange for grain─ghost icons begin to appear 

in the grain gauge that represent the amount of grain that the player can expect to receive on 

the next turn (again, barring any natural disaster or vizier meddling). By moving the thumb to the 

right, the player can attempt to claim new land under their rule. The larger the claim, the more 

grain icons begin to disappear from the grain gauge as grain is being diverted towards mounting 

the coming invasion. Admittedly, this is solution is more ambiguous than the other two. That 

being said, its impact on the overall experience is lessened by the fact that the warfare ministry 

is less integral to the game’s outcome than agriculture or welfare. 

2.4.3 The Contrarian Interface 

From the perspective of a standard user experience designer, Hammurabi’s graphical user 

interface leaves much to be desired. The feedback that it provides is sparse and vague. Its 

methods of inputs are awkward and fail to foster an intuitive mapping of the user’s intent over 

their available means of action. The result is a sense of remoteness, as if the system is actively 

trying to keep to user at a distance. This stands very much in contrast─or in contrary─to how 

video game interfaces are supposed to behave. This was a deliberate choice on the part of the 

design team, as was just discussed. The limitations of the interface from a standpoint of 

functionality were the result of intentional design, not an incapacity to make things clear to the 

player. The prototypes on display in the figures are unequivocal proof of this as each new 

iteration contains less unfiltered information than the last. The GUI was designed to funnel the 

player’s attention towards the project’s raison d’être: the viziers. Moreover, the game as a whole 

was designed to leverage the inefficiencies of its interface as sources of uncertainty and 

challenge. The remoteness of the interface helps reinforce this aesthetic by presenting the 

player with very little conclusive data to support their decision-making. Whether or not this 

challenge occasionally spills into frustration seems to depend on the degree to which individual 



 

43 
 

players are responsive to the game’s central conceit, i.e. that players should attempt to control 

the behaviour of the system without being given the optimal tools and information to do so. As 

my colleague Christopher Tan (a fellow member of the Hammurabi design team) put it, 

“Hammurabi a game about dealing with necessary evils and making the best out of a bad 

situation.” What differentiates it from other games that share a similar premise is that it 

specifically problematizes interaction at its most surface level to achieve its expressive aim 

rather than having it emerge out of the interactions of complex game systems. 

2.5 RECEPTION 

Almost a year has passed since Hammurabi’s release which gives us ample distance to reflect 

on how it was received by general audiences. Hammurabi was made available for free on online 

hosting platforms such as Newgrounds as well as on the Lablablab’s own website in early 

December 2017. It was also exhibited at several events including the Montreal Independent 

Game Festival, the Montreal Expo Gaming Arcade, the Wordplay festival in Toronto, and The 

Museum of Waterloo. On the show floors, player response was hit or miss as Hammurabi 

struggled to stand out among the multitude of games on display. It should however be noted 

that the players who took an interest in the game often stayed at the booth for long periods of 

time (upwards of thirty minutes). Moreover, Hammurabi fared much better in online venues 

where it made the front page of Newgrounds and received generally favorable reviews. In both 

cases, the game was able to appeal to a niche but enthusiastic audience which makes it more 

than a scholarly exercise in contrarian design12. Hammurabi is a prime example of how video 

game interfaces constrain information flow to create intrigue, suspense, conflict and challenge13. 

As I argued in chapter 1, the video game design literature currently lacks the necessary 

                                                
12 At the moment of writing, Hammurabi was played more than 9000 times on NewGrounds, 39 players 

chose it as a “favorite”, 230 voted for an average score of 3.79/5 stars. 
13 Other titles such as Kitfox Games’ Shrouded Isle (also on display at the 2017 Montreal Expo Gaming 
Arcade) also use the opacity of their interface to a similar effect, albeit not to the same emphatic extent. 



 

44 
 

aesthetic and formal vocabulary to provide for a meaningful discussion of this aspect of 

interface design. As such, the next chapter of this thesis will feature my attempt at addressing 

this issue as I will be putting forward a way of thinking about interface design that makes salient 

the principles and considerations that underlie the design of Hammurabi and other games of its 

ilk.  



 

45 
 

CHAPTER 3: TOWARDS AN EXPANDED 

UNDERSTANDING OF GAME INTERFACES 

3.1 BEATING HAMMURABI 

As I explained in chapter 1, the primary aim of this research was to address the discrepancy 

between how video game interfaces actually function and how they are described within video 

game design textbooks. I argued that our current definitions of video game interfaces were too 

narrow and that our design framework, which stresses that interfaces should maximize 

transparency and control, failed to account for how interfaces can bolster, enhance and even 

create gameplay, particularly from the standpoint of information flow. I hypothesized that 

purposively throttling information flow in a manner that inhibited the player’s agency could result 

in compelling gameplay experiences, even if doing so cut squarely against the grain of standard 

design practice. The creative part of my research allowed me to put this idea to the test. 

Hammurabi’s interface actively resists the player’s attempt to exert their will upon the game, to 

the extent that it constitutes the game’s main source of challenge. Over repeated playthrough, 

the player aggregates a more stable and actionable model14 of the game’s black-boxed contents 

(i.e. the rules that govern its internal economy and the data that makes up the viziers’ state). 

Once the player has reached the point where they can correctly interpret the viziers’ feedback 

and anticipate their behavior, the challenge is void and it is highly likely that the player will 

prevail. In other words, to beat Hammurabi is to master its interface. Central to this Hammurabi 

effect is the design of the game’s contrarian interface as it must obscure the game state while 

walking the fine line between challenge and frustration. Rather than transparency and control, 

we propose to think in terms of opacity. Although all video game interfaces will eventually 

                                                
14 This model is not necessarily accurate, but it is stable in the sense that the game’s runtime behavior is 

less likely to cause the player to revise it and actionable in that it increases the player’s agency over the 
game state. 



 

46 
 

become functionally transparent to the player given an arbitrarily long interaction window, an 

opaque interface will take longer to do so. In that sense, the interface’s opacity level really 

describes the amount of time it takes before the player can see through it. In the next section, I 

will lay out some of the core concepts and strategies that were elaborated during Hammurabi’s 

development and which proved helpful in approaching the design of its opaque interface. 

3.2 DESIGNING FOR OPACITY 

 

Opaque interfaces are awkward to design within current design frameworks since they frame 

them as inelegant or failed solutions. The purpose of this section is to propose a high level 

design vocabulary that will assist designers in exploring solutions that lie outside the bounds of 

standard practice. I chose to present them in the form of a series of design lenses (in the spirit 

of Jesse Schell’s book Art of Game Design) because this format lends itself well to how these 

concepts are meant to be used. They are meant as windows into unfamiliar or counter-intuitive 

possibilities, to be used and discarded as the situation dictates. Each lens consist of an 

explanation of the relevant concepts and a set of questions that help designers bring their 

inquiries into focus. The lenses offer a coarse-grained picture of the dependencies and 

constraints that underlie the design of opaque interfaces which can then be refined and tailored 

to the priorities of individual projects as the iterative process runs its course. For added context, 

each lens is followed up by examples that show how these concepts reflect on Hammurabi’s 

design. 

 

Lens #1 : Availability of Game State Data 

This is undoubtedly the most straightforward of the lenses presented in this chapter and the 

one that is most readily associated with the idea of an opaque interface. This makes it a good 



 

47 
 

place to start from. Quite simply, the availability of game state data describes the portion of 

the game state that the player can ‘see’. Naturally, most games do not expose the entirety of 

their runtime data since doing so would result in information overload where the player is 

unable to process all of the data that they are presented with (in that sense, it could be said 

that maximizing the availability of game state data can actually increase opacity). The key 

difference between an opaque interface and one that subscribes to standard usability 

practices is that the former overtly presents the player with obstacles for them to overcome. 

The first step is thus to establish what is known to the player and what is not since is doing will 

dictate which problems they will have to solve. Once that has been decided, designers can 

add in ways for the player to work around the obstacles. Here are are some strategies for 

tackling this problem. 

● Make an inventory of all the data that makes up the state of the game at the lowest 

level of abstraction. What information must be made available in order for the game to 

be playable (e.g. data that relates to win/lose conditions or that is essential to 

operating the game’s core mechanics)? 

● What does the player want to know? Can this information be denied to them and if so, 

how does this impact the gameplay? 

● How much of the remaining data can be omitted or left up to the player’s 

interpretation? How does this affect the player’s perception of events? 

 

As was discussed in chapter 2, Hammurabi does not allow the player direct access to its in-

game economy. All inputs and outputs flow through the game’s AI-controlled character, which 

establishes them as the game’s primary obstacle. This was effective in focusing the player’s 

attention on their interactions with the characters, as exposing too much of the game state 

would have rendered the subjective interfaces superfluous. Other games also partition their 



 

48 
 

game state data in a manner that shapes their gameplay. The ‘fog of war’ mechanic where the 

player’s vision does not extend past the line of sight of the units under their control is perhaps 

the most literal implementation of this idea, and it has been nearly ubiquitous in both real-time 

and turn-based strategy games for several decades. Likewise, racing games will typically force 

the player to alternate between looking forward to negotiate turns and avoid hazards and 

backwards to track other racers. Finally, in Five Nights at Freddy’s (Scott Cawthon, 2014) evil 

robots converge on the player’s location who must track their movements and position using 

security cameras. The robots generally don’t move when the player watches them, but the 

player can only look through one camera at once. The game effectively leverages these gaps in 

the player’s perception of the game state to create a feeling of suspense and dread. In all of 

these case, the game takes a piece of information that the player very much wants to know and 

denies it to them, which shapes the gameplay in profound ways. 

 

Lens #2 : Information Flow 

Information flow describes the manner in which information that pertains to the game state is 

funneled through the interface’s input and output channels, where the input channels allow 

the player to input commands while the output channels carry the system’s feedback. The 

amounts of information that these channels can convey determine the interface’s input and 

output bandwidths15. If the amount of information that is exchanged between the player and 

the game exceeds this bandwidth, information flow becomes saturated and the game 

becomes unplayable. While full on saturation is never a good thing, an interface that 

approaches saturation makes it more difficult for the player to map their actions onto the 

                                                
15  To use a commonplace example, a character’s health bar is an output channel that exposes a single 

quantity within the game state. It allows the player to keep track of the character’s health, but tells them 
nothing about the reason(s) why the health value is changing. Therefore, the health bar is limited in the 
amount of information that it can convey. If the interactions between the health system and the rest of the 
game are made too numerous or complex, a single health bar can quickly become saturated. 



 

49 
 

system’s reactions, thus increasing its opacity level. This can be achieved in several ways. 

For example, lowering the input bandwidth (for example, by removing input channels) can 

decrease the game’s opacity since it makes it easier for the player to probe the system 

through a black-box testing approach. Conversely, a lower amount of output channels will 

typically increase opacity since it increases the odds that different input will yield a similar 

answer, making it harder for the player to infer causal relationship. When deciding what kind 

of information flow would benefit a game the most, it is helpful to ask oneself the following 

questions. 

● What inputs/outputs channels are built into the game’s interface? 

● How many things is the game doing in response to the player’s actions, and how does 

this amount compare to the interface’s output bandwidth? Is the interface at or 

approaching the point of saturation and is this desirable here? 

● In the case that saturation does support the game’s intended experience, which input 

channels could be added to the interface in order to make the mapping of inputs and 

outputs less linear? Which output channels could be removed, merged or otherwise 

obstructed in order to make harder for the player to perceive and/or interpret the 

system’s reactions? 

 

In Hammurabi’s case, the interface features a very narrow input bandwidth. The player’s 

available actions are limited to assigning resources and viziers to each of the three ministries 

and pressing the turn button. The amount of output channels is comparatively high as the 

interface presents the players with resource gauges, vizier dialog and the people’s voice. 

However, the game output bandwidth is not commensurate with its underlying complexity, which 

causes some output channels to saturate. This is most evident in the resource gauges which, as 

was discussed in chapter 2, convey more information than their design can reliably handle 



 

50 
 

(especially the warfare gauge). Consequently, Hammurabi would sit toward the leftmost 

boundary of the above diagram. Both its input and its output bandwidth are narrow, especially in 

relation to its underlying complexity, which creates a labored information flow. Saturation thus 

factors into the high opacity of Hammurabi’s interface, although much of it comes from other 

sources. This illustrates how opacity should be approached in a manner that is similar to game 

balance were the end result is the product of the interactions of several moving parts. In that 

sense, we can think of the design lenses that are featured in this chapter as design levers that 

should be fine-tuned to create the desired effect. 

 

However, if information flow can exceed the interface’s transmission capacity, it stands to 

reason that it could also fall short of it, thus creating a situation where information flow becomes 

rarefied. To the best of my knowledge, no such design exists. Hammurabi achieves its effect 

mainly through a combination of saturation and low quality feedback (see Lens #3: Quality of 

Feedback, p.56). The affordances of rarefied information flow in video game interfaces have 

thus yet to be explored─if they exist at all. It may turn out to be a purely diagnostic concept, in 

the sense that its purpose is to diagnose faulty game interfaces. However, many designers and 

researchers today would argue the same about saturation and opacity in general, even though 

they are central to Hammurabi’s design. Future research may thus reveal how rarefaction, much 

like saturation, can also be leveraged as a source of opacity.  

 

The output bandwidth of an interface can only be meaningfully evaluated in relation to the 

amount of information that it is funneled through it. The interface’s information flow is therefore 

determined by the interactions of three key parameters: the interface’s input bandwidth, its 

output bandwidth, and the complexity of the underlying game systems (see Lens #4: Underlying 

Complexity, p.57). The many ways in which these parameters can interact to produce different 

effects are represented visually in the diagram below. 



 

51 
 

 

The values above are approximative and meant to help designers apprehend and evaluate the 

options that are available to them in terms of information flow in game interfaces. Examples of 

saturated or rarefied information flow are a rarity in existing games because their applications 

for game design have yet to be explored in depth. Ocelot Society’s Event[0] (2016) is one such 

rare case as its premise is somewhat similar to Hammurabi’s. The player is cast as an astronaut 

investigating the fate of a derelict spacecraft. In order to do, they must befriend the ship’s 

onboard computer called Kaizen 85. The player’s interaction with Kaizen are text-based, and 

the AI’s personality is responsive to the player’s attitudes and actions. Underlying complexity is 

thus quite high, but the only means of interacting with Kaizen is the conversation interface, 

which is more limited that initial appearances may suggest. Kaizen’s dialog is plentiful and 

varied16, but it will only respond to a specific set of commands from the player. The system’s 

output bandwidth is thus commensurate with its high underlying complexity, but the player’s 

ability to poke and prod at it is comparatively low, resulting in a somewhat labored information 

flow. Referring to the chart above, we could describe the information flow of Kaizen’s 

conversation interface as a type O+, C+, I-, still within the optimal zone, yet exhibiting a degree 

of resistance to interaction. The player is never able to know with certainty what Kaizen is 

                                                
16 In a 2016 interview for eurogamer, the game’s developers have alleged that Kaizen’s dialog generation 

system could produce over two million lines of dialog. 



 

52 
 

thinking or why. Of course, this works to the game’s advantage as preserving the mystery as to 

Kaizen’s motives and identity is integral to the game’s plot. 

 

For a more mainstream example, From Software’s Dark Souls (2011) is infamous for its refusal 

to expose its character building mechanics to the player. Dark Souls’ class leveling and 

equipment systems are both fairly elaborate, but the player is given very little cues as to the 

impact of their decisions, especially in the mid to long term. The optimal builds have since been 

theorycrafted made available on online community platforms. However at the time of the game’s 

release, it was not uncommon for players to find themselves locked into a subpar build that 

made the game nigh unbeatable. In terms of information flow, Dark Souls’s character building 

system can be described as a type O-, C+, I+, where the game’s output bandwidth is decidedly 

not commensurate with its complexity, resulting in a saturated information flow. Dark Souls gets 

away with this by styling itself as an antagonistic, often punishing experience where the opacity 

of the interface is just one of the many ways in which the game challenges the player. 

 

Lens #3 : Quality of Feedback 

Feedback that is either unreliable or difficult to for the player to interpret or parse through will 

increase opacity. Unreliable feedback is typically relayed by semi-autonomous agents that are 

either error-prone or deliberately misleading. Feedback can be difficult to interpret when it is 

communicated through indirect means (for example, the player can witness the consequence 

of a non-player character’s action rather than the action itself) or when multiple feedback 

sources are in contradiction. Likewise feedback that features a low signal to noise ratio is 

more difficult to parse, meaning that it is harder for the player to isolate the important part of 

the message. 

● Could feedback be relayed through non-player characters and if so, how might their 



 

53 
 

characterization affect the quality or the content of the feedback? 

● Which gameplay events could be implied rather than displayed? 

● How could different feedback sources be made to convey divergent perspectives on 

gameplay events? 

● Which feedback sources could be made to carry more information than necessary? 

 

In Sid Meier’s Civilization V (Firaxis, 2010) some AI leaders will attempt to placate the player 

with declarations of friendships. However should the player’s military strength fall too low, these 

same leaders will pounce on the player’s undefended territories without hesitation or regard for 

past declarations. That being said, the player is not totally left out of the loop: by observing the 

movements of the AI Leader’s armies, the player can get a clue as to their current disposition 

toward their neighbors. This is an example of how feedback that is both indirect and misleading 

can enhance diplomacy dynamics in strategy games by adding a layer of intrigue to the 

mechanical transactions between factions. Other examples of indirect feedback include Kitfox’s 

Shrouded Isle, where the characters have hidden personality traits which the player must 

uncover by observing the characters’ behavior. In both cases, the player is denied a piece of 

information that is vital to the game’s outcome, and must instead infer it by looking at how this 

information might become manifest elsewhere in the game world. Another approach is to dial 

down the feedback signal to noise ratio in a manner that echoes a common game design 

technique where the player is presented with a large set of elements and is then asked to 

isolate or select the ones that are most important or meaningful (3909 LLC’s Papers, Please 

(2013) uses this principle in its core mechanic17). Parsing through the game’s feedback then 

requires a non-trivial effort which the game can leverage as a source of challenge. Hammurabi’s 

                                                
17 The player is cast as a border crossing officer in the fictional country of Arstotzka and must 
spot missing or falsified information amidst the paperwork of potential immigrants before 
deciding whether or not they should be allowed into the country. 



 

54 
 

feedback combines all of these approach. The game features multiple feedback sources that 

carry inaccurate, misleading and contradicting information. The viziers’ dialog is often laden with 

unnecessary verbiage that obscures the heart of the matter and several gameplay events have 

to be deduced from observation, such as the viziers plotting to overthrow the player. 

 

Lens #4 : Underlying Complexity 

While it has far reaching implications for the entirety of a game’s design and not just that of its 

interface, complexity is perhaps the single most important variable to keep track of when 

designing an opaque interface. As discussed in chapter 2 as well as in Lens #2 : Information 

Flow (see p.54), high underlying complexity tends to make opaque interfaces unstable since it 

can quickly saturate their limited information bandwidth and make the game all but 

unplayable. In general, it is more prudent to keep it at a minimum. However, that isn’t to say 

that system complexity is necessarily something to be avoided. In many cases, a system that 

reveals itself to be less complex than what it suggests is met with disappointment as it fails to 

live up to the player’s expectations. This is what new media scholar Noah Wardrip-Fruin has 

called the ELIZA effect (2009). Wardrip-Fruin also coined a term that describes the opposite 

scenario: the Talespin effect, where high underlying complexity is not reflected in the system’s 

output, thus creating a situation where the player is not allowed to interact with the most 

interesting parts of the game’s systems (2009). In both cases, the degree to which the player 

is allowed to experience the complexity of the game system is determined by the extent to 

which the player is able to ‘see’ through the game’s interface. Complexity and opacity are thus 

locked in a delicate balancing act where the manner in which the latter allows the player to 

perceive the former will shape the players’ expectations as to the game’s procedural contents. 

The ELIZA effects illustrates how the nature of these expectations and the extent to which the 

game fulfills them should be handled with care, as they can have a profound influence the 



 

55 
 

player’s experience. 

● Are the channels of interaction commensurate to the possible gauging of complexity 

by the player? I.e. will the player ever be able to make sense of the system’s 

workings? 

● Does the game include systems that generate an amount of data that is 

disproportionate to their contribution to the player’s experience? If so, can they be 

simplified, replaced or removed? 

● What expectations does the game as a whole create in players in terms of the 

responsiveness, variety and flexibility of its run-time behaviour? Can the game’s 

systems possibly meet these expectations in a satisfying manner? And if not, what 

measures can be taken to remedy the situation? 

 

For most games, the relationship between perceived complexity and actual system complexity 

is hard to evaluate since their source code and detailed design documents are rarely made 

public. That being said, there is a generalized tendency to use clever design to make systems 

appear more intelligent, more autonomous and more complex than they actually are.The ghosts 

in Pac-Man (Namco, 1980) are a textbook example of this practice as their simple pathing logic 

manages to give the impression that the ghosts are working together to corner the player18, 

while in actuality individual ghosts are never aware of each other’s position. Pac-Man’s example 

shows how low underlying complexity does not necessarily result in an ELIZA effect. In most 

cases, players seem perfectly willing to forgive some measure of hand-waving on the designers’ 

part, so long as the gameplay is sound. Perhaps because of the medium’s performance-

sensitive nature, game designers and developers have found ways to achieve success by doing 

more with less. Correspondingly, occurrences of Wardrip-Fruin’s Talespin effect are rare in 

                                                
18 For an in depth discussion of the logic that underlies the movements of Pac-Man’s ghost, see Maré, 

2018: https://dev.to/code2bits/pac-man-patterns--ghost-movement-strategy-pattern-1k1a 

https://dev.to/code2bits/pac-man-patterns--ghost-movement-strategy-pattern-1k1a


 

56 
 

video games because normal game development tend to filter them out. However the meeting 

of player perceptions, expectations and reality can play out in many other ways. Wardrip-Fruin 

theorizes a Sim City effect which emphasizes the role of the graphical user interface in 

presenting the user with an “overt metaphor” for the game’s systems (2009). This metaphor 

serves as an approximate model for the game’s procedural contents which is then refined 

through trial and error. Whereas the ELIZA effect culminates in breakdown and collapse, the 

Sim City effect arcs upward as the player moves from experimentation to discovery and finally 

self-expression.  

 

Hammurabi can be described as a variation on that idea. Sim City (Maxis, 1989) and 

Hammurabi both use their interface to provide the user with a baseline model of the system 

internals. However, they take the player on very different journeys. While Sim City was designed 

to get users excited about learning how to assemble complex virtual machines, Hammurabi 

styles itself as a game of competition between human and machine. And whereas Sim City’s arc 

runs from experimentation to discovery and self-expression, Hammurabi’s takes the shape of an 

uphill struggle where the odds of victory progressively shift in the player’s favour as the opacity 

of the interface gradually dissolves. In both cases, the complexity of the game’s systems and 

the opacity of its interface are tuned to allow the player to experience the former in a manner 

that supports the game’s intended experience. Sim City uses minimal opacity and high 

underlying complexity to facilitate learning, while Hammurabi uses high opacity and low 

underlying complexity to create challenge and allow for the eventuality of triumph. If 

Hammurabi’s systems were even more complex than they already are, the game might be too 

opaque to be enjoyable. Several of Hammurabi’s systems were simplified or scrapped in order 

to achieve this effect, such as the personality traits system, the random events system and a 

mechanic that represented the happiness level of Babylon’s population. As discussed in 

Chapter 2, these systems introduced extraneous complexity that was damaging to the overall 



 

57 
 

experience. That being said, the members of the development that were interviewed in 

preparation for the writing of this thesis were in agreement that the game would have benefitted 

from being streamlined further. Had the team become fully appreciative of the relationship 

between complexity and opacity sooner in the game’s development, the final game may have 

turned out very differently. 

 

Lens #5: Duration of the Interaction Window 

Like complexity, choosing the duration of the interaction window will have repercussions 

across every aspect of a game’s design. That being said, it is of special consequence to 

opacity because of the latter’s time-dependent nature. Since opacity describes the amount of 

time it takes for the interface to become functionally transparent to the player, then the 

manner in which it relates to the duration of a typical play session will influence how the 

game’s opacity is interpreted by the player. A low ratio of duration to opacity may incentivize 

replayability, especially if underlying complexity is high since this increases the amount of 

content that the player can uncover over repeated attempts. However, this is only appropriate 

in games that leverage the opacity of their interface as their main source of challenge. In more 

narrative-driven games where the payoff is tied to the plot’s denouement, a higher ratio may 

be more advisable (perhaps as high as 1:1 where the interface has become functionally 

transparent by the time the player has finished the game’s story). In both cases, the 

relationship between opacity and duration can help bring the game’s intended experience into 

focus. 

● What is the average length of a play session? 

● How much of the game’s challenge rests in the opacity of its interface? 

● How long should it take for the interface to become transparent? Should it take more 

than one play session? 



 

58 
 

 

From the beginning, Hammurabi was designed as a ‘die and retry’ game where the player’s first 

few attempts almost inevitably end in abrupt defeat. As a result of this approach, the duration of 

the interaction window was set in the 5-10 minutes range, as short play sessions incentivize 

replayability and lessen the sting of defeat. This helped the team define the game’s opacity 

level. Since we wanted players to be able to figure out the game before their interest waned, it 

was deemed that the interface should become functionally transparent after 30-40 minutes of 

play. In Event[0], the opacity of the conversation interface is an accessory to the game’s 

through-line, that is uncovering the mystery that underlies the game’s plot. As such, it becomes 

functionally transparent relatively quickly, over one or two playthroughs. Seeing as much of the 

interest of repeated playthroughs of Event[0] rests in experiencing the many ways in which its 

narrative can unfold, this also works to the game’s benefit since it allows the player to easily 

navigate their way to the game’s alternate endings. For a more contrasted example, Dark Souls’ 

character building system is so thoroughly opacified that players need to invest several play 

sessions, each one lasting several hours, in order to be able to make sense of it. In this case, 

the duration of the interaction window is very high (a single playthrough of Dark Souls can 

stretch over a hundred hours), and the opacity level of the character building follows suit and 

becomes a meaningful chapter in the player’s struggle. 

 

Lens #6 : Levels of Encapsulation 

Video games typically comprise several interconnected interactive systems (inventory 

systems, internal economies, progression systems, etc.) The game’s interface must mediate 

the player’s interactions with all of these systems, but it does not have to do so in the same 

manner. Hammurabi is a single screen game, but most modern video games are not. Put 

another way, the interface’s opacity level does not have to be uniform. Adding a level of 



 

59 
 

encapsulation means creating an opaque layer around a specific part of the game, with 

different levels of encapsulations having varying levels of opacity (we think of it as creating a 

nested instance of this entire conversation). Many game systems are often ‘individually 

wrapped’ in this way. The details of how procedural content generators and AI behaviour 

routines operate are rarely exposed to the player which must instead derive their current state 

by observing their outputs. Encapsulation can have many uses such as focusing the player’s 

attention on specific parts of the game, avoiding information overload by filtering extraneous 

data or adding gameplay to otherwise mundane systems. It is not strictly a tool to increase the 

opacity level of the interface, but rather a way to focus it. That being said, the interface‘s 

overall opacity level seems to be at least partly determined by that of its individual 

components. As a result, adding many levels of encapsulation will generally increase the 

game’s overall opacity level. 

● Make an inventory of the key systems that make up the game. How does the player 

interact with each of the systems?  

● Which of these interactions are central to the experience? Could some of those 

interactions be streamlined to bring the experience into sharper focus? 

● Do these interactions allow the player to experience the possibilities of each system to 

a satisfying extent? 

 

As I said, this lens does not dovetail with Hammurabi’s static, single screen design and 

relatively simple architecture. Rather, its purpose is to illustrate how these concepts can be 

ported to other designs that do not share these characteristics. For example, we can imagine a 

stealth game inspired by 1990’s spy-themed action thrillers where the protagonist has to 

contend with enemies on both sides of the story’s central conflict (in the spirit of the Mission 

Impossible and Bourne franchises). In this imaginary game, the player must of course infiltrate 



 

60 
 

enemy strongholds while avoiding detection and direct confrontation as much as possible in 

order to complete their mission objectives. In this moment to moment gameplay, the player very 

much wants to know three things: where the guards are, what they are doing, and where they 

will be next. However this is a proper espionage fiction thriller, and so the player has no 

guarantee that their mission objectives are what they appear to be. They are after all an 

expendable asset caught in the machinations of history. Some of these objectives could impact 

the game world in a way that the player did not expect or intend. Some of them could lead the 

player into a trap. The player wants to know which objectives are righteous and how fulfilling 

them will impact the plot, but in order for the game to deliver on its premise, they must never 

know for sure. 

 

So here we have two systems that need to be opacified in order for the game to work as 

intended: the one that controls the guards’ behavior and the one that presents the player with 

mission objectives. These systems are not entirely uncoupled, but they stand quite apart in both 

the nature of their outputs and the level at which they contribute to the player’s experience (for 

example, they are embedded in short-term and medium to long-term game loops, respectively). 

As such, the strategies that designers use to opacify them will be very different. For example, 

the game could give the player a series of environmental clues that hint at the guards’ location, 

their routines and their level of alertness. In this particular case, the game world itself would 

stand as the primary interface between the player and the AI-controlled guards where the 

latter’s state is communicated through a visual and iconic ‘language’ that the player learns to 

interpret as they become more familiar with the game’s level design. As for the mission 

objectives, they could be delivered through mission handlers which would themselves be 

wrapped in something akin to a subjective interface, leaving it up to the player to assess the 

level of trustworthiness of their superiors and colleagues. Because of the large differences in the 

manner and the extent to which these systems are exposed, it makes the most sense to think of 



 

61 
 

them as belonging to different levels of encapsulation even though they are both examples of 

opacity in video game interface design. 

3.3 SUMMARY & DIAGRAM 

The table below offers a summary of these concepts and shows how they can be arranged into 

a design method (although just like Jesse Schell’s lenses, they don’t have to be). 

Availability of game state data 

How much of the game state is the player 
able to access and of this amount, how much 
is directly exposed and how much must be 
inferred through indirect means? 

Information flow  

How can the interface’s input and output 
channels be adjusted to create the type of 
information flow that would best support this 
inference process (saturated, optimal or 
rarefied)? 

Quality of feedback   
How can the quality of the game’s feedback 
be adjusted to make this process this 
process adequately challenging? 

Underlying complexity 
Given the above, how much of the system’s 
underlying complexity manages to translate 
to the player’s experience? 

Duration of the interaction window 

Is the duration of the interaction window 
commensurate with the amount of time that 
the player would need in order to get the 
most out of the game?  

Levels of encapsulation 

This approach can applied to the game as a 
whole, particularly in the case of a single-
screen design such as Hammurabi, but it can 
also be used to analyze the design of 
individual systems that make up a more 
complex game. 

 

Although they can be packaged in this linear manner, we should not overlook the fact that these 

concepts are deeply interconnected. As I have stated before, they are better understood as 

members of an ecosystem where changes to one element can affect the others in dynamic and 



 

62 
 

unanticipated ways. The diagram below makes some of these connections explicit in the hope 

that future designers can better navigate this problem space. 

 
 

Although opacity is first and foremost an interface design concern, it has repercussions across 

the entirety of a game’s design, from that of its rules and systems to its intended duration. 

Opacity, complexity and duration appear to be inextricably linked in ways that open interesting 

perspectives for future designs. For example, while it is true that too much complexity can cause 

an opaque interface to become saturated, the right amount of opacity can make a simple game 

appear more complex than it really is, provided that the interaction window is short enough that 

the player is not given enough time to see through the subterfuge. As I hinted earlier, this is an 

idea that Hammurabi’s design team would have been keen to explore given the right 

circumstances. 

  



 

63 
 

CHAPTER 4: CONCLUSION 

As I argued in Chapter 1, the current conceptual framework of video game design is in a 

fragmented state where the concepts that we use to guide our perception of what makes up a 

game were borrowed from other disciplines and domains of knowledge, each with their own 

priorities and perspectives. When those concepts reach the limit of their applicability to video 

games, we are left with aporias in our theoretical discourse. This phenomenon was especially 

apparent in and around the topic of video game interfaces and their design where a large 

portion of the literature asserted that game interfaces should strive to maximize transparency 

and player agency. In making Hammurabi, the Lablablab team threw out every rule in the book 

and made a game that does not deviate from these conventions so much as it lampoons them. 

And yet, it works. It is not a perfect game, but it is very much a game with an audience to vouch 

for it. This success has allowed me to re-open the theoretical conversation surrounding game 

interfaces and offer a theoretical perspective that elucidates the design of Hammurabi and other 

games like it. It also validates the approach that this research has taken, where I used 

contrarian design to investigate the merits of hitherto negatively valued design possibilities. The 

future will see ample opportunities for other researchers to use a similar approach to shore up 

other gaps in our understanding of video games and their design, such as how players derive 

meaning from gameplay and the ever-looming gameplay/story problem.  

 

At a more general level, the fact that this approach has proved productive speaks to the 

usefulness of games that call into question our definitions of what a game is or should be. 

These ‘edge cases’ afford us unique vantage points from which to criticize the assumptions that 

are built into our definitions. Hammurabi is an example of this, but not all edge cases need be 

the product of a research-creation effort. Edge cases abound on the video game marketplace 

where the incentive to innovate fuels constant experimentation. Walking simulators, for 



 

64 
 

example, have recently emerged as a successful if highly polemical game genre that blurs the 

line between gameplay and interactive storytelling19. The crux of the controversy surrounding 

walking simulators seems to center around the issue of whether or not they are in fact games. If 

Hammurabi’s case is any indication, understanding how and why walking simulators succeed or 

fail as games may bring an expanded understanding of narrative gameplay. 

  

                                                
19 Dear Esther (The Chinese Room, 2012[2008]), Gone Home (Fullbright, 2013) and The Stanley Parable 

(Galactic Cafe, 2013[2011]). 



 

65 
 

BIBLIOGRAPHY 

Adams, Ernest W. 2010(2006). “Fundamentals of Game Design (2nd edition)”. MIT Press, 

Cambridge, MA, USA. 

 

Arsenault, Dominic. 2005. "Dark waters: spotlight on immersion". In Proceedings of GAMEON-

NA. EUROSIS, Ghent, BE.  

 

Backus, Kenny. 2017. “Managing Output”. In T. Short and T. Adams (Eds.) Procedural 

Generation in Game Design. A K Peters/CRC Press, New York, NY, USA. 

 

Bogost, Ian. 2008. “Persuasive Games: Windows and Mirror’s Edge”. Gamasutra. Retrieved on 

October 22, 2018, from 

www.gamasutra.com/view/feature/132283/persuasive_games_windows_and_.php 

 

Chapman, Owen; Sawchuck, Kim. 2012. “Research-Creation: Intervention, Analysis and Family 

Resemblances". Canadian Journal of Communication, vol. 37, issue 1, april 2012. Retrieved on 

October 14, 2018, from https://www.cjc-online.ca/index.php/journal/article/view/2489 

 

Compton, Kate; Kybartas, Ben; Mateas, Michael. 2015. “Tracery: An Author-Focused 

Generative Text Tool”. In Proceedings of Social Media Fictions. Designing Stories for 

Community Engagement: 8th International Conference on Interactive Digital Storytelling, 

Copenhagen, Denmark. 

 

Costikyan, Greg. 2013. “Uncertainty in Games”. MIT Press, Cambridge, MA, USA. 

 

DiSalvo, Carl. 2012. “Adversarial Design”. MIT Press, Cambridge, MA, USA. 

 

Downton, Peter. 2003. “Design Research”. RMIT University Press, Melbourne, AU. 

 

Dunne, Anthony. 2006. “Hertzian Tales”. MIT Press, Cambridge, MA, USA. 

 

Ermi, Laura; Mäyrä, Frans. 2005. “Fundamental Components of the Gameplay Experience: 

Analysing Immersion”. In Proceedings of the 2005 DiGRA International Conference: Changing 

Views: Worlds in Play, vol. 3. Vancouver, CA. 

 

Frankel, Lois; Racine, Martin. 2010.  “The Complex Field of Research: for Design, through 

Design, and about Design”. Retrieved on October 22, 2018, from. 

http://www.drs2010.umontreal.ca/data/PDF/043.pdf 

 

Garret, Jesse James. 2002. “The Elements of User Experience: User-Centered Design for the 

Web and Beyond”. New Riders, San Francisco, CA, USA. 

 

http://www.gamasutra.com/view/feature/132283/persuasive_games_windows_and_.php
https://www.cjc-online.ca/index.php/journal/article/view/2489
http://www.drs2010.umontreal.ca/data/PDF/043.pdf


 

66 
 

Grinblat, Jason. 2017. “Designing for Modularity”. In T. Short and T. Adams (Eds.) Procedural 

Generation in Game Design. A K Peters/CRC Press, New York, NY, USA. 

 

Jørgensen, Kristine. 2013. "Gameworld Interfaces". MIT Press, Cambridge, MA, USA. 

 

Juul, Jesper. 2013. “The Art of Failure: An Essay on the Pain of Playing Video Games”. MIT 

Press, Cambridge, MA, USA. 

 

Khaled, Rilla; Lessard, Jonathan; Barr, Pippin. 2018. “Documenting Trajectories in Design 

Space: a Methodology for Applied Game Design Research”. In Proceedings of FDG 2018: 13th 

International Conference on the Foundations of Digital Games. Malmö, SE. 

 

Lazzaro, Nicole. 2004. “Why We Play Games: Four Keys to More Emotion in Player 

Experiences”. In Proceedings of the Game Developers’ Conference, San Jose, California. USA. 

Retrieved on October 11, 2018, from http://twvideo01.ubm-

us.net/o1/vault/gdc04/slides/why_we_play_games.pdf 

 

Lessard, Jonathan; Arsenault, Dominic. 2016. “The Character as a Subjective Interface”. 

Lablablab.net. Retrieved on October 22, 2018 from 

https://lablablab.net/papers/SubjectiveInterface_ICIDS2016.pdf 

 

Lessard, Jonathan; Brunelle-Leclerc, Etienne; Gottschalk, Timothy; Jetté-Léger, Marc-Antoine; 

Prouveur, Odile; Tan, Christopher. 2017. "Striving for author-friendly procedural dialogue 

generation". In Proceedings of tFDG 2017: 12th International Conference on the Foundations of 

Digital Games. Hyannis, MA, USA. 

 

Matulef, Jeffrey. 2016. “Event[0] is 2001 meets Firewatch, due this September”. Eurogamer.net. 

Retrieved on november 23, 2018 from https://www.eurogamer.net/articles/2016-07-13-event-0-

is-2001-meets-firewatch-due-this-septembe 

 

Nakamura, Jeanne; Csikszentmihalyi, Mihaly. 2002. “The concept of flow”. In C. R. Snyder and 

S. J. Lopez (Eds.), Handbook of positive psychology. Oxford University Press, New York, NY, 

US. 

 

Novak, Jeannie; Saunders, Kevin. 2012. “Game Development Essentials: Game Interface 

Design”. Delmar Publishers Inc., Clifton Park, NY, USA. 

 

Quinten, Niels; Maillet, Steven; Conix, Karin. 2017. “Gaps of Uncertainty: a Case for 

Experimentation in Serious Game Design Frameworks”. In P. Lankoski, J. Holopainen (Eds.) 

Game Design Research: An Introduction to Theory and Practice. ETC Press, Pittsburgh, USA. 

 

Ryan, James; Seither, Ethan; Mateas, Michael; Wardrip-Fruin, Noah. 2016. “Expressionist: An 

Authoring Tool for In-Game Text Generation”. In Proceedings of Interactive Storytelling: 9th 

International Conference on Interactive Digital Storytelling. Los Angeles, CA, USA 

http://twvideo01.ubm-us.net/o1/vault/gdc04/slides/why_we_play_games.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc04/slides/why_we_play_games.pdf
https://lablablab.net/papers/SubjectiveInterface_ICIDS2016.pdf
https://www.eurogamer.net/articles/2016-07-13-event-0-is-2001-meets-firewatch-due-this-septembe
https://www.eurogamer.net/articles/2016-07-13-event-0-is-2001-meets-firewatch-due-this-septembe


 

67 
 

 

Salen, Katie; Zimmerman, Eric. 2004. “Rules of Play”. MIT Press, Cambridge, MA, USA. 

 

Samuel, Ben; Ryan, James; J. Summerville, Adam; Mateas, Michael; Wardrip-Fruin, Noah. 

2016. “Bad News: An Experiment in Computationally Assisted Performance”. In In Proceedings 

of Interactive Storytelling: 9th International Conference on Interactive Digital Storytelling. Los 

Angeles, CA, USA 

 

Schell, Jesse. 2015(2008). “The Art of Game Design: A Book of Lenses”. CRC Press, Boca 

Raton, FL, USA. 

 

Sicart, Miguel; Wilson, Doulgas. 2010. “Now It’s Personal: On Abusive Game Design”. In 

FuturePlay 2010. Vancouver, Canada. 

 

Swink, Steve. 2008. “Game Feel”. CRC Press, Boca Raton, FL, USA. 

 

Wardrip-Fruin, Noah. 2009. “Expressive Processing”. MIT Press, Cambridge, MA, USA. 

  



 

68 
 

WORKS CITED 

Bad News, designed and developed by James Ryan, Adam J. Summerville and Ben Samuels, 

2015. 

 

Dark Souls, developed by From Software, published by Namco Bandai Games, 2011. 

 

Dear Esther, designed, developed and published by The Chinese Room, 2012. 

 

Event[0], developed and published by Ocelot Society, 2016. 

 

Five Nights at Freddy’s, designed and developed by Scott Cawthon, 2014. 

 

Gone Home, designed by Steve Gaynor, developed and published by The Fullbright Company, 

2013. 

 

Hamurabi, designed and developed by Doug Dyment, 1968. 

 

Pacman, designed by Tory Iwatani, developed by Namco, published by Namco and Midway, 

1980. 

 

Paper’s, Please, designed by Lucas Pope, developed and published by 3909 LLC, 2013. 

 

Shrouded Isle, designed, developed and published by Kitfox Games, 2017. 

 

Sid Meier’s Civilization V, developed by Firaxis and published by 2K Games, 2010. 

 

Sim City, designed by Will Wright, developed and published by Maxis, 1989. 

 

The Sims, designed by Will Wright, developed and published by Maxis, published by 2000. 

 

The Stanley Parable, designed by Davey Wreden and William Pugh, developed and published 

by Galactic Cafe, 2013. 

 

The Uncomfortable, designed by Katerina Kamprani, available online at 

https://www.theuncomfortable.com/, 2017. 

 

The Walking Dead. Developed and published by Telltale Games, 2012. 

 

Tracery, designed and developed by Kate Compton, 2014. 


