
¦ 2019 Vol. 15 no. 2

RSE-box:

An analysis and modelling package to study response

times to multiple signals

Thomas U. Otto
a,B

a
School of Psychology and Neuroscience, University of St. Andrews

Abstract Responses to two redundant sensory signals are typically faster than responses to the in-

dividual component signals. This redundant signals effect (RSE) is extensively studied not only with

an impressive variety of signals but also across different subject populations focusing on develop-

ment, aging, and many clinical samples. Yet, a standardized methodology to analyse and interpret

the RSE is not consistently employed. Moreover, an intriguing explanation of the effect, based on

the so-called racemodel championed by Raab (1962), is typically not fully appreciated in its explana-

tory power. To facilitate RSE research, here, an analysis and modelling toolbox, called RSE-box, is

introduced. It provides MATLAB functions that (1) perform basic analysis steps on response times

(RTs), (2) investigate the RSE at the level of RT distributions, (3) fit the most recent race model by

Otto and Mamassian (2012), and (4) simulate the RSE with synthetic data. The model functions are

accompanied by parameter recovery simulations to test and validate the fitting procedures. An

example of the simulation results is the demonstration that the analysis of group RT distributions

can be biased. The RSE-box includes demonstration code and all functions are supported by help-

documentation.
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Introduction
The combined use of different signals within and across

sensory modalities is often beneficial. A classic example

to study such benefits is the redundant signals paradigm

(Kinchla, 1974; Miller, 1982; Todd, 1912). In two single sig-

nal conditions, participants are asked to respond on pre-

sentation of signalX and Y , respectively. In a third redun-
dant signals condition, the two signals are presented to-

gether. The two signals are redundant in the sense that de-

tection of either signal is sufficient for a correct response.

A thorough analysis of the task demands shows that the

paradigm combines two detection tasks, one for each sig-

nal, by a logical disjunction (Otto & Mamassian, 2017). The

typical finding is that response times (RTs) to redundant

signals XY are on average faster than RTs to the single
signals, which is called the redundant signals effect (RSE;

for a few recent examples, see Amsellem, Hochenberger,

& Ohla, 2018; Crosse, Foxe, & Molholm, 2019; Fitousi & Al-

gom, 2018; Freeman, Wood, & Bizley, 2018; Innes & Otto,

2019; Lunn, Sjoblom, Ward, Soto-Faraco, & Forster, 2019;

Stefanou et al., 2019; Vrancken, Vermeulen, Germeys, &

Verfaillie, 2019).

An intriguing explanation of the RSE is statistical facil-

itation (Raab, 1962). The basic idea is that signals X and

Y are processed by two parallel decision units. On a given
trial with redundant signals, a response can then be trig-

gered by the unit that detects a signal first. If the distri-

butions of detection times overlap, it is expected that re-

sponses to redundant signals are on average faster and less
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variable compared to responses in the two single signal

conditions. To implement statistical facilitation in a model,

it is interesting to note that the coupling of the two par-

allel decision units is achieved by a logic OR gate, which

implies that the model architecture perfectly matches the

task demands of the redundant signals paradigm. Models

incorporating this basic architecture are called race mod-

els. A powerful feature of Raab’s (1962) proposal is that

race models directly allow for predictions of the RT dis-

tribution with redundant signals, which can be computed

based on the RT distributions in the two single signal con-

ditions and probability summation. Miller (1982) used this

feature to develop a test that checks if the RSE is in ac-

cordance with race model predictions. The test computes

an upper bound under the assumption of a pure race pro-

cess, meaning that the two parallel decision units do not

interact (i.e., a unisensory decision process remains un-

changed whether or not a second signal is present). In a

more technical language, the test assumes context invari-

ance (e.g., Ashby & Townsend, 1986; Colonius, 1990; Luce,

1986; Townsend & Wenger, 2004). Interestingly, this so-

called Miller’s bound is often found to be violated, which

has led to a widespread rejection of race models as an ex-

planation of the RSE.

The rejection of race models is however not always

watertight. For example, Gondan and Minakata (2016)

reviewed 83 studies between 2011 and 2014 that used

Miller’s test. Of these, 77 studies (93%) claimed violations

of Miller’s bound, which seems to suggest that race mod-

els can safely be rejected. However, 24 studies (29%) have

actually not used the upper bound as developed by Miller

(1982) but what is called the independent race model pre-

diction (for more details, compare Equations 6 and 7 be-

low). The consequence of this methodological inconsis-

tency is that this subset of studies in fact lacks the critical

test, which would be needed to support Miller’s (1982) con-

clusion. Even more problematic, only 9 studies (11%) pre-

sented an alternative model to describe and predict their

data. Hence, the majority of studies rejects race models as

an explanation of the RSE but does not provide an alterna-

tive account that allows for testable predictions.

A further key issue is that the context invariance as-

sumption is made when Miller’s bound is computed. As

context invariance is not necessarily true (Luce, 1986), it

is well possible that violations of Miller’s bound occur be-

cause the context invariance assumption is wrong. It fol-

lows that the test using Miller’s bound is limited to pure

race models without any interaction between the paral-

lel decision units. In contrast, the test is mute about race

models that allow for interactions. Given that the context

invariance assumption is frequently not even mentioned

when testing the RSE with Miller’s bound, it seems that

the explanatory power of race models is largely underes-

timated in RSE research.

This gap was explored by Otto and Mamassian (2012),

who returned to the race model architecture championed

by Raab (1962). Firstly, the authors showed that models

of the RSE should consider the sequential dependency of

RTs in the redundant signals paradigm. Such history ef-

fects were already reported by Miller (1982) but are often

not investigated in RSE studies. Secondly, to account for

violations of Miller’s bound, Otto and Mamassian (2012)

proposed an unspecific noise interaction to model a poten-

tial violation of the context invariance assumption. Specif-

ically, models of perceptual decision making assume that

sensory evidence is accumulated over time until a re-

sponse criterion is reached, a process that is corrupted by

noise (e.g., Bogacz, 2007; Forstmann, Ratcliff, & Wagen-

makers, 2016; Gold & Shadlen, 2007). The proposed idea

is that the noise level may not be constant but increas-

ing when the context is changed from single to redundant

stimulation. Strikingly, adding noise as an interaction pa-

rameter made this race model one of the very few to ac-

count for the RSE including violations of Miller’s bound at

the level of RT distributions. This work demonstrates that

the basic race model architecture shows in fact strong ex-

planatory power.

To facilitate investigation of the RSE and involved pro-

cessing interactions, here, an analysis and modelling tool-

box, named RSE-box, is introduced. The material is organ-

ised in two main sections. To cover key steps when ap-

proaching the RSE, a first section discusses RSE-box func-

tions that (1) perform basic analysis steps on RTs, (2) in-

vestigate the RSE at the level of RT distributions, (3) fit the

most recent racemodel by Otto andMamassian (2012), and

(4) simulate the RSE with synthetic data. To validate the

implemented model fitting procedures, a second section

presents model simulations to check parameter recovery

performance. These simulations also test methods that are

frequently used for the removal of RT outliers and the ex-

traction of group RT distributions.

RSE-box functions
The RSE-box is implemented in MATLAB (MathWorks, Inc.)

and is available as SupplementaryMaterial attached to this

article. With additional functions and updates, it is also

available for download at: https://github.com/tomotto/RSE-

box/. For installation, please copy the toolbox to your com-

puter and add the folder containing the RSE-box (includ-

ing subfolders) to the MATLAB path. As a prerequisite,

some toolbox functions require MATLAB’s Statistics and

Machine Learning Toolbox. Table 1 provides an overview

of RSE-box functions, which are discussed in detail in the

following. All toolbox functions are accompanied by help
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Table 1 Overview of discussed RSE-box functions

Section Function name Description

Defining RT distributions getCP Computation of cumulative probabilities

interpCDF Linear interpolation of an empirical CDF

outCorrect Outlier correction

sampleDown Down-sampling of an empirical CDF

Quantifying the RSE getGain Computation of redundancy gain (the RSE)

getViolation Computation of Miller’s bound violation

getRaab Computation of Raab’s independent race model

getGrice Computation of Grice’s bound (max. positive correlation)

getMiller Computation of Miller’s bound (max. negative correlation)

fillArea Fill the area between two CDFs (plotting tool)

Modelling RTs to single

signals

fitLater Fitting of the LATER model (2 parameters)

bootLater Bootstrapping 95% confidence intervals for LATER model fits

laterCDF LATER model, reci-normal CDF (plotting tool)

Modelling RTs to

redundant signals

fitRace Maximum likelihood estimation (MLE) of a race model

bootRace Bootstrapping 95% confidence intervals for race model fits

raceCDF Race model CDF (plotting tool)

Modelling RTs in all RSE

conditions

fitRse Fitting of all 3 RSE conditions (6 parameters)

bootRse Bootstrapping 95% confidence intervals for model fits

fitRseRaab MLE of the independent race model (4 parameters)

fitRseEta MLE of the race model (5 parameters)

fitRseRho MLE of the race model (5 parameters)

Simulating the RSE simLater Simulation of RTs using the LATER model

simRace Simulation of RSE data with a race model

Demonstration code demo01_quantiles Demonstration of analysis steps as shown in Figures 2 and 3

demo02_later Demonstration of analysis steps as shown in Figure 4

demo03_race Demonstration of analysis steps as shown in Figure 5

Note. The RSE-box function documentation provides more detailed descriptions, which can be accessed by typing for
example help getRaab in MATLAB’s command window (Figure 1). Note that some functions require MATLAB’s
Statistics and Machine Learning Toolbox.

documentation, which can be accessed by typing help
functionName in MATLAB’s command window (Figure
1). The functionality of the RSE-box is guided by demon-

stration code (see Appendix for an example), which illus-

trates the analysis steps shown in Figures 2-5.

Defining RT distributions
An analysis of RTs may just focus on measures of central

tendency. For example, the RSE can be described as the de-

crease of mean RT in redundant compared to single signal

conditions. However, it is well established that underly-

ing cognitive processes can be studied in more detail by

considering RT distributions (Luce, 1986). Additional RT

characteristics include for example the large spread and

the positive skew of the distributions. Initiated by Miller

(1982), research on the RSE has a longstanding tradition to

consider RT distributions. The description of the RSE-box

consequently starts with procedures to visualize the RSE at

the level of RT distributions.

The RSE is typically tested with highly salient signals,

which means that detection performance is expected to be

at ceiling (hardly any signal should be missed, the false

alarm rate should be low). It is important to note that the

analysis and modelling procedures described here assume

ceiling performance. As a first analysis step, it is therefore

recommended to check actual performance levels in terms

of miss and false alarm rates. It may be appropriate to ex-

clude participants with high error rates. If the assumption

of ceiling performance is generally violated, the analysis

and modelling procedures, as presented here, need to be

adapted to account for error rates (see also Gondan & Mi-

nakata, 2016).

RSE experiments are typically performed in long-

lasting sessions to collect large numbers of trials, which

is required for an analysis of RT distributions. As be-

havioural performance is susceptible to attentional lapses,
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Figure 1 RSE-box function documentation. All RSE-box functions are accompanied by help documentation, which can

be accessed by typing help functionName in MATLAB’s command window. The documentation provides a description of

the computation performed by the function including in- and output variables, references when appropriate, and links to

the documentation of related functions. The example shows the documentation of the function getRaab that computes
Raab’s (1962) independent race model predication (for an overview of discussed RSE-box functions, see Table 1).

an outlier correction can be used to remove extreme val-

ues from the data. While in some contexts an outlier cor-

rection is not advocated (c.f., Luce, 1986), it is here rec-

ommended to perform a cleaning separately for each con-

dition and participant (see ’Error contamination and out-

lier correction’ below). The RSE-box includes the function

outCorrect that uses the absolute deviation around the
median as criterion (Leys, Ley, Klein, Bernard, & Licata,

2013). To account for the skewed nature of RTs, the func-

tion first transforms RTs into rates (1/RT). It then excludes

data points that deviate bymore than 1.4826 * 3median ab-

solute deviations (MADs) from the median rate. This crite-

rion corresponds to 3 standard deviations (SDs) if rates are

normally distributed. Consequently, the criterion is con-

servative in the sense that it is expected to exclude only

about 0.27% of the data points. Actual exclusion num-

bers can be higher, for example, if performance is contam-

inated by frequent false alarms.

To visualize RT distributions, it is standard in RSE re-

search to inspect cumulative distribution functions (CDFs).

For this, the proportions of observed response need to be

translated into probabilities, which can be obtained in a

two-step procedure. First, valid RTs collected from one par-

ticipant in a given condition are stored as a vector, which

is sorted from the fastest to the slowest (e.g., using MAT-

LAB’s sort command; Figure 2a). For example, if N valid

Table 2 RSE simulation and parameter recovery

Signal condition Model Parameter Unit Simulation, true

value*

Recovery, best-

fit**

Joint recovery,

best-fit

Single X LATER model µx s
−1

2.5 2.48 2.49

σx s
−1

0.4 0.367 0.365

Single Y LATER model µy s
−1

2.5 2.46 2.47

σy s
−1

0.4 0.419 0.414

Redundant XY Race model ρ -0.5 -0.458 -0.431

η s
−1

0.1 0.137 0.134

Note. * The parameter values were used to generate the data shown in Figure 2c. ** Fitting is performed in two steps.
Corresponding distributions are shown in Figure 4 and Figure 5.
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Figure 2 Plotting RT data as cumulative distribution functions (CDFs). a) A vector of response times (RTs) is sorted from

the fastest to the slowest. b) Cumulative probabilities are assigned based on ranks using Equation 1. c) CDFs for the

three RSE conditions are obtained by plotting the sorted RTs against the assigned cumulative probabilities. Continuous

distributions are obtained by linear interpolation. Synthetic data, see section ’Simulating the RSE’.

RTs to signalX are collected, this yields a vectorXi, where

i indicates the rank ranging from 1 to N . Then, a vector
of corresponding cumulative probabilities Pi can be com-

puted by

Pi =
i− 0.5

N
(1)

based on the ranks i (Figure 2b). Note that Equation 1
assigns a cumulative probability of 0.5 to the median in

agreement with its definition. The RSE-box includes the

function getCP that computes cumulative probabilities
using Equation 1. To visualize the RSE, the sorted RTs in

each condition are plotted against the corresponding cu-

mulative probabilities (Figure 2c). When inspecting CDFs,

the RSE is eminent in that the RT distribution with redun-

dant signals is shifted to the left (towards faster RTs) and is

faster rising (with smaller variance) compared to the single

signal conditions.

To make predictions of the RSE using race models,

as we will see below, it is a key step to obtain continu-

ous distribution functions from the discrete RT samples.

One straightforward solution is linear interpolation, which

does not require distributional assumptions. Such assump-

tions aremadewhen for example the LATERmodel (Linear

Approach to Threshold with Ergodic Rate model; Carpen-

ter & Williams, 1995; Noorani & Carpenter, 2016); or an ex-

Gaussian distribution (Heathcote, Popiel, &Mewhort, 1991;

Luce, 1986) is used to fit RTs in the single signal conditions.

The RSE-box includes the function interpCDF that per-
forms linear interpolation (see connecting lines in Figure

2c). Furthermore, to measure the size of the RSE and to

quantify race model predictions, some computations can

be simplified if the number of data points is the same in

the three RSE conditions. However, depending on per-

formance and procedures (including for example an out-

lier correction), the number of valid RTs typically differs

across conditions and participants. To extract equal num-

bers of quantile RTs, the RSE-box includes the function

sampleDown, which performs a down-sampling of em-
pirical CDFs using linear interpolation. For example, Innes

and Otto (2019) collected 100 trials per participant and con-

dition, which yielded variable numbers of valid RTs after

data cleaning. The authors then down-sampled each distri-

bution to 50 quantile RTs to quantify the RSE as described

next.

Quantifying the RSE
Obviously, a first step of the RSE analysis is to measure

the size of the effect. At the level of RT distributions, the

RSE corresponds to the area enclosed by the CDF of the re-

dundant signals conditions and the faster CDF of the two

single signal conditions (Figure 3a; Otto, Dassy, & Mamas-

sian, 2013; for related geometric measures, see Colonius

& Diederich, 2006; Miller, 1986). The latter corresponds to

the so-called Grice’s bound, which is the lower bound for

race models that assume context invariance (Grice, Can-

ham, & Gwynne, 1984; Townsend & Wenger, 2004). Grice’s

bound corresponds to the race model prediction assuming

a maximal positive correlation between processing times

for signals X and Y (Colonius, 1990). It can be computed
by

PGrice (t) = max (PX (t) , PY (t)) , (2)
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Figure 3 Quantifying the RSE. Both panels show the same synthetic data as Figure 2c. a) To measure the RSE at the

level of RT distributions, Grice’s bound is taken as reference, which is given by the faster of the CDFs in the single signal

conditions (Equation 3). The RSE is then given by the area enclosed by the CDF with redundant signals and Grice’s bound

(Equation 5). b) To compute Miller’s bound, the CDFs in the two single signal conditions are summed (Equation 7). Viola-

tions of Miller’s bound occur when the CDF with redundant signals is above Miller’s bound. Violations can be quantified

by the area enclosed by the two curves (Equation 11).

where PX(t) and PY (t) describe the CDFs in the single sig-
nal conditions with signals X and Y , respectively. With
empirical distributions, each CDF is given by a sorted vec-

tor of RTs (Figure 2a). If the vectors Xi and Yi have the
same length N , the computation of Grice’s bound can be
simplified by selecting the faster of the two RTs at each

rank i (ranging from 1 toN )

Gricei = min (Xi, Yi) . (3)

The RSE-box function getGrice computes Grice’s bound
using Equation 3 (the function sampleDown can be used
to obtain the same number of RT quantiles in the two sin-

gle signal conditions, see above). Grice’s bound can be

visualized by plotting the RT quantiles given by the vec-

tor Gricei against corresponding cumulative probabilities

(Figure 3a).

With Grice’s bound as reference, the size of the RSE can

be measured by the size of the area enclosed by the CDF in

the redundant signal condition PXY (t) and Grice’s bound
PGrice(t) as defined in Equation 2 (Otto et al., 2013). Thus,
the size of the RSE can be computed by

RSE = ∫
T
(PXY (t)− PGrice (t)) dt, (4)

where the integral is the definite integral taken for re-

sponse time t ranging over the set of possible response
times T . If empirical CDFs are based on the same num-
ber of RTs in each condition (see above), the measurement

of the RSE can be approximated by averaging the differ-

ences between the RTs in the redundant signal condition

and Grice’s bound at each rank i (ranging from 1 toN )

RSE =

∑
Gricei −XYi

N
, (5)

whereXYi is the sorted vector of RTs in the redundant sig-
nals condition and Gricei the bound as computed in Equa-

tion 3. It should be noted that the size of the RSE as com-

puted in Equation 5 is the same as the difference in mean

RTs between the redundant and the faster of the two single

signal conditions if the CDF in one single signal condition is

stochastically dominant (i.e., one CDF is always above the

other; Heathcote, Brown, Wagenmakers, & Eidels, 2010).

However, empirical CDFs are frequently crossing, which is

considered in Equation 5 to measure the RSE at the level

of RT distributions. The RSE-box function getGain com-
putes the size of the RSE following Equations 3 and 5 taking

only the empirical RT data as input. The RSE-box function

fillArea can be used to highlight the area correspond-
ing to the RSE (as shown in Figure 3a).

In many experiments, the RSE is tested with different

signal types and intensities as well as different subject pop-

ulations includingmany clinical samples (for amethods re-

view covering 181 related papers, see Gondan & Minakata,

2016). From the analysis of race models, it is expected that

the size of the RSE depends on behavioural performance

in the single signal conditions (Otto et al., 2013). Firstly,

the RSE is expected to be larger when behavioural perfor-

The Quantitative Methods for Psychology 1172

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p112


¦ 2019 Vol. 15 no. 2

mance in the two single signal conditions is similar (princi-

ple of equal effectiveness). Secondly, the RSE is expected to

scale with the spread of RTs in the single signal conditions

(variability rule). To understand any difference in the size

of the RSE that is expected from differences in unisensory

performance levels, a first step is to look at the predictions

made by Raab’s (1962) race model, which is the most basic

race model to account for the RSE. It simply assumes that a

response in redundant conditions is triggered by the faster

of two parallel decision processes (one for each signal). The

model allows for direct predictions of RT distributions with

redundant signals using probability summation

PRaab (t) = PX (t) + PY (t)− PX (t) ∗ PY (t) , (6)

where PX(t) and PY (t) describe the CDFs in single sig-
nal conditions with signals X and Y , respectively. It is
important to note that the model assumes statistical inde-

pendence between processing times of the two signals, for

what reason it is also called the independent race model. It

also assumes context invariance (Ashby & Townsend, 1986;

Colonius, 1990; Luce, 1986; Townsend & Wenger, 2004),

which is a hidden assumption that must be considered if

inferences are made based on race model predictions (a

detailed analysis of this critical issue is provided by Otto

& Mamassian, 2017). The RSE-box contains the function

getRaab that computes the independent race model pre-
diction in accordance with Equation 6. Analogously to the

function getGrice (see above), it requires the same num-
ber N of RTs in both single signal conditions as input. It

returns a vector of RT quantiles, here called Raabi, which

describes the independent race model prediction with N
quantiles. The prediction can be visualized by plotting the

vector Raabi against the corresponding cumulative prob-

abilities. To quantify the size of the RSE as predicted by

Raab’s (1962) independent race model, the same approach

as in the measurement of the empirical RSE can be ap-

plied (Equation 5; instead of the empirical RTs in the redun-

dant conditions XYi, the prediction Raabi is substituted;
see also RSE-box function getGain). These computations
provide simple, parameter-free predictions of the expected

RSE.

The independent race model predictions are highly

useful to access if a difference in RSE may be expected due

to changes in unisensory performance levels. For exam-

ple, consider an imagined clinical study that compares the

RSE across two groups. The clinical group may show over-

all slower and more variable RTs than the control group,

which may point to some deficit associated with the clini-

cal condition. The RSE however may be larger in the clin-

ical group, which consequently may point to a paradoxi-

cal benefit. Critically, checking the race model predictions

would solve the paradox. In the example here, a larger

RSE is simply expected because of the increased variabil-

ity of unisensory RTs in the clinical group (see variability

rule, Otto et al., 2013). When testing the RSE across differ-

ent subject populations or signal types and intensities, it is

here recommended to check if the independent race model

would predict differences in RSE.

Historically, research on the RSE has very much fo-

cused on the upper limit of the RSE that is still in agree-

ment with the parallel processing architecture as assumed

by race models. In a milestone contribution, Miller (1982)

pointed out that race model predictions can exceed Raab’s

(1962) model if the assumption of statistical independence

is dropped. In fact, an upper bound can be computed by

PMiller (t) = PX (t) + PY (t) , (7)

where PX(t) and PY (t) describe the CDFs in single sig-
nal conditions with signals X and Y , respectively. This
so-called Miller’s bound still assumes context invariance.

It corresponds to the race model prediction assuming a

maximal negative correlation between processing times

for signals X and Y (Colonius, 1990). The RSE-box func-
tion getMiller computes Miller’s bound in accordance
with Equation 7. The computation basically follows the

algorithm by Ulrich, Miller, and Schröter (2007), but is

implemented differently. Analogously to the functions

getGrice andgetRaab (see above), it requires the same
numberN of RTs in both single signal conditions as input.
It returns a vector of RT quantiles, called Milleri, which de-

scribes Miller’s bound withN quantiles. The bound can be
visualized by plotting the vector Milleri against the corre-

sponding cumulative probabilities (Figure 3b).

Inspection of Miller’s bound is interesting as it allows

for inferences about the processing of sensory signals

when tested in the redundant signals paradigm. Miller

(1982) argued that the RT distribution with redundant sig-

nals cannot surpass Miller’s bound if a race model under-

lies the RSE. This implication can be expressed as an in-

equality

PXY (t) ≤ PMiller (t) , (8)

where PXY (t) describes the CDF in the redundant signals
condition and PMiller(t) is Miller’s bound as computed by
Equation 7. To reject race models as an explanation of the

RSE, following the modus tollens, it needs to be shown that

Inequality 8 is violated. There are several ways to test for

such violations. A frequently used approach is to check if

RTs in the redundant signals condition, given by the vector

XYi, violate Miller’s bound at any rank i (ranging from 1
toN ). For this purpose, Inequality 8 can be re-written as

XYi ≥ Milleri, (9)

where Milleri is the vector of RT quantiles defining Miller’s

bound (which can be obtained from the RSE-box function
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getMiller, see above). An issue to consider with this
approach is that statistical tests are computed at several

ranks and that multiple testing inflates Type I error rates

(Gondan, 2010; Kiesel, Miller, & Ulrich, 2007).

An alternative approach proposed by Colonius and

Diederich (2006) measures the size of the area between

Miller’s bound and the RT distribution with redundant sig-

nals when Inequality 8 is violated. This violation area can

be computed by

V iolation =

∫
T

max (PXY (t)− Pmiller (t) , 0) dt, (10)

where the integral is the definite integral taken for re-

sponse time t ranging over the set of possible response
times T . Note that this approach is similar to the computa-
tion of the size of the RSE (see Equation 4). Consequently, as

with the measurement of the RSE, the computation of the

violation area can be simplified if distributions are based

on the same numberN of RTs in each condition

V iolation =

∑
max (Milleri −XYi, 0)

N
. (11)

The RSE-box function getViolation quantifies the size
of the violation area using Equation 11. The RSE-box func-

tion fillArea can be used to highlight the violation area
(as shown in Figure 3b). Interestingly, violations of Miller’s

inequality are frequently found in RSE experiments, which

implies that some sort of interaction has occurred in the si-

multaneous processing of the tested signals.

At this point it is important to remind a critical issue

when interpreting the test. Like Raab’s (1962) independent

model, Miller’s (1982) bound assumes context invariance,

which is however not necessarily true (Luce, 1986). Conse-

quently, it is a fallacy to deduce from violations of Miller’s

bound that all race models can be rejected. A valid alterna-

tive is that the basic architecture of race models is correct,

but that the context invariance assumption is wrong (for

a careful deconstruction of the argument, see Otto & Ma-

massian, 2017; see also Yang, Altieri, & Little, 2018). In an

evaluation of the RSE using Miller’s test, it is therefore vital

to check if the context invariance assumption is properly

considered. If the possibility of context variant race mod-

els is not taken into account, conclusions must be viewed

with reservation.

To summarize the material so far, RSE research has a

longstanding tradition to work with RT distributions. The

standard approach is easy to perform at the level of empir-

ical RTs, and the RSE-box provides functions for the anal-

ysis steps that are required, for example, to quantify the

RSE or to measure violations of Miller’s bound (Figure 3).

When testing across different signal types or intensities

as well as across different subject populations, a recom-

mended new analysis is to check if Raab’s (1962) indepen-

dent race model would predict differences in RSE, which

is a vital assessment before interpreting any difference in

RSE. A convenient feature of the standard approach is that

it requires no distributional assumptions and that all com-

putations are directly based on the empirical RTs. As one

of the shortcomings, the approach does only allow to con-

clude that some sort of interaction has occurred in the si-

multaneous processing of the tested signals. To investigate

and understand these interactions in more detail, a model-

based approach is needed that analyses and explains the

entire distribution of RTs to redundant signals (Otto & Ma-

massian, 2017). Such a modelling approach typically re-

quires distributional assumptions to describe RTs in the

single signal conditions. To introduce corresponding fit-

ting procedures, the next section first presents the RSE-box

functions that describe unisensory RT distributions using

the LATER model (Carpenter & Williams, 1995; Noorani &

Carpenter, 2016), which is a prerequisite to then model RT

distributions with redundant signals.

Modelling RTs to single signals
With unisensory signals, models of perceptual decision

making assume that noisy evidence for a sensory signal

is accumulated over time until a threshold is reached, in

which case a categorical decision is made and a corre-

sponding motor response is triggered (e.g., Bogacz, 2007;

Forstmann et al., 2016; Gold & Shadlen, 2007). These

features are covered by the LATER model (Carpenter &

Williams, 1995; Noorani & Carpenter, 2016), which ap-

proximates the noisy evidence accumulation by sampling

a drift rate from a normal distribution (Figure 4a). A

response is triggered when the accumulated evidence

reaches a threshold (which can be arbitrarily set to 1). On

presentation of signalX , the model consequently assumes
that an RT distribution is given by the reciprocal of a nor-

mally distributed drift rate distribution (1/DX , whereDX

follows a normal distribution with mean µX and standard

deviation σX ). The resulting reci-normal distribution is
skewed to the right similar to empirical RT distributions

(the term "reci-normal" comes from the contraction of “re-

ciprocal” and “normal”).

The LATERmodel can be used to obtain continuous dis-

tribution functions in the single signal conditions. For this,

RTs are transformed into rates (1/RT), which can then be

described by fitting a normal distribution. The RSE-box

function fitLater performs these two steps and returns
theminimumvariance unbiased estimators (MVUEs) of the

two parameters µ and σ of the rate distribution. With the
best-fitting parameter estimates, the function laterCDF
can be used to plot the corresponding RT distribution (Fig-
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Figure 4 Modelling RTs to single signals. a) LATER model. On presentation of signal X , evidence for the signal is ac-
cumulated starting at level L0. A response is triggered when the threshold LT is reached. The drift rate DX is subject

to noise, which is modelled by a normal distribution (an exemplary trial is indicated by the line ending in a dot). The

resulting RT distribution follows the reciprocal ofDX , which is a reci-normal distribution (here shown as PDF). b) RTs to

single signalX (identical data as shown in Figure 2c). The solid green line is the CDF of the best fitting LATER model with
free parameters µX and σX (see Table 2 for best-fitting estimates). The shaded area indicates 95% confidence intervals
as calculated by 1,000 repetitions of a bootstrap procedure.

ure 4b). Finally, using bootstrapping (Efron & Tibshirani,

1994), the function bootLater computes 95% confidence
intervals for the best-fitting parameter estimates as well as

for the resulting CDF. The latter can be plotted using the

function fillArea (Figure 4b). As we will see next, using
the LATER model to describe RTs in the single signal con-

ditions is a convenient choice to model the RSE within the

race model framework.

Modelling RTs to redundant signals
Race models assume that a response to redundant signals

is triggered by the faster of two parallel decision processes

(one for each component signal). As shown by Raab (1962),

this basic architecture readily predicts a speed-up of re-

sponses to redundant signals due to statistical facilitation.

To implement a race model, Otto and Mamassian (2012)

used a logic OR gate to map the two LATER units to a single

motor output (Figure 5a). When assuming context invari-

ance, the two LATER units are fully constrained by the RTs

in the single signal conditions. With this basic architecture,

a response to redundant signals is triggered by the faster

of two LATER units, which is set by the unit with the larger

drift rate on a given trial. Conveniently, the exact distribu-

tion of the maximum of two normally distributed random

numbers is known (Nadarajah & Kotz, 2008), which allows

direct computation of race model predictions at the level

of RT distributions.

As pointed out by (Miller, 1982), RTs as measured in

single signal conditions cannot be assumed to be statisti-

cally independent. For example, one issue is that the three

conditions of the redundant signals paradigm are typically

randomly interleaved in experiments. Crucially, RTs in

single signal conditions show sequential dependency, with

faster responses following modality repetitions compared

to modality switches (e.g., Gondan, Lange, Rösler, & Röder,

2004; Miller, 1982, 1986; Otto & Mamassian, 2012). At least

for this reason, it is important to consider potential corre-

lations when computing race model predictions. Follow-

ing the classic approach, predictions were computed as-

suming statistical independence (Raab’s independent race

model, Equation 6) or assuming extreme correlations of -1

and 1 (Miller’s and Grice’s bounds, Equations 7 and 2). In

contrast, the maximum distribution of two normally dis-

tributed random numbers can be computed for any cor-

relation ρ (Nadarajah & Kotz, 2008). Thus, a convenient
advantage of the new approach is that it allows for predic-

tions at the level of RT distributions for any correlation ρ
(for an illustration of the effect of ρ on predictions, see Otto
& Mamassian, 2012, their Fig. S2a).

Another issue is that RTs to redundant signals fre-

quently violate Miller’s bound (as illustrated in Figure 3b).

As discussed above, such findings imply that some sort of

interaction must occur in the processing of redundant sig-

nals (either the parallel architecture of race models or the

context invariance assumption is wrong). Otto and Ma-

massian (2012) included a violation of the context invari-
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Figure 5 Modelling RTs to redundant signals. a) Basic race model architecture. On presentation of redundant signals

XY , evidence for both signals is accumulated in parallel (here by two LATER units; see also Figure 4). A response is
triggered when the first unit detects a signal, which is modelled by an OR gate. b) RTs to redundant signalsXY (identical
data as shown in Figure 2c). The solid red line is the CDF of the best fitting race model as proposed by Otto and Mamas-

sian (2012) with free parameters ρ and η (see Table 2 for best-fitting estimates). The model is constrained by the LATER
units as fitted in the two single signal conditions (dotted lines). The shaded area indicates 95% confidence intervals as

calculated by 1,000 repetitions of a bootstrap procedure.

ance assumption in their model by allowing for an unspe-

cific noise interaction during parallel evidence accumula-

tion. The violation is implemented in the redundant sig-

nals condition by adding the noise η to the LATER model
parameters σX and σY as estimated in the two single sig-
nal conditions (for an illustration of the effect of η on pre-
dictions, see Otto & Mamassian, 2012, their Fig. S2b). An

interesting outcome of additional noise is a speed-up of

RTs at the fast tail of the distribution (leading to violations

of Miller’s bound), which comes however at the cost of a

slow-down of RTs at the slow tail. Critically, any such effect

is missed by the classic approach focusing on Miller’s test,

which is mute about the slow tail.

The context variant race model proposed by Otto and

Mamassian (2012) can be used to fit RT distributions with

redundant signals. The model is constrained by the two

LATER units as fitted in the single signal conditions. Using

maximum likelihood estimation (MLE; for a tutorial, see

Myung, 2003), the RSE-box function fitRace computes
best-fitting estimates of the two free model parameters ρ
and η. With the best-fitting parameter estimates, the func-
tion raceCDF can be used to plot the corresponding RT
distribution with redundant signals (Figure 5b). Finally,

using bootstrapping (Efron & Tibshirani, 1994), the func-

tionbootRace computes 95% confidence intervals for the
best-fitting parameter estimates as well as for the resulting

race model CDF. As with the LATER model, the latter can

be plotted using the function fillArea (Figure 5b).

Modelling RTs in all RSE conditions
The modelling approach has so far followed the two-step

approach that historically developed from Miller’s (1982)

race model test. The first step obtains continuous distri-

bution functions to describe the single signal conditions.

Then, the second step uses these functions to obtain race

model predictions for the redundant signals condition. An

issue with this approach is that race model predictions in-

herit any sampling error from the first step. Moreover,

any systematic mis-fit of the unisensory models automati-

cally propagates to the race model predictions. Such issues

should be considered when evaluating the model fit in the

redundant signal conditions (e.g., when comparing the fit

with alternative models).

To build an overall model that eases model compari-

son, the two-step approach can be reduced to a single mod-

elling step that simultaneously fits all three conditions of

the redundant signals paradigm. The RSE-box includes

the function fitRse, which simultaneously fits the race
model and the two LATER units to all data by maximiz-

ing the likelihood across conditions (Table 2, joint recov-

ery). Using the best-fitting estimates of the six free param-

eters (µX , σX , µY , σY , ρ, and η), the functions laterCDF
and raceCDF can be used to plot the corresponding three
CDFs as demonstrated in Figure 4b and Figure 5b, respec-

tively. The function fitRse also returns the maximized
likelihood, which can be used to compare the race model
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as implemented here with alternative models of the RSE,

using for example the Akaike Information Criterion (AIC;

Akaike, 1973) or the Bayesian Information Criterion (BIC,

Schwarz, 1978; ; for tutorials on model selection, see Hélie,

2006; Pitt & Myung, 2002). The RSE-box includes also

the additional functions fitRseRho, fitRseEta, and
fitRseRaab, which are nested models with a reduced
parameter space (assuming η, ρ, or both to be 0). Finally,
as with the model functions above, the function bootRse
computes 95% confidence intervals for the best-fitting pa-

rameter estimates as well as for the model CDFs.

Simulating the RSE
The RSE-box contains not only analysis and modelling

functions but also functions to simulate the RSE. First, the

function simLater simulates RTs in the single signal con-
ditions by randomly sampling from a LATER model. Sec-

ond, the function simRace simulates all three conditions
of the redundant signals paradigm using the race model

as proposed by Otto and Mamassian (2012). In fact, the

data set to illustrate the toolbox functions (see Figure 2c)

was generated using this function with the parameters as

specified in Table 2. As the data were generated by a race

model, the simulation effectively demonstrates that viola-

tions of Miller’s bound do not allow rejecting all race mod-

els as an explanation of the RSE. Such synthetic data can

be very useful to scrutinize analysis and modelling proce-

dures as exemplified in the next section.

Simulation studies
Parameter recovery
It is good practice to test model fitting procedures by pa-

rameter recovery simulations (for an introduction, see

Heathcote, Brown, & Wagenmakers, 2015). The basic idea

is to first generate random data samples from amodel. The

synthetic data is then analysed in the sameway as real data

by fitting the model back to the data samples. The key dif-

ference to real data is that the true parameter values of the

model that generated the synthetic data are known. This

way, parameter recovery simulations can reveal potential

systematic deviations from true values (biases) and pro-

vide a measure of the uncertainty associated with the re-

covered estimates (reliability). To validate the procedures,

the aim is of course that the true parameter values are re-

covered unbiased.

To put the fitting procedures of the RSE-box to test, the

parameter recovery simulation here tested 250 versions of

the model as introduced by Otto and Mamassian (2012)

(Figure 6a). To generate different model parameteriza-

tions, the values of the six parameters (µX , µY , σX , σY ,
ρ, and η) were randomly sampled from uniform distribu-

tions. The LATER model parameters µX and µY were ran-

domly selected with values between 2.0 and 2.5 s
−1
. Con-

sequently, expected median RTs in the single signal condi-

tions varied between 0.4 and 0.5 s. More critically, due to

the independent parameterization of the two LATER units,

the difference in median RTs in the single signal condi-

tions could vary between 0 and 0.1 s. The LATER model

parameters σX and σY were randomly sampled between
0.4 and 0.6 s

−1
. Consequently, the MAD of RTs could vary

roughly between 0.04 to 0.1 s in the single signal condi-

tions . The race model parameter ρ varied between 1 and
-1. With the former value, no RSE is expected (see Grice’s

bound, Equation 2). With the latter value, themaximal pos-

sible RSE under the assumption of context invariance is ex-

pected (see Miller’s bound, Equation 7). Finally, the race

model parameter η varied between 0 and 0.2 s−1. Conse-
quently, the model versions could yield either no violation

of Miller’s bound (context invariance holds) or violations

of up to 0.024 s, which is more than typically reported in

empirical RSE studies (for comparison, Figure 3b shows a

violation of 0.011 s). With the overall parameterization,

the simulated RSE could range between about 0 and 0.1 s,

which covers most empirical RSE studies (for comparison,

Figure 3a shows an RSE of 0.052 s). Each model version

was then used to simulate an RSE experiment 2,000 times

(Figure 6a). For each simulation, 100 RTs for each of the

three conditions were randomly sampled using the RSE-

box function simRace. The synthetic data samples were
then analysed using the function fitRse to obtain best
fitting estimates of the six model parameters using MLE.

Visual inspection of the recovery performance reveals

that the fitting procedure provides fairly unbiased param-

eter estimates throughout the wide range of tested values

(Figure 6b-e). Recovery of the LATERmodel parameter µ is
unbiased (Figure 6b). There is some variance in the relia-

bility of the parameter estimates as indicated by the spiky

shape of the area depicting the interquartile range (IQR).

This variance is however expected given that the spread

of simulated RTs was also randomly varied. Recovery of

the LATER model parameter σ slightly underestimates the
true value (Figure 6c). This is however expected given the

sample size and using MLE as fitting procedure, a simi-

lar bias in σ is observed when fitting a normal distribu-
tion with MLE. Also expectedly, the IQR increases with the

tested value of σ. Recovery of the race model parameter
ρ is fairly unbiased in the median (Figure 6d). In contrast,
the mean can be slightly biased, which is probably linked

to the bounded nature of the parameter space (ρ is limited
between -1 and 1). The IQR shows some large spikes es-

pecially for values of ρ close to 1. The issue here is that
there is no or only a very small expected redundancy gain

in these conditions and that there can be even a negative
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Figure 6 Parameter recovery. a) Using random parameterization, 250 versions of the context invariant race model were

generated. From each version, 2,000 data sets were sampled, each with 100 trials per condition. The model was then

fitted to the random samples to compare the parameter recovery with true simulation values. b-e) Recovery of µX , σX ,
ρ, and η (recovery of µY and σY is not shown as it matches µX and σX ). The dashed line indicates identity of true values
and recovered estimates. The interquartile range (IQR) as a measure of reliability is shown as a continuous surface to

reduce clutter.

RSE in some random samples (meaning that responses in

the redundant condition are slower than in the faster of the

single signal conditions). Such effects enlargewhen perfor-

mance in the two single signal conditions is highly differ-

ent (i.e., when the corresponding RT distributions hardly

overlap). In such extreme situations, parameter recovery

performance can be poor. This finding implies that caution

should be taken if themodel is used to analyse experiments

that hardly yield redundancy gains. Finally, recovery of

the race model parameter η is fairly unbiased except for
a few model versions as just discussed with the parameter

ρ (Figure 6e). In summary, the parameter recovery simu-
lations validate the joint fitting procedures as introduced

with the RSE-box, and show that the model introduced by

Otto and Mamassian (2012) is in itself consistent given that

simulated model parameter are recovered unbiased. The

synthetic data here are of course very clean in the sense

that they were generated by the model. The following sim-

ulations address some of the issues that can occur with real

data.

Error contamination and outlier correction
One important difference between synthetic and real data

is that human performance, especially when tested in long-

lasting experimental sessions, is prone to errors. In sim-

ple detection tasks, as frequently employed in RSE experi-

ments, one issue is that participants respond on occasion

in the absence of a target signal. The amount of such

false alarms can be estimated by including catch trials in

the experimental procedures. On signal trials, it is still

not trivial to distinguish a genuine response from a false

alarm that just happens to fall in the valid response win-

dow after signal onset (Ratcliff, 1993). Critically, it is well-

established that such erroneous responses can mask vio-

lations of Miller’s bound (Eriksen, 1988; Miller & Lopes,

1991). At least for this reason, it is expected that contam-

ination with erroneous responses can bias parameter re-

covery.
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Figure 7 Error contamination and outlier correction. a) Recovery of σX . b) Recovery of η. To estimate the effect of
erroneous responses (e.g., caused by false alarms falling in the valid response window after stimulus onset), an RSE

experiment is simulated as in Figure 6 and then contaminated with 0-10% erroneous responses (randomly sampled be-

tween 0.2 and 0.3 s). Parameter recovery is performed without correction (None) or following a correction method using

either the standard deviation (SD) or the median absolute deviation (MAD) as criterion. The dashed line indicates true

parameter values. Recovery performance is based on 2,000 simulations per data point.

To simulate the effect of erroneous responses on pa-

rameter recovery, the RSE is here simulatedwith themodel

parameters as summarized in Table 2. Additionally, be-

tween 0% and 10% of the trials were replaced with syn-

thetic erroneous responses. These responses were ran-

domly sampled from a uniform distribution between 0.2

and 0.3 s (which is the time window just before or slightly

overlapping with most genuine responses; for comparison

with an uncontaminated sample, see Figure 2c). For each

level of contamination, 2,000 synthetic data sets were gen-

erated. These data sets were then analysed using three pro-

cedures. First, no outlier correction was performed. Sec-

ond, responses that deviated on the reciprocal scale (1/RT)

by more than 3 SDs from the mean were removed from

analysis. Third, responses that deviated on the recipro-

cal scale by more than 1.4826 x 3 MADs from the median

were removed (which is implemented by the RSE-box func-

tion outCorrect, see section ’Defining RT distributions’).
Both correction methods are equally conservative by ex-

cluding about 0.27% of the data points with uncontami-

nated samples. Both correction methods were applied sep-

arately in each RSE condition. With all three procedures,

the data samples were then analysed using the function

fitRse as in the parameter recovery simulation above.
If no outlier correction is performed, the key finding is

that very few erroneous responses can heavily bias param-

eter recovery. Particularly affected are the LATER model

parameter σ (Figure 7a) and the race model parameter η

(Figure 7b, see ’None’). With respect to the latter, the sim-

ulation is in agreement with earlier reports that fast er-

roneous responses can mask violations of Miller’s bound

(Eriksen, 1988; Miller & Lopes, 1991). In the model pro-

posed by Otto and Mamassian (2012), violations are cov-

ered by the noise parameter η, which is underestimated in
this simulation when synthetic data is contaminated with

erroneous responses (themodel does not predict violations

of Miller’s bound for values of η equal to or smaller than
0). It should be noted that this simulation generated erro-

neous responses that are always close to the genuine re-

sponses (in the time window between 0.2 and 0.3 s after

stimulus onset). With erroneous responses occurring also

in earlier timewindows (e.g., between 0.1 and 0.2 s), the ef-

fect of very few erroneous responses on parameter recov-

ery is evenworse, which can lead in extreme cases to a fail-

ure of the model fitting procedures provided by the RSE-

box (results not shown). The simulation of error contami-

nation highlights that the model-based analysis approach,

as presented here, requires a systematic data cleaning pro-

cedure.

If an outlier correction is performed, both tested cor-

rection methods reduce the bias in parameter recovery

(Figure 7, see ’SD’ and ’MAD’). Notably, the method based

on median and MAD outperforms the correction based

on mean and SD in that the bias due to error contamina-

tion is systematically smaller. The advantage of the out-

lier correction based on median and MAD is even larger
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when more extreme erroneous responses are included in

the simulation (e.g., between 0.1 and 0.2 s). In this case,

the MAD method has basically no problems in remov-

ing extreme erroneous responses whereas recovery per-

formance using the SD method deteriorates (results not

shown). The poorer recovery performance of the out-

lier correction based on mean and SD is expected because

these measures are particularly sensitive to outliers them-

selves, which makes the method based on median and

MAD the recommended choice (Leys et al., 2013).

An alternative method to correct for erroneous re-

sponses, coined ’kill-the-twin’, was developed in RSE re-

search to be applied in tests of Miller’s inequality (Erik-

sen, 1988; Miller & Lopes, 1991). The basic idea is that the

timing of false alarms can be estimated based on perfor-

mance in catch trials. Then, RT distributions in the three

signal conditions are corrected using the false alarm distri-

bution (for a recent discussion of the method, see Gondan

& Minakata, 2016). One issue with this method is that false

alarm rates are typically low, which implies that estimated

false alarm distributions are unreliable. In the extreme, it

is well possible that no false alarm is recorded in catch tri-

als, yet a few erroneous responses have contaminated sig-

nal trials. The ’kill-the-twin’method provides in such cases

no handle to remove even extreme outliers from the data,

which can consequently bias parameter estimates. For this

reason, themethod based onmedian andMAD is preferred

as a systematic and automatic outlier removal procedure

before model-fitting.

Misfit in single signal conditions
Another important difference between synthetic and real

data is that the true distribution type of RTs in the single

signal conditions is unknown. When using the classic ap-

proach, this is not an issue because basic race model pre-

dictions, like Miller’s bound (Equation 7), can be computed

without making any assumptions about the distribution.

In contrast, the model proposed by Otto and Mamassian

(2012) assumes that RTs in the single signal conditions fol-

low a reci-normal distribution, as predicted by the LATER

model (Carpenter & Williams, 1995; Noorani & Carpenter,

2016). The parameter recovery simulation above shows

that the fitting procedures yield unbiased parameter esti-

mates when the distributional assumption is correct, but

what if the assumption is incorrect?

To exemplify potential effects of an incorrect distri-

butional assumption on parameter recovery, the RSE is

here simulated using an independent race model (i.e., as-

suming both statistical independence and context invari-

ance). In contrast to the previous simulations, responses

to single signals X and Y were here sampled from an ex-
Gaussian distribution (Heathcote et al., 1991; Luce, 1986).

Critically, with the arbitrarily specified parameters µ, σ,
and τ as summarized in Table 3, the resulting distribution
shape cannot be matched by a reci-normal distribution. To

simulate responses to redundant signals XY on a given
trial, the faster of two independent samples from the ex-

Gaussian distributions was selected as response. Using this

model, 2,000 synthetic data sets were generated, each with

100 RTs for each condition. Each samplewas then analysed

using the function fitRse as in the previous simulations.
When the distributional assumption made in the mod-

elling approach is incorrect, parameter recovery can be

biased (Table 3). There is of course no match between

the parameters of the generating ex-Gaussian distribution

and the parameter estimates of the fitted LATER model (al-

though some parameter names use identical symbols). The

key issue is that there is a bias in the best-fitting racemodel

parameters. The simulation assumed both statistical inde-

pendence and context invariance. Consequently, the race

model parameters ρ should be zero to match statistical in-
dependence. The race model parameter η should also be
zero (s

−1
) because any other value would manifest a vi-

olation of context invariance. However, both parameters

are different from zero, which indicates a bias in param-

eter recovery due to the incorrect distributional assump-

tion. Such biases are likely to scale with the mismatch be-

tween true and assumed distribution type (which was here

large given the arbitrarily selected ex-Gaussian distribu-

tion). This finding highlights that best-fitting model param-

eters should be interpreted with caution if the model fit in

the single signal conditions shows a systematic mis-fit.

Vincent averages
A final issue is that an analysis based on RT distributions

requires large sample sizes. Asmeasurement timewith hu-

man participants is often limited due to practical reasons

(at least to avoid fatigue effects), it is tempting to collapse

data from different subjects to obtain reliable group RT

distributions. An undesired effect of simply pooling data

across participants is that this method would inject vari-

ance from individual differences into the group distribu-

tion. An alternative is Vincent averaging (Ratcliff, 1979). In

this method, equal numbers of quantile RTs are extracted

for each participant. To obtain a group distribution, indi-

vidual quantile RTs are then averaged at each rank. Vin-

cent averaging has frequently been used in RSE research

to inspect RT distributions (e.g., Miller, 1982) as well as the

substrate inmodelling approaches (e.g., Otto &Mamassian,

2012). However, Vincent averaging is not always appropri-

ate (e.g., Cousineau, Thivierge, Harding, & Lacouture, 2016;

Rouder & Speckman, 2004; Thomas & Ross, 1980), which

questions whether the method is suitable in RSE research.

To test the effect of Vincent averaging on parame-

The Quantitative Methods for Psychology 1252

http://www.tqmp.org
http://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.15.2.p112


¦ 2019 Vol. 15 no. 2

Table 3 Parameter recovery with distributional mismatch.

Signal condition Generating

model

Parameter Simulation,

true value

Fitting model Parameter Recovery,

best-fit

Single X ex-Gaussian µx 0.35 s LATER model µx 2.16 s
−1

σx 0.02 s σx 0.50 s
−1

τx 0.15 s

Single Y ex-Gaussian µY 0.35 s LATER model µy 2.16 s
−1

σy 0.02 s σy 0.49 s
−1

τy 0.15 s

Redundant XY Race model Statistical independence Race model ρ -0.092

Context invariance η 0.042 s
−1

Figure 8 Vincent averages. a) Heterogeneous participants. Expected median RTs to single signals X and Y were sam-
pled from a bivariate normal distribution for 200 simulated participants. RTs to redundant signals XY were sampled
for each simulated participant using the independent race model. b) Group RT distributions using Vincent averaging.

Miller’s bound is computed based on the group distributions in the single signal conditions (the violation is quantified as

introduced in Figure 3b). Each distribution is based on 50 RTs per participant, yielding 10,000 RTs in total.

ter recovery, the RSE is here simulated with a hetero-

geneous group of participants (Figure 8a). For this,

expected median RTs to single signals X and Y were

randomly sampled from a bivariate normal distribution

(meanX,Y : 0.4 s, SDX,Y : 0.08 s, correlation: 0.5). The
corresponding value of the LATER model parameter µ is
then given by the reciprocal of the expected median RT

(µ = 1/medianRT ). The second LATER model parameter
σ was held constant at 0.4 s−1

for both single signals and

across participants. RTs to redundant signals XY were

simulated using a race model under the assumptions of

statistical independence and context invariance (i.e., the

corresponding race model parameters ρ and η were both
set to zero). The RSE-box function simRace was used to
generate synthetic data for 200 participants with 50 RTs

per condition. As a first analysis step, group RT distri-

butions were obtained using Vincent averaging (Ratcliff,

1979, each distribution is consequently based on 10,000

RTs). The group distributions were then analysed with

respect to Miller’s bound (Miller, 1982, using the RSE-box

function getViolation) as well as using the model pro-
posed by Otto and Mamassian (2012) (using the function

fitRse as in the previous simulations).
The use of group RT distributions estimated by Vincent

averaging can be misleading when analysing RSE experi-

ments (Figure 8b). For example, Miller’s bound (Equation

7) can be computed based on the group RT distributions as

estimated in the single signal conditions. Inspection of the

group RT distribution with redundant signals shows then

a clear violation of Miller’s bound. Hence, it seems jus-

tified to conclude that the effect cannot be explained by

Raab’s (1962) independent race model. The critical issue
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is that the data was generated precisely by that model and

that the violation of Miller’s bound here is an artefact in-

troduced by the averaging procedure. To avoid the issue,

Miller’s bound, and any other race model prediction, must

be computed individually for each participant.

Given the result of the first analysis, it is no surprise

that Vincent averaging leads also to biased parameter esti-

mates when analysing RSE experiments. In the simulation

here, the true value of both ρ and η was zero. Yet, fitting
the model to the group RT distributions shown in Figure 8b

returns biased estimates for both parameters (ρ = −0.42;
η = 0.072 s−1

). In contrast, parameter averaging of in-

dividual fits with the same data yields unbiased estimates

(ρ = 0.01; η = 0.003 s−1
). The bias in the group analy-

sis scales with the RT heterogeneity that is introduced in

the single signal conditions (results not shown). While it

is likely that the parametrization here overestimated the

RT heterogeneity as found in real data, the simulation still

highlights that parameter averaging of individual fits is the

recommended choice when modelling RSE experiments.

Conclusions and future development
The newly introduced RSE-box provides all functions that

are needed to measure the size of the effect, to obtain ba-

sic race model predictions, or to check for violations of

Miller’s bound. By providing the toolbox, the intention

is that the consistency of future RSE research can be im-

proved, for example, by avoiding the frequent confusion

of Raab’s (1962) independent race model (Equation 6) and

Miller’s bound (Equation 7). Moreover, by using consistent

tools and measures, a major aim is to support a compara-

tive approach to understand differences across RSE exper-

iments as recently initiated by Innes and Otto (2019). RSE

research has so far produced an extraordinarily rich data

set, which includes highly different subject populations

with many clinical samples as well as a huge variability

of signals. For example, the RSE can be observed both with

signals within one sensory modality like vision and with

signals across two modalities like vision and audition (e.g.,

Girard, Pelland, Lepore, & Collignon, 2013; Miller, 1982).

Yet, how exactly processing interactions differ between

uni- and multi-sensory stimulation remains to be inves-

tigated. Similarly, the basic redundant signals paradigm

can be extended and tested with three redundant signals

(Diederich & Colonius, 2004; Engmann & Cousineau, 2013;

Todd, 1912), which invites for an extension of RSE-box in

the near future. In general, while the RSE replicates reli-

ably, a systematic analysis of differences across studies is

lacking. Such analysis is ideally based on RT distributions,

which may lead to a better understanding of interactions

in the simultaneous processing of redundant signals.

An analysis of RT distributions becomes more infor-

mative if a model-based approach is used. However, the

vast majority of RSE studies does unfortunately not pro-

vide testable models as an explanation of the effect, which

is possibly one of the major weaknesses of the field. To

overcome the issue, a central aim of the RSE-box is to make

one of the very fewmodels that explain the RSE at the level

of RT distributions freely available and, thereby, to boost

the use of models in research with redundant signals.

As a first step, the race model introduced by (Otto

& Mamassian, 2012) can be used as a tool to study the

processes and interactions underlying the RSE. Future re-

search should here aim for a better understanding of the

model parameters. For example, the correlation parame-

ter ρ is linked to the sequential dependency of RTs in re-
dundant signals experiments, which is likely to be a key

factor for a full understanding of the effect. Likewise, the

noise parameter η, which manifests a violation of the con-
text invariance assumption, is strongly linked to violations

of Miller’s bound. By a systematic analysis of the two pa-

rameters across different sensory signals and experimen-

tal conditions, it may be possible to unveil more about the

parameters and corresponding processing interactions.

As a second step, simulation studies can be very use-

ful to validate model fitting procedures. The parameter re-

covery studies here show for example that the model in-

troduced by Otto and Mamassian (2012) is in itself consis-

tent as the fitting procedures yield unbiased parameter es-

timates (Figure 6). At present, it is the only model of the

RSE that is published including such simulations. The pa-

rameter recovery studies further help to scrutinize anal-

ysis methods. For example, the simulations here demon-

strate the need for a systematic outlier removal procedure,

the importance to check for systematic mis-fit in the sin-

gle signal conditions, as well as the inappropriateness of

using Vincent averaging in the analysis of RTs with redun-

dant signals. Moreover, simulations easily demonstrate

that race models, if the context invariance assumption is

dropped, are not limited by Miller’s bound (Figure 3). In

the end, the simulation tools may thus contribute in gen-

eral to a better understanding of race models as an expla-

nation of the RSE.

The ultimate goal of the RSE-box is to trigger model de-

velopment. This may start directly with the race model in-

troduced by Otto and Mamassian (2012), which explains

violations of Miller’s bound by a noise interaction. Yet, it

is well possible that a differently modelled violation of the

context invariance assumption provides better model fits.

Likewise, there is the competing class of so-called coactiva-

tion models, which explain the RSE by a pooling of sensory

evidence in a single decision unit (e.g., Diederich, 1995;

Mordkoff & Yantis, 1991; Townsend & Wenger, 2004; Ze-

hetleitner, Krummenacher, & Müller, 2009; ; for a review
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covering this model class, see Colonius & Diederich, 2017).

Future work should make these models equally available,

for example, as part of an RSE-box extension. The avail-

ability of these models would then enable for the first time

a direct comparison of the fundamentally different and

competing approaches using objective measures of model

selection, which would manifest a major improvement in

RSE research.
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Ulrich, R., Miller, J., & Schröter, H. (2007). Testing the race

model inequality: An algorithm and computer pro-

grams. Behavior Research Methods, 39(2), 291–302.
doi:10.3758/Bf03193160

Vrancken, L., Vermeulen, E., Germeys, F., & Verfaillie, K.

(2019). Measuring facial identity and emotion integra-

tion using the redundancy gain paradigm. Attention,
Perception, & Psychophysics, 81(1), 217–236. doi:10 .
3758/s13414-018-1603-y

Yang, C. T., Altieri, N., & Little, D. R. (2018). An examina-

tion of parallel versus coactive processing accounts of

redundant-target audiovisual signal processing. Jour-
nal of Mathematical Psychology, 82, 138–158. doi:10 .
1016/j.jmp.2017.09.003

Zehetleitner, M., Krummenacher, J., & Müller, H. J. (2009).

The detection of feature singletons defined in two

dimensions is based on salience summation, rather

than on serial exhaustive or interactive race archi-

tectures. Attention, Perception, & Psychophysics, 71(8),
1739–1759. doi:10.3758/App.71.8.1739

Appendix A: An example of appendix
The following code example shows the RSE-box function demo01_quantiles, which performs the analysis steps de-
picted in Figure 2 and Figure 3. To illustrate functionality, synthetic data generated by RSE-box functions is used. The code

can be easily adapted to analyse empirical data. Similarly, the functions demo02_later and demo03_race illustrate
analysis steps as depicted in Figure 4 and Figure 5, respectively. Table 1 provides an overview of RSE-box functions.

function demo01_quantiles
% DEMO01_QUANTILES Demonstration of the RSE−box: Basic RT analysis
%
% DEMO01_QUANTILES demonstrates the functionality of key functions in the RSE toolbox in
% four steps: (1) Simulation of a redundant signals experiment. (2) Plotting of
% cumulative distribution functions . (3) Measuring the redundancy gain ( the speed−up
% of reaction times in the redundant compared to the single signal conditions ) .
% (4) Estimating violations of Miller ’ s bound. Documentation of exemplified toolbox
% functions can be obtained using the HELP function.
%
% See also: simRace, getCP, getGrice , getGain , getMiller , getViolation , fillArea
% Copyright (C) 2017−18 Thomas Otto, University of St Andrews
% See rseBox_license for details
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% (1) Simulate RSE
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Sample size ( trials per condition )
n = 50;
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% LATER model parameters to simulate the single signal conditions
mu = [ 2.5, 2.5 ];
sigma = [ 0.4, 0.4 ];

% Race model parameters to simulate the redundant signals condition
% (set both parameters to 0 for the independent race model)
rho = -0.5;
eta = 0.1;

% Simulate RSE experiment using a race model
data = simRace( n, mu, sigma, rho, eta );

% Get cumulative probabilities
p = getCP( n );

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% (2) Plot cumulative distribution functions
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Figure size
figSize = [0.25 0.25 0.5 0.6];

% Open new figure
figure( ’units’, ’normalized’, ’outerposition’, figSize )
hold on

% X−axis limits (min, max)
xLim = [ 0.1 0.7 ];

% Colors for the three conditions (green, blue , black)
color = ’gbk’;
grey = [0.8 0.8 0.8];

% Plot RSE data (as quantiles )
lh = zeros(1,3);
for ii=1:3

lh(ii) = plot( data(:,ii), p, [’-o’ color(ii)], ’MarkerSize’, 7,
’MarkerFaceColor’, ’w’ );

end

% Info text and figure format
legendText = { ’Signal 1’, ’Signal 2’, ’Redundant’};
figFormat( xLim, lh, legendText )
drawnow;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% (3) Measuring redundancy gain
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Open new figure
figure( ’units’, ’normalized’, ’outerposition’, figSize )
hold on
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% Take Grice’s bound as reference
grice = getGrice( data(:,1:2) );

% Redundancy gain
gain = getGain( data );
gain = round( gain, 3, ’significant’ );

% Plot data
fillArea( [ data(:,3), grice ] );
for ii=1:2

plot( data(:,ii), p, ’-o’, ’Color’, grey, ’MarkerSize’, 7,
’MarkerFaceColor’, ’w’ );

end
lh(1) = plot( grice, p, ’-or’, ’MarkerSize’, 7, ’MarkerFaceColor’, ’w’ );
lh(2) = plot( data(:,3), p, ’-ok’, ’MarkerSize’, 7, ’MarkerFaceColor’, ’w’ );

% Info text and figure format
text( 0.05, 0.90, ’Redundancy gain’, ’units’, ’normalized’)
text( 0.05, 0.85, [num2str(gain) ’ s’], ’FontWeight’, ’bold’,

’units’, ’normalized’)
legendText = { ’Grice bound’, ’Redundant’};
figFormat(xLim, lh(1:2), legendText)
drawnow;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% (4) Violation of Miller ’ s bound
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Open new figure
figure( ’units’, ’normalized’, ’outerposition’, figSize )
hold on

% Take Miller’s bound as reference
miller = getMiller( data(:,1:2) );

% Violation area
violation = getViolation( data );
violation = round( violation, 3, ’significant’ );

% Plot data
for ii=1:2

plot( data(:,ii), p, ’-o’, ’Color’, grey, ’MarkerSize’, 7,
’MarkerFaceColor’, ’w’ );

end
fillArea( [ data(:,3), miller ], [], 1 );
lh(1) = plot( miller, p, ’-or’, ’MarkerSize’, 7, ’MarkerFaceColor’, ’w’ );
lh(2) = plot( data(:,3), p, ’-ok’, ’MarkerSize’, 7, ’MarkerFaceColor’, ’w’ );

% Info text and figure format
text( 0.05, 0.90, ’Violation area’, ’units’, ’normalized’)
text( 0.05, 0.85, [num2str(violation) ’ s’], ’FontWeight’, ’bold’,
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’units’, ’normalized’)
legendText = { ’Miller bound’, ’Redundant’};
figFormat( xLim, lh(1:2), legendText )

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% Figure formating
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function figFormat( xLim, lh, legendText )

% General figure settings
xlabel( ’Reaction time (s)’, ’FontWeight’, ’bold’ )t
ylabel( ’Cumulative probability’, ’FontWeight’, ’bold’ )
legend( lh, legendText, ’Location’, ’southeast’ )
legend( ’boxoff’ )
set( gca, ’xlim’, xLim, ’ylim’, [0 1] )

end
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