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Abstract 

Questions: How do newly established species interact with existing assemblage members to alter 

local biodiversity? This question is especially topical given growing concerns about increased 

temporal turnover levels relative to background rates. Pine (Pinus spp.), a major invasive taxon in the 

southern hemisphere, is progressively dominating remaining fragments of the Brazilian savanna 

(Cerrado), a biodiversity hostpot. Because the Cerrado’s diversity is linked to habitat heterogeneity we 

argue that the impact of these invasive singleton pines will be mediated by differences in local habitat 

structure. Here we use isolated invasive pines Pinus elliottii in the Cerrado as a study system to test 

the prediciton that changes in the diversity of native communities, in the presence of newly 

established exotic individuals, will be greatest in the dominant vegetation layer of a habitat. 
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Location: Itirapina Ecological Station, southeast of Brazil 

Methods: We used a stratified random survey in 5x5m pairs of plots invaded by a single pine 

individual each matched by control uninvaded plots; both shrub and grass vegetation layers were 

sampled in both habitats. In total, 300 plots were sampled, 114 in the shrub-dominated campo sujo 

and 186 in the grass-dominated campo úmido. 

Results: Over four hundred plant species were recorded. In both habitats, we detect marked shifts in 

species richness of the dominant vegetation layer. In line with our prediction, the nature of these 

changes is mediated by local habitat structure. We find significantly reduced species richness in the 

shrub layer of the shrub-dominated habitat but elevated species richness in the grass layer of the 

grass-dominated habitat in invaded sites (v. control). In the grass layer of campo úmido, pine initially 

decreases dominance thus allowing more species to colonize the plots. 

Conclusions: The shape of the diversity v. establishment time relationship is layer dependent, with a 

significant relationship between dominance/evenness and pine size in the grass layer but no 

relationship in the shrub layer.  Our results show that, though complex, the consequences for local 

biodiversity of non-native species establishment are not haphazard, and thus contribute to the 

understanding of species coexistence. 

KEYWORDS: α-diversity; biodiversity change; biological invasion; invasion impact; invasive species; 

community ecology; Cerrado; environmental heterogeneity; habitat structure; Pinus elliottii, species 

richness; vegetation layer 

Introduction 

A key question in ecology is how newly established species interact with existing assemblage 

members to alter local biodiversity. This question touches on fundamental issues such as the extent 

to which local communities are saturated with species, the impact that these new arrivals have on 

existing inhabitants, and the mechanisms that underpin coexistence. We know from recent research 

(Dornelas et al. 2014; Magurran et al. 2015) that assemblages worldwide are experiencing 

unprecedented levels of temporal turnover. Invasive species, thought to be a major contributor to this 

elevated turnover, are the subject of growing concern  (Kolar & Lodge 2001; Levine et al. 2003; 

Ortega & Pearson 2005; Didham et al. 2007; Chytrý et al. 2008; Ehrenfeld 2010; Vilà et al. 2011; 

Simberloff et al. 2013; Qi et al. 2014; Dong et al. 2015; Carboni et al. 2016). As such, the quest to 

deepen understanding of the process by which new species become incorporated in existing 

assemblages is both topical and important.  

We already know that invasive species drive biodiversity change (Simberloff et al. 2013; 

Dornelas et al. 2014), including biotic homogenization (Magurran et al. 2015), and lead to loss of 

function (Levine et al. 2003) and the loss of keystone species (Pyšek & Richardson 2010). These 

changes are particularly dramatic when large populations of exotics have become established (Vilà et 

al. 2011; Qi et al. 2014). Parker et al. (1999) conceptualized that the impact caused by invasive 

species is a product of three of their attributes: the range size R (in m²), its average abundance per 

unit area (A, e.g. number of individuals per m²) and the effect per individual of the invader (E). Both 

range and abundance aspects of invasive species have been studied in relation to their impacts. For 

instance,  extensive stands of invasive pine trees, for example, can dominate and reorganise 

communities (Richardson 2006). Even solitary individuals, such as those occurring on an invasion 

front, have the potential to change local biodiversity (Kolar & Lodge 2001). However, impacts focused 

on the effect per individual of the invader remain poorly studied.  Moreover, the mechanisms at play 

when invasive species initially establish are not well understood (Dong et al. 2015), yet it is the 

changes that occur at this point where management interventions may still be able to reverse impacts 

(Kolar & Lodge 2001) as well as to determine if the new arrival is incorporated into the assemblage, 

and how it will impact the species already present there. A key challenge, therefore, is to understand 

how natural communities are restructured at this earliest phase of invasion. 
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As MacArthur & MacArthur (1961) predicted, habitat structure has an important role in 

mediating species establishment. Given the importance of structural complexity in promoting diversity, 

we argue that habitat structure may play a critical role in shaping the consequences, for ecological 

communities, of individuals at the vanguard of an invasion.  This is because habitat structure 

mediates biotic interactions through niche availability and competition between individuals. 

Structurally complex habitats generally support more biological diversity than less complex ones 

(MacArthur & MacArthur 1961). In addition, different types of structure favour different species. Thus, 

ecosystems composed of patchworks of structurally variable habitats will typically be more diverse 

than uniform ones.  

Habitat structure – the vegetation structure of a habitat - has the potential to influence the 

establishment of new species in two ways. First, as is already clear, establishment probability can 

depend on habitat structure (e.g. Chytrý et al. 2008). For example, herbaceous vegetation is more 

likely to be invaded by alien species than broad-leaved deciduous woodlands (Chytrý et al. 2008). 

Second, given its role in shaping biotic interactions, habitat structure may mediate the interaction 

between invasive species, once established, and native taxa. Thus, the same propagule pressure 

could lead to markedly different outcomes for diversity, even over small geographic distances, if there 

is local variation in habitat structure. Because it is the repository of most biomass, we expect the 

dominant layer in a habitat to show the strongest response to invasion. Moreover, the link between 

habitat structure and diversity means that this response should be apparent from the earliest stages 

of invasion.  

Given both the importance of biodiversity hotspots in maintaining global diversity and the lack 

of studies on biodiversity change attributed to invasive species, especially in lower latitudes, we 

decided to focus on the Cerrado (Brazilian savanna) as a study system. The Cerrado (see 

Supplementary Figure 1 online) is the second (after the Amazon) largest vegetation formation in 

South America, and originally extended across 2 million km² (an area approximately the size of 

Western Europe) (Cardoso Da Silva & Bates 2002). The Cerrado  has the most diverse savanna flora 

in the world (Simon et al. 2009), with >12,000 species of plants, of which 35% are endemic (Zappi et 

al. 2015). Habitat heterogeneity underlies the Cerrado’s diversity; different patches support distinct 

assemblages of species (Oliveira-Filho & Ratter 2002). The Cerrado has a mosaic of habitat types, 

which are distinct in terms of vegetation structure and species composition. The greatest biomass in a 

Cerrado habitat is found in its dominant vegetation layer (Castro & Kauffman 1998). 

Newly established individuals, along an invasion front, provide a natural experiment allowing 

researchers to predict and quantify change in biodiversity. An advantage of the Cerrado system is 

access to two botanically distinct yet neighbouring habitats, which have been invaded over the same 

time scale, have experienced the same propagule pressure, and where there are no confounding 

effects of spatial or temporal scale. The two habitats are campo sujo (shrub-dominated) and campo 

úmido (grass-dominated). The habitats differ in hydric soil saturation, vegetation structure and species 

composition (Tannus & Assis 2004). Campo sujo is an intermediate savanna type mostly located on 

quartzarenic neosol that primarily contains forbs, shrubs, occasional small trees and graminoids. 

Campo úmido is a wet grassland - a more open vegetation structure mostly located on gleysoil, which 

gets seasonally waterlogged and mostly contains graminoids, forbs and small shrubs (see also Figure 

1) (Tannus & Assis 2004; Zanchetta & Diniz 2006). 

Here we use isolated invasive pines Pinus elliottii in the Cerrado as a study system to test the 

hypothesis that the impact of newly established exotic individuals on the native communities is 

stronger in the dominant vegetation layer of a habitat. The understanding of the unfolding impacts of 

pine invasions in the Cerrado and other South American habitats is crucial as these invasions are 

recent and likely to expand substantially, as seen in other parts of the Southern Hemisphere (such as 

South Africa and New Zealand), with a much longer history of pine plantations (Richardson et al. 

2008; Simberloff et al. 2010). 
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Methods 

Data collection  

Fieldwork was carried out from November 2014 until April 2015 on the Cerrado vegetation of Itirapina 

Ecological Station, a legally protected area located between 22º 11’ and 22º 15’ south and 47º 51’ and 

47º 57 west in São Paulo state, Brazil (Figure S1). The study was focussed on a 7 km
2 

portion of the 

Station that pine seedlings are invading, and which mostly contains campo sujo and campo úmido 

habitats. Campo sujo has dry soil (quartzarenic neosol), and comprises mostly forbs, shrubs and 

small trees whereas campo úmido has waterlogged soil (gleysol), and more open vegetation structure 

comprised mostly by grasses and forbs (Figure 1) (Zanchetta & Diniz 2006). 

To quantify the biodiversity response as the invasive species establishes, and to elucidate the 

mechanisms that underpin local shifts in diversity in the immediate vicinity of the pine, we randomly 

selected isolated individual pine trees of any size and placed these at the centre of each ‘invaded plot’ 

measuring 5mx5m. A corresponding ‘control’, non-invaded plot was placed 10m away in a random 

direction – and at least 10m distant from the nearest pine tree individual. This randomised design 

means that the control plots provide an unbiased assessment of the impact of the pine trees on 

assemblage diversity and structure as a whole.  We sampled a total of 300 plots (invaded plus 

control), 186 in campo úmido and 114 in campo sujo. The height of each pine was recorded. Because 

most isolated pines are young, small individuals, the majority of sampled pine trees were <5m height; 

most of taller pine individuals were clustered. We expect 5m tall pines to be approximately up to four 

years old (Coelho & Finger 1997). 

A considerable proportion of Cerrado diversity is found in the non-woody layer (namely 

herbaceous and graminoids species) (Felfili et al. 1994), usually overlooked in diversity studies. To 

test the prediction that habitat layer is important in mediating invasion impact we sampled vegetation 

in both layers in a plot, in both structurally distinct habitats. We used two methods to quantify plant 

abundance in each plot: 1) a count of all individual stems (small tree, palm tree, shrub, subshrub and 

forb) for the shrub layer and 2) a systematic survey to detect all species present in the grass layer 

(graminoids – grasses, sedges and rushes - and liana). The shrub layer thus includes any non-woody 

species (e.g. forbs), sampled by individual counts. To calculate diversity metrics for the grass layer we 

also sampled abundance data with a point quadrat – a non-destructive sampling method. Our point 

quadrat had 5 ‘pins’;  we used the number of times a taxon was ‘hit’ by a pin as our measure of its 

numerical abundance (number of ‘individuals’) within the plot (Magurran 1988). The point quadrat was 

randomly placed 10 times in each plot – 50 ‘pins’ per plot in total. Every plant individual in the shrub 

layer of each plot was therefore sampled, regardless of its size. All plants in each plot were identified 

to the best taxonomic resolution: species (80.1% of individuals), genus (12%), family (7.2%) or 

morphospecies (0.7%).  All scientific names, authorities and families are in accordance with the 

Species List of the Brazilian Flora (Species List of the Brazilian Flora 2018). 

Statistical analyses 

Statistical analyses were conducted separately in the two habitats according to the sampling method 

used: count of individuals (abundance data, shrub layer) and all species present in a plot (incidence 

data, grass layer) or point quadrat (abundance data, grass layer). First, we evaluated species 

richness (α-diversity) using robust estimators to assess the impact of these isolated pine trees on the 

overall native Cerrado biodiversity at the assemblage level. To quantify the species richness (α-

diversity) in each of the eight zones (invaded and control sites of campo sujo and campo úmido 

habitats for both shrub and grass layers) we employed the extrapolated rarefaction method using 

iNEXT package from R (R Core Team 2014; Hsieh et al. 2016). Extrapolated rarefaction generates a 

species accumulation curve as a function of either number of individuals (abundance data) or number 

of sampling units (incidence data); it is a robust and informative metric that allows ecologists to 

compare expected species richness between sites even when different total numbers of individuals 
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have been sampled (Chao et al. 2014). Species richness is estimated relative to the maximum 

number of individuals (or sampling units) recorded in any of the conditions being compared (invaded 

vs control). In our study this maximum was 4176 and 8302 individuals in the shrub layer of campo 

sujo and campo úmido habitats, respectively. Species richness can be extrapolated to up to double 

the sampling units (or number of plots sampled) (Hsieh et al. 2016): 114 sampling units for campo 

sujo and 186 for campo úmido habitat. The extrapolated rarefaction method provides a 95% 

confidence interval of expected species richness based on bootstrap (Chao et al. 2014; Hsieh et al. 

2016).  

Second, to test our hypothesis that the strongest response to invasion will be detected in the 

dominant vegetation layer in a system, we tested two null hypotheses that use the information 

provided by a rarefaction to compare assemblages: the ecological null hypothesis  (H0eco) and the 

biogeographical null hypothesis (H0biog) (Cayuela et al. 2015). H0eco attests that two (or more) samples 

are drawn from the same underlying assemblage and as such share similar species richness, species 

composition and relative abundances (Cayuela et al. 2015). H0biog, however, assumes that while the 

samples have distinct species composition they share similar richness and relative abundance 

distributions (Cayuela et al. 2015). H0eco and H0biog were tested using package rareNMtests from R (R 

Core Team 2014). 

Third, we calculated the species composition (β-diversity) between invaded and control sites 

of the same habitat and layer using the robust Raup-Crick (βRC) method (Chase et al. 2011).  β-

diversity links α-diversity (local diversity) to γ-diversity (regional diversity Whittaker 1960). Observed 

differences  in β-diversity could be due to chance as a result of  the prevailing patterns  in α and/or γ 

diversity (Chase et al. 2011). Chase's βRC makes it possible to determine where β-diversity differs 

from the null expectation, (the null being informed by local richness and by known γ-diversity - the 

complete list of species in each vegetation layer), on a scale from -1 to 1. Values approaching 0 

indicate no difference in the dissimilarity between sites compared to the null expectation; values 

approaching 1 indicate sites more dissimilar than expected and values approaching -1 indicate sites 

less dissimilar (more similar) than expected.  This method is particularly robust for comparing species 

composition of areas with contrasting α-diversity.  βRC analysis was conducted in the current vegan 

package of R (R Core Team 2014) with the code provided by Chase et al (2011). Results were plotted 

using package corrplot from R (R Core Team 2014). 

Fourth, we focus on the plot level to determine whether changes in pine height are related to 

a shift in the dominance/evenness components of diversity, and hence community structure.  

Dominance and evenness metrics capture opposing aspects of the species abundance distribution 

and can be negatively correlated. We thus calculated two metrics, the Berger Parker index, a 

dominance index (Berger & Parker 1970), and the PIE (Probability of Interspecific Encounter), an 

evenness index (Hurlbert 1971) The Berger-Parker index expresses the proportional abundance of 

the most abundant species (Berger & Parker 1970), and it is calculated as:   

D = 
    

 
 

where Nmax is the number of individuals in the most abundant species, and N is total 

abundance.  

The PIE index represents the probability that two randomly chosen individuals in an assemblage 

represent two different species (Hurlbert 1971), it is  robust to unequal sample size (Gotelli & Ellison 

2013), calculated as: 

PIE =
 

     
 
       

  

   
  

where pi is the proportion of the complete assemblage represented by species i(pi = Ni/N).  
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The PIE and Berger Parker indices were calculated for each invaded plot, separately for both layers 

of the habitats.  

We modelled pine height as a predictor of diversity in the invaded plots, using the ‘two-lines’ 

method (Simonsohn 2018). The two-lines method was chosen because it is regarded as the first valid 

method of detecting U-shaped relationships, given the extremely high false positive rates of quadratic 

regression tests (Simonsohn 2018). The two-lines method fits two separate regression lines to the 

data; Simonsohn (2018) argues that “a U-shape is present if the slopes are of opposite sign and are 

both statistically significant”. In our case this represents one line for ‘short’ pine tree individuals and 

another for ‘tall’ pine tree individuals; the breakpoint between the lines is also calculated (Simonsohn 

2018). The two-lines method was calculated using version v0.3 (available at 

http://webstimate.org/twolines/). 

Finally, to ascertain whether there are consistent differences in species richness between 

corresponding pairs of invaded and control plots at the plot level, we used a Wilcoxon rank test using 

the wilcox function from R (R Core Team 2014) to calculate the differences between observed 

species richness in corresponding pairs of invaded and control plots.  

Results 

Overall biodiversity change at the assemblage level 

In line with our prediction, the presence of the invasive species was associated with marked changes 

in the dominant vegetation layer of each habitat: the shrub layer of campo sujo and the grass layer of 

campo úmido (Figure 1, Figures S2 & S3). Species richness (measured by the extrapolated 

rarefaction) was significantly different between invaded and control sites in the dominant vegetation 

layer of each habitat. In invaded sites, compared to control, species richness was lower in the shrub 

layer of campo sujo but higher in the grass layer of campo úmido (Figure 1). No equivalent 

differences were detected in the sub-dominant vegetation of either habitat (Figure 1). 

Both H0eco and H0biog null hypotheses were also rejected in the dominant layer of each habitat: 

the shrub layer of campo sujo and the grass layer of campo úmido (Figures S2 & S3). This provides 

additional evidence that invaded and control sites (of the same habitat and layer) differ in species 

richness as well as species composition and relative abundances. 
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Figure 1. Extrapolated rarefaction curve calculated using iNEXT package (Hsieh et al. 2016) based 

on the number of individuals found in each largest sample in the shrub layer (abundance data), and 

the number of sampling units (plots) in the grass layer (incidence data) (values are in the main text). 

Species from both layers were sampled within each 5x5m plot. Solid lines represent the interpolation 

and dotted lines represent the extrapolation. The hatched area depicts the 95% confidence interval. 

Species richness differed significantly between invaded and control plots in the dominant vegetation 

layer of each habitat in contrasting ways: in invaded sites species richness was (a) lower in the shrub 

layer of campo sujo and (d) higher in the grass layer of campo úmido habitat. Note difference in x-axis 

scale between campo sujo and campo úmido graphs. 

Taking all sampled species of each layer into account (total γ-diversity) Raup-Crick analysis revealed 

that species composition between invaded and control sites of the same habitat were more similar to 

one another than expected (Figure 2). There were, however, marked differences in species 

composition between the habitats in the shrub layer, as expected (Figure 2). 
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Figure 2. Correlogram plots of Raup-Crick dissimilarity results at the assemblage level. The 

Raup-Crick analysis was calculated with the code provided by (Chase et al. 2011) and the values 

were obtained using package corrplot from R. -1 represents habitats more similar in terms of species 

composition than expected by null models (red); 1 represents habitats less similar than expected by 

null models (blue) and 0 represents species composition no different than expected by null models 

(white). Arrows indicate the comparison of invaded v. control sites from the same habitat and layer – 

which are more similar to one another than expected in all cases. Each vegetation layer was 

calculated separately. 

Quantifying biodiversity change after invasive pine establishment at the plot level 

As noted above, invaded sites, compared to control, had lower species richness in the shrub layer of 

campo sujo but higher species richness in the grass layer of the more open campo úmido. These 

results reflect assemblage level change (Figure 1). To understand the mechanistic basis of these 

patterns of change we turn to the plot level. 

At the plot level, density plots showed no overall shifts in the number of individuals between 

invaded and control plots (Figure S4). This means that any changes we see are not linked to shifts in 

the numbers of individuals plots are supporting.  

Pairwise comparison of observed richness between each pair of corresponding invaded and 

control plot in the shrub layer of the shrub-dominated campo sujo habitat revealed lower species 

richness in invaded plots than in their corresponding control ones (Figure S5). Species found only in 

control, and not in invaded plots, of campo sujo habitat include shrubs, subshrubs and a forb (Table 

S1). Taken together these results suggest that the presence of an isolated pine is associated with 

lower species richness in the shrub layer of campo sujo, regardless of pine size (Figure S6).  

Our analysis of the grass layer of campo úmido revealed higher species richness in invaded 

sites, compared to control, at the assemblage level (Figure 1). In this habitat, at the plot level, we 

detected marked shifts in both dominance and evenness components of diversity as a function of pine 

height (Figure 3.b & 3.d). We also found that, at intermediate heights of the pine, there was an initial 

decrease in dominance, mirrored by an increase in evenness (Figure 3). As pines grow larger, 

however, dominance increased and evenness decreased again - associated with lower species 
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richness. Because most of the sampled pines were young, short individuals, this was reflected in 

increased overall diversity detected at the assemblage level.  

A similar pattern was found in the grass layer of campo sujo, where there was an increase in 

dominance and a decrease in evenness detected for taller pines (second line only in Figure 3.a & 

3.c). Here, however, no initial decrease in dominance (and increase in evenness) was detected for 

short pines (Figure 3.a & 3.c), hence no apparent increase in diversity was found. This is consistent 

with our observation of no difference in species richness between invaded and control sites at the 

assemblage level (Figure 1). 

In the shrub layer, no significant relationship between pine height and dominance/evenness 

was found in any habitat (Figure S6). 

 

Figure 3. Two-lines method applied for the invaded grass layer of both habitats for Berger Parker, a 

dominance index (a and b) and Probability of Interspecific Encounter (PIE), an evenness index (c and 

d) as related to invasive pine height. The two-lines method estimates a regression with two separate 

lines: one for “short” pine individuals and other for “taller” pine individuals, including a breakpoint to 

separate these (Simonsohn 2018). In campo sujo habitat there is an increase in dominance and a 

decrease in evenness for taller pines only (red line in a & c). In campo úmido habitat (b & d), all 

regression lines are significant for both Berger-Parker and PIE metrics. 

Together with the shifts in dominance detected in the grass layer of the grass-dominated 

campo úmido (Figure 3), we also found that the identity of the most dominant species changed as 

pines grew larger (Figure 4.b). Here the change in dominance is reflected in the replacement of the 

most dominant species, Axonopus sp., by other species: Andropogon leucostachyus, Axonopus sp2, 

Trachypogon vestitus, Trachypogon sp., Loudetiopsis chrysothrix and Cyperus compressus (Figure 

4.b). Additionally, species sampled in invaded, but not in control, sites within the grass-dominated 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

habitat were also found in the shrub-dominated habitat, where they are more abundant. These 

species include sedges Cyperus sp., rushes Juncus densiflorus, grasses Imperata brasiliensis and 

lianas Serjania lethalis, Tynanthus micranthus.  In contrast, in the campo sujo habitat although there 

was turnover in dominant species in relation to pine size there was less evidence of a clear 

substitution of dominant species (Figure 3.a).  

Finally, because a U-shaped relationship was detected for the invaded grass layer of campo 

úmido habitat (Figure 3.b & 3.c), we also modelled total abundance as a predictor of observed 

species richness in each invaded plot of this habitat to ascertain whether humped-shaped 

relationships could be explained by the ’more individuals hypothesis’ (Evans et al. 2005), also using 

the two-lines method (Simonsohn 2018). Species richness did not increase monotonically with 

increased abundance in invaded grass layer of campo úmido (see Figure S7). 

 

Figure 4. Proportion of the most dominant species in relation to pine height category in the invaded 

grass layer of campo sujo (a) and campo úmido (b) habitats. Circle size represents the proportion of 

invaded plots (in %) in which species are dominant in each pine height category. The code to produce 

this Figure was adapted from (Zenni 2014). In invaded plots of campo úmido habitat (b) there was a 

reduction in the dominance of the most dominant species, Axonopus sp., thus allowing other species 

to establish and to become dominant in the plots. 

Table 1. Summary of the main results. At the assemblage level, extrapolated rarefaction curves differ 

significantly in the dominant vegetation layer of each habitat: the shrub layer of campo sujo and the 

grass layer of campo úmido. In invaded sites, compared to control, there is lower species richness in 

the shrub layer of campo sujo whereas higher species richness was found in the grass layer of campo 

úmido. Both ecological null hypothesis and biogeographical null hypothesis were also rejected in the 

dominant vegetation layer of each habitat.  At the plot level, lower species was also found in the shrub 

layer of campo sujo. In invaded plots, an initial decrease in dominance followed by an increase in 

dominance is observed as a function of pine height in the grass layer of campo úmido (this is mirrored 

by an initial increase in evenness followed by a decrease in evenness). In campo sujo habitat, also in 
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the grass layer, only a later increase in dominance and a decrease in evenness were detected. * 

dominant vegetation layer. n.s. non-significant. 

  assemblage level: invaded v. control sites plot level 

Habitat Layer Extrapolated 
rarefaction 
curves (Fig 1) 

H0eco 

(Figure S2) 
H0biog 

(Figure S3) 
differences in S 
between 
corresponding 
pairs of invaded 
and control plots 
(Figure S5) 

shifts in 
dominance 
as a 
function of 
pine height 
(Fig 3)  

shifts in 
evenness 
as a 
function of 
pine height 
(Fig 3) 

campo 
sujo 

shrub* invaded<control rejected rejected invaded<control n.s. n.s. 

campo 
sujo 

grass indistinguishable can’t reject rejected n.s. late 
increase in 
dominance 

late 
decrease in 
evenness 

campo 
úmido  

shrub indistinguishable can’t reject can’t reject n.s. n.s. n.s. 

campo 
úmido 

grass* invaded>control rejected rejected n.s. initial 
decrease in 
dominance 
then 
increase in 
dominance 

initial 
increase in 
evenness 
then 
decrease in 
evenness 
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Discussion 

Our results provide compelling evidence that, in line with our prediction, the presence of singleton 

invasive pines can be associated with marked biodiversity change in the dominant vegetation layer 

(Figure 1). This conclusion is underpinned by the data collected at the plot level, indicating fine-scale 

effects, and by the extrapolated rarefaction suggesting overall assemblage responses. Invaded and 

control sites in the dominant vegetation layer of each habitat also differ in species richness, species 

composition and relative abundances (Figures S2 & S3). In invaded sites, compared to control, there 

is lower species richness in the shrub layer of the shrub-dominated campo sujo but higher species 

richness of the grass-dominated campo úmido at the assemblage level (Figure 1). At the plot level, 

pairwise comparison of corresponding invaded and control plots also show lower species richness in 

the shrub layer of campo sujo, compared to control (Figure S5). The grass layer of campo úmido 

habitat, at the plot level, tended towards a segmented relationship between invader size and the 

dominance/evenness component of diversity (Figure 3b & 3.d). This is probably because the newly 

established pine individuals disrupt local dominance at intermediate heights, reducing dominance thus 

allowing more species to colonize. This reduction in dominance is short term, however, and 

dominance becomes more pronounced as the pine tree grows (Figure 3.b).  Because most of the pine 

trees in our study were small these shifts translated into an overall increase in richness when viewed 

at the assemblage level (Figure 1).  

Studies that experimentally plant invasive species in native areas and monitor changes in 

diversity over time are an ideal approach. This alternative is not feasible here, however, because this 

is a protected area where the plantation of invasive species is forbidden. Even if it was not forbidden, 

planting more invasive species in a highly invaded, and thus already threated, area would be 

unethical. As such, our sampling design, with randomised isolated pine tree individuals and 

corresponding control plots placed at a random direction (300 5x5m sampled plots in total), is the best 

means of evaluating invasive impacts on native assemblages.  

Habitat structure and biodiversity change 

Our study supports the idea that invasive pines can cause ecological impacts on native plant 

assemblages (Falleiros et al. 2011; Abreu & Durigan 2011; Taylor et al. 2016; Nuñez et al. 2017). 

Crucially, we detected such changes at early stages of invasion marked by single invasive individuals. 

In the shrub layer of campo sujo, lower species richness in invaded areas was detected both at the 

assemblage (Figure 1) and at the plot level (Figure S5), whereas in the grass layer of the more open 

campo úmido pine initially disrupts dominance (Figures 3 & 5) thus leading to an apparent increased 

species richness at the assemblage level (Figure 1). In the grass layer of the shrub-dominated campo 

sujo, however, changes in the dominance/evenness components of diversity were detected for taller 

pine individuals only (Figure 3), and as such there was neither an initial decrease in dominance nor 

apparent increase in species richness. Therefore, species richness is indistinguishable between 

invaded and control areas in this subdominant layer (Figure 1). 

Many studies testify to substantial negative impacts of pine trees by decreasing native 

species richness, particularly when they are established in high densities (e.g. Falleiros et al. 2011; 

Abreu & Durigan 2011; Taylor et al. 2016; Nuñez et al. 2017). However, other investigations have 

found a positive relationship between diversity and pine invasion, for example associated with 

increased pine dominance in forest-dominated habitats (e.g. Taylor et al. 2016), in which more shade-

resistant species are able to establish. By showing that vegetation layers (shrub and grass in our 

case) can respond differentially to the presence of invasive pine trees, and that this response can 

change as saplings grow larger, our results help resolve the paradox of the inconsistent impact of 

these trees on local biodiversity.  

Even though marked changes in species richness (α diversity) were found in the dominant 

vegetation layer of each habitat, βRC analysis showed that species composition (β diversity) between 
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invaded and control sites (of the same habitat and layer) is similar (Figure 2). As expected, the two 

habitats have, however, distinct species composition, crucially in the shrub layer (Figure 2). This 

suggests that the invasion time has not been sufficient yet to lead to overall changes in species 

composition at this early stage of invasion, in line with other evidence (Taylor et al. 2016). 

Patterns of biodiversity change and potential mechanisms 

The different outcomes for biodiversity in the two habitats highlight the different mechanisms at play. 

Our results suggest that the degree of dominance is a key factor (Hillebrand et al. 2008). Rises in 

dominance in ecological communities are almost invariably associated with a reduction in evenness 

(Stirling & Wilsey 2001; Caldeira et al. 2005; Hillebrand et al. 2008). This is because conditions that 

favour one species, and enable it to pre-empt more of a resource, such as space, may reduce the 

competitive ability of other taxa. A classic example is increased productivity. For example, in the Park 

Grass experiment, additions of fertilizer enabled certain grass species to become dominants. As 

productivity rose, so too did dominance – rises that were matched by falls in richness and evenness 

(Tilman 1982). This link between diversity and productivity has led to the proposal that humped 

diversity curves, including those reported as evidence for the intermediate disturbance hypothesis 

might be most parsimoniously explained by a response to an increase in abundance.  

In our study we observed a marked pattern of changes in evenness and dominance in the 

grass layer of both habitats. One explanation for this pattern, therefore, is the ‘more individuals 

hypothesis’, which predicts that species richness increases monotonically with density (Evans et al. 

2005). We found no evidence for a monotonic relationship between species richness and abundance 

in invaded grass layer of campo úmido, though we did observe U-shaped one (see Supplementary 

Figure S7 online). This suggests little support for ‘more individuals hypothesis’ (Evans et al. 2005) – a 

finding in line with other recent studies (e.g. (Tilman et al. 2001; McGlynn et al. 2010). Instead it 

points towards changing dominance as the main mechanism. As such we suggest that in the early 

stages of establishment the pine saplings disrupt local dominants through physical changes to the 

environment such as pre-emption of nutrients and moisture. Once these impacts reach a certain 

threshold they again favour a subset of species that can cope with the changed habitat. These taxa 

(e.g. Andropogon leucostachyus, Axonopus sp2, Trachypogon vestitus, Trachypogon sp., 

Loudetiopsis chrysothrix and Cyperus compressus) then begin to dominate. We note that the finding 

we report is a correlational one, and that experimental tests will be needed to confirm the potential 

mechanisms discussed here.  

Implications for understanding biodiversity change 

There can be no doubt that ‘wild nature’ is under grave threat due to a combination of anthropogenic 

impacts. Although much of the focus has been of biodiversity loss, it is now apparent that biodiversity 

change is a pervasive problem (Dornelas 2010; McGill et al. 2014; Dornelas et al. 2014; Magurran et 

al. 2015; Young et al. 2016; Vellend et al. 2017). Invasive species are a major driver of this 

biodiversity change yet is clear from the literature that there is no single biodiversity response to their 

presence. For example, a meta-analysis on invasive plant species reported a reduction in diversity in 

69/136 cases, suggesting that the relationship between invasion and biodiversity is not 

straightforward (Vilà et al. 2011). Vilà et al. also stressed that both the magnitude and the direction of 

impacts depend on the ecological complexity of the communities.  Another  review of over 150 studies 

on the mechanisms of invasive species’ impacts revealed that although the majority report changes in 

community structure they typically do not identify the mechanism by which invasion impacts 

biodiversity (Levine et al. 2003). In part this is because studies report pattern rather than process.   

As we have shown, the consequences, for assemblage diversity, of invasions depend on 

many factors including habitat structure, time of invasion (quantified as size of the invader), and local 

diversity of a system.  We detected marked biodiversity change but with the direction and nature of 

change linked to both the relative size of the invasive and the local habitat structure. These context-
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dependent and nuanced results are consistent with and can help account for the varying conclusions 

reported in the literature (as in Didham et al. 2007; Vilà et al. 2011; Dong et al. 2015). Our results 

nonetheless show that, though complex, the consequences for local biodiversity of species 

establishment are not haphazard. In particular they highlight the need to take account of habitat 

structure when predicting the changes in biodiversity that will ensue as a result of species 

colonisations.  As such they contribute to the understanding of species coexistence and help explain 

why species invasion can lead to very different biodiversity outcomes.   
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Appendix S1. Seven supplementary figures referred to in the text. 

 

Figure S1. (a) Cerrado (Brazilian savanna) distribution (in grey) in Brazil (thicker line) and (b) 

sampling locations in both patchily distributed Cerrado habitats: shrub-dominated campo sujo and 

grass-dominated campo úmido. 

Figure S2. Ecological null model test with randomization tests comparing rarefaction curves of 

invaded and control sites of each habitat (campo sujo and campo úmido) and vegetation layer (shrub 

and grass).   

Figure S3. Biogeographical null model test with randomization tests comparing rarefaction curves of 

invaded and control sites of each habitat (campo sujo and campo úmido) and vegetation layer (shrub 

and grass).   

Figure S4. Density plots considering total abundance per plot in invaded and control sites in both 

habitats and layers. 

Figure S5. Paired plot comparison of the differences in observed number of species between 

correspondent pairs of invaded and control plots.  

Figure S6. Two-lines method applied for the invaded shrub layer of both habitats for Berger Parker, a 

dominance index and Probability of Interspecific Encounter (PIE), an evenness index as related to 

invasive pine height.  

Figure S7. Two-line results for the grass layer of invaded plots of campo úmido habitat considering 

observed richness per plot as a predictor of total abundance per plot (quantified with the point 

quadrat).  

Table S1. Species not present in invaded, only in control, sites of the shrub-dominated habitat 

(campo sujo).  


