
ORDERINGS ON WORDS AND PERMUTATIONS

Matthew McDevitt

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

2019

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/18465

This item is protected by original copyright

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/228202384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-repository.st-andrews.ac.uk/
http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/18465
http://hdl.handle.net/10023/18465

Orderings on Words and Permutations

Matthew McDevitt

This thesis is submitted in partial fulfilment for the degree of

Doctor of Philosophy (PhD)

at the University of St Andrews

May 2019

ii

Declarations

Candidate’s declaration

I, Matthew McDevitt, do hereby certify that this thesis, submitted for the degree

of PhD, which is approximately 40 000 words in length, has been written by me,

and that it is the record of work carried out by me, or principally by myself in

collaboration with others as acknowledged, and that it has not been submitted in

any previous application for any degree.

I was admitted as a research student at the University of St Andrews in September

2015.

I received funding from an organisation or institution and have acknowledged the

funder(s) in the full text of my thesis.

Date Signature of candidate

Supervisor’s declaration

I hereby certify that the candidate has fulfilled the conditions of the Resolution

and Regulations appropriate for the degree of PhD in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

Date Signature of supervisor

iii

Permission for publication

In submitting this thesis to the University of St Andrews we understand that we

are giving permission for it to be made available for use in accordance with the

regulations of the University Library for the time being in force, subject to any

copyright vested in the work not being affected thereby. We also understand, unless

exempt by an award of embargo as requested below, that the title and the abstract

will be published, and that a copy of the work may be made and supplied to any

bona fide library or research worker, that this thesis will be electronically accessible

for personal or research use and that the library has the right to migrate this thesis

into new electronic forms as required to ensure continued access to the thesis.

I, Matthew McDevitt, confirm that my thesis does not contain any third-party ma-

terial that requires copyright clearance.

The following is an agreed request by candidate and supervisor regarding the publi-

cation of this thesis:

Printed copy

No embargo on print copy.

Electronic copy

No embargo on electronic copy.

Date Signature of Candidate

Date Signature of Supervisor

iv

Underpinning Research Data or Digital Outputs

Candidate’s declaration

I, Matthew McDevitt, hereby certify that no requirements to deposit original research

data or digital outputs apply to this thesis and that, where appropriate, secondary

data used have been referenced in the full text of my thesis.

Date Signature of candidate

v

vi

Abstract

Substructure orderings are ubiquitous throughout combinatorics and all of mathe-

matics. In this thesis we consider various orderings on words, as well as the con-

secutive involvement ordering on permutations. Throughout there will be a focus

on deciding certain order-theoretic properties, primarily the properties of being well-

quasi-ordered (WQO) and of being atomic.

In Chapter 1, we establish the background material required for the remainder of

the thesis. This will include concepts from order theory, formal language theory, au-

tomata theory, and the theory of permutations. We also introduce various orderings

on words, and the consecutive involvement ordering on permutations.

In Chapter 2, we consider the prefix, suffix and factor orderings on words. For the

prefix and suffix orderings, we give a characterisation of the regular languages which

are WQO, and of those which are atomic. We then consider the factor ordering and

show that the atomicity is decidable for finitely-based sets. We also give a new proof

that WQO is decidable for finitely-based sets, which is a special case of a result of

Atminas et al. [3].

In Chapters 3 and 4, we consider some general families of orderings on words. In

Chapter 3 we consider orderings on words which are rational, meaning that they can

be generated by transducers. We discuss the class of insertion relations introduced

in a paper by the author [26], and introduce a generalisation. In Chapter 4, we

consider three other variations of orderings on words. Throughout these chapters we

prove various decidability results.

vii

In Chapter 5, we consider the consecutive involvement on permutations. We gener-

alise our results for the factor ordering on words to show that WQO and atomicity

are decidable. Through this investigation we answer some questions which have been

asked (and remain open) for the involvement on permutations [27].

viii

Acknowledgements

I would like to thank my supervisor Nik Ruškuc for his patience and encouragement,

and for suggesting interesting research questions for me to pursue. His advice on

tackling complex problems and maintaining a hopeful attitude in times of difficulty

will stay with me for years to come. I should also thank the EPSRC, without whose

generous support this thesis would not have been possible.

My time at St Andrews would not have been what it was without the company of

the friends and colleagues I spent it with. I would like to thank Raad Kohli, with

whom I shared many long mathematical discussions and tremendously enjoyable

conversations about all aspects of life. I would also like to thank Ashley Clayton, for

the countless hours spent hanging out in his office and for introducing me to levels

of pun-based humour I had previously not thought to be possible.

I would like to thank my parents and my brother Adam for their love and support,

and for helping me to see the bigger picture. Finally I would like to thank my friends

Chris Gerrard and Lewis Bage for sticking by me through the high and lows of my life

over the last few years, and for all the immensely fun evenings spent together.

ix

x

Contents

Declarations iii

Abstract vii

Acknowledgements ix

1 Introduction and preliminaries 1

1.1 Orderings . 6

1.2 Words, automata and transducers . 14

1.3 Orderings on words . 23

1.4 Permutations . 28

2 Orderings on words 37

2.1 The prefix and suffix orderings . 37

2.2 The factor ordering . 45

2.2.1 Factor graphs . 45

2.2.2 Deciding atomicity in the contiguous subpath ordering 49

2.2.3 Deciding atomicity in the factor ordering 55

2.2.4 WQO in the factor ordering . 57

3 Rational orderings on words 61

3.1 Insertion relations . 61

3.1.1 Definitions and basic properties 61

3.1.2 Deciding transitivity . 66

xi

3.1.3 Left-most insertion relations . 79

3.2 Word-insertion relations . 89

4 Other families of orderings on words 103

4.1 The class of L-subword relations . 103

4.2 The class of (k, l)-factor orderings . 106

4.2.1 Deciding WQO . 108

4.3 The class of I-factor orderings . 113

5 The consecutive involvement ordering on permutations 121

5.1 Atomicity in the consecutive involvement ordering 121

5.1.1 Overlapping k-sequences and ambiguity 122

5.1.2 Consecutive involvement graphs 123

5.1.3 Deciding ambiguity . 126

5.1.4 Deciding atomicity . 135

5.2 WQO in the consecutive involvement ordering 138

5.2.1 Examples of anti-chains . 138

5.2.2 Deciding WQO . 141

Bibliography 155

xii

Chapter 1

Introduction and preliminaries

Substructure orderings are ubiquitous throughout combinatorics and all of mathe-

matics. Many important classes of combinatorial objects are downward-closed under

some substructure ordering, and so are defined by a minimal set of objects (an anti-

chain) which their elements avoid under that ordering. The best known example of

this is the set of planar graphs, which are precisely those avoiding K5 and K3,3 un-

der the graph minor ordering [33]. Moreover, the Robertson-Seymour Theorem [31]

asserts that any anti-chain under the graph minor ordering is finite. A consequence

of this is that, as with planar graphs, the set of graphs embeddable on any fixed

2-dimensional manifold is defined by a finite anti-chain which it avoids under the

graph minor ordering. By contrast, there exist infinite anti-chains under both the

subgraph and induced subgraph orderings: an example for both is the set of cycle

graphs Cn.

If a set does not contain any infinite anti-chains or infinite descending chains then

it is said to be well-quasi-ordered (WQO). The WQO Problem for a particular or-

dering asks whether the downward-closed class avoiding a given finite set is WQO.

This problem has received significant research attention, and the nature of the prob-

lem can change drastically depending on the chosen substructure ordering, even if

one restricts their attention to a single combinatorial class. Returning to graphs,

a result of Ding [10] asserts that a set of graphs which is downward-closed under

1

the subgraph ordering is WQO if and only if it contains finitely many cycles and

double-ended forks, whereas for the induced subgraph ordering, no such characteri-

sation is known [23]. Elsewhere, the problem has been studied for the involvement

ordering on permutations [6], the minor ordering on matroids [16] and the embedding

ordering on tournaments [8]. In each of these cases, and in the case of the induced

subgraph ordering, the problem has only been solved for bases containing one or

two elements, and remains open in general. All of this points towards the need for

an understanding of how different combinatorial classes, and different orderings on

them, can produce different order-theoretic properties.

Words are perhaps the simplest combinatorial objects, and yet they present many

interesting insights into WQO for combinatorics as a whole. The two best known

orderings on words are the subword (subsequence) ordering and the factor (contigu-

ous subsequence) ordering. Higman’s Lemma [15] asserts that the subword ordering

is WQO. By way of contrast, the factor (contiguous subword) ordering is not, since

the set {abia ∣ i = 1,2, . . .} is an infinite anti-chain. Moreover, Higman’s Lemma and

its generalisation, Kruskal’s Tree Theorem [24], underpin virtually every significant

WQO result in combinatorics (see the survey article [18] for more details on this). It

is therefore useful to understand orderings on words, as they can have implications

for WQO and other order-theoretic properties in broader contexts.

In the literature, variations of orderings on words have also been considered, espe-

cially in relation to the WQO property. Ehrenfeucht et al. [11] introduced a class of

orderings ≤I , where I is a fixed finite set of words and u ≤I v if v can be obtained

from u by repeated insertions of words from I. These orderings were introduced in

connection with proving when certain context-free languages are regular. In their

paper, Ehrenfeucht et al. prove the surprising result that the ordering ≤I is WQO

if and only if the insertion closure of I is a regular language. Moreover, they gen-

eralise the famous Myhill-Nerode characterisation of regular languages [29] to say

that a language is regular if and only if it is upward-closed under some WQO which

respects concatenation. To give another example, Aichinger et al. [1] introduced

what they call the embedding ordering ≤E, where u ≤E v if v can be obtained from

u by inserting letters after their first appearance. In their paper, it is proved that

2

this ordering is WQO, and this is used to prove results on universal algebra. These

results indicate the potential for further work in the intersection of WQO theory

with formal language theory, and with wider areas of mathematics.

Permutations can be seen as a generalisation of words, and as relational structures

are also akin to graphs. For permutations, the ordering which has received the most

attention is the involvement ordering, which stipulates that σ ≤ τ if τ has a subse-

quence which is order isomorphic to σ. This is an analogue of the subword ordering

on words, but is not WQO. This ordering has been the subject of much investiga-

tion, especially in regards to the WQO property (see [2, 27]), and an understanding

of permutation orderings could have implications for combinatorics in general. For

instance, corresponding to each permutation σ is a graph Gσ such that Gσ is an

induced subgraph of Gτ whenever σ ≤ τ (see [3]). In the setting of permutations,

the analogue of the factor ordering on words is the consecutive involvement ordering,

where σ ≤ τ if τ has a contiguous subsequence which is order isomorphic to σ. It is

natural to investigate this simpler ordering, as it is interesting in its own right, and

could lead to insights about the involvement ordering.

The purpose of this thesis is to examine various orderings on words, as well as the con-

secutive involvement ordering on permutations. Throughout there will be a focus on

order-theoretic properties, primarily WQO and atomicity, and on decidability.

In Chapter 1, we establish the background material required for the remainder of

the thesis. This will include concepts from order theory, formal language theory,

automata theory and the theory of permutations. We also introduce the subword,

factor, prefix and suffix orderings on words, and the consecutive involvement or-

dering on permutations. We also formally describe the two problems which are to

permeate the thesis, namely the WQO Problem and the Atomicity Problem, which

asks whether the downward-closed set avoiding a given finite set is atomic, i.e. if it

is not the union of two downward-closed proper subsets.

In Chapter 2, we consider orderings on words which are known from the literature,

namely the prefix, suffix and factor orderings. We begin with the prefix ordering

and give a characterisation of the regular languages which are WQO, and of those

3

which are atomic. The avoidance set of a finite (indeed, regular) set under the prefix

ordering is always regular, so these results constitute solutions to both the WQO

Problem and the Atomicity Problem for the prefix ordering. By appealing to the

natural symmetry between the prefix and suffix orderings, we give analogous results

for the latter. We then turn our attention to the factor ordering and show that the

Atomicity Problem is decidable. To do this we introduce a graph G(C) called the

factor graph corresponding to a finitely-based set C, whereby every sufficiently long

word in C corresponds uniquely to a path in G(C). Deciding atomicity will then

essentially boil down to testing atomicity in the contiguous subpath ordering on the

set of paths in G(C), and performing an analysis on the set of words in C which are

not sufficiently long. Using these graphs, we also give a new proof that the WQO

Problem is decidable, which is a special case of a result of Atminas et al. [3].

One feature that all of the aforementioned orderings on words have in common is that,

given words u, v satisfying u ≤ v, the word v can be obtained from u by inserting

words according to some rule. Indeed, for the subword ordering, one can insert

any word in any position, whereas for the factor ordering, one can insert words only

before the first letter and after the last letter, and no insertions are allowed elsewhere.

Similar descriptions can be formulated for the prefix and suffix orderings, and also

for the orderings of Ehfenfeucht et al. and of Aichinger et al. In Chapters 3 and 4,

we consider some general families of orderings on words, each of which arises from

some set of insertion rules which further develop the ideas described above.

First, in Chapter 3, we consider certain orderings on words which are rational, mean-

ing that they can be generated by transducers. In Section 3.1 we consider the class

of insertion relations, which arise from certain transducers which can insert letters

from a fixed alphabet at each state. This section will largely be based on the paper

[26] written by the author, in which this class of relations was first introduced. We

provide a number of examples, and show that it is decidable whether a given inser-

tion relation is an ordering. We also show that being WQO is decidable for a specific

subclass of insertion relations, called left-most insertion relation. In Section 3.2 we

consider the class of word-insertion relations, which are a generalisation of insertion

relations, and arise from certain transducers whose states each insert from a fixed

4

set of words rather than from an alphabet. We draw some interesting comparisons

between this class and the class of insertion relations, and give a sufficient condition

for the new class to be orderings.

Next, in Chapter 4, we consider three other variations of orderings on words. First

we consider the classes of L-subword relations, which arise from fixing a language

L and inserting words from L. We show that it is decidable whether a given L-

subword relation is an ordering when L is a regular language. We then consider the

class of (k, l)-factor orderings, which arise from fixing two natural numbers k, l and

inserting words amongst the first k and last l letters of a word. For this class of

orderings, we show that the WQO Problem is decidable. We then consider the class

of I-factor orderings, which arise from fixing a finite set of words I and applying

repeated insertions from I in the middle of a word and arbitrary insertions at the

start and end of a word. In this sense, these orderings mimic both the orderings

of Ehrenfeucht et al. and the factor ordering. We conclude the chapter by drawing

some interesting comparisons between these orderings, the orderings of Ehrenfeucht

et al., and the factor ordering.

In Chapter 5 we turn our attention to the consecutive involvement ordering on permu-

tations. Our main results are that both the WQO Problem and Atomicity Problem

are decidable. To prove these we generalise our methods from the factor ordering on

words, and again employ a graph G(C) corresponding to a finitely-based set C. A

distinction between this setting and the previous one is that a given path in G(C)
need not correspond to a unique element in C, in which case we say that the path

is ambiguous. We will show that unless the graph G(C) is strongly connected, the

presence of an ambiguous path will prevent the class C from being atomic. We

will therefore explore the ambiguity property in detail and show that it is decidable

whether a given G(C) exhibits it. Deciding atomicity will then essentially boil down

to testing for this condition and performing the same analysis on G(C) as we did in

the word case. Deciding WQO will prove more complex, and will rely on a detailed

understanding of how this non-uniqueness condition manifests within a particular

set C.

5

1.1 Orderings

Let ≤ be a relation on a set S. We say ≤ is:

• reflexive if x ≤ x for all x ∈ S;

• anti-symmetric if x ≤ y and y ≤ x imply x = y;

• transitive if x ≤ y and y ≤ z imply x ≤ z.

The relation ≤ is an ordering on S if it is reflexive, anti-symmetric and transitive.

Some examples of orderings are the usual ordering on Z and the divisibility relation

on N. The divisibility relation on Z is not an ordering, since 1 and −1 are distinct

elements of Z which divide each other, so the relation is not anti-symmetric.

The orderings we will be concerned with in this thesis will be substructure relations

on words and permutations. Substructure relations are common throughout combi-

natorics and algebra, with some well-known examples being the subgraph relation,

the induced subgraph relation and the subgroup relation. An example of a substruc-

ture relation which is not an ordering is the normal subgroup relation, since it is not

transitive: if H = ⟨(12)(34)⟩ and

K = ⟨(12)(34), (13)(24), (14)(23)⟩

then H �K �A4 but H /� A4.

We say two elements x, y ∈ S are comparable under ≤ if either x ≤ y or y ≤ x. A subset

of S is a chain under ≤ if any two of its elements are comparable, and an anti-chain

if no two of its elements are comparable. A sequence of the form x1 < x2 < . . . is an

ascending chain and a sequence of the form x1 > x2 > . . . is a descending chain.

Well-quasi-orderings

A major theme in our study of orderings will be the notion of a well-quasi-ordering

(WQO).

6

Definition 1.1.1. Let ≤ be an ordering on a set S. We say that ≤ is a well-quasi-

ordering (WQO) on S if:

• S contains no infinite anti-chains under ≤;

• S contains no infinite descending chains under ≤ .

We may also say that S is well-quasi-ordered (WQO) under ≤. The two uses of the

initialism ‘WQO’ will not cause any confusion as the meaning will always be clear

from context.

Example 1.1.2. We present some examples and counter-examples of WQOs.

• The usual ordering on N is a WQO, since any two elements are comparable

and any descending chain is clearly finite.

• The usual ordering on Z is not a WQO, because of the infinite descending chain

−1 > −2 >

• The divisibility ordering on N is not a WQO, since the set of prime numbers

is an infinite anti-chain.

• The subgraph ordering on the set of all finite graphs is not a WQO, since the

set of cycle graphs Cn is an infinite anti-chain.

• Hence also the induced subgraph ordering on the set of all finite graphs is not

a WQO.

• The minor ordering1 on the set of all finite graphs is a well-quasi-ordering, due

to the celebrated Robertson-Seymour Theorem [31].

The following result of Higman [15] gives some alternative characterisations of the

WQO property:

Proposition 1.1.3. Let ≤ be an ordering on a set S. The following are equivalent:

1We say G is a minor of H if G can be obtained from H by some sequence of vertex deletions,
edge deletions and edge contractions.

7

(i) The ordering ≤ is a WQO on S.

(ii) For any infinite sequence a1, a2, . . . of elements in S, there are indices i < j
such that ai ≤ aj.

(iii) Any infinite sequence of elements in S has an infinite subsequence which is

ascending under ≤.

An infinite sequence a1, a2, . . . , which does not satisfy condition (ii) of Proposition

1.1.3, so that ai /≤ aj whenever i < j, is said to be a bad sequence. Hence being WQO

is equivalent to the non-existence of bad sequences. We can use this to note the

following result:

Proposition 1.1.4. Being WQO is preserved under finite unions.

Proof. If S and T are sets such that S ∪ T is not WQO, then S ∪ T contains a bad

sequence. This sequence must have an infinite subsequence lying in one of S or T ,

and any infinite subsequence of a bad sequence is also a bad sequence, so at least

one of S and T is not WQO.

Downward-closed sets and avoidance sets

A subset C of S is downward-closed if

x ∈ C & y ≤ x⇒ y ∈ C.

Sometimes a downward-closed set is called a class or an ideal. We define the basis

of C to be the minimal set of elements in S/C, that is:

B(C) = {x ∈ S/C ∣ (∀y ∈ S)(y < x⇒ y ∈ C)}.

If the set B(C) is finite then we say that C is finitely-based. Conversely, if B ⊆ S is

an anti-chain then we define the avoidance set of B to be the set Av(B) of elements

in S which do not lie above any element in B, that is:

Av(B) = {x ∈ S ∣ (∀y ∈ B)(y /≤ x)}.

We note the following elementary facts about these sets:

8

Proposition 1.1.5. Let C ⊆ S be a downward-closed set and let X ⊆ S be an anti-

chain. Then:

(i) The set B(C) is an anti-chain.

(ii) The set Av(B) is downward-closed.

(iii) We have B(Av(B)) = B.

(iv) If, in addition, the set S has no infinite descending chains, then Av(B(C)) = C.

Proof. (i) We note that B(C)∩C = ∅. Now let x, y ∈ B(C) and suppose x < y. Then

since y ∈ B(C) we have x ∈ C, a contradiction.

(ii) Let x ∈ Av(B) and let y ≤ x. If y /∈ Av(B) then there is some z ∈ B with z ≤ y.

We then have z ≤ x, but this cannot be the case since x ∈ Av(B).

(iii) (⊆) Let x ∈ B(Av(B)). Then x /∈ Av(B), so there is some y ∈ B with y ≤ x. If

y < x then y ∈ Av(B), but this cannot be the case since y ∈ B. Hence y = x and so

x ∈ B.

(⊇) Let x ∈ B. Then x /∈ Av(B). Since B is an anti-chain, if y ∈ S is such that y < x
then there cannot be any z ∈ X with z ≤ y, since otherwise we would have z < x.

Hence any such y belongs to Av(B), so x ∈ B(Av(B)).

(iv) (⊆) We prove the contrapositive. Let x ∈ S be such that x /∈ C and let y ≤ x be

minimal such that y /∈ C. Such an element exists since ≤ admits no infinite descending

chains. Then for all z < y we have z ∈ C, so y ∈ B(C) and hence x /∈ Av(B(C)).

(⊇) Again we prove the contrapositive. Let s ∈ S be such that s /∈ Av(B(C)). Then

there is some t ∈ B(C) with t ≤ s. Since t ∈ B(C) we have t /∈ C, and since C is

downward-closed this means s /∈ C.

Example 1.1.6. Wagner’s Theorem [33] asserts that a graph is planar if and only

if it does not contain either of K5 and K3,3 as a minor2.

2This should not be confused with the more widely known Kuratowski’s Theorem [25] asserting
that a graph is planar if and only if it does not have a subgraph which is a subdivision of K5 or
K3,3. In general this concept is distinct from having a graph as a minor, but in this case the two
are equivalent.

9

K5 K3,3

Under the minor ordering, the set B = {K5,K3,3} is an anti-chain, and the set P of

planar graphs is downward-closed. Wagner’s Theorem tells us that P = Av(B).

Upward and downward closures

The downward closure of a set T ⊆ S is the set down(T) of all elements in S which

lie below some element of T , that is:

down(T) = {x ∈ S ∣ (∃y ∈ T)(x ≤ y)}.

Defined analogously, the upward closure of T is the set up(T) of elements in S which

lie above some element of T , that is:

up(T) = {x ∈ S ∣ (∃y ∈ T)(y ≤ x)}.

We note that T is downward-closed if and only if it coincides with its downward

closure, and that it is upward-closed if and only if it coincides with its upward

closure. We also note that Av(T) is precisely the complement of up(T), i.e. we

have

Av(T) = S/up(T).

The WQO Problem

In the case that ≤ is not a well-quasi-ordering on S it will be of interest to ask when

the avoidance set of a given set is WQO. We state this in isolation below.

Problem 1 (The WQO Problem). Let S be a set, let ≤ be an ordering on S and let

B ⊆ S be a finite anti-chain under ≤. Can one determine whether Av(B) is WQO

under ≤?

The WQO Problem has been considered for a number of other orderings in combi-

natorics. In a recent survey article, Cherlin [7] comments on the significance of this

10

problem and describes the contexts in which it has been studied. One result of note

is the following theorem of Ding [10]:

Theorem 1.1.7 (Ding). A set of graphs which is downward-closed under the sub-

graph relation is WQO if and only if it contains finitely many cycles and double-ended

forks, that is, graphs of the form:

⋯

It follows that WQO Problem is decidable for the subgraph ordering, since if B is

finite then Av(B) is WQO if and only if B contains a path. Other orderings for

which the WQO Problem has been studied include the induced subgraph ordering

on graphs [23], the involvement ordering on permutations [6], the minor ordering

on matroids [16] and the embedding ordering on tournaments [8]. In each of these

cases, the problem has only been solved for bases containing one or two elements.

A recent result of Atminas et al. [3] asserts that the WQO Problem is decidable for

the factor ordering on words. Moreover, they extend the solution to sets avoiding

a given regular language. We will define and explore these concepts in more detail

later.

Atomicity

Definition 1.1.8. Let S be a set, let ≤ be an ordering on S and let C ⊆ S be a set

which is downward-closed under ≤. We say C is atomic if it is not the union of two

downward-closed proper subsets.

The following is a very general characterisation of atomicity, which has been adapted

from [Mu02, Theorem 15]:

Proposition 1.1.9. Let S be a countable set, let ≤ be an ordering on S and let C ⊆ S
be a set which is downward-closed under ≤. Then the following are equivalent:

11

(i) The set C is atomic.

(ii) For all x, y ∈ C there exists some z ∈ C such that x ≤ z and y ≤ z.

(iii) There is a sequence of elements z1 ≤ z2 ≤ . . . in C such that for all x ∈ C, there

exists some i such that x ≤ zi.
Proof. (i) ⇒ (ii): We prove the contrapositive. Suppose there are elements x, y ∈ C
such that for all z ∈ C, we have x /≤ z or y /≤ z. Let C1 = C∩Av(x) and C2 = C∩Av(y).
Then for all z ∈ C we either have z ∈ C1 or z ∈ C2, so C = C1∪C2. The sets C1 and C2

are downward-closed, and they are proper subsets of C since x ∈ C/C1 and y ∈ C/C2,

so C is not atomic.

(ii) ⇒ (iii): Let x1, x2, . . . be an enumeration of C. Let z1 = x1 and for n ≥ 1 let zn+1

be an element of C such that xn+1 ≤ zn+1 and zn ≤ zn+1. The existence of such an

element is guaranteed by condition (ii). The list x1, x2, . . . contains every element

of C and for each i ≥ 1 we have xi ≤ zi, so the sequence z1 ≤ z2 ≤ . . . witnesses that

condition (iii) is satisfied.

(iii) ⇒ (i): Let z1 ≤ z2 ≤ . . . be as in condition (iii) and suppose, aiming for a

contradiction, that C is not atomic. Let C1 and C2 be downward-closed proper

subsets of C such that C = C1 ∪C2, and let x ∈ C1/C2 and y ∈ C2/C1. Let i and j be

such that x ≤ zi and y ≤ zj, and assume without loss of generality that i ≤ j. Then

zi ≤ zj and so x and y both lie below zj. The element z belongs to one of C1 or C2,

and since they are both downward-closed, one of C1 or C2 contains both x and y.

This contradicts our selection of x and y.

An element z such that x ≤ z and y ≤ z is called a join for x and y, and condition

(ii) of Proposition 1.1.9 is referred to as the join property, or the joint embedding

property. A sequence z1 ≤ z2 ≤ . . . as described in condition (iii) of Proposition 1.1.9

is referred to as an atomic sequence for C.

Atomic sets are of interest when studying the WQO property as they are in some

sense the building blocks of WQO downward-closed sets. We make this explicit

below:

12

Proposition 1.1.10. Let S be a countable set, let ≤ be an ordering on S and let

C ⊆ S be a set which is downward-closed under ≤. Then C is WQO if and only if it

is a union of finitely many WQO atomic sets.

Proof. (⇒) We prove the contrapositive. Suppose that C is not the union of finitely

many WQO atomic sets, and let x1, x2, . . . be an enumeration of C. Since C is

downward-closed we have

C =
∞
⋃
n=1

down(xn). (1.1)

If x, y ∈ down(xn) then x ≤ xn and y ≤ xn, so xn is a join for x and y. Hence each set

down(xn) satisfies the join property, and so is atomic. If any of the sets down(xn) is

not WQO then neither is C, and we are done. Suppose then that each set down(xn)
is WQO. This means that equation (1.1) gives C as a union of WQO atomic sets.

We have xi ≤ xj if and only if down(xi) ⊆ down(xj), so if J is the set

J = {j ∈ N ∣ ∀i < j ∣ xi /≤ xj}

then we have

C = ⋃
j∈J

down(xj).

This again gives C as a union of WQO atomic sets, and so by our assumption the set

J must be infinite. If its elements are j1 < j2 < . . . then xj1 , xj2 , . . . is a bad sequence,

and so C is not WQO.

(⇐) This follows from the fact that being WQO is preserved under finite unions,

and the fact that a union of downward-closed sets is again downward-closed.

The Atomicity Problem

Analogous to the WQO Problem is the following:

Problem 2 (The Atomicity Problem). Let S be a set, let ≤ be an ordering on S

and let B ⊆ S be a finite anti-chain under ≤. Can one determine whether Av(B) is

atomic under ≤?

13

1.2 Words, automata and transducers

Words and languages

An alphabet is a finite set A of symbols called letters, and a word over A is a finite

sequence of elements from A. For brevity we denote a word (a1, . . . , an) by a1 . . . an.

We let A∗ denote the set of all words over A, including the empty word ε, and we

let Aε = A ∪ {ε}. A language over A is any subset of A∗.

For u ∈ A∗ and a ∈ A we let ∣u∣a denote the number of occurrences of the letter a in

the word u. As an example if A = {a, b, c} and u = babab then ∣u∣a = 2, ∣u∣b = 3 and

∣u∣c = 0. If u = a1 . . . an and v = b1 . . . bm are words then their concatenation is the

word

uv = a1 . . . anb1 . . . bm.

If L and K are languages over A then we define LK = {uv ∣ u ∈ L, v ∈ K}. We will

also define uL = {uv ∣ v ∈ L} and Lu = {vu ∣ v ∈ L}.

Automata and regular languages

Definition 1.2.1. A deterministic finite state automaton (DFA) is a 5-tuple A =
(Q,A, δ, q0, F) where:

• Q is a finite set of states ;

• A is a finite alphabet ;

• δ ∶ Q ×A→ Q is a partial function called the transition function;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accept states.

We extend δ to a partial function δ∗ ∶ Q × A∗ → Q by setting δ∗(q, ε) = q and

recursively setting

δ∗(q,wa) = δ(δ∗(q,w), a)

for all q ∈ Q, w ∈ A∗ and a ∈ A. A word w ∈ A∗ is accepted by A if δ∗(q0,w) ∈ F , and

the language accepted by A is the set of all words accepted by A. We note that if, at

14

any stage of reading a word, the next letter cannot be read from the current state,

then A will reject the word. We represent a DFA A by a labelled directed graph

called a state diagram, with an edge (q, a, p) whenever δ(q, a) = p. We indicate the

start state q0 by an incoming edge labelled ‘start’ and we decorate each accept state

with a double outline.

Example 1.2.2. Let Q = {q0, q1}, A = {a, b}, F = {q1} and let δ ∶ Q ×A → Q be the

partial function given by

• δ(q0, a) = q0;

• δ(q0, b) = δ(q1, a) = q1.

Then the DFA A = (Q,A, δ, q0, F) accepts the language of words u ∈ A∗ with ∣u∣b = 1.

The state diagram for A is shown below.

q0start q1

a

b

a

Example 1.2.3. Let Q = {q0, q1, q2}, A = {a, b}, F = {q2} and let δ ∶ Q ×A → Q be

the partial function given by

• δ(q0, a) = δ(q1, b) = δ(q2, b) = q1;

• δ(q1, a) = δ(q2, a) = q2.

Then the DFA A = (Q,A, δ, q0, F) accepts the set of words in A∗ of the form aua.

The state diagram for A is shown below.

q0start q1 q2
a

b

a

a

b

Definition 1.2.4. The class of languages accepted by DFAs is the class of regular

languages. We let Reg(A) denote the set of regular languages over an alphabet A.

15

We will go on to prove various decidability results for regular languages. For these

we will always assume that a given regular language is given via an automaton.

Another notion of an automaton is as follows, where use P(Q) to denote the power

set of Q, i.e. the set of all subsets of Q:

Definition 1.2.5. A non-deterministic finite state automaton (NFA) is a 5-tuple

A = (Q,A, δ, q0, F) where:

• Q is a finite set of states ;

• A is a finite alphabet ;

• δ ∶ Q ×Aε → P(Q) is a partial function called the transition function;

• q0 ∈ Q is the start state;

• F ⊆ Q is the set of accept states.

We extend δ to a partial function δ∗ ∶ Q ×A∗ → P(Q) by setting

δ∗(q, ε) = δ(q, ε) ∪ {q}

and recursively setting

δ∗(q,wa) = ⋃
p∈δ∗(q,w)

δ(p, a)

for all q ∈ Q, w ∈ A∗ and a ∈ A. We say a word w ∈ A∗ is accepted by A if δ∗(q0,w)
contains a state in F , and again we say that the language accepted by A is the set of

all words accepted by A. We note that if δ takes the value ∅ on a particular input

then this is equivalent to δ being undefined on that input. We again represent a NFA

A via a state diagram, this time with a labelled edge (q, x, p) whenever p ∈ δ(q, x).
As with the deterministic case, we indicate the start state q0 by an incoming edge

labelled ‘start’ and decorate the accept states with a double outline.

Example 1.2.6. Let Q = {q0, q1, q2}, A = {a, b}, F = {q1, q2} and let δ ∶ Q ×Aε → Q

be the partial function given by

• δ(q0, a) = {q0, q1};

16

• δ(q1, ε) = δ(q2, b) = {q2}.

Then the NFA A = (Q,A, δ, q0, F) accepts the language of words of the form aibj

where i ≥ 1 and j ≥ 0. The state diagram for A is shown below.

q0start q1 q2

a

a ε

b

Example 1.2.7. Let Q = {q0, q1, q2}, A = {a, b}, F = {q2} and let δ ∶ Q ×Aε → P(Q)
be the partial function given by:

• δ(q0, a) = {q0, q1};

• δ(q0, b) = {q0};

• δ(q1, b) = δ(q2, a) = δ(q2, b) = {q2}.

Then the NFA A = (Q,A, δ, q0, F) accepts the language of words in A∗ of the form

uabv. The state diagram for A is shown below.

q0start q1 q2

a, b

a b

a, b

The class of NFAs was introduced by Rabin and Scott [30], as it was thought that

some languages are better suited to their expressive power than to that of their de-

terministic counterparts. This is evident, for instance, with languages of the form

shown in Example 1.2.7, where membership depends on the presence of some par-

ticular contiguous sequence of letters. In the same paper it is shown that the two

varieties of automata are equivalent, that is:

Proposition 1.2.8. The class of languages accepted by NFAs is precisely the class

of regular languages. Moreover, there is an algorithm which takes as input an NFA

and outputs a DFA accepting the same language.

17

Regular expressions

Another way of describing regular languages is via regular expressions. The class of

regular expressions over A is denoted by Exp(A) and defined recursively by:

• for each u ∈ A∗ we have u ∈ Exp(A);

• if r, s ∈ Exp(A) then rs ∈ Exp(A);

• if r, s ∈ Exp(A) then r + s ∈ Exp(A);

• if r ∈ Exp(A) then r∗ ∈ Exp(A).

The language corresponding to a regular expression r is denoted by L(r) and is

defined recursively by:

• for each u ∈ A∗, we have L(u) = {u};

• if r, s ∈ Exp(A) then L(rs) = L(r)L(s);

• if r, s ∈ Exp(A) then L(r + s) = L(r) ∪L(s);

• if r ∈ Exp(A) then L(r∗) = {r1 . . . rn ∣ r1, . . . , rn ∈ L(r), n ≥ 0}.

Example 1.2.9. We present some examples of regular expressions and their corre-

sponding languages.

• If r is the regular expression a∗ + b∗ then L(r) = {ε, a, b, aa, bb, . . .}.

• If r is the regular expression ab∗a then L(r) = {a, aba, abba, abbba, . . .}.

• The language accepted by the automaton in Example 1.2.2 corresponds to the

regular expression a∗ba∗.

• The language accepted by the automaton in Example 1.2.3 corresponds to the

regular expression ab∗a(a∗bb∗a)∗.

We note that there need not be a unique regular expression corresponding to a given

language, since for instance we have L(a∗) = L(a∗ + a).

The following result of Kleene [22] states the equivalence of regular languages with

regular expressions:

18

Theorem 1.2.10 (Kleene’s Theorem). A language L ⊆ A∗ belongs to Reg(A) if and

only if it coincides with L(r) for some r ∈ Exp(A).

Closure and decidability results for regular languages

The following proposition is a list of standard closure properties for regular languages.

For more details see, e.g., [17, Chapter 3].

Proposition 1.2.11. The class of regular languages is closed under the following

operations:

• finite unions;

• finite intersections;

• set difference;

• complementation;

• concatenation.

Additionally, the following proposition is a list of relevant decidability results for

regular languages (again, see [17, Chapter 3]):

Proposition 1.2.12. It is decidable whether:

• a given regular language is empty;

• a given regular language is finite;

• two given regular languages coincide.

A note on non-regular languages

Not every language is regular. The following lemma, which was first noted in [30],

gives a necessary condition for an infinite language to be regular:

Lemma 1.2.13 (Pumping Lemma). Let L ⊆ A∗ be an infinite regular language.

Then there is a positive integer p such that each word u ∈ L can be expressed as

u = xyz for some x, y, z ∈ A∗ such that ∣xy∣ ≤ p, ∣y∣ ≥ 1 and xynz ∈ L for all n ≥ 1.

We use this to give an example of a language which is not regular.

19

Example 1.2.14. The language L = {anbn ∣ n ≥ 0} is not regular.

Proof. Suppose that L is regular and let p be as in the statement of the Pumping

Lemma. We consider the word u = apbp ∈ L. If x, y and z are as in the statement of

the Pumping Lemma then y must be of the form am for some m ≥ 1, but this would

imply that ap+mbp ∈ L, which is not the case.

Although the language {anbn ∣ n ≥ 0} is not regular, it is an example of a context-free

language. For more details on this and other classes of infinite languages the reader

is referred to [17, Chapters 4, 9].

Finite state transducers and rational relations

Definition 1.2.15. A finite state transducer, or simply a transducer, is a 4-tuple

T = (Q,A, δ, qI) where:

• Q is a finite set of states ;

• A is a finite alphabet ;

• δ ∶ Q ×Aε → P(Q ×Aε) is a partial function called the transition function;

• qI ∈ Q is the start state.

We extend δ to a partial function δ∗ ∶ Q ×A∗ → P(Q ×A∗) by recursively setting

δ∗(q,wx) = ⋃
(p,u)∈δ∗(q,w)

uδ(p, x)

for all q ∈ Q, w ∈ A∗ and x ∈ Aε. Corresponding to a transducer T is a relation RT

called the relation generated by T , defined by

((u, v) ∈ RT)⇔ (∃s ∈ Q)((s, v) ∈ δ∗(qI , u)).

Intuitively, a transducer u as input and can output v. As with automata, we represent

a transducer via a state diagram. If (p, y) ∈ δ(q, x) then we include an edge from q

to p labelled by x ∶ y. If P is a path in T consisting of edges

(p0, x1, y1, p1), (p1, x2, y2, p2), . . . , (pn−1, xn, yn, pn)

20

then we will describe P using the notation:

p0
x1 ∶ y1ÐÐÐ→ p1

x2 ∶ y2ÐÐÐ→ ⋯ xn ∶ ynÐÐÐ→ pn.

Furthermore if u = x1 . . . xn and v = y1 . . . yn then we will say that P is labelled by

(u, v).

Example 1.2.16. We define a transducer T = (Q,A, δ, qI) where Q = {qI , q1},

A = {a, b}, and δ ∶ Q ×Aε → P(Q ×Aε) is the partial function given by

• δ(qI , a) = δ(q1, b) = {(q1, b)};

• δ(q1, a) = {(q1, a)}.

We have (u, v) ∈ RT if and only if there is some w ∈ A∗ such that u = aw and v = bw.

The state diagram for T is shown below.

qIstart q1
a ∶ b a ∶ a

b ∶ b

Example 1.2.17. We define a transducer S = (P,A,σ, pI) where P = {pI , p1},

A = {a, b} and σ ∶ P ×Aε → P(P ×Aε) is the partial function given by:

• σ(pI , a) = {(p1, a)};

• σ(pI , b) = {(pI , ε), (p1, b)};

• σ(p1, a) = {(p1, a)};

• σ(p1, b) = {(p1, b)}.

We have (u, v) ∈ RS if and only if v can be obtained from u by deleting a prefix of

the form bi. The state diagram for S is shown below.

21

pIstart p1

b ∶ ε

a ∶ a
b ∶ b

a ∶ a
b ∶ b

Other notions of transducers have been considered in the literature, for instance

where there is no start state, where the edges can be labelled by words as well as

symbols from Aε, or where there is a set of accept states. In this thesis, however,

we will almost exclusively consider transducers as specified in Definition 1.2.15, and

so we will use this as our primary definition. In section 3.2 we will briefly use some

alternative models, but this will be made explicit at the time.

Definition 1.2.18. The class of relations which can be generated by transducers is

the class of rational relations.

It is always possible to determine an automaton or transducer uniquely from its

state diagram. We will therefore frequently define one by simply showing its state

diagram, or by describing the states and the edges present in the state diagram,

without explicitly defining the transition function. In particular, it will be of use to

define transducers simply by describing their transitions, which we will frequently do

using the notation

q
x ∶ yÐÐ→ p.

Composition of transducers

Let T = (Q,A, δ, qI) and S = (P,A,σ, pI) be two transducers over the same alphabet,

generating relations RT and RS , respectively. The composition of T and S is the

transducer

T ○ S = (Q × P,A,∆, (qI , pI))

where the transitions are as follows:

• (q1, p1)
x ∶ zÐÐ→ (q2, p2) where there is some y ∈ Aε such that q1

x ∶ yÐÐ→ q2 is transition

in T and p1
y ∶ zÐÐ→ p2 is a transition in S;

22

• (q1, p)
x ∶ εÐÐ→ (q2, p) where q1

x ∶ εÐÐ→ q2 is a transition in T ;

• (q, p1)
ε ∶ zÐÐ→ (q, p2) where p1

ε ∶ zÐÐ→ p2 is a transition in S.

Informally, the transitions in T ○ S are obtained by feeding the output of T into S.

This means that the relation generated by T ○ S is the composition of RT and RS ,

that is, the relation RT ○RS defined by

((u,w) ∈ RT ○RS)⇔ (∃v ∈ A∗)((u, v) ∈ RT & (v,w) ∈ RS).

For more details see [20, Chapter 3].

We remark that, drawing transducers of the form T ○ S, we will typically only show

states which are accessible.

Example 1.2.19. Let T be the transducer from Example 1.2.16 and let S be the

transducer from Example 1.2.17. Then T ○S = (Q×P,A,∆, (qI , pI)) is the transducer

shown below.

qI , pIstart

q1, pI

q1, p1

a ∶ ε
a ∶ a
b ∶ b

a ∶ b

b ∶ ε

a ∶ a
b ∶ b

1.3 Orderings on words

The subword ordering

Definition 1.3.1. The subword ordering on A∗ is denoted by ≤w and defined by

(u ≤w v)⇔ (∃a1, . . . , an ∈ A)(∃v0, v1, . . . , vn ∈ A∗)(u = a1 . . . an & v = v0a1v1 . . . anvn).

Intuitively we have u ≤w v if v can be obtained from u by inserting words between

23

its letters.

Example 1.3.2. We have aaa ≤w ababa and this ≤w thesis.

The following is a celebrated result of Higman [15]:

Lemma 1.3.3 (Higman’s Lemma). Let A be a finite alphabet. Then A∗ is WQO

under the subword ordering.

One surprising consequence of Higman’s Lemma, which was noted by Haines [14], is

that the downward and upward closures of any language L are both regular. To see

this for down(L) we let

B = B(down(L)).

The set B is an anti-chain, so by Higman’s Lemma it must be finite. Since down(L) =
Av(B) we have

A∗/down(L) = ⋃
a1...an∈B

A∗a1A
∗ . . . anA

∗.

Hence A∗/down(L) is the union of finitely many regular languages, and so is itself

regular. The fact that down(L) is regular follows from the fact that Reg(A) is closed

under complementation. The proof for up(L) is similar.

The factor ordering

Definition 1.3.4. The factor ordering on A∗ is denoted by ≤f and defined by:

(u ≤f v)⇔ (∃α,β ∈ A∗)(v = αuβ).

Intuitively we have u ≤f v if v can be obtained by inserting words at the beginning

and end of u.

Example 1.3.5. We have aaa ≤f baaab and the ≤f mathematics.

The factor ordering is not a WQO unless ∣A∣ = 1. To see this let a and b be distinct

letters in A. Then the language L given by the regular expression ab∗a is an infinite

anti-chain. Indeed, if v ∈ L and u <f v then ∣u∣a ≤ 1, so u /∈ L.

Atminas et al. [3] give a solution to the WQO Problem for the factor ordering, for

24

sets avoiding a given regular language. They first prove the following result:

Theorem 1.3.6 (Atminas et al.). Let L be a regular language. Then it is decidable

whether L is WQO under the factor ordering.

The avoidance set Avf(L) of a regular language L under the factor ordering is again

a regular language, since it is given by

Avf(L) = A∗/A∗LA∗

and Reg(A) is closed under the operations of concatenation and complementation.

Hence the following can be deduced:

Theorem 1.3.7 (Atminas et al.). Let L be a regular language. Then it is decidable

whether Avf(L) is WQO under the factor ordering.

In their paper Atminas et al. give a useful method of constructing anti-chains under

the factor ordering, which we will go on to describe. We start with the following

definition:

Definition 1.3.8. Let γ,α and δ be words. We say γ is a left extension of a power

of α if we can write γ = σαi where σ is a suffix of α. We say δ is a right extension of

a power of α if we can write δ = αiσ where σ is a prefix of α.

Example 1.3.9. The word abbabba is a left extension of a power of bba and the word

bcabbcabbc is a right extension of a power of bcab.

The anti-chain construction is then as follows:

Lemma 1.3.10 (Atminas et al.). Let γ, α and δ be words such that γ is not a left

extension of a power of α and δ is not a right extension of a power of α. Then the

set of words

{γαiδ ∣ i = 1,2, . . .}

is an infinite anti-chain under the factor ordering.

Additionally they give the following result:

25

Lemma 1.3.11 (Atminas et al.). Let γ, α and δ be words. Then the language

{γiαδj ∣ i, j = 1,2, . . .}

is WQO under the factor ordering. Furthermore, the downward closure of such a

language is also WQO.

The prefix ordering

Definition 1.3.12. The prefix ordering on A∗ is denoted by ≤p and defined by:

(u ≤p v)⇔ (∃β ∈ A∗)(v = uβ).

Example 1.3.13. We have ab ≤p abcd and math ≤p mathematics.

Since u ≤p v implies u ≤f v, the prefix ordering is not a WQO. The language given

by the regular expression a∗b is an example of a set which is WQO under the factor

ordering but is an anti-chain under the prefix ordering.

The suffix ordering

The suffix ordering on A∗ is defined analogously to the prefix ordering.

Definition 1.3.14. The suffix ordering on A∗ is denoted by ≤s and defined by:

(u ≤s v)⇔ (∃α ∈ A∗)(v = αu).

Example 1.3.15. We have bba ≤s ababba and ample ≤s example.

The natural symmetry between the prefix and suffix orderings allows us to convert

decidability problems for the suffix case to their counterparts in the prefix case. We

first make the following definition:

Definition 1.3.16. Let u ∈ A∗ and write u = a1 . . . an. We define uR = an . . . a1, and

for L ⊆ A∗ we define

LR = {uR ∣ u ∈ L}.

We then note the following:

26

Observation 1.3.17. Let u, v ∈ A∗. Then u ≤p v if and only if uR ≤s vR.

As a consequence of this, a language L is (a chain, an anti-chain, WQO) under the

prefix ordering if and only if the language LR is (a chain, an anti-chain, WQO)

under the suffix ordering. Furthermore, we note that the regularity of L implies the

regularity of LR:

Proposition 1.3.18. Let L ⊆ A∗ be a regular language and let A = (Q,A, δ, q0, F)
be a DFA accepting L. Let p0 be a symbol not in Q and let P = Q ∪ {p0}. Define a

partial function

σ ∶ P ×Aε → P(P)

so that for each q ∈ Q and a ∈ A we have

σ(q, a) = {p ∈ Q ∣ δ(p, a) = q}

and so that σ(p0, ε) = F. Then B = (P,A,σ, p0,{q0}) is an NFA accepting LR.

Proof. Let u ∈ LR and write u = vR for some v ∈ L. Write v = a1 . . . an so that

u = an . . . a1, and for i ∈ {1, . . . , n} let qi = δ(qi−1, ai) so that qi−1 ∈ σ(qi, ai). Finally

note that qn ∈ F. Then B contains the path

(p0, ε, qn)(qn, an, qn−1) . . . (q1, a1, q0). (1.2)

This path is labelled by v, and so v is accepted by B. Conversely any path in B has

the form (1.2) and so is labelled by a word in LR. Hence the language accepted by

B is precisely LR.

Example 1.3.19. Let A = (Q,A, δ, q0, F) be the DFA shown below and let L be the

language accepted by A.

27

q0start q1 q2

q3 q4

a b

a

a

b

b

The NFA B = (P,A,σ, p0,{q0}) accepting LR, as constructed in the proof of Propo-

sition 1.3.18, is shown below.

q0 q1 q2

q3 q4

p0

start

ε

a b

a

a

b

b

ε

1.4 Permutations

For the purposes of this thesis, a permutation of length n is a sequence containing

each element of the set {1, . . . , n} exactly once. For brevity we will typically denote

a permutation (s1, . . . , sn) by s1 . . . sn.

Example 1.4.1. Some permutations of length 3 are 132 and 231. Some permutations

of length 5 are 51423 are 12345.

At times it will be useful to represent a permutation s1 . . . sn visually. We do so by

plotting its points from left to right in a permutation diagram, where the point in

position i is given height si.

Example 1.4.2. Below are permutation diagrams for 132 and 51423.

28

●

●
●

●

●

●

●
●

132 51423

Definition 1.4.3. Let σ = s1 . . . sn and τ = t1 . . . tn be two sequences of distinct

positive integers, both of the same length. We say σ and τ are order isomorphic if

si < sj ⇔ ti < tj.

Example 1.4.4. The sequences 253 and 132 are order isomorphic. The sequences

524 and 213 are not, since the first has its largest term at the beginning and the

second has its largest term at the end.

Definition 1.4.5. Let σ be a sequence of n distinct positive integers. The reduction

of σ is the permutation ρ(σ) of length n which is order isomorphic to σ.

Example 1.4.6. We have ρ(253) = 132 and ρ(524) = 312.

We now introduce the ordering which is to be the principal topic of our study of per-

mutations. This will be the consecutive involvement ordering, which is an analogue

of the factor ordering on words. For a recent survey of results on this ordering, the

reader is invited to consult [12].

Definition 1.4.7. The consecutive involvement ordering on the set of permutations

is denoted by ≤ and defined as follows. Let σ = s1 . . . sn and τ = t1 . . . tm be two

permutations, with n ≤m. Then σ ≤ τ if there exists some i ∈ {1, . . . ,m−n+ 1} such

that σ = ρ(ti . . . ti+n−1).

Example 1.4.8. We have 132 ≤ 42531 and 312 ≤ 52413.

It is easy to visualise the consecutive involvement ordering using permutation dia-

grams, as we illustrate in the next example.

Example 1.4.9. Below are permutation diagrams for σ = 132 and τ = 42531. In the

29

diagram for τ we have highlighted in red the points which witness the comparison

132 ≤ 42531.

●

●
●

●

●

●

●

●

132 42531

Another ordering on permutations which we do not consider in this thesis, but which

has been studied extensively in the literature, is the involvement ordering. This is

an analogue of the subword ordering on words, and is defined as follows:

Definition 1.4.10. Let σ = s1 . . . sn and τ = t1 . . . tm be permutations, with n ≤ m.

We say that σ is involved in τ if there are indices i1 < ⋅ ⋅ ⋅ < in ∈ {1, . . . ,m} such that

σ = ρ(ti1 . . . tin).

Example 1.4.11. The permutation 123 is involved in 14325. This is highlighted in

the figure below.

●
●

●

●

●
●

●

●

123 15324

A survey of recent results on the involvement ordering can be found in [32]. For a

discussion of the historical developments in the theory see [5] and [21], and for an

account of anti-chains and the WQO property see [27].

Symmetries preserving the consecutive involvement ordering

We now introduce some symmetries which preserve the consecutive involvement or-

dering.

Definition 1.4.12. Let σ = s1 . . . sn be a permutation. The reverse of σ is the

30

permutation σR of length n which has in position i the number sn+1−i. For a set S

of permutations we define

SR = {σR ∣ σ ∈ S}.

Geometrically, the permutation σR can be obtained by reflecting σ about a vertical

line. As an example we have 4123R = 3214, which we illustrate below.

●

●
●

● ●
●

●

●

4123 4123R = 3214

Definition 1.4.13. Let σ = s1 . . . sn be a permutation. The complement of σ is the

permutation σC of length n which has in position i the number n + 1 − si. For a set

S of permutations we define

SC = {σC ∣ σ ∈ S}.

Geometrically, the permutation σC can be obtained by reflecting σ about a horizontal

axis. As an example we have 4123C = 1432, which we illustrate below.

●

●
●

●

●

●
●

●

4123 4123C = 1432

We note without proof that the operations of reversal and complementation commute

with one another, so that (σR)C = (σC)R for all permutations σ Hence we may omit

the brackets and refer to this permutation simply as σRC .

Definition 1.4.14. Let σ = s1 . . . sn be a permutation. The reverse complement of

σ is the permutation σRC . For a set S of permutations we define

SRC = {σRC ∣ σ ∈ S}.

31

Geometrically, the permutation σRC can be obtained by rotating σ by 180○. As an

example we have 4123RC = 2341, which we illustrate below.

●

●
●

●
●

●
●

●

4123 4123R = 2341

We note without proof that the operations of reversal, complementation and reverse

complementation all preserve the consecutive involvement ordering, that is:

Proposition 1.4.15. Let σ, τ be permutations. Then the following are equivalent:

(i) σ ≤ τ ;

(ii) σR ≤ τR;

(iii) σC ≤ τC;

(iv) σRC ≤ τRC.

The involvement ordering on permutations is preserved under rotation by 90○ clock-

wise, but this is not the case for the consecutive involvement ordering. Indeed, let

σ = 231 and τ = 2413, which are shown below.

●
●

● ●

●

●

●

σ = 231 τ = 2413

We have σ ≤ τ , since σ = ρ(241). By rotating these permutations clockwise by 90○,

we obtain the permutations σ′ = 132 and τ ′ = τ = 2413, which are shown below.

32

●

●
● ●

●

●

●

σ′ = 231 τ ′ = 2413

We have σ′ /≤ τ ′, so the operation does not preserve the ordering.

Operations on permutations

We now describe some binary operations which can be performed on pairs of permu-

tations. The purpose of this will be to describe large permutations, or large sets of

permutations, which will be constructed in some systematic way from a collection of

smaller ones.

Notation 1.4.16. If σ is a permutation of length n and i ∈ {1, . . . , n} then we will

write (σ)i to mean the point in position i of σ.

Definition 1.4.17. Let σ, τ be permutations of lengths n,m respectively. The sum

of σ and τ is the permutation σ ⊕ τ of length n +m where

(σ ⊕ τ)i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σi for i ∈ {1, . . . , n}
τi + n for i ∈ {n + 1, . . . , n +m}.

Geometrically, the permutation σ ⊕ τ can be obtained by placing a copy of τ above

and to the right of σ.

Example 1.4.18. Let σ = 132 and τ = 4321. Then σ ⊕ τ = 1327654. These permuta-

tions are illustrated below.

33

●

●
●

●
●

●
●

●

●
●

●
●

●
●

σ = 132 τ = 4321 σ ⊕ τ = 1327654

Definition 1.4.19. Let σ, τ be permutations of lengths n,m respectively. The skew

sum of σ and τ is the permutation σ ⊖ τ of length n +m where

(σ ⊖ τ)i =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

σi +m for i ∈ {1, . . . , n}
τi for i ∈ {n + 1, . . . , n +m}.

Geometrically, the permutation σ ⊖ τ can be obtained by placing a copy of τ below

and to the right of σ.

Example 1.4.20. Let σ = 312 and τ = 1324. Then σ ⊖ τ = 7561324. These permuta-

tions are shown below.

●

●
●

●

●
●

●
●

●
●

●

●
●

●

σ = 312 τ = 1324 σ ⊖ τ = 7561324

We note without proof that the sum and skew sum operations are both associative,

so that (σ ⊕ τ)⊕ π = σ ⊕ (τ ⊕ π) and (σ ⊖ τ)⊖ π = σ ⊖ (τ ⊖ π) for all permutations

σ, τ, π. Hence we may omit the brackets and refer to these permutations simply as

σ ⊕ τ ⊕ π and σ ⊖ τ ⊖ π respectively. However, brackets must typically be included

34

in expressions containing both the sum and skew sum operations, since for instance

σ ⊖ (τ ⊕ π) may be different from (σ ⊖ τ)⊕ π. Indeed, we have 1⊖ (1⊕ 1) = 312 and

(1⊖ 1)⊕ 1 = 213.

An ascent is a permutation of the form 1 . . . n and a descent is a permutation of the

form n . . .1. We will go on to construct certain permutations as sums or skew sums

of various ascents and descents, as well as the trivial permutation 1.

Notation 1.4.21. We will let αn denote the ascent of length n and δn denote the

descent of length n.

As an example of constructing permutations from ascents, descent and the trivial

permutation we have (α3 ⊕ δ2)⊖ 1 = 234651 and 1⊖ (α2 ⊕ δ4) = 7126543. These are

illustrated below.

●
●

●

●
●

●

●

●
●

●
●

●
●

(α3 ⊕ δ2)⊖ 1 1⊖ (α2 ⊕ δ4)

35

36

Chapter 2

Orderings on words

2.1 The prefix and suffix orderings

The prefix ordering

We recall that the prefix ordering ≤p on A∗ is defined by:

(u ≤p v)⇔ (∃β ∈ A∗)(v = uβ).

Our aim in this section is to prove certain order-theoretic facts about regular lan-

guages under the prefix and suffix orderings. We will make use of a particular type

of DFA called a reduced DFA, which we define below.

Definition 2.1.1. We say a DFA is reduced if each of its states is accessible and

admits a path to an accept state.

We note without proof that any DFA can be converted into a reduced DFA by re-

moving states which are inaccessible or which do not admit a path to an accept state,

and so every regular language is accepted by a reduced DFA. As an example, the

two automata in Figure 2.1 both accept the language given by the regular expression

ab∗, with the one on the right being reduced.

We refer to the number of edges leaving a state as the out-degree of that state. Up

37

start a

b

a

b

start a

b

Figure 2.1: Two DFAs accepting the same language. The one on the right is reduced.

until this point, when drawing state diagrams we have typically represented two

edges (q, a, p) and (q, b, p) between the same pair of states by a single arrow labelled

by both a and b. In the results which follow we will, of course, consider the edges

(q, a, p) and (q, b, p) to be distinct as long as the letters a and b are distinct.

Our first result is a classification of the regular languages which are prefix chains,

i.e. chains under the prefix ordering.

Theorem 2.1.2. Let L ⊆ A∗ be a regular language and let A = (Q,A, δ, q0, F) be a

reduced DFA accepting L. Then L is a prefix chain if and only if every state in A
has out-degree at most 1.

Proof. (⇒) We prove the contrapositive. Suppose there is a state q ∈ Q with out-

degree at least 2, so that there are distinct letters a, b ∈ A such that δ(q, a) and

δ(q, b) are both defined. Let u ∈ A∗ be such that δ∗(q0, u) = q and let v,w ∈ A∗ be

such that δ∗(q0, uav) and δ∗(q0, ubw) are both in F . The existence of these words

is guaranteed by the fact that A is reduced. The words uav and ubw are both in L

but are incomparable under the prefix ordering since they differ in position ∣u∣ + 1,

and so L is not a prefix chain.

(⇐) Again we prove the contrapositive. Suppose that L is not a prefix chain, so that

there are words u, v ∈ L which are incomparable under the prefix ordering. Suppose u

and v share a maximal common prefix w, so that we can write u = wav′ and v = wbv′
where a ≠ b. If we let q = δ∗(q0,w) then δ(q, a) and δ(q, b) are both defined, so q has

out-degree at least 2.

38

The above theorem tells us that a reduced DFA accepts a prefix chain if and only if

it consists of a single (possible trivial) path from the start state into a simple cycle.

This is sketched in Figure 2.2.

start ⋯ ⋮

Figure 2.2: An automaton accepting a prefix chain.

Our next result gives a classification of the regular languages which are prefix anti-

chains, i.e. anti-chains under the prefix ordering.

Theorem 2.1.3. Let L ⊆ A∗ be a regular language and let A = (Q,A, δ, q0, F) be a

reduced DFA accepting L. Then the language L is a prefix anti-chain if and only if

every accept state in A has out-degree 0.

Proof. (⇒) We prove the contrapositive. Suppose there is some accept state q with

out-degree at least 1. Let a ∈ A be such that δ(q, a) is defined, let p = δ(q, a) and let

u, v ∈ A∗ be such that δ(q0, u) = q and δ∗(p, v) ∈ F . The existence of these words is

guaranteed by the fact that A is reduced. Then u,uav ∈ L and u <p uav, so L is not

a prefix anti-chain.

(⇐) Again we prove the contrapositive. Suppose that L is not a prefix anti-chain,

so that there are words u, v ∈ L with u <p v. Write v = uav′ where a ∈ A and let

q = δ∗(q0, u). Then q is an accept state and δ(q, a) is defined, so q has out-degree at

least 1.

Our next goal is to show it is decidable whether a given regular language is WQO

under the prefix ordering. We first make the following definition:

Definition 2.1.4. Let A = (Q,A, δ, q0, F) be a DFA. A state q ∈ Q is a loop-state if

there is a non-empty word w such that δ∗(q,w) = q.

39

We then have the following result:

Theorem 2.1.5. Let L ⊆ A∗ be a regular language and let A = (Q,A, δ, q0, F) be a

reduced DFA accepting L. Then L is WQO under the prefix ordering if and only if

every loop-state in Q has out-degree 1.

Proof. (⇒) We prove the contrapositive. Suppose there is a loop-state q ∈ Q whose

out-degree is not 1. Since q is a loop-state its out-degree cannot be 0, so must be at

least 2. Let w be a non-empty word such that δ∗(q,w) = q and write w = aw′ where

a ∈ A. Let b be a letter distinct from a such that δ(q, b) is defined and let p = δ(q, b).
Then let u, v ∈ A∗ be such that δ∗(q0, u) = q and δ∗(p, v) ∈ F . The existence of

these words is guaranteed by the face that A is reduced. We will prove that the set

K ⊆ L given by the regular expression uw∗bv is a prefix anti-chain. Let x, y ∈K and

suppose x <p y. Write x = uwibv and y = uwjbv where i, j are indices with j > i ≥ 0.

The words x and y must agree in position ∣u∣+ i∣w∣+ 1, but in this position the word

x has the letter b and the word y has the letter a, a contradiction.

(⇐) Let K be an infinite subset of L. In order to prove that L is WQO under the

prefix ordering it suffices to prove that K contains an infinite chain. Since K is

infinite, there is a word u such that δ∗(q0, u) is a loop state and such that infinitely

many words in K begin with u. Let H be this set of words, that is, let H =K ∩uA∗.

Our aim is to prove that H is a prefix chain. Let w ∈ A∗ be a non-empty word such

that δ∗(q,w) = q. Since q has out-degree 1, the word w is unique, and so every word

in H can be written as uwiv for some prefix v of w. Let x = uwiv1 and y = uwjv2 be

two words in H with ∣x∣ ≤ ∣y∣. Then v1 ≤p wj−iv2 and so x ≤p y.

The above theorem tells us that the language accepted by a reduced DFA A is WQO

under the prefix ordering if and only if every cycle in A has no exit. This is sketched

in Figure 2.3.

The conditions presented in Theorems 2.1.2, 2.1.3 and 2.1.5 are decidable, and we

summarise this as follows:

40

start ⋱

⋮

⋱ ⋮

⋮

Figure 2.3: An automaton for a language which is WQO under the prefix ordering.

Corollary 2.1.6. Let L ⊆ A∗ be a regular language. Then for the prefix ordering it

is decidable whether L is:

• a chain;

• an anti-chain;

• WQO.

We will use this to show that these properties are decidable for the avoidance set of

a given regular language. We first specify some notation:

Notation 2.1.7. Let L ⊆ A∗. We let upp(L) and Avp(L) respectively denote the

upward closure and avoidance set of L under the prefix ordering.

We then have:

Lemma 2.1.8. Let L ⊆ A∗ be a regular language and let A = (Q,A, δ, q0, F) be a

DFA accepting L. Let p be a symbol not in Q and let P = Q ∪ {p}. Define a partial

function

σ ∶ P × (A ∪ ε)→ P(P)

41

by

• σ(q, a) = {δ(q, a)} for all q ∈ Q and a ∈ A;

• σ(q, ε) = {p} for all q ∈ F ;

• σ(p, a) = {p} for all a ∈ A.

Then B = (P,A,σ, q0,{p}) is an NFA accepting upp(L).

Proof. A word u is accepted by B if and only if there is a path from q0 to an accept

state in A labelled by a prefix of w, which is the case if and only if u belongs to

upp(L). Hence the language accepted by B is precisely upp(L).

Example 2.1.9. Let A = {a, b} and let L ⊆ A∗ be the regular language accepted by

the automaton shown below.

q0start q1 q2

q3

a a

a

b b

Then an automaton for upp(L), as constructed in the proof of Lemma 2.1.8, is:

q0start q1 q2

q3 p

a a

a

b b ε

ε
a, b

We can use the previous result to state:

Lemma 2.1.10. Let L ⊆ A∗ be a regular language. Then Avp(L) is a regular lan-

guage.

42

Proof. This follows from Lemma 2.1.8, and the facts that Avp(L) = A∗/upp(L) and

that Reg(A) is closed under the operation of set difference.

We can then state the following as a special case of Corollary 2.1.6:

Corollary 2.1.11. Let L ⊆ A∗ be a regular language. Then for the prefix ordering it

is decidable whether Avp(L) is:

• a chain;

• an anti-chain;

• WQO.

Atomicity

The following theorem gives a characterisation of atomicity in the prefix order-

ing:

Theorem 2.1.12. Let C ⊆ A∗ be a set which is downward-closed under the prefix

ordering. Then the following are equivalent:

(i) The set C is atomic under the prefix ordering.

(ii) The set C is a prefix chain.

(iii) The set C coincides with the set of finite prefixes of some right-infinite word w.

Proof. We prove the implications (i) ⇒ (iii), (iii) ⇒ (ii), and (ii) ⇒ (i).

(i) ⇒ (iii): Suppose that C is atomic and let v1 ≤p v2 ≤p . . . be an atomic sequence

for C, so that every word in C is a prefix of some vi. By removing duplicates and

adding intermediate words as necessary we may assume that each word vi satisfies

∣vi∣ = i. Write v1 = a1 and for i ≥ 1 let ai+1 be the letter such that vi+1 = viai+1.
Then C coincides with the set of finite prefixes of the right-infinite word w = a1a2 . . .
obtained by successively concatenating the letters ai.

(iii) ⇒ (ii): Suppose C coincides with the set of finite prefixes of some right-infinite

word w = a1a2. . . and let u, v ∈ C. Let i and j be such that u = a1 . . . ai and v = a1 . . . aj.
If i ≤ j then u ≤p v and if j ≤ i then v ≤p u, so C is a prefix chain.

43

(ii) ⇒ (i): If C is a prefix chain then we can list its elements as v1, v2, . . . where

vi ≤ vj whenever i ≤ j. Hence the sequence v1 ≤p v2 ≤p . . . is an atomic sequence for

C, and so C is atomic.

Taking this together with Corollary 2.1.11, we then have:

Corollary 2.1.13. Let L ⊆ A∗ be a regular language. Then it is decidable whether

Avp(L) is atomic.

The suffix ordering

We recall that the suffix ordering ≤s on A∗ is defined by

(u ≤s v)⇔ (∃α ∈ A∗)(v = αu).

A language L ⊆ A∗ is (a chain, an anti-chain, WQO, atomic) under the suffix ordering

if and only if the language LR is (a chain, an anti-chain, WQO, atomic) under

the prefix ordering. As a consequence of this, together with Corollary 2.1.6 and

Proposition 1.3.18, we then have the following result:

Corollary 2.1.14. Let L ⊆ A∗ be a regular language. Then for the suffix ordering

on A∗ it is decidable whether L is:

• a chain;

• an anti-chain;

• WQO.

Letting Avs(L) denote the avoidance set of a language L under the suffix ordering,

as a consequence of Corollary 2.1.11 we have:

Corollary 2.1.15. Let L ⊆ A∗ be a regular language. Then it is decidable whether

Avs(L) is WQO.

Finally, as a consequence of Corollary 2.1.13 we have:

Corollary 2.1.16. Let L ⊆ A∗ be a regular language. Then it is decidable whether

Avs(L) is atomic.

44

2.2 The factor ordering

In this section we show that for the factor ordering on words, it is decidable whether

a given finitely-based set C is atomic. Our approach will be to introduce a graph

G(C), called the factor graph for C, such that each sufficiently long word corresponds

uniquely to a path in G(C). The problem of deciding atomicity for C with then

essentially be reduced to deciding atomicity in the contiguous subpath ordering on

the set of paths in G(C), and performing a small analysis on a finite set of short

words in C.

2.2.1 Factor graphs

Notation 2.2.1. Throughout this section we will let Avf(B) denote the avoidance

set of a set B ⊆ A∗ under the factor ordering.

Definition 2.2.2. Let u ∈ A∗ and write u = a1 . . . an, and let k be a positive integer

with k ≤ n. We define seqk(u) to be the sequence of words seqk(u) = (u1, . . . , un−k+1)
where each ui = ai . . . ai+k−1.

The sequence seqk(u) can be thought of as the sequence of consecutive length k

factors of the word u.

Example 2.2.3. Let u = abcbc. Then we have seq2(u) = (ab, bc, cb, bc) and seq3(u) =
(abc, bcb, cbc).

We would also like to take a sequence S which coincides with seqk(u) for some u,

and recover the word u. First we introduce some notation:

Notation 2.2.4. If u = a1 . . . an is a word then we let uP = a1 . . . an−1 denote the

largest proper prefix of u and let uS = a2 . . . an denote the largest proper suffix of u.

We then make the following definition:

Definition 2.2.5. Let S = (u1, . . . , um) be a sequence of words of the same length

k. We say S is an overlapping k-sequence if uSi = uPi+1 for all i ∈ {1, . . . ,m − 1}.

45

Example 2.2.6. The sequence (abb, bbc, bca) is a overlapping 3-sequence, and the

sequence (aaba, abac) is an overlapping 4-sequence.

We can construct a word from an overlapping k-sequence as defined below:

Definition 2.2.7. Let S = (u1, . . . , um) be an overlapping k-sequence and write each

word ui = ai . . . ai+k−1. Then we define the word w(S) = a1 . . . am+k−1.

Example 2.2.8. We have w(abb, bbc, bca) = abbca and w(aaba, abac) = aabac.

Notation 2.2.9. Let C be a finitely-based set of words and k ≥ 1. We let Ck denote

the set of words in C of length k. We also let C≥k denote the set of words in C of

length at least k, and make analogous definitions for the sets C>k, C≤k and C<k.

We now define the notion of a factor graph corresponding to a finitely-based class.

Definition 2.2.10. Let B ⊆ A∗ be finite, let k = maxv∈B ∣v∣ and let C = Avf(B).
Then the factor graph for C is the directed graph G(C) which has vertex set Ck and

edge set {(u, v) ∣ uS = vP}.

We remark that the factor graph is essentially a specific induced subgraph of the de

Bruijn graph [9] on Ak.

Example 2.2.11. Let A = {a, b}, B = {bb, aab} and C = Avf(B). Then maxv∈B ∣v∣ = 3

and C3 = {bab, aba, baa, aaa}. The factor graph G(C) is shown below.

bab aba baa aaa

Example 2.2.12. Let A = {a, b}, B = {aaa, baa, bba, bbb} and C = Avf(B). Then

maxv∈B ∣v∣ = 3 and C3 = {aab, abb, aba, bab}. The factor graph G(C) is shown below.

aab aba bab abb

46

Example 2.2.13. Let A = {a, b}, B = {aa, aba, abb, bab} and C = Avf(B). Then

maxv∈B ∣v∣ = 3 and C3 = {bbb, bba}. The factor graph G(C) is shown below.

bbb bba

We now show how paths in G(C) correspond to words in C. If P = (u1, . . . , un) is

a path in G(C) then uSi = uPi+1 for all i ∈ {1, . . . , n − 1}. Hence the path P is an

overlapping k-sequence and the word w(P) is defined. We prove the following:

Proposition 2.2.14. Let B ⊆ A∗ be finite, let k = maxv∈B ∣v∣ and let C = Avf(B).

Then:

(i) If u ∈ C≥k then seqk(u) is a path in G(C).

(ii) If P is a path in G(C) then w(P) ∈ C≥k.

Proof. (i) Write u = a1 . . . an and let seqk(u) = (u1, . . . , un−k+1) where each ui =
ai . . . ai+k−1. The set C is downward-closed, so for each i ∈ {1, . . . , n − k + 1} we

have ui ∈ C. In particular we have ui ∈ Ck since ∣ui∣ = k. Furthermore for each

i ∈ {1, . . . , n − k} we have ui = ai . . . ai+n−1 and ui+1 = ai+1 . . . ai+n, so

uSi = ai+1 . . . ai+n−1 = uPi+1.

Hence (ui, ui+1) is an edge in G for each i ∈ {1, . . . , n− k} and so seqk(u) is a path in

G(C).

(ii) Let P = (u1, . . . , um) be a path in G(C) and write each ui = ai . . . ai+k−1, so that

w(P) = a1 . . . am−k+1. If v ∈ B is such that v ≤f w(P) then ∣v∣ ≤ k, and so v ≤f ui for

some i. However, this cannot be the case since each ui ∈ C and C = Avf(B).

We wish to show that if u, v ∈ C≥k with u ≤f v then this is reflected in G(C). We

first introduce some notation:

Notation 2.2.15. If G is a directed graph then we let P(G) denote the set of paths

in G.

We then make the following definition:

47

Definition 2.2.16. Let G be a directed graph. Let P,Q ∈ P(G) and write P =
(u1, . . . , un) and Q = (v1, . . . , vm), with n ≤m. We say that P is a contiguous subpath

of Q if there is some i ∈ {1, . . . ,m − n + 1} such that P = (vi, . . . , vi+n−1). We denote

this by P ≤ Q.

The contiguous subpath relation ≤ is an ordering on P(G), since it is really just the

factor ordering on a specific subset of V (G)∗. We then have the following:

Proposition 2.2.17. Let B ⊆ A∗ be finite, let k = maxv∈B ∣v∣ and let C = Avf(B).

Then:

(i) If u, v ∈ C≥k with u ≤f v then seqk(u) ≤ seqk(v).

(ii) If P,Q ∈ P(G) with P ≤ Q then w(P) ≤f w(Q).

Proof. (i) Write u = a1 . . . an and let seqk(u) = (u1, . . . , un−k+1) where each ui =
ai . . . ai+k−1, then write v = b1 . . . bm and let seqk(v) = (v1, . . . , vm−k+1) where each

vi = bi . . . bi+k−1. Let j be such that u = bj+1 . . . bj+n. Then for each i ∈ {1, . . . , n+k−1}
we can write

ui = ai . . . ai+k−1 = bj+i . . . bj+i+k−1 = vj+i

and so

seqk(u) = (u1, . . . , un+k−1) = (vj+1, . . . , vj+n+k−1) ≤ seqk(v).

(ii) Let P = (u1, . . . , un) and write each ui = ai . . . ai+k−1 so that w(P) = a1 . . . an+k−1,
then let Q = (v1, . . . , vm) and write each vi = bi . . . bi+k−1 so that w(Q) = b1 . . . bm+k−1.
Let j be such that P = (vj+1, . . . , vj+n). Then for each i ∈ {1, . . . ,m} we have ui = vj+i
and so

ai . . . ai+k−1 = bj+i . . . bj+i+k−1.

This means that

w(P) = a1 . . . an+k−1 = bj+1 . . . bj+n+k−1 ≤f w(Q).

48

2.2.2 Deciding atomicity in the contiguous subpath ordering

In this subsection we show that atomicity is decidable for the contiguous subpath or-

dering on P(G). In the next subsection we will show that this implies the decidability

of atomicity for the factor ordering on words.

Notation 2.2.18. If G is a directed graph and u, v ∈ V (G) are such that there is a

path in G from u to v, then we denote this by u→∗ v.

Definition 2.2.19. A directed graph G is connected if for all u, v ∈ V (G) we have

u →∗ v or v →∗ u, and strongly connected if for all u, v ∈ V (G) we have both u →∗ v

and v →∗ u.

Sometimes the word ‘connected’ is used to mean that G is connected when considered

as an undirected graph, so that for instance the graph ●Ð→●←Ð● would be called

connected. We will have no need to single out graphs with this property, and so will

exclusively use the word ‘connected’ as in Definition 2.2.19.

Definition 2.2.20. Let P and Q be paths such that the last vertex of P is the

first vertex of Q, and write P = (u1, . . . , un) and Q = (un, v1, . . . , vm). We define the

concatenation of P and Q to be the path

PQ = (u1, . . . , un, v1, . . . , vm).

We then note the following elementary facts relating the atomicity of P(G) to the

(strong) connectedness of G:

Lemma 2.2.21. Let G be a directed graph. Then:

(i) If P(G) is atomic under ≤ then G is connected.

(ii) If G is strongly connected then P(G) is atomic.

Proof. (i) Suppose P(G) is atomic and let u, v ∈ V (G). Let P = (u1, . . . , un) be a

join for the trivial paths (u) and (v), so that (u) ≤ P and (v) ≤ P . Let i, j be such

that u = ui and v = uj. If i < j then u→∗ v, and if i > j then v →∗ u.

(ii) Suppose G is strongly connected and let P = (u1, . . . , un) and Q = (v1, . . . , vm) be

49

paths in G. Since G is strongly connected we can find a path R from un to v1. Let

S = PRQ. Then P ≤ S and Q ≤ S, so S is a join for P and Q.

The remainder of this subsection will focus on conditions under which P(G) is atomic

when G is connected but not strongly connected.

Definition 2.2.22. Let G be a directed graph. We define an equivalence relation

∼ on V (G) by u ∼ v if u →∗ v and v →∗ u. The equivalence classes of ∼ are called

the strongly connected components of G. A component C is trivial if ∣C ∣ = 1 and

non-trivial otherwise.

We will refer to the strongly connected components of G simply as components since

we will not need to distinguish from any other meaning of this word.

Example 2.2.23. Let G be the graph shown below.

p q

r

s

t

x y

The components of G are {p, q, r}, {s}, {t} and {x, y}. The components {s} and {t}
are trivial, and the components {p, q, r} and {x, y} are non-trivial.

Definition 2.2.24. We define a relation → on the components of G by C1 → C2 if

C1 ≠ C2 and if there are vertices p1 ∈ C1 and p2 ∈ C2 such that p1 →∗ p2.

If G is connected then any two distinct components of G are comparable under the

relation →, so we can list the components of G as

C1 → ⋅ ⋅ ⋅→ CN .

Definition 2.2.25. Let G be a directed graph and let C be a component of G. An

entrance of C is an edge (q, p) where q /∈ C and p ∈ C, and an exit of C is an edge

(p, q) where p ∈ C and q /∈ C.

50

If G is connected and its components are given by C1 → ⋅ ⋅ ⋅ → CN , then the com-

ponents with entrances are exactly C2, . . . ,CN and the components with exits are

exactly C1, . . . ,Cn−1.

Our aim is to prove that if G is connected but not strongly connected and P(G)
is atomic then G must have a very specific form. This will involve a sequence of

lemmas which, when taken together, will dictate the form that G must have if P(G)
is to be atomic. We first prove the following:

Lemma 2.2.26. Let G be a directed graph which is connected but not strongly con-

nected and suppose P(G) is atomic. If C is a non-trivial component of G then C

does not have both an entrance and an exit.

Proof. Suppose that C has both an entrance E = (q, p1) and an exit F = (p2, r). Let

P be a path from p1 to p2 and let Q be a non-trivial path from p2 to itself. We note

that all the vertices in P and Q belong to the component C. Let S = EPF and

T = EPQF , noting that each of these paths contain precisely one occurrence of each

of q and r. Furthermore note that S is strictly shorter than T since the path Q is

non-trivial. Suppose, aiming for a contradiction, that R = (u1, . . . , un) is a join for

S and T , so that S ≤ R and T ≤ R. Let i, j, k, l be such that S = (ui, . . . , uj) and

T = (uk, . . . , ul). We note that that i < j and k < l, so at least one of the following

comparisons must be true:

(i) i = k;

(ii) j = l;
(iii) j < k;

(iv) l < i;
(v) i < k < j;
(vi) k < i < l.

If i = k or j = l then S is a proper subpath of T , but this cannot be the case since

T contains the vertices q and r only once each. If j < k then R has the contiguous

subpath (uj, . . . , uk), but this cannot be the case since uj = r, uk = q and r /→∗
q.

Similarly if l < i then R has the contiguous subpath (ul, . . . , ui), but this cannot be

the case since ul = r, ui = q and r /→∗
q. If i < k < j then uk is a vertex of P , but this

51

cannot be the case since uk = q and q /∈ C. Finally if k < i < l then ui is a vertex of

Q, but this cannot be the case since ui = q and q /∈ C. Hence there is no join for S

and T and so the set P(G) is not atomic.

From this we can immediately deduce the following result:

Lemma 2.2.27. Let G be a directed graph which is connected but not strongly con-

nected and let C1 → ⋅ ⋅ ⋅ → CN be the components of G. If P(G) is atomic then the

components C2, . . . ,CN−1 are trivial.

Next we show that the components of G must be arranged linearly.

Lemma 2.2.28. Let G be a directed graph which is connected but not strongly con-

nected, and suppose P(G) is atomic. If C is a component of G then C has at most

one exit and at most one entrance.

Proof. We show only that the C has at most one exit, as that the proof that C has

at most one entrance will be analogous. Suppose that E = (p1, q) and F = (p2, r) are

exits of C and that S = (u1, . . . , un) is a join for E and F , so that E ≤ S and F ≤ S.

Let i, j be such that E = (ui, ui+1) and F = (uj, uj+1). If i < j then q →∗ p2 and if

i > j then r →∗ p1. Neither of these are true, so i = j and hence E = F .

The remaining lemmas in this subsection will show that the non-trivial components

of G must be cyclic. We first define this formally:

Definition 2.2.29. Let G be a directed graph and let C be a component of G. We

say C is cyclic either if C is trivial, or if for each p ∈ C there is a unique vertex q ∈ C
such that (q, p) ∈ E(G) and a unique vertex r ∈ C such that (p, r) ∈ E(G).

If a non-trivial component C is not cyclic then it either has a vertex with two outgoing

edges in C or it has a vertex with two incoming edges in C. In fact we can use the

pigeonhole principle to show that each of these implies the other, since the number

of outgoing edges and incoming edges within C must be equal. Hence we have:

Lemma 2.2.30. Let G be a directed graph and let C be a non-trivial component of

G which is not cyclic. Then there are vertices p, q, r ∈ C with q, r distinct such that

(p, q), (p, r) ∈ E(G).

52

To show that the non-trivial components of G must be cyclic if P(G) is to be atomic,

we first characterise cyclic components in terms of cycles at a single vertex.

Definition 2.2.31. A cycle (p, p1 . . . , pn, p) is called p-simple if p /∈ {p1, . . . , pn}.

We then have:

Lemma 2.2.32. Let G be a directed graph, let C be a component of G and let p ∈ C.

Suppose C contains a unique p-simple cycle P . Then P contains every vertex of C.

Proof. We prove the contrapositive. Write P = (p, p1, . . . , pn, p) and suppose there is

some vertex q ∈ C which is not in P . Let S = (p, s1, . . . , sm, q) and T = (q, t1, . . . , tk, p)
be paths such that p /∈ {s1, . . . , sm, t1, . . . , tk}. Then ST is a p-simple cycle which

contains q and is therefore different from P .

The following lemma characterises cyclic components in terms of p-simple cycles:

Lemma 2.2.33. Let G be a directed graph and let C be a component of G. Suppose

there is some p ∈ C such that C contains a unique p-simple cycle P . Then C is

cyclic.

Proof. Write P = (p, p1, . . . , pn, p) and note that C = {p, p1, . . . , pn} by Lemma 2.2.32.

For notational convenience we write p0 = pn+1 = p. If C is not cyclic then it is non-

trivial, and one of its vertices has two outgoing edges in C by Lemma 2.2.30. Hence

there is some i ∈ {0, . . . , n} such that (pi, pk) ∈ E(G) for some k ≠ i + 1. Then the

cycle

(p, p1, . . . , pi, pk, . . . , pn, p)

is a p-simple cycle which is different from P .

We now present our lemma on the cyclic nature of non-trivial components.

Lemma 2.2.34. Let G be a directed graph which is connected but not strongly con-

nected, and suppose P(G) is atomic. If C is a non-trivial component of G then C is

cyclic.

Proof. Suppose the components of G are C1 → ⋅ ⋅ ⋅ → CN . By Lemma 2.2.26 the

components C2, . . . ,CN−1 are trivial. We will show only that if C1 is non-trivial then

53

it cyclic, as the argument for CN will be analogous. By Lemma 2.2.28 the component

C1 has only one exit E = (p, r). We show that C1 contains a unique p-simple cycle,

and it will follow from Lemma 2.2.33 that it is cyclic. Suppose C contains two

p-simple cycles P = (p, s1, . . . , sn, p) and Q = (p, t1, . . . , tm, p), and let S = PE and

T = QE. Let R = (u1, . . . , uM) be a join for S and T , so that S ≤ R and T ≤ R. Let

i, j, k, l be such that S = (ui, . . . , uj) and T = (uk, . . . , ul). If j < l then R contains the

contiguous subpath (uj, . . . , ul−1), but this cannot be the case since uj = r, ul−1 = p
and r /→∗

p. An analogous argument discredits the case that j > l, so we can assume

that j = l. If i < k then uk ∈ {s1, . . . , sn}, but this cannot be the case since uk = p and

P is p-simple. Similarly if i > k then ui ∈ {t1, . . . , tm}, but this cannot be the case

since ui = p and Q is p-simple. Hence we have both i = k and j = l, so S = T .

By combining Lemmas 2.2.26 to 2.2.34 we can make significant deductions about the

form which G must have is P(G) is atomic. In particular if the components of G are

C1 → ⋅ ⋅ ⋅→ CN then we must have the following:

(i) The component C1 is cyclic and has exactly one exit.

(ii) The components C2, . . . ,CN−1 are trivial and have exactly one entrance and

one exit.

(iii) The component CN is cyclic and has exactly one entrance.

Hence the graph G must be a bicycle, which we define below.

Definition 2.2.35. A bicycle is a directed graph B consisting of two simple cycles

S = (sn, s1, . . . , sn) and E = (e1, . . . , em, e1), and a path P = (sn, p1, . . . , pl, e1) from S

to E. We will describe B as an ordered triple B = (S,P,E).

We illustrate a bicycle below.

sn

s1

⋮

sn−1

p1 ⋯ pl e1

e2

⋮

em

We remark that it is decidable whether a given directed graph is a bicycle, since, for

54

instance, one can check that there are at most two vertices with out-degree 2

Our main theorem on atomicity in P(G) is as follows:

Theorem 2.2.36. Let G be a directed graph which is connected but not strongly

connected. Then P(G) is atomic under the contiguous subpath ordering if and only

if G is a bicycle.

Proof. (⇒) This implication is a combination of Lemmas 2.2.26 to 2.2.34.

(⇐) Suppose G is a bicycle and write G = (S,P,E) where S = (sn, s1, . . . , sn),
P = (sn, p1, . . . , pl, e1) and E = (e1, . . . , em, e1). Then every path in G a contiguous

subpath of a path of the form SiPEi. Hence the sequence

SPE ≤ S2PE2 ≤ S3PE3 ≤ . . .

is an atomic sequence for P(G), and so P(G) is atomic.

Corollary 2.2.37. Let G be a directed graph. Then it is decidable whether P(G) is

atomic under the contiguous subpath ordering.

2.2.3 Deciding atomicity in the factor ordering

In this subsection we use our result on the contiguous subpath ordering to show that

atomicity is decidable for the factor ordering on words.

Theorem 2.2.38. Let B ⊆ A∗ be finite, let k = maxv∈B ∣v∣ and let C = Avf(B). Then

C is atomic if and only if:

(i) The graph G(C) is either strongly connected or is a bicycle.

(ii) For each word u ∈ C<k there is a word v ∈ Ck with u ≤f v.

Proof. (⇒) We prove the contrapositive. If condition (i) does not hold then C≥k does

not satisfy the join property, and so neither does C. If condition (ii) does not hold

then there is a word u ∈ C<k such that u /≤f v for all v ∈ Ck. We will fix a word w ∈ Ck
and show that u has no join with w. Indeed, if z ∈ C is such that u ≤f z and v ≤f z
then ∣z∣ ≥ k, and so z has a factor v ∈ Ck such that u ≤f v, which is a contradiction.

55

(⇐) Let u, v ∈ C. Since condition (ii) holds, there are words u′, v′ ∈ C≥k such that

u ≤f u′ and v ≤f v′. Since condition (i) holds the set, C≥k satisfies the join property,

so there is a word w ∈ C such that u′ ≤f w and v′ ≤f w. Hence by transitivity we

have u ≤f w and v ≤f w, so C satisfies the join property and is atomic.

Corollary 2.2.39. Let B ⊆ A∗ be finite and let C = Avf(B). Then it is decidable

whether C is atomic.

Proof. Condition (i) of Theorem 2.2.38 is certainly decidable, and so is condition (ii)

since there are only finitely many words in each of the sets C<k and Ck.

We conclude the present subsection with a number of examples of deciding atomic-

ity.

Example 2.2.40. Returning to Example 2.2.11, we let A = {a, b}, B = {bb, aab} and

C = Avf(B). The factor graph G = G(C) is shown below.

bab aba baa aaa

The graph G(C) is a bicycle and so the set P(G) is atomic under the contiguous

subpath ordering. The set C<3 consists of the words aa, ab and ba, each of which is

a factor of a word in C3, since aa ≤f baa and the words ab, ba ≤f aba. Hence the set

C is atomic under the factor ordering by Theorem 2.2.38.

Example 2.2.41. Returning to Example 2.2.12, we letA = {a, b},B = {aaa, baa, bba, bbb}
and C = Avf(B). The factor graph G = G(C) is shown below.

aab aba bab abb

The graph G(C) is not a bicycle and so P(G) is not atomic under the contigu-

ous subpath ordering by Theorem 2.2.36. Hence C is not atomic under the factor

56

ordering.

Example 2.2.42. As in Example 2.2.13, we let A = {a, b}, B = {aa, aba, abb, bab}
and C = Avf(B). The factor graph G = G(C) is shown below.

bbb bba

The graph G is a bicycle and so P(G) is atomic under the contiguous subpath

ordering by Theorem 2.2.36. However, the word ab belongs to C<3 and there is no

vertex in G(C) with ab as a factor, so C is not atomic by Theorem 2.2.38.

2.2.4 WQO in the factor ordering

In this subsection we will prove that it is decidable whether the set of paths in a

given directed graph is WQO under the consecutive subpath ordering. We will then

use this to give a solution to the WQO Problem for the factor ordering, which is a

special case of Theorem 1.3.7.

Definition 2.2.43. Let G,H1, . . . ,Hn be directed graphs. We say that G is a union

of H1, . . . ,Hn if every vertex of G belongs to some Hi and every path of G belongs

to some Hi, that is if

V (G) =
n

⋃
i=1
V (Hi)

and

P(G) =
n

⋃
i=1
P(Hi).

Example 2.2.44. Let G be the directed graph shown below.

57

a

b

c

xy

z

t

s

Then G is a union of the directed graphs H1 and H2 shown below.

a

b

c

t
xy

z

t

s

H1 H2

Definition 2.2.45. An in-out cycle in a directed graph is a cycle which has both

an entrance and an exit.

We then have:

Proposition 2.2.46. Let G be a directed graph. The following are equivalent:

(i) The graph G has no in-out cycles.

(ii) The graph G is a union of bicycles.

(iii) The set P(G) is WQO under the contiguous subpath ordering.

Proof. (i) ⇒ (ii): If G has no in-out cycles then G consists of a collection of ‘start

cycles’ which have no entrances, ‘end-cycles’ which have no exists, and a collection

58

of paths from certain starts cycles to certain end cycles. If S = (sn, s1, . . . , sn) is a

start cycle, E = (e1, . . . , em, e1) is an end cycle and P = (sn, p1, . . . , pl, e1) is a path

from S to E then together these form a bicycle B = (S,P,E). Moreover, every path

in G is a path in such a bicycle, so G is therefore a union of them.

(ii) ⇒ (iii): Suppose that G is a union of bicycles B1, . . . ,Bn, so that

P(G) =
n

⋃
i=1
P(Bi).

In order to prove that P(G) is WQO, it suffices to prove that each set P(Bi) is WQO.

Fix a bicycle Bi = (S,P,E) and write S = (sn, s1, . . . , sn), P = (sn, p1, . . . , pl, e1) and

E = (e1, . . . , em, e1). Then P(Bi) is precisely the downward closure of the set

{SiPEj ∣ i, j ≥ 1}

which is WQO by Lemma 1.3.11.

(iii) ⇒ (i): We prove the contrapositive. Suppose G has an in-out cycle P =
(p1, . . . , pn, p1) which has an entrance E = (q, pi) and an exit F = (pj, r). Let Q

be the path from pi to pj along the cycle P , and let S be the path from pj to pi along

the cycle P . We claim that the set

X = {EQ(SQ)iF ∣ i ≥ 1}

is an infinite anti-chain. Indeed, if T is a path with T < EQ(SQ)iF then either T

does not contain q or does not contain r, and so T /∈X.

Corollary 2.2.47. Let C be a set of words which is finitely-based under the factor

ordering. Then C is WQO if and only if G(C) is a union of bicycles.

Proof. (⇒) We prove the contrapositive. Suppose that G(C) is not a union of

bicycles. Then by Proposition 2.2.46, the set of paths in G(C) is not WQO, and so

neither is C.

(⇐) Again we prove the contrapositive. Suppose that C contains an infinite anti-

59

chain X and let k = maxv∈B(C) ∣v∣. Then X has an infinite subset Y where every

element has length at least k. The set Y is also an infinite anti-chain, and every

word in Y corresponds to a path in G(C), so the set of paths in G(C) is not WQO.

Hence G(C) is not a bicycle by Proposition 2.2.46.

60

Chapter 3

Rational orderings on words

In this chapter we discussion rational orderings on words, that is, ones which can be

generated by transducers.

3.1 Insertion relations

In this section we discuss the class of insertion relations. This work is based largely

on the paper [26] written by the author, in which this class was first introduced.

3.1.1 Definitions and basic properties

Definition 3.1.1. An insertion transducer is a transducer T = (Q,A, δ, qI) whose

transitions are exactly as follows:

(i) For each state q ∈ Q and for each letter a ∈ A, there is exactly one state p ∈ Q
such that q

a ∶ aÐÐ→ p is a transition in T .

(ii) For each state q ∈ Q there is a set of letters A(q) ⊆ A such that q
ε ∶ aÐÐ→ q is a

transition in T for each a ∈ A(q).

A transition of type (i) described above can be regarded as T copying a letter of the

input word, while a transition of type (ii) can be regarded as T inserting a letter

61

into the input word. Intuitively, an insertion transducer copies an input word u and

can insert certain letters into u, with the set of insertable letter depending on the

state which T is in.

Definition 3.1.2. The relation generated by an insertion transducer T is called an

insertion relation, and is denoted by ≤T . If an insertion relation is an ordering, then

it is called an insertion ordering.

An insertion relation ≤T is always reflexive since T can copy any word, and it is always

anti-symmetric since u <T v implies ∣u∣ < ∣v∣. Hence we have the following:

Observation 3.1.3. An insertion relation is an insertion ordering if and only if it

is transitive.

Since u <T v implies ∣u∣ < ∣v∣, an insertion relation cannot admit any infinite descend-

ing chains. Hence we have the following:

Observation 3.1.4. An insertion ordering is a WQO if and only if it admits no

infinite anti-chains.

We now introduce some notation which we will use throughout the section.

Notation 3.1.5. Let T = (Q,A, δ, qI) be an insertion transducer, let q ∈ Q and let

u ∈ A∗. Let p be the unique state such that T has a path from q to p labelled by

(u,u). Then we will write p = q ⋅ u.

Notation 3.1.6. Let T = (Q,A, δ, qI) be an insertion transducer and let q ∈ Q. We

let W (q) denote the set of words u such that T has a path from qI to q labelled by

(u,u). That is:

W (q) = {u ∈ A∗ ∣ qI ⋅ u = q}.

If u ∈W (q) then we may write A(u) in place of A(q).

We note the following:

Observation 3.1.7. Let T = (Q,A, δ, qI) be an insertion transducer and let q ∈ Q.

62

Then the language W (q) is regular, and is accepted by the DFA

A = (Q,A, δ′, qI ,{q})

where δ′(p, a) = s whenever p
a ∶ aÐÐ→ s is a transition in T .

As stated earlier, an insertion transducer T inserts letters into a word, with the set

of letters available for insertion depending on the state which T is in. With this in

mind, we can characterise the insertion relation ≤T generated by T as follows:

Observation 3.1.8. Let T = (Q,A, δ, qI) be an insertion transducer, let u, v ∈ A∗

and write u = a1 . . . an. Then u ≤T v if and only if there are words

v0 ∈ A(ε)∗, v1 ∈ A(a1)∗, v2 ∈ A(a1a2)∗, . . . , vn ∈ A(u)∗

such that v = v0a1v1a2v2 . . . anvn.

Examples of insertion relations

We demonstrate that some word orderings from the literature are in fact insertion

relations, and then present some new examples.

Example 3.1.9. The subword ordering on A∗ is an insertion relation. Indeed, it is

generated by the insertion transducer

Tw(A) = ({qI},A, δ, qI)

whose copy transitions are given by qI
a ∶ aÐÐ→ qI for all a ∈ A and where A(qI) = A. We

show Tw(a, b) below.

qIstart

a ∶ a
b ∶ b
ε ∶ a, b

Example 3.1.10. Aichinger et al. [1] introduced what they call the embedding

ordering. This ordering is denoted by ≤E and is defined as follows. Let u, v ∈ A∗ and

63

write u = a1 . . . an. Then u ≤E v if there are words

v1 ∈ {a1}∗, v2 ∈ {a1, a2}∗, . . . , vn ∈ {a1, . . . , an}∗

such that v = a1v1 . . . anvn. Intuitively we have u ≤E v if v can be obtained from u

by inserting letters after their first occurrence in u. For instance we have ab ≤E aba,

but ab /≤E bab. In their paper, Aichinger et al. showed that the embedding ordering

is a WQO. We show that the embedding ordering is an insertion relation. Indeed, it

is generated by the insertion transducer

TE(A) = (P(A),A, δ,∅)

whose copy transitions are given by S
a ∶ aÐÐ→ S ∪ {a} for each S ⊆ A and each a ∈ A,

and where A(S) = S for each S ⊆ A. For instance, the transducer TE(a, b) is given by

∅start

a b

a, b

a ∶ a b ∶ b
a ∶ a
ε ∶ a

b ∶ b
ε ∶ b

b ∶ b a ∶ a

a ∶ a
b ∶ b
ε ∶ a, b

We now present some new examples of insertion relations.

Example 3.1.11. The transducer T shown below is an insertion transducer over

the alphabet {a, b}. We have A(qI) = A(t) = ∅ and A(s) = {b}. As an instance of

the insertion relation ≤T generated by T , we have ba ≤T bab.

64

qIstart s t
a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

Example 3.1.12. The transducer T shown below is an insertion transducer over

the alphabet {a, b}. We have A(qI) = A(t) = {b} and A(s) = {a, b}. As an instance

of the insertion relation ≤T generated by T , we have a ≤T bbab.

qIstart

s

t

a ∶ a

b ∶ b

ε ∶ b
a ∶ a
b ∶ b
ε ∶ a, b

a ∶ a
b ∶ b
ε ∶ b

Example 3.1.13. The transducer T shown below is an insertion transducer over

the alphabet {a, b}. We have A(qI) = {b} and A(p) = {a}. As an instance of the

insertion relation ≤T generated by T , we have b ≤T ba.

qIstart p
b ∶ b

a ∶ a
ε ∶ b

a ∶ a
b ∶ b
ε ∶ a

65

3.1.2 Deciding transitivity

An insertion relation need not be an ordering. To see this, we consider the insertion

transducer T from Example 3.1.13. We have ε ≤T b ≤T ba, but ε /≤T ba since a /∈ A(ε).
We therefore devote this subsection to investigating conditions under which a given

insertion relation is an ordering, with the end result being that the property is

decidable.

Composition of insertion transducers

In general, it is not decidable whether a given rational relation is transitive [19]. In

order to decide whether a given insertion transducer T generates an ordering, we will

consider the composition of T with itself. We denote this transducer by T 2 and the

relation it generates by ≤2T . Since the relation ≤T is reflexive, it will be transitive if

and only if T and T 2 are equivalent, meaning that the relations ≤T and ≤2T coincide.

Equivalence of transducers is not decidable in general [13], but we will show that it

is in this case.

When T is an insertion transducer, the transitions in T 2 are exactly those of the

following forms:

(i) (q1, p1)
a ∶ aÐÐ→ (q2, p2) where q1

a ∶ aÐÐ→ q2 and p1
a ∶ aÐÐ→ p2 are transitions in T ;

(ii) (q, p1)
ε ∶ aÐÐ→ (q, p2) where a ∈ A(q) and where p1

a ∶ aÐÐ→ p2 is a transition in T ;

(iii) (q, p) ε ∶ aÐÐ→ (q, p) where a ∈ A(p).

Definition 3.1.14. We refer to the above transitions as type (i), (ii) and (iii) tran-

sitions respectively.

Example 3.1.15. Let T be the insertion transducer from Example 3.1.11. Then T 2

is given by:

66

qI , qIstart s, s t, t

s, t t, s

a ∶ a

a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

ε ∶ b
ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

ε ∶ b
b ∶ b

Example 3.1.16. Let T be the insertion transducer from Example 3.1.12. Then T 2

is given by:

qI , qIstart

s, s

t, t

qI , t

s, t

a ∶ a

b ∶ b

b ∶ b

a ∶ a

ε ∶ b

ε ∶ b

ε ∶ b

a ∶ a
b ∶ b
ε ∶ a, b

a ∶ a
b ∶ b
ε ∶ b

a ∶ a
b ∶ b
ε ∶ a, b

The Insertion Path Condition (IPC)

In order to show that transitivity is decidable, we introduce a condition which an

insertion transducer may satisfy, called the Insertion Path Condition (IPC). We

will go on to show that this condition is equivalent to transitivity, and that it is

67

decidable.

Definition 3.1.17. Let T = (Q,A, δ, qI) be an insertion transducer and consider the

transducer T 2. Let P be a path in T 2 and suppose P is labelled by (u, v). The

in-path of P is the path in T labelled by (u,u), and we denote it by in(P). The

out-path of P is the path in T labelled by (v, v), and we denote it by out(P).

Example 3.1.18. Let T be the insertion transducer from Example 3.1.11. The

transducer T 2 was shown in Example 3.1.15. Let P be the path in T 2 given by

(qI , qI)
a ∶ aÐÐ→ (s, s) ε ∶ bÐ→ (s, t) b ∶ bÐ→ (t, s).

The path P is labelled by (ab, abb), and so in(P) is the path in T labelled by (ab, ab).
This is given by

qI
a ∶ aÐÐ→ s

b ∶ bÐ→ t.

Likewise, out(P) is the path in T labelled by (abb, abb). This is given by

qI
a ∶ aÐÐ→ s

b ∶ bÐ→ t
b ∶ bÐ→ s.

Definition 3.1.19. Let T = (Q,A, δ, qI) be an insertion transducer and let b ∈ A.
Let P be a path in T containing only copy transitions, given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn.

We say that P is a b-insertion path if there is some i ∈ {0, . . . , n − 1} such that

b ∈ A(qi) and ai+1 = ai+2 = ⋅ ⋅ ⋅ = an = b. The largest such i is the b-insertion length of

the path P.

Example 3.1.20. Let T be the insertion transducer from Example 3.1.11, and let

P be the path in T given by

qI
b ∶ bÐ→ qI

a ∶ aÐÐ→ s
b ∶ bÐ→ t.

The final transition of P is given by s
b ∶ bÐ→ t, and we have b ∈ A(s), so P is a b-insertion

68

path. Its b-insertion length is 2.

Our condition is then as follows:

Insertion Path Condition (IPC): For each state (q, p) accessible in T 2 such that

there is a letter b ∈ A(p)/A(q), and for each path P in T 2 from (qI , qI) to (q, p), the

path in(P) is a b-insertion path.

Auxiliary results for deciding transitivity

Lemma 3.1.21. Let T = (Q,A, δ, qI) be an insertion transducer and let P be a path

in T 2 from (qI , qI) to some state (q, p). Let u ∈ A∗ be such that in(P) is labelled by

(u,u). Then there is a word v ∈W (p) with u ≤T v.

Proof. Let P ′ be the path obtained from P by deleting all type (iii) transitions. Since

type (iii) transitions do not change the state which T is in, the path P ′ is also from

(qI , qI) to (q, p). If u = a1 . . . an then there are words v0, v1, . . . , vn such that P ′ is

labelled by

(ε, v0)(a1, a1)(ε, v1) . . . (an, an)(ε, vn).

Since P ′ has no type (iii) transitions, each subpath (ε, vi) consists of a (possibly

empty) sequence of type (ii) transitions. Hence by putting v = v0a1v1 . . . anvn we see

that u ≤T v and v ∈W (p).

Lemma 3.1.22. Let T = (Q,A, δ, qI) be an insertion transducer satisfying IPC. Let

v ∈ A(qI)∗ and let p ∈ Q be such that v ∈W (p). Then A(p) ⊆ A(qI).

Proof. Since v ∈ A(qI)∗ and v ∈W (p), there is a path P in T 2 from (qI , qI) to (qI , p)
labelled by (ε, v). If there is a letter b ∈ A(p)/A(qI) then in(P) is a b-insertion

path, but this cannot be the case since a b-insertion path has at least one transition

labelled by (b, b) and in(P) has no transitions.

Lemma 3.1.23. Let T = (Q,A, δ, qI) be an insertion transducer satisfying IPC, and

let (q, p) be an accessible state in T 2. Then either A(p) ⊆ A(q) or ∣A(p)/A(q)∣ = 1.

Proof. Suppose that A(p) /⊆ A(q) and that there are letters b, c ∈ A(p)/A(q). We

show that b = c. Let P be a path in T 2 from (qI , qI) to (q, p) and suppose in(P) is

69

given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn = q.

Then in(P) is both a b-insertion path and a c-insertion path, so an = b = c.

Lemma 3.1.24. Let T = (Q,A, δ, qI) be an insertion transducer satisfying IPC. Let

(q, p) be an accessible state in T 2 and suppose there is a letter b ∈ A(p)/A(q). Let P

be a path in T 2 from (qI , qI) to (q, p). Suppose in(P) is given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn = q

and has insertion length i. Then A(qn) ⊆ A(qn−1) ⊆ ⋯ ⊆ A(qi+1).

Proof. Since i is the b-insertion length of in(P) we have ai+1 = ai+2 = ⋯ = an = b. Let

k ∈ {i+1, . . . , n−1} and suppose there is a letter c ∈ A(qk+1)/A(qk). Then T 2 contains

the path P ′ given by

(qI , qI) = (q0, q0)
a1 ∶ a1ÐÐÐ→ ⋯ ai ∶ aiÐÐÐ→ (qi, qi)

ε ∶ bÐ→ (qi, qi+1)
b ∶ bÐ→ ⋯ b ∶ bÐ→ (qk, qk+1)

with in(P ′) being given by

qI = q0
a1 ∶ a1ÐÐÐ→ ⋯ ai ∶ aiÐÐÐ→ qi

b ∶ bÐ→ ⋯ b ∶ bÐ→ qk.

We have c ∈ A(qk+1)/A(qk), so the path in(P ′) must be a c-insertion path, and

hence c = b. But i is the b-insertion length of in(P) and i < k + 1, so b /∈ A(qk+1), a

contradiction.

Notation 3.1.25. We let Alph(u) denote the set of letters appearing in a word u.

In the following lemma we consider an insertion transducer T satisfying IPC. If

T 2 has a transition labelled by (ε, b) starting at a state (q, p) and b /∈ A(q), then

we have b ∈ A(p)/A(q). Hence if P is a path in T 2 from (qI , qI) to (q, p) then

in(P) is a b-insertion path. Furthermore if wi+1,wi+2, . . . ,wn ∈ A∗ with b ∈ Alph(wn)
then the word w = wi+1bwi+2 . . . bwn has at least n − i occurrences of the letter b.

Hence we can write w = xbyi+1byi+2 . . . byn where yi+1, yi+2, . . . , yn ∈ A∗ are such that

b /∈ Alph(yi+1yi+2 . . . yn).

70

Lemma 3.1.26. Let T = (Q,A, δ, qI) be an insertion transducer satisfying IPC. Let

P be a path in T 2 and suppose P is labelled by (u,w). Write u = a1 . . . an and suppose

in(P) is given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn.

Let w0,w1, . . . ,wn be words such that w = w0a1w1 . . . anwn and such that P is labelled

by

(ε,w0)(a1, a1)(ε,w1) . . . (an, an)(ε,wn).

Suppose there is a letter b ∈ Alph(wn)/A(qn). Let i be the b-insertion length of in(P)
and let x, yi+1, . . . , yn be words such that b /∈ Alph(yi+1 . . . yn) and such that

wi+1bwi+2 . . . bwn = xbyi+1byi+2 . . . byn.

Then:

(i) Alph(wn)/{b} ⊆ A(qn);

(ii) yk ∈ A(qk)∗ for k ∈ {i + 1, . . . , n};

(iii) x ∈ (A(qi+1) ∪ {b})∗.
Proof. (i): In a similar argument to the proof of Lemma 3.1.23, if there is a letter

c ∈ Alph(wn)/A(qn) then in(P) must be both a b-insertion path and a c-insertion

path, so b = c.

(ii): We note that Alph(wn)/{b} ⊆ A(qn) by (i). The suffix wn has at least one

occurrence of the letter b, while the suffix yn has none. Hence yn must be a factor

of wn, and since b /∈ Alph(yn) we see that yn ∈ A(qn)∗. Similarly, the suffix wn−1bwn

has at least two occurrences of the letter b, while the suffix yn−1byn has only one.

Hence yn−1 must be a factor of either wn−1 or wn, and since b /∈ Alph(yn−1) we see

that yn−1 ∈ A(qn−1)∗ ∪A(qn)∗. Hence yn−1 ∈ A(qn−1)∗ by Lemma 3.1.24. Continuing

in this fashion we obtain the desired result.

(iii): From (i), (ii) and Lemma 3.1.24 we see that xbyi+1byi+2 . . . byn ∈ (A(qi+1)∪{b})∗,
and in particular x ∈ (A(qi+1) ∪ {b})∗.

71

Transitivity characterisation

We now show that transitivity is equivalent to satisfying IPC.

Theorem 3.1.27. Let T = (Q,A, δ, qI) be an insertion transducer generating an

insertion relation ≤T . Then ≤T is transitive if and only if T satisfies IPC.

Proof. (⇒) Suppose that ≤T is transitive, but that T does not satisfy IPC. Then

there is a path P in T 2 from (qI , qI) to some state (q, p) such that there is a letter

b ∈ A(p)/A(q) and such that in(P) is not a b-insertion path. Suppose in(P) is given

by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ ai ∶ aiÐÐÐ→ qi
a ∶ aÐÐ→ s

b ∶ bÐ→ ⋯ b ∶ bÐ→´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bn ∶ bn

qn = q

where:

(i) for every state r on the path from s to q labelled by (bn, bn) we have b /∈ A(r);

(ii) a ≠ b.

Put u = a1 . . . ai. By Lemma 3.1.21 there is a word v ∈ W (p) such that uabn ≤T v.
Since b ∈ A(p) we have v ≤T vbn+1, and since ≤T is transitive we have uabn ≤T vbn+1.
By (i), if S is a path in T starting at qI and labelled by (uabn, vbn+1) then the last n

transitions of S must all be labelled by (b, b). By removing these transitions we see

there is also a path in T starting at qI and labelled by (ua, vb), and so ua ≤T vb. The

last transition of this path must be labelled by (b, b) since b /∈ A(s), but this cannot

be the case by (ii).

(⇐) Suppose IPC holds, and let u, v,w ∈ A∗ be such that u ≤T v ≤T w. Then u ≤2T w,
and so there is a path P1 in T 2 starting at (qI , qI) and labelled by (u,w). We will

show that there is a path in T starting at qI and labelled by (u,w), and so u ≤T w.
Write u = a1 . . . an and let w0,w1, . . . ,wn be words such that w = w0a1w1 . . . anwn and

such that P1 is labelled by

(ε,w0)(a1, a1)(ε,w1) . . . (an, an)(ε,wn).

72

Suppose in(P1) is given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn.

We proceed by induction on the length n of the word u. For n = 0 we have u = ε and

w = w0. We then have w0 ∈ A(qI)∗ by Lemma 3.1.22, and so u ≤T w. Now let n ≥ 1

and suppose the result holds for all words of length at most n − 1.

We first consider the case where wn ∈ A(qn)∗. If we let u′ = a1 . . . an−1 and

w′ = w0a1w1 . . . an−1wn−1,

then by induction we have u′ ≤T w′. Hence T has a path from qI to qn−1 labelled

by (u′,w′). Since wn ∈ A(qn)∗, we see that T has a path from qn−1 to qn labelled by

(an, anwn). By concatenating these paths we see that T has a path starting at qI

labelled by (u,w), and so u ≤T w.

We now consider the case where there is a letter b1 ∈ Alph(wn)/A(qn). Since T
satisfies IPC, we see that in(P1) is a b1-insertion path. Let i1 be its b1-insertion

length, so that b1 ∈ A(qi1) and ai1+1 = ai1+2 = ⋅ ⋅ ⋅ = an = b1. From Lemma 3.1.26 (i) we

have

Alph(wn)/{b1} ⊆ A(qn).

Let x1, yi1+1, yi1+2, . . . , yn be words such that b1 /∈ Alph(yi1+1yi1+2 . . . yn) and such that

wi1+1b1wi1+2 . . . b1wn = x1b1yi1+1b1yi1+2 . . . b1yn.

Then from Lemma 3.1.26 (ii) we have yk ∈ A(qk)∗ for k ∈ {i1 + 1, . . . , n}. We now

consider whether the word x1 belongs to A(qi1)∗. We first consider the case where

this holds. If we let u′ = a1 . . . ai1 and w′ = w0a1w1 . . . ai1wi1 then by induction we have

u′ ≤T w′, and so T has a path from qI to qi1 labelled by (u′,w′). Since b1x1 ∈ A(qi1)∗
we see that T has a loop at qi1 labelled by (ε, b1x1). Furthermore, since yk ∈ A(qk)∗
for k ∈ {i1 + 1, . . . , n} we see that T has a path from qi1 to qn labelled by

(b1, b1)(ε, yi1+1)(b1, b1)(ε, yi1+2) . . . (b1, b1)(ε, yn). (†)

73

By concatenating these paths we see that T has a path starting at qI and labelled

by (u,w), so u ≤T w.

We now consider the case where there is a letter b2 ∈ Alph(x1)/A(qi1). From Lemma

3.1.26 (iii) we have b2 ∈ A(qi+1) ∪ {b1}, and since b1 ∈ A(qi1) we see that b2 ∈
A(qi1+1)/A(qi1). The transducer T 2 contains the path P2 given by

(qI , qI) = (q0, q0)
a1 ∶ a1ÐÐÐ→ (q1, q1)

a2 ∶ a2ÐÐÐ→ ⋯
ai1 ∶ ai1ÐÐÐÐ→ (qi1 , qi1)

ε ∶ b1ÐÐ→ (qi1 , qi1+1)

with in(P2) being given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯
ai1 ∶ ai1ÐÐÐÐ→ qi1 .

Since b2 ∈ A(qi1+1)/A(qi1), we see that in(P2) must be a b2-insertion path. Let i2

be its b2-insertion length, so that b2 ∈ A(qi2) and ai2+1 = ai2+2 = ⋯ = ai1 = b2. Let

x2, yi2+1, yi2+2, . . . , yi1 be words such that b2 /∈ Alph(yi2+1yi2+2 . . . yi1) and such that

wi2+1b2wi2+2 . . . b2wi1b1x1 = x2b2yi2+1b2yi2+2 . . . b2yi1 .

Then from Lemma 3.1.26 (ii) we have yk ∈ A(qk)∗ for k ∈ {i2 + 1, . . . , i1}. We must

now consider whether or not the word x2 belongs to A(qi2)∗.

Continuing in this fashion we obtain a finite strictly decreasing sequence of indices

ik, and a finite sequence of words xk, such that the following conditions hold for

k ≥ 2:

74

(i) There is a letter bk ∈ Alph(xk−1)/A(qik−1)∗.

(ii) The index ik is the bk-insertion length of the path from q0 to qik−1 labelled by

(a1 . . . aik−1 , a1 . . . aik−1).

(iii) We can write

wik+1bkwik+2 . . . bkwik−1bk−1xk−1 = xkbkyik+1bkyik+2 . . . bkyik−1

for some words yik+1, yik+2, . . . , yik−1 such that bk /∈ Alph(yik+1yik+2 . . . yik−1).

(iv) For j ∈ {ik + 1, . . . , ik−1} we have yj ∈ Alph(qj)∗.

We claim that for some m we have xm ∈ A(qim)∗. This is since each ik > ik+1,

and if im = 0 then w0 ∈ A(qI)∗ by Lemma 3.1.22. If we let u′ = a1 . . . aim and

w′ = w0a1w1 . . . aimwim then by induction we have u′ ≤T w′, and so T has a path from

qI to qim labelled by (u′,w′). Since bmxm ∈ A(qim)∗, we see that T has a loop at qim
labelled by (ε, bmxm). For k ∈ {2, . . . ,m} we see that T has a path from qik to qik−1
labelled by

(bk, bk)(ε, yik+1)(bk, bk)(ε, yik+2) . . . (bk, bk)(ε, yik−1).

By concatenating these paths, together with the path from qi1 to qn labelled by (†),
we see that T has a path starting at qI and labelled by (u,w), so u ≤T w.

Example 3.1.28. Let T be the insertion transducer from Example 3.1.11. This was

given by:

qIstart s t
a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

and T 2 was given by:

75

qI , qIstart s, s t, t

s, t t, s

a ∶ a

a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

ε ∶ b
ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

ε ∶ b
b ∶ b

We show that T satisfies IPC. To do this we consider each state (q, p) accessible in

T 2 such that A(p)/A(q) is non empty. The only such state is (t, s), where we have

A(s)/A(t) = {b}. Let P be a path in T 2 from (qI , qI) to (t, s). The only transition

in T which ends at t is

s
b ∶ bÐ→ t,

and so this must be the final transition of in(P). We have b ∈ A(s), and so in(P) is

a b-insertion path. Hence T satisfies IPC, and so ≤T is transitive by Theorem 3.1.27.

As a corollary to Theorem 3.1.27, we note the following sufficient condition for tran-

sitivity:

Corollary 3.1.29. Let T = (Q,A, δ, qI) be an insertion transducer. If for every

state (q, p) accessible in T 2 we have A(p) ⊆ A(q), then the insertion relation ≤T is

transitive.

Proof. Assume that for each state (q, p) accessible in T 2 we have A(p) ⊆ A(q). Then

there is no state (q, p) accessible in T 2 such that A(p)/A(q) is non-empty, and so T
satisfies IPC. Hence ≤T is transitive by Theorem 3.1.27.

Deciding IPC

Our goal is now to show that IPC is decidable by introducing a bounded version.

76

Notation 3.1.30. If P is a path in a transducer then we denote the first and last

states of P by s(P) and t(P) respectively.

Definition 3.1.31. Let P and S be paths with s(P) = s(S) and t(P) = t(S). We

say that S is a subpath of P if S can be obtained from P by deleting some number

of transitions.

We emphasise that this differs from the definition of a contiguous subpath introduced

in the previous chapter, in that we no longer require the containment to be contiguous

and that we do require the two paths to have the same end vertices. We also note

that if P is a loop, meaning that s(P) = t(P), then one of its subpaths will be the

trivial path at s(P) which has no transitions.

Definition 3.1.32. A path is simple if it contains each of its states at most once

each, and is semi-simple if it contains each of its states at most twice each.

Observation 3.1.33. Any path has a simple subpath.

Lemma 3.1.34. Let P1 and P2 be simple paths with t(P1) = s(P2). Then the path

P1P2 obtained by concatenating P1 and P2 is semi-simple.

Proof. If P1P2 contains a state 3 times then one of P1 and P2 must contain that state

twice by the pigeonhole principle.

Lemma 3.1.35. Let P be a path in an insertion transducer given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn

and let e be a transition qi−1
ai ∶ aiÐÐÐ→ qi in P . Then P has a semi-simple subpath

containing the transition e.

Proof. From Observation 3.1.33 we see that the path

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ ai ∶ aiÐÐÐ→ qi

has a simple subpath P1 containing e. Also from Observation 3.1.33 the path

qi
ai+1 ∶ ai+1ÐÐÐÐÐ→ qi+1

ai+2 ∶ ai+2ÐÐÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn

77

has a simple subpath P2. The path P1P2 is a subpath of P containing e, and it is

semi-simple by Lemma 3.1.34.

We now present our bounded version of IPC.

Bounded Insertion Path Condition (BIPC): For each state (q, p) accessible in

T 2 such that there is a letter b ∈ A(p)/A(q), and for every semi-simple path P in T 2

from (qI , qI) to (q, p), the path in(P) is a b-insertion path.

We note that BIPC is decidable since a transducer has only finitely many semi-simple

paths.

Theorem 3.1.36. An insertion transducer T = (Q,A, δ, qI) satisfies IPC if and only

if it satisfies BIPC.

Proof. (⇒) This implication is trivial, since BIPC is just IPC applied to a specific

set of paths.

(⇐) Suppose that IPC does not hold. Then T 2 contains a path P from (qI , qI) to

some state (q, p) such there is a letter b ∈ A(p)/A(q), and such that in(P) is not a

b-insertion path. Suppose that in(P) is given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ ai ∶ aiÐÐÐ→ qi
a ∶ aÐÐ→ s

b ∶ bÐ→ ⋯ b ∶ bÐ→ p
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

bn ∶ bn

such that a ≠ b, and such that b /∈ A(r) for any state r on the path from s to p labelled

by (bn, bn). By Lemma 3.1.35, the path P has a semi-simple subpath P ′ such that

in(P ′) contains the transition given by qi
a ∶ aÐÐ→ s. Hence in(P ′) is not a b-insertion

path, and so T does not satisfy BIPC.

Corollary 3.1.37. Let T = (Q,A, δ, qI) be an insertion transducer generating an

insertion relation ≤T . Then it is decidable whether ≤T is an ordering.

Proof. This is seen by combining Theorems 3.1.27 and 3.1.36, together with Obser-

vation 3.1.3.

78

3.1.3 Left-most insertion relations

Let T be an insertion transducer. As is the case with many substructure relations

throughout mathematics, there may be more than one way to witness a comparison

u ≤T v. That is, there may be more than one path in T labelled by (u, v). We would

like to consider insertion relations which elicit a canonical way in which to view each

comparison u ≤T v, and to this end we introduce the class of left-most insertion

relations.

Definition 3.1.38. Let T be an insertion transducer generating an insertion relation

≤T . The relation ≤T is left-most if the following condition holds: for all u, v ∈ A∗

such that u ≤T v, the transducer T contains a path labelled by

(ε, v0)(a1, a1)(ε, v1) . . . (an, an)(ε, vn)

where u = a1 . . . an, v = v0a1v1 . . . anvn and each ai /∈ Alph(vi−1). Such a path is called

the left-most path of the comparison u ≤T v.

Intuitively, if ≤T is left-most then T can output v on input u in such a way that

it always copies the first successive (left-most) occurrence of each letter of u within

the word v. We note that both the subword ordering and the embedding ordering of

Aichinger et al. are left-most.

Notation 3.1.39. If an insertion transducer contains a path starting at a state q

labelled by (u, v) then we write u ≼q v.

Lemma 3.1.40. Let T = (Q,A, δ, qI) be an insertion transducer generating a left-

most insertion relation ≤T . Let u, v,w ∈ A∗ be such that uv ≤T uw, and let q ∈ Q be

such that u ∈W (q). Then v ≼q w.

Proof. Write u = a1 . . . an and v = b1 . . . bm. Suppose the left-most path of the com-

parison uv ≤T uw is labelled by

(ε,w0)(a1, a1)(ε,w1) . . . (an, an)(ε,wn)(b1, b1)(ε,wn+1) . . . (bm, bm)(ε,wn+m),

79

so that

uw = w0a1w1 . . . anwnb1wn+1 . . . bmwn+m.

We have a1 /∈ Alph(w0), but the first letter of uw is a1, so w0 = ε. Similarly we have

a2 /∈ Alph(w1), but the second letter of uw is a2, so w1 = ε. Continuing in this fashion

we see that wi = ε for all i ∈ {0, . . . , n − 1}, and so we can write

uw = a1 . . . anwnb1wn+1 . . . bmwn+m

where each wn+j ∈ A(q ⋅ b1 . . . bj)∗. Hence T contains a path starting at q labelled by

(ε,wn)(b1, b1)(ε,wn+1) . . . (bm, bm)(ε,wn+m).

By concatenating these labels we see that this path is labelled by (v,w), so v ≼q w.

Lemma 3.1.41. Let T = (Q,A, δ, qI) be an insertion transducer, let q ∈ Q and let

v,w ∈ A∗ be such that v ≼q w. Suppose there is a loop at q labelled by (z, z) for some

z ∈ A∗. Then zv ≼q zw.

Proof. Write v = b1 . . . bm and suppose T has a path starting at q labelled by

(ε,w0)(b1, b1)(ε,w1) . . . (bm, bm)(ε,wm)

such that w = w0b1w1 . . . bmwm. By concatenating the loop at q labelled by (z, z)
together with this path, we see that T contains a path starting at q labelled by

(z, z)(ε,w0)(b1, b1)(ε,w1) . . . (bm, bm)(ε,wm).

By concatenating these labels we see that this path is labelled by (zv, zw), so we

have zv ≼q zw.

Lemma 3.1.42. Let T = (Q,A, δ, qI) be an insertion transducer generating an in-

sertion relation ≤T . Let u, v,w ∈ A∗ and q ∈ Q be such that u ∈ W (q) and v ≼q w.

Then uv ≤T uw.

Proof. Since u ∈ W (q), there is a path in T from qI to q labelled by (u,u). Since

80

v ≼q w, there is a path in T starting at q labelled by (v,w). By concatenating

these paths, we see that there is a path in T starting at qI labelled by (uv, uw), so

uv ≤T uw.

We now give a result characterising the insertion transducers generating left-most

insertion relations.

Theorem 3.1.43. Let ≤T be an insertion relation. Then ≤T is left-most if and only

if for each q ∈ Q and for each a ∈ A(q) we have A(q) ⊆ A(q ⋅ a).

Proof. (⇒) We prove the contrapositive. Suppose that there is a state q ∈ Q and

letters a, b ∈ A(q) such that b /∈ A(q ⋅ a). Let w ∈W (q), so that wa ∈W (q ⋅ a). Then

T contains a path starting at qI labelled by

(w,w)(ε, ab)(a, a)

and so wa ≤T waba. But ε /≼q⋅a ba since b /∈ A(q ⋅ a), and so by Lemma 3.1.40 we see

that ≤T is not left-most.

(⇐) Assume the stated condition holds and let u, v ∈ A∗ be such that u ≤T v. Write

u = a1 . . . an and v = v0a1v1 . . . anvn where each vi ∈ A(a1 . . . ai)∗. Let i be minimal

such that ai ∈ Alph(vi−1), write vi−1 = v′i−1aix where ai /∈ Alph(x), and let v′i =
xaivi. Since ai ∈ Alph(vi−1) we have ai ∈ A(a1 . . . ai−1), and so by our assumption we

have A(a1 . . . ai−1) ⊆ A(a1 . . . ai). Hence xai ∈ A(a1 . . . ai)∗, and so v′i ∈ A(a1 . . . ai)∗.
Therefore T contains a path starting at qI which is labelled by

(ε, v0)(a1, a1)(ε, v1) . . . (ai−1, ai−1)(ε, v′i−1)(ai, ai)(ε, v′i) . . . (an, an)(ε, vn).

By concatenating these labels we see that this path is again labelled by (u, v). Re-

peating this process for each successive offending letter aj will yield a left-most path

for the comparison u ≤T v, and so the relation ≤T is left-most.

Since an insertion transducer has only finitely many states q and each alphabet A(q)
is finite, we can immediately deduce the following:

Corollary 3.1.44. It is decidable whether a given insertion relation is left-most.

81

Example 3.1.45. Let T be the insertion transducer from Example 3.1.12. This was

given by:

qIstart

s

t

a ∶ a

b ∶ b

ε ∶ b
a ∶ a
b ∶ b
ε ∶ a, b

a ∶ a
b ∶ b
ε ∶ b

We will show that for q ∈ Q and for each c ∈ A(q) we have A(q) ⊆ A(q ⋅ c). It will

then follow from Theorem 3.1.43 that ≤T is left-most. We have A(qI) = {b}, qI ⋅ b = t
and A(t) = {b}, so A(qI) ⊆ A(t). For q ∈ {s, t} and c ∈ A(q) we have q ⋅ c = q, so

A(q) ⊆ A(q ⋅ c). Hence the stated property is satisfied and so ≤T is left-most.

Example 3.1.46. Let T be the insertion transducer from Example 3.1.11. This was

given by:

qIstart s t
a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

We show that the insertion relation ≤T is not left-most. We have b ∈ A(s) and s ⋅b = t,
but b /∈ A(t) so A(s) /⊆ A(t). Hence ≤T is not left-most by Theorem 3.1.43.

Our next result gives a simple transitivity classification for the class of left-most

insertion relations:

Theorem 3.1.47. Let T = (Q,A, δ, qI) be an insertion transducer generating a left-

most insertion relation ≤T . Then ≤T is transitive if and only if for each state (q, p)
accessible in T 2 we have A(p) ⊆ A(q).

82

Proof. (⇒) Assume that ≤T is transitive, and that there is a state (q, p) which is

accessible in T 2 such that there is a letter b ∈ A(p)/A(q). Let P be a path in T 2 from

(qI , qI) to (q, p) and suppose that in(P) is given by

qI = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn = q.

By Theorem 3.1.27, the path in(P) is a b-insertion path. Let i be its b-insertion

length, so that b ∈ A(qi) and ai+1 = ai+2 = ⋅ ⋅ ⋅ = an = b. Then u ≤T ub, and since ≤T is

left-most we have ε ≼q b by Lemma 3.1.40. This means that b ∈ A(q), contradicting

our assumption.

(⇐) This follows from Corollary 3.1.29.

We note that the condition stated in Theorem 3.1.47 is decidable since T 2 contains

only finitely many states.

Example 3.1.48. Let T be the insertion transducer from Example 3.1.12. It was

shown in Example 3.1.45 that ≤T is left-most. The transducer T 2 was given by:

qI , qIstart s, s t, t

s, t t, s

a ∶ a

a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

ε ∶ b
ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

ε ∶ b
b ∶ b

We show that for each state (q, p) accessible in T 2, we have A(p) ⊆ A(q). Clearly this

holds for the states (qI , qI), (s, s) and (t, t). The other states we need to consider

are (qI , t) and (s, t). For the state (qI , t) we have A(t) = {b} = A(qI), and for the

state (s, t) we have A(t) = {b} ⊆ {a, b} = A(qI). Hence ≤T is transitive by Theorem

3.1.47.

83

Deciding WQO for left-most insertion orderings

Our goal is now to show that it is decidable whether a given left-most insertion

ordering is a WQO. We first present the following theorem. The reverse direction

of its proof is a variation of the ‘minimal bad sequence’ argument introduced by

Nash-Williams [28].

Theorem 3.1.49. Let T = (Q,A, δ, qI) be an insertion transducer generating a left-

most insertion ordering ≤T . Then ≤T is a WQO if and only if for each q ∈ Q and

for each loop at q labelled by (w,w) for some w ∈ A∗, we have w ∈ A(q)∗.

Proof. (⇒) Suppose that there is a state q ∈ Q with a loop at q labelled by (w,w)
for some w ∈ A∗, and that w /∈ A(q)∗. Let v ∈W (q). In order to show that ≤T is not a

WQO, we show that the language L = {vwn ∣ n ≥ 1} is an anti-chain. Let x, y ∈ L be

such that x <T y, and write x = vwi and y = vwj. Since the relation ≤T is left-most,

we have ε ≼q wj−i by Lemma 3.1.40, but w /∈ A(q)∗ so this is a contradiction.

(⇐) Suppose that the stated condition holds, and that ≤T is not a WQO. By Propo-

sition 1.1.3, there are sequences from A∗ which are bad under ≤T . Let u1 be a word

such that there is a bad sequence beginning with u1 but no bad sequence beginning

with u′1 for any word u′1 with u′1 <T u1. Next, let u2 be a word such that there is a

bad sequence beginning with u1, u2 but no bad sequence beginning with u1, u′2 for

any word u′2 with u′2 <T u2. Continuing in this fashion ad infinitum we obtain a bad

sequence S given by

u1, u2, . . .

which is minimal in the sense that, for each i ≥ 1, there is no bad sequence starting

with u1, u2, . . . , ui−1, u′i for any word u′i with u′i <T ui. Next suppose that T has n

states. Then there is a word x of length n + 1 such that the sequence S has a

subsequence

ui1 , ui2 , . . .

where each word starts with x. The transducer T only has n states, so the path in

T starting at qI labelled by (x,x) must visit some state q twice. Hence we can write

x = ywz where y ∈ W (q) and where T has a loop at q labelled by (w,w). By our

84

assumption, we then have w ∈ A(q)∗. For k ≥ 1 write uik = ywzk and let u′ik = yzk.
Since w ∈ A(q)∗ and w ≠ ε, we have u′ik <T uik for each k ≥ 1. Our aim is to show

that the sequence S′ given by

u1, u2, . . . , ui1−1, u
′
i1 , u

′
i2 , . . .

is bad. This will contradict the minimality of the sequence S, since u′i1 <T ui1 . Since

S is a bad sequence we have ui /≤T uj for i < j < i1. We cannot have ui ≤T u′ik for some

i < i1 and k ≥ 1, as otherwise we would have ui ≤T uik by transitivity. Now suppose

that u′ik ≤T u
′
il

for some k ≤ l, meaning that yzk ≤T yzl. The ordering ≤T is left-most,

so we have zk ≼q zl by Lemma 3.1.40. The transducer T has a loop at q labelled by

(w,w), and so wzk ≼q wzl by Lemma 3.1.41. Hence ywzk ≤T ywzl by Lemma 3.1.42.

This means that uik ≤T uil , and so k = l. Hence the sequence S′ is bad, giving us the

desired contradiction.

The next proposition shows that the condition in Theorem 3.1.49 is decidable.

Proposition 3.1.50. Let T = (Q,A, δ, qI) be an insertion transducer. The following

are equivalent:

(i) For each q ∈ Q and for each loop at q labelled by (w,w) for some w ∈ A∗, we

have w ∈ A(q)∗.

(ii) For each copy transition s
a ∶ aÐÐ→ t in T , and for each state q ∈ Q such that there

is a path from q to s and a path from t to q, we have a ∈ A(q).

Proof. (i) ⇒ (ii): Let s
a ∶ aÐÐ→ t be a copy transition in T and let q ∈ Q be such that

there is a path from q to s labelled by (u,u) and a path from t to q labelled by

(v, v). Then there is a loop at q labelled by (uav, uav), and so uav ∈ A(q)∗ by our

assumption. In particular we have a ∈ A(q).

(ii) ⇒ (i): Let q ∈ Q and suppose there is a loop P at q labelled by (w,w) for some

w ∈ A∗. Write w = a1 . . . an and suppose that P is given by

q = q0
a1 ∶ a1ÐÐÐ→ q1

a2 ∶ a2ÐÐÐ→ ⋯ an ∶ anÐÐÐ→ qn = q. (‡)

85

In order to show that w ∈ A(q)∗, we show that each letter ai belongs to A(q). For

each i ≥ 1, transducer T contains the transition qi−1
ai ∶ aiÐÐÐ→ qi, and by (‡) there is

a path from q to qi−1 and a path from qi to q. Hence by our assumption we have

ai ∈ A(q).

Condition (ii) of Proposition 3.1.50 is decidable since a transducer contains only

finitely many transitions, so we have the following corollary:

Corollary 3.1.51. Let T = (Q,A, δ, qI) be an insertion transducer generating a left-

most insertion relation ≤T . Then it is decidable whether ≤T is a WQO.

Proof. This can be seen by combining Theorem 3.1.49 and Proposition 3.1.50.

The following result provides an interesting class of insertion relations which are

WQOs. Both the subword ordering and the embedding ordering belong to this

class.

Proposition 3.1.52. Let T = (Q,A, δ, qI) be an insertion transducer such that the

following two conditions hold:

(i) Every loop in T contains only one state.

(ii) For each q ∈ Q we have A(q) = {a ∈ A ∣ q ⋅ a = q}.

Then the insertion relation ≤T is a left-most WQO.

Proof. We first show that ≤T is left-most. Let q ∈ Q and let a ∈ A(q). Then by (ii)

we have q ⋅ a = q, so in particular we have A(q) ⊆ A(q ⋅ a). Hence ≤T is left-most

by Theorem 3.1.43. Next we show that ≤T is transitive. Let (q, p) be an accessible

state in T 2. We claim that q = p. Suppose instead that q ≠ p, and let P be a path in

T 2 from (qI , qI) to (q, p). Then P must include a type (ii) transition (s, s) ε ∶ aÐÐ→ (s, t)
where a ∈ A(s), s ⋅a = t and s ≠ t. But a ∈ A(s) implies that s ⋅a = s by (ii). Hence we

have q = p, and so A(p) ⊆ A(q). Hence ≤T is transitive by Theorem 3.1.47. Finally

we show that ≤T is a WQO. Let q ∈ Q and let s
a ∶ aÐÐ→ t be a transition in T such that

there is a path from q to s and a path from t to q. Then T has a loop containing the

states q, s and t, so by (i) we have q = s = t. Hence q ⋅ a = q, and so a ∈ A(q). Hence

≤T is a well-quasi-ordering by Theorem 3.1.49.

86

Finally we demonstrate that there exist non-trivial left-most insertion orderings

which are not WQOs. Indeed, consider the insertion transducer from Example 3.1.12.

It was shown in Example 3.1.48 that the insertion relation ≤T is an ordering. The

transducer T has a loop at t labelled by (a, a) but a /∈ A(t)∗, so ≤T is not WQO by

Theorem 3.1.49.

Concluding remarks and further questions

We leave the following as open questions:

Question 1: Is it decidable whether a given insertion transducer generates a WQO?

Question 2: Let T be an insertion transducer, let L ⊆ A∗ be a regular language and

let AvT (L) denote the avoidance set of L under ≤T . Is it decidable whether AvT (L)
is WQO under ≤T ?

In addressing Question 2 we can note the following result:

Proposition 3.1.53. Let T = (Q,A, δ, q0) be an insertion transducer, let L ⊆ A∗ be a

regular language and let A = (P,A,σ, p0, F) be a DFA accepting L. Then the upward

closure upT (L) of L under the insertion relation ≤T is a regular language, accepted

by the NFA

B = (Q × P,A, ρ, (q0, p0),Q × F)

where the partial function ρ ∶ (Q × P) ×A→ P(Q × P) is given by

ρ((q, p), a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{(q ⋅ a, δ(p, a)), (q, p)} if a ∈ A(q)
{(q ⋅ a, δ(p, a))} if a /∈ A(q).

Proof. A word v is accepted by B if and only if there is a path from (q0, p0) to a

state (q, p) ∈ Q × F . This is the case if and only if we can write v = v0a1v1 . . . anvn
where a1 . . . an ∈ L and where each vi ∈ A(a1 . . . ai)∗, which is the case if and only if

v ∈ upT (L).

Example 3.1.54. Let T be the insertion transducer from Example 3.1.11. This

transducer is shown below.

87

qIstart s t
a ∶ a

b ∶ b

ε ∶ b
a ∶ a

b ∶ b

a ∶ a
b ∶ b

Let A be the DFA shown below and let L be the language accepted by A. It is given

by the regular expression ba∗b.

p0start p1 p2
b

a

b

The NFA B accepting the upward closure of L under ≤T , whose construction is

described in Proposition 3.1.53, is shown below. We note, for instance, that B
accepts the word babb while A does not.

qI , p0start qI , p1 s, p1

qI , p2

t, p2
b a

b

b

a, b

Corollary 3.1.55. Let T be an insertion transducer generating an insertion ordering

≤T and let L ⊆ A∗ be a regular language. Then the set AvT (L) is a regular language.

Proof. This comes from Proposition 3.1.53 and the fact that AvT (L) = A∗/upT (L),
together with the fact that Reg(A) is closed under the operation of set difference.

Hence Question 2 can be solved if we can find a positive answer to following ques-

tion:

88

Question 3: Let T be an insertion transducer generating an insertion ordering ≤T .

Is it decidable whether a given regular language is WQO under ≤T ?

3.2 Word-insertion relations

In this section we introduce a class of rational relations which generalise insertion

relations, called word-insertion relations. These relations will be generated by trans-

ducers where at each state there is a set of words which may be inserted, rather than

a set of letters. Our current definition of a transducer does not allow for transitions

to be labelled by words, so we introduce a more general notion of a transducer.

Definition 3.2.1. A word-labelled transducer is a 4-tuple T = (Q,A, δ, q0) where:

• Q is a finite set of states ;

• A is a finite alphabet ;

• δ ∶ Q ×Aε → P(Q ×A∗) is a partial function called the transition function;

• qI ∈ Q is the start state.

The class of word-labelled transducers generating our new class of relations is then

defined as follows:

Definition 3.2.2. An word-insertion transducer is a word-labelled transducer T
whose transitions are exactly as follows:

• For each state q ∈ Q and for each letter a ∈ A, there is exactly one state p ∈ Q
such that q

a ∶ aÐÐ→ p is a transition in T .

• For each state q ∈ Q there is a set of words S(q) ⊆ A∗ such that q
ε ∶wÐÐ→ q is a

transition in T for each w ∈ S(q).

Definition 3.2.3. Let T be a word-insertion transducer. The relation generated by

T is denoted by ≤T and is called a word-insertion relation.

89

Example 3.2.4. Below is an example of a word-insertion transducer T . We have

S(qI) = {aa}, S(s) = {b} and S(t) = ∅. As an instance of the word-insertion relation

≤T generated by T , we have ba ≤T aabba.

qIstart s t

ε ∶ aa ε ∶ b

a ∶ a
b ∶ ba ∶ a

b ∶ b
a ∶ a
b ∶ b

Transitivity of word-insertion relations

As with insertion relations, a word-insertion relation ≤T is an ordering if and only

if it is transitive. In order to investigate whether ≤T is transitive, we would like to

find a transducer generating the relation ≤2T . The relation ≤T will then be transitive

if and only if this new transducer is equivalent to T . In order to capture ≤2T we will

first need to introduce another more general notion of a transducer, which we define

below.

Definition 3.2.5. An accept state transducer (AST) is a 5-tuple T = (Q,A, δ,F, qI)
where:

• Q is a finite set of states ;

• A is a finite alphabet ;

• δ ∶ Q ×Aε → P(Q ×Aε) is a partial function called the transition function;

• F ⊆ Q is the set of accept states ;

• qI ∈ Q is the start state.

If T is an AST then the relation RT generated by T is defined by (u, v) ∈ RT if and

only if there is a path from (qI , qI) to an accept state labelled by (u, v).

Now let T be a word-insertion transducer. In order to build a transducer generating

≤2T we will first convert T into an equivalent AST, denoted by T . We will construct T

90

from T by introducing a set of ‘dummy’ states corresponding to each state q, which,

intuitively, allow us to insert words from S(q) one letter at a time. The original

states are then set to be accept states, and the new dummy states as non-accept

states. We make this definition formal below.

Definition 3.2.6. Let T = (Q,A, δ, q0) be a word-insertion transducer. The AST

corresponding to T is denoted by T and defined as follows. For each q ∈ Q and

each w ∈ S(q) we write w = a1 . . . an and introduce n states q(w,1), . . . , q(w,n). By

convention we will also refer to the state q(w,n) as q(w,0) or simply q. We then let

Pq,w = {q(w,1), . . . , q(w,n)} and let

P = ⋃
q∈Q,w∈S(q)

Pq,w.

We then set T = (P,A,σ,Q, q0) where the transitions are exactly as follows:

• q
a ∶ aÐÐ→ p for each copy transition q

a ∶ aÐÐ→ p in T ;

• q(w,i−1)
ε ∶ aiÐÐ→ q(w,i) for each q ∈ Q, w = a1 . . . an ∈ S(q) and i ∈ {1, . . . , n}.

Example 3.2.7. Let T be the word-insertion transducer from Example 3.2.4. Then

T is given by:

qIstart

q
(aa,1)
I

s t

ε ∶ a ε ∶ a
ε ∶ b

a ∶ a
b ∶ ba ∶ a

b ∶ b
a ∶ a
b ∶ b

We can construct (T)2 from T in the usual way, with the convention that (q, p) is

an accept state if and only if both q and p are accept states.

Example 3.2.8. Let T be the transducer from Example 3.2.4, and for convenience

write q′I in place of q
(aa,1)
I . Then T 2

is given by:

91

qI , qIstart

qI , q′I

s, s t, t

q′I , s qI , t s, t

q′I , t

ε ∶ a ε ∶ a

ε ∶ a

ε ∶ a
a ∶ a
b ∶ bε ∶ aε ∶ a

ε ∶ b

a ∶ a
b ∶ b

ε ∶ b

ε ∶ b

a ∶ a
b ∶ ba ∶ a

b ∶ b
a ∶ a
b ∶ b

Example 3.2.9. Let T be the word-insertion transducer shown below.

qIstart s
a ∶ a
b ∶ b

ε ∶ aa, ab

a ∶ a
b ∶ b

ε ∶ aaa, b

For convenience we write u = aa, v = ab and w = aaa. The transducer T is given by:

92

qIstart

q
(u,1)
I

q
(v,1)
I

s

s(w,1) s(w,2)

a ∶ a
b ∶ b

ε ∶ a ε ∶ a

ε ∶ aε ∶ b

a ∶ a
b ∶ b
ε ∶ b

ε ∶ a

ε ∶ a

ε ∶ a

We recall the following result concerning insertion transducers:

Corollary 3.1.29. Let T = (Q,A, δ, qI) be an insertion transducer. If for every

state (q, p) accessible in T 2 we have A(p) ⊆ A(q), then the insertion relation ≤T is

transitive.

The next example shows that the equivalent statement for word-insertion transduc-

ers, with S(q) and S(p) in place of A(q) and A(p) respectively, does not hold in

general.

Example 3.2.10. Let T be the word-insertion transducer shown below. We have

S(qI) = {aa, b} and S(s) = {b}.

qIstart s

ε ∶ aa, b

a ∶ a
b ∶ b

a ∶ a
b ∶ b
ε ∶ b

The transducer T is show below. For convenience we write q′I in place of q
(aa,1)
I .

93

qIstart

q′I

s

ε ∶ a ε ∶ a

a ∶ a
b ∶ b

b ∶ b

a ∶ a
b ∶ b
ε ∶ b

The transducer (T)2 is then given by:

qI , qIstart

qI , q′I

s, s

q′I , s qI , s

ε ∶ a ε ∶ a

a ∶ a
b ∶ bb ∶ b

a ∶ a
b ∶ b
ε ∶ b

ε ∶ a

ε ∶ a
ε ∶ a

a ∶ a
b ∶ b

ε ∶ b

For each state (q(u,n), p(v,m)) accessible in (T)2, we have S(p) ⊆ S(q). However,

the relation ≤T is not transitive, as we have ε ≤T aa ≤T aba, but ε /≤T aba since

aba /∈ S(0)∗.

A sufficient condition for transitivity

Our goal is now to develop a sufficient condition for a given word-insertion relation

to be transitive.

Definition 3.2.11. Let u,α, β ∈ A∗. We say that the ordered pair (α,β) is a parsing

of the word u if u = αβ.

94

Example 3.2.12. Some parsings of aabb are (aa, bb), (a, abb) and (ε, aabb). Some

parsings of abc are (a, bc), (ab, c) and (abc, ε).

Definition 3.2.13. Let L,K ⊆ A∗ be languages. We say L is closed under insertion

from K if for all words u ∈ L, v ∈K and for all parsings (α,β) of u we have αvβ ∈ L.

We then have:

Theorem 3.2.14. Let T be a word-insertion transducer. Suppose that for each state

(q(w,n), p) accessible in (T)2, the language S(q)∗ is closed under insertion from S(p).
Then the word-insertion relation ≤T is transitive.

Proof. Let u, v,w ∈ A∗ be such that u ≤T v ≤T w. Write u = a1 . . . an and for i ∈
{0,1, . . . , n} let qi be the state which T enters after reading a1 . . . ai. Then write

v = v0a1v1 . . . anvn where each vi ∈ S(qi)∗. For each i ∈ {0, . . . , n} such that vi ≠ ε
write

vi = xi0xi1 . . . ximi

where each xij ∈ S(qi). Then for each i ∈ {0,1, . . . , n} and j ∈ {0, . . . ,mi} write

xij = bij1bij2 . . . bijrij

where each bijk ∈ A. Finally for each i ∈ {0, . . . , n}, j ∈ {0, . . .mi} and k ∈ {1, . . . , rij}
let

yijk = v0a1v1 . . . aixi1xi2 . . . xi(j−1)bij1bij2 . . . bijk

and let pijk be the state with T enters after reading yijk. Then (T)2 has a path from

(q0, q0) to (qi(xij ,k), pijk) labelled by (a1 . . . ai, yijk), and so by our assumption the set

S(qi)∗ is closed under insertion from S(pijk). Now write

w = γ0a1γ1 . . . anγn

where each γi is

γi = δi0δi1 . . . δim1 ,

where each δij is

δij = zij0bij1zij1 . . . bijrijzijrij

95

and where each zijk ∈ S(pijk)∗. Then for each i ∈ {0, . . . , n}, j ∈ {0, . . . ,mi} and

k ∈ {1, . . . , rij} the set S(qi)∗ is closed under insertion from S(pijk) and so δij ∈ S(qi)∗.
Hence for each i we have γi ∈ S(qi)∗, and so u ≤T w.

Example 3.2.15. Let T be the word-insertion transducer shown below.

qIstart s t

r

a ∶ a

ε ∶ a

b ∶ b

b ∶ b

a ∶ a
ε ∶ aa

a ∶ a
b ∶ b
ε ∶ b

a ∶ a
b ∶ b
ε ∶ b

The transducer T is shown below. For convenience we have written s′ in place of

s(aa,1).

qIstart s

s′

t

r

a ∶ a

ε ∶ a

b ∶ b

b ∶ b

a ∶ a

ε ∶ a ε ∶ a
a ∶ a
b ∶ b
ε ∶ b

a ∶ a
b ∶ b
ε ∶ b

96

The transducer (T)2 is then given by:

qI , qIstart s, s

s, s′

t, t

r, r qI , s r, t

qI , s′

a ∶ a

ε ∶ a

b ∶ b

b ∶ b

a ∶ a

ε ∶ a ε ∶ a
a ∶ a
b ∶ b
ε ∶ b

a ∶ a
b ∶ b
ε ∶ b

ε ∶ a

b ∶ b

a ∶ a
b ∶ b
ε ∶ b

ε ∶ aε ∶ a

a ∶ a

The states we must consider are (qI , qI), (qI , s), (s, s), (t, t), (r, r), and (r, t). We

have S(qI) = {a}, S(s) = {aa} and S(t) = S(r) = {b}, so for every state of the form

(q, q) we see that S(q)∗ is closed under insertion from S(q). Hence we must consider

the pairs (qI , s) and (r, t). For the first case we see that S(qI)∗ = {a}∗ is closed under

insertion from S(s) = {aa}, and for the second case we see that S(r)∗ = {b} is closed

under insertion from S(t) = {b}. Hence T satisfies the condition of Theorem 3.2.14,

so the word-insertion relation ≤T is transitive.

Our goal is now to show that the condition stated in Theorem 3.2.14 is decidable.

We start with the following:

Definition 3.2.16. Let L ⊆ A∗. We define the K-insertion language of L to be

LK = {αvβ ∣ v ∈K and (α,β) is a parsing of a word in L}.

We then note the following, which we state without proof:

97

Lemma 3.2.17. Let L,K ⊆ A∗ with ε ∈ L. Then L is closed under insertion from

K if and only if L = LK .

We then have the following:

Proposition 3.2.18. Let L ⊆ A∗ be a regular language. Then the language LK is

regular.

Proof. Let A = (Q,A, δ, q0, F) be a DFA accepting L and let B = (P,A,σ, p0,G) be a

DFA accepting K. Our aim is to construct an NFA C = (R,A,∆, q′0, F ′′) accepting

LK . The state set will be

R = Q′ ∪ (Q × P) ∪Q′′

where Q′ = {q′ ∣ q ∈ Q} and Q′′ = {q′′ ∣ q ∈ Q} are two copies of Q, and the set of

accept states will be F ′′ = {q′′ ∣ q ∈ F}. The transitions in C will be exactly as follows:

• (q′1, a, q′2) for each transition (q1, a, q1) in A;

• (q′, ε, (q, p0)) for every q ∈ Q;

• ((q, p1), a, (q, p2)) for each q ∈ Q and each transition (p1, a, p2) in B;

• ((q, p), ε, q′′) for every q ∈ Q and p ∈ G.

• (q′′1 , a, q′′2) for each transition (q1, a, q2) in A;

The automaton C accepts a word u if and only if u can be written as u = αvβ where:

• there is path in from q′0 to some state q′ labelled by α;

• there is a path from (q, p0) to (q, p) for some accept state p ∈ G labelled by v;

• there is a path from q′′ to an accept state s′′ labelled by β.

This is the case if and only if there are paths from q0 to q, from p0 to p and from q

to s labelled by α, v and β respectively. This in turn is the case if and only if αβ ∈ L
and v ∈K are in L, meaning that the word u = αvβ belong to LK .

Corollary 3.2.19. Let L,K ⊆ A∗ be regular languages. Then it is decidable whether

L is closed under insertion from K.

98

Proof. This follows from Lemma 3.2.17, Proposition 3.2.18 and the fact that equality

is decidable for regular languages.

Hence, in particular, the condition stated in Theorem 3.2.14 is decidable. The next

example, however, shows that this condition is not necessary for a word-insertion

relation to be transitive.

Example 3.2.20. Let T be the word-insertion transducer shown below. We have

S(qI) = {aa, b}, S(s) = ∅ and S(t) = {b}.

qIstart s t
a ∶ a

a ∶ a
a ∶ a

ε ∶ aa, b
b ∶ b b ∶ b

ε ∶ b
b ∶ b

The transducer T is shown below. For convenience we have written q′I in place of

q
(aa,1)
I .

qIstart s t

q′I

a ∶ a
a ∶ a
a ∶ a

ε ∶ a ε ∶ a

b ∶ b
ε ∶ b

b ∶ b

ε ∶ b
b ∶ b

The transducer (T)2 is then given by:

99

qI , qIstart s, s t, t

q′I , s qI , t

qI , q′I

a ∶ a
a ∶ a
a ∶ a

ε ∶ a ε ∶ a

b ∶ b
ε ∶ b

b ∶ b

ε ∶ b
b ∶ b

ε ∶ a

ε ∶ a
ε ∶ a

b ∶ b
ε ∶ b

a ∶ a

The state (qI , t) is accessible in (T)2, but the set S(qI)∗ is not closed under insertion

from S(t), since aa ∈ S(qI)∗ and b ∈ S(t) but aba /∈ S(qI)∗. Hence T does not satisfy

the condition of Theorem 3.2.14. Now, the states (qI , qI), (qI , q′I), (s, s) and (t, t)
behave like their counterparts in T , and by inspection any path in (T)2 through the

states (q′I , t) and (qI , t) can be simulated by the states qI and q′I in T . Hence, given

a path in (T)2, there is a path in T with the same label, and so ≤T is transitive.

Further remarks

While Theorem 3.2.14 appears to be a nice analogue of Corollary 3.1.29, the condition

of being closed under insertion from another set is actually quite restrictive, especially

since the sets S(q) and S(p) are finite. There are some non-trivial instances, for

example:

• The set {a}∗ is closed under insertion from the set {aa}.

• More generally, if n,m ≥ 1 then {an}∗ is closed under insertion from {anm}.

• The set {aa, ab, ba, bb}∗ is closed under insertion from the set {aa, bb}.

• More generally, if X ⊆ An for some n ≥ 1 then (An)∗ is closed under insertion

from X.

The condition is certainly decidable, but it opens up the following questions:

100

• what are some (necessary, sufficient) combinatorial conditions on finite sets of

words S,T for S∗ to be closed under insertion from T?

• is it perhaps possible to classify (in some way) the finite sets satisfying this

property?

It would also be of interest to see if a better condition than that of Theorem 3.2.14

can be formulated, i.e. a tighter sufficient condition or a condition which is both

sufficient and necessary.

101

102

Chapter 4

Other families of orderings on words

4.1 The class of L-subword relations

We recall the definition of the subword ordering ≤w on A∗:

(u ≤w v)⇔ (∃a1, . . . , an ∈ A)(∃v0, v1, . . . , vn ∈ A∗)(u = a1 . . . an & v = v0a1v1 . . . anvn).

We consider generalising this ordering by replacing the language A∗ in the above def-

inition by some fixed language L. This gives rise to the class of L-subword relations,

as defined below.

Definition 4.1.1. Let L ⊆ A∗. The L-subword relation on A∗ is denoted by ≤L and

defined by:

(u ≤L v)⇔ (∃a1, . . . , an ∈ A)(∃v0, v1, . . . , vn ∈ L)(u = a1 . . . an & v = v0a1v1 . . . anvn).

Example 4.1.2. Let A = {a, b, c} and let L ⊆ A∗ be the language given by the regular

expression (aa)∗. Then bbb ≤L baabaab and abc ≤L abaaaac.

Our next example shows that not every relation in this class is an ordering.

Example 4.1.3. Let A = {a, b} and let L ⊆ A∗ be the language given by the regular

expression (ab)∗. Then ε ≤L ab ≤L aabb, but ε /≤L aabb since aabb /∈ L. Hence the

relation ≤L is not transitive, and so it is not an ordering.

103

Closure under insertion

In the previous example we saw that ≤L will fail to be transitive if it is possible to

insert a word u ∈ L into a word v ∈ L and obtain a word w /∈ L, since then we will

have ε ≤L v ≤L w but ε /≤L w. We will go on to show that ≤L is transitive if and only

if L does not exhibit this phenomenon.

We recall that a parsing of a word u is an ordered pair (α,β) such that u = αβ.

Definition 4.1.4. Let L ⊆ A∗. We say that L is closed under insertion if for all

words u, v ∈ L and for all parsings (α,β) of u we have αvβ ∈ L.

Example 4.1.5. We now show some examples of languages which are closed under

insertion, and of some which are not.

• If a ∈ A and n ≥ 1 then the language given by the regular expression (an)∗ is

closed under insertion.

• By contrast, if u is a word which is not of the form an then the language given

by the regular expression u∗ is not closed under insertion.

• The language of words u ∈ {a, b}∗ such that ∣u∣a is divisible by 2 and ∣u∣b is

divisible by 3 is closed under insertion.

• By contrast, the language of words u ∈ {a, b}∗ such that ∣u∣a is divisible by 2

and ∣u∣b ≡ 1 (mod 3) is not closed under insertion.

Deciding whether an L-insertion relation is an ordering

Our goal is now to show that it is decidable whether a given L-insertion relation is

an ordering.

Lemma 4.1.6. Let L ⊆ A∗ be a language which is closed under insertion. Let u ∈ L
and let v ∈ A∗ be such that u ≤L v. Then v ∈ L.

Proof. This comes from repeatedly applying the fact that L is closed under inser-

tion. Write u = a1 . . . an and write v = v0a1v1 . . . anvn where each vi ∈ L. The pair

(ε, a1 . . . an) is a parsing of the word u, so we have v0a1 . . . an ∈ L. Likewise, the pair

104

(v0a1, a2 . . . an) is a parsing of the word v0a1 . . . an, so we have v0a1v1a2 . . . an ∈ L.
Continuing in this fashion we arrive at the desired result.

The following theorem characterises the languages L ⊆ A∗ such that the L-subword

relation ≤L is an ordering:

Theorem 4.1.7. Let L ⊆ A∗. Then the L-subword relation ≤L is an ordering if and

only if L is closed under insertion and contains ε.

Proof. (⇒) We prove the contrapositive. First suppose that ε /∈ L and let u ∈ A∗.

Then u /≤L u and so ≤L is not reflexive. Next suppose that L is not closed under

insertion, so that there exist words u, v ∈ L and a parsing (α,β) of u such that

αvβ /∈ L. Then ε ≤L u ≤L αvβ, but ε /≤L αvβ and so ≤L is not transitive.

(⇐) It is clear that ≤L is reflexive since ε ∈ L and that it is anti-symmetric since

u <L v implies ∣u∣ < ∣v∣. To see that ≤L is transitive let u, v,w ∈ A∗ be such that

u ≤L v ≤L w. Write u = a1 . . . an and write v = v0a1v1 . . . anvn where each vi ∈ L. Next

write v = b1 . . . bm and let i1 < ⋅ ⋅ ⋅ < in be such that:

• v0 = b1 . . . bi1−1;

• ak = bik for k ∈ {1, . . . , n};

• vk = bik+1 . . . bik+1−1 for k ∈ {1, . . . , n − 1};

• vn = bin+1 . . . bm.

This is illustrated below:

v = b1 . . . bi1−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v0

a1 bi1+1 . . . bi2−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
v1

. . . an bin+1 . . . bm´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vn

.

Next write w = w0b1w1 . . . bmwm where each wi ∈ L. Let:

• x0 = w0b1w1 . . . bi1−1wi1−1;

• xk = wikbik+1wik+1 . . . bik+1−1wik+1−1 for k ∈ {1, . . . , n − 1};

• xn = winbin+1win+1 . . . bmwm.

105

For each i ∈ {0, . . . , n} we have vi ∈ L and vi ≤L xi, and so each xi ∈ L by Lemma

4.1.6. We have w = x0a1x1 . . . anxn and so u ≤L w.

From Corollary 3.2.19 in the previous chapter, it is decidable whether a regular

language is closed under insertion from another, and so in particular it is decidable

whether a regular language is closed under insertion from itself. Hence we have the

following:

Corollary 4.1.8. Let L ⊆ A∗ be a regular language. Then it is decidable whether the

L-subword relation ≤L is an ordering.

We leave the problem of deciding WQO for L-subword relations as an open ques-

tion.

4.2 The class of (k, l)-factor orderings

We recall the definition of the factor ordering ≤f on A∗:

(u ≤f v)⇔ (∃α,β ∈ A∗)(v = αuβ).

We introduce a variation on the factor ordering which permits one to insert letters

amongst a fixed length prefix and suffix of a word.

Definition 4.2.1. Let k, l ≥ 1. The (k, l)-factor ordering on A∗ is denoted by ≤k,l
and defined as follows. Let u, v ∈ A∗. If ∣u∣ ≤ k + l then u ≤k,l v precisely if u ≤w v. If

∣u∣ > k + l then write u = xu′y where ∣x∣ = k and ∣y∣ = l. Then u ≤k,l v if there exist

words α,β ∈ A∗ such that x ≤w α, y ≤w β and v = αu′β.

Example 4.2.2. Let A = {a, e, h, r, s, t} and consider the (1,2)-factor ordering ≤1,2
on A∗. Consider the word tears ∈ A∗. We have t ≤w th and rs ≤w tres, so tears ≤1,2
theatres.

Intuitively we have u ≤k,l v if we can obtain v by inserting letters amongst the first k

and last l letters of u. The (k, l)-factor orderings seek to bridge the gap between the

106

subword and factor orderings, in the sense that they behave like the subword ordering

near the beginning and end of a word and like the factor ordering elsewhere.

We now establish that each (k, l)-factor ordering is indeed an ordering.

Theorem 4.2.3. Let k, l ≥ 1. Then the (k, l)-factor ordering ≤k,l is an ordering on

A∗.

Proof. It is immediate that ≤k,l is reflexive and anti-symmetric, so it suffices to show

that it is transitive. Let u, v,w ∈ A∗ be such that u ≤k,l v ≤k,l w. First suppose that

∣u∣ ≤ k+ l. Since ≤w contains ≤k,l we have u ≤w v and v ≤w w, hence we have u ≤w w by

the transitivity of ≤w. Since ∣u∣ ≤ k + l we then have u ≤k,l w. Now suppose ∣u∣ > k + l
and write u = xu′y where ∣x∣ = k and ∣y∣ = l. Let α,β ∈ A∗ be such that x ≤w α, y ≤w β
and v = αu′β, and note that ∣α∣ ≥ k and ∣β∣ ≥ l. Next write v = zv′t where ∣z∣ = k and

∣t∣ = l. We have v = zv′t = αu′β, and so z is a prefix of α, say α = zα′, and t is a suffix

of β, say β = β′t. We have

v = αu′β = zα′u′β′t = zv′t,

so v′ = α′u′β′. Now let γ, δ ∈ A∗ be such that z ≤w γ, t ≤w δ and w = γv′δ. Since z ≤w γ
we have zα′ ≤w γα′, and since t ≤w δ we have β′t ≤w β′δ. That is, we have α ≤w γα′
and β ≤w β′δ. Since x ≤w α and y ≤w β, we then have x ≤w γα′ and y ≤w β′δ. We have

w = γv′δ = γα′u′β′δ,

and so u ≤k,l w.

The next example shows that there are sets which are anti-chains under ≤f but are

WQO under ≤k,l.

Example 4.2.4. Let A = {a, b} and consider the (1,0)-factor ordering ≤1,0 on A∗.

Then the set S = {abia ∣ i ≥ 1} is a chain under ≤1,0 . In particular, S is WQO under

≤1,0 .

Proof. Let abia, abja ∈ S with i ≤ j. Then ∣a∣ = 1 and a ≤w abj−i, so abia ≤1,0 abja.

However, we have the following:

107

Proposition 4.2.5. Let k, l ≥ 1. Then ≤k,l is not a WQO on A∗.

Proof. We show that the set

S = {ak+1bial+1 ∣ i ≥ 1}

is an anti-chain under ≤k,l . Suppose u, v ∈ S are such that u ≤k,l v, and write

u = ak+1bial+1 and v = ak+1bjal+1 for some i, j ≥ 0. Let α,β ∈ A∗ be such that ak ≤w α,
al ≤w β and v = αabiaβ. Then α = ak and β = al, so i = j.

4.2.1 Deciding WQO

The following lemma will assist us in characterising certain anti-chains under (k, l)-
factor orderings:

Lemma 4.2.6. Let k, l ≥ 1 and let u, v, x, y ∈ A∗ with ∣x∣ = k and ∣y∣ = l. Then

xuy ≤k,l xvy if and only if u ≤f v.

Proof. (⇒) Suppose xuy ≤k,l xvy. Let α,β ∈ A∗ be such that x ≤w α, y ≤w β and

xvy = αuβ. Then x is a prefix of α, say α = xα′, and y is a suffix of β, say β = β′y,
and so xvy = xα′uβ′y. Hence v = α′uβ′, and so u ≤f v.

(⇐) Suppose u ≤f v, and let α,β ∈ A∗ be such that v = αuβ. Then x ≤w xα and

y ≤w βy, so

xuy ≤k,l xαuβy = xvy.

From this we can immediately derive the following:

Corollary 4.2.7. Let K ⊆ A∗, let k, l ≥ 1 and let x, y ∈ A∗ with ∣x∣ = k and ∣y∣ = l.
Then the language xKy is an anti-chain under ≤k,l if and only if the language K is

an anti-chain under ≤f .

We now introduce a type of language derived from a given language L, which will

assist in identifying anti-chains of the kind described in the above corollary.

108

Definition 4.2.8. Let L ⊆ A∗ and let u, v ∈ A∗. We define

u−1Lv−1 = {w ∈ A∗ ∣ uwv ∈ L}.

Example 4.2.9. Let L = {abia ∣ i ≥ 1}. Then a−1La−1 = {bi ∣ i ≥ 1}.

It is important to note that the languages L and u(u−1Lv−1)v need not coincide.

For instance, if L = {aaa, b} then a−1La−1 = {a}, and so a(a−1La−1)a = {aaa} ≠ L.
However, we can state the following:

Lemma 4.2.10. Let L ⊆ A∗ and suppose there are words u, v ∈ A∗ such that L ⊆
uA∗v. Then u(u−1Lv−1)v = L.

Proof. We certainly have u(u−1Lv−1)v ⊆ L. Now if w ∈ L then we can write w = uw′v

for some w′ ∈ A∗. In particular we have w′ ∈ u−1Lv−1, and so w ∈ u(u−1Lv−1)v.

The next proposition shows that when L is regular, so too is every language of the

form u−1Lv−1.

Proposition 4.2.11. Let L ⊆ A∗ be a regular language accepted by a deterministic

finite state automaton A = (Q,A, δ, q0, F), and let u, v ∈ A∗. Let p = δ∗(q0, u) and let

G = {q ∈ Q ∣ δ∗(q, v) ∈ F}.

Then the language u−1Lv−1 is regular, and is accepted by the deterministic finite state

automaton B = (Q,A, δ, p,G).

Proof. We show that w ∈ u−1Lv−1 if and only if w is accepted by B. We have w ∈
u−1Lv−1 if and only if uwv ∈ L, which is true if and only if δ∗(q0, uwv) ∈ F. We have

δ∗(q0, uwv) = δ∗(δ∗(q0, u),wv) = δ∗(p,wv)

and so δ∗(q0, uwv) ∈ F if and only if δ∗(p,wv) ∈ F. We have

δ∗(p,wv) = δ∗(δ∗(p,w), v)

109

and so δ∗(p,wv) ∈ F if and only if δ∗(p,w) ∈ G. This is the case if and only if w is

accepted by B.

Finally we have the following result:

Lemma 4.2.12. Let K,L ⊆ A∗ and let u, v ∈ A∗. Then K ⊆ u−1Lv−1 if and only if

uKv ⊆ L.

Proof. We have K ⊆ u−1Lv−1 if and only if for each w ∈K we have w ∈ u−1Lv−1. This

is the case if and only if for each w ∈ K we have uwv ∈ L, which is equivalent to

saying that uKv ⊆ L.

We now characterise the sets which are WQO under (k, l)-factor orderings.

Theorem 4.2.13. Let L ⊆ A∗ and let k, l ≥ 1. Then L is WQO under ≤k,l if and only

if u−1Lv−1 is WQO under ≤f for every u, v ∈ A∗ with ∣u∣ = k and ∣v∣ = l.

Proof. (⇒) We prove the contrapositive. Suppose there are words u, v ∈ A∗ with

∣u∣ = k and ∣v∣ = l such that u−1Lv−1 is not WQO under ≤f . Then u−1Lv−1 contains

some infinite set K which is an anti-chain under ≤f , and by Corollary 4.2.7 the set

uKv is an infinite anti-chain under ≤k,l . We have K ⊆ u−1Lv−1, and so by Lemma

4.2.12 we have uKv ⊆ L. Hence L contains an infinite anti-chain under ≤k,l and so is

not WQO under ≤k,l .

(⇐) Again we prove the contrapositive. Suppose L is not WQO under ≤k,l so that

it contains some infinite set K which is an anti-chain under ≤k,l . Since K is infinite,

there are words u, v ∈ A∗ with ∣u∣ = k and ∣v∣ = l such that infinitely many words in

K have the form uxv for some x ∈ A∗. Let H be this set of words, that is, let

H =K ∩ uA∗v.

Furthermore let G = u−1Hv−1. We have H ⊆ uA∗v, and so by Lemma 4.2.10 we have

H = uGv. The set K is an infinite anti-chain under ≤k,l and hence so is the set H.

Hence G is an infinite anti-chain under ≤f by Corollary 4.2.7. We have uGv =H ⊆ L,
and so by Lemma 4.2.12 we have G ⊆ u−1Lv−1. Hence u−1Lv−1 contains an infinite

anti-chain under ≤f and so is not WQO under ≤f .

110

As a corollary we then have:

Corollary 4.2.14. Let L ⊆ A∗ be a regular language and let k, l ≥ 1. Then it is

decidable whether L is WQO under ≤k,l .

Proof. By Theorem 4.2.13, the language L is WQO under ≤k,l if and only if u−1Lv−1 is

WQO under ≤f for every u, v ∈ A∗ with ∣u∣ = k and ∣v∣ = l. By Proposition 4.2.11 each

u−1Lv−1 is regular, and so by Theorem 1.3.6 it is decidable whether each u−1Lv−1 is

WQO under ≤f . There are only finitely many choices for u and v, and so the result

follows.

Example 4.2.15. Let L be the language accepted by the DFA shown below.

start

b

a a

b

a

We show that L is WQO under the (2,1)-factor ordering ≤2,1. To do this we consider

each language u−1Lv−1 where ∣u∣ = 2 and ∣v∣ = 1 and show that it is WQO under

the factor ordering. Such a language is empty unless v = a and u is one of aa, ba

and bb, so we must consider the languages L1 = (aa)−1La−1, L2 = (ba)−1La−1 and

L3 = (bb)−1La. The language L1 is given by the regular expression b∗, meaning that

it is a chain under ≤f and hence is WQO. Likewise, L2 is given by ab∗ and so is also

a chain. Finally, L3 is given by b∗ + b∗aab∗, and so is a union of L1 together with the

language L4 = L(b∗aab∗). The language L4 is WQO by Lemma 1.3.11, meaning that

L3 is the union of two WQO sets and so is itself WQO.

We now show that the WQO Problem is decidable for (k, l)-factor orderings, for

sets avoiding a given regular language. Throughout we will let Avk,l(L) denote the

avoidance set of a language L under the (k, l)-factor ordering. For a word u ∈ A∗ we

will let Su denote the upward closure of u under the subword ordering, and for a set

K ⊆ A∗ we will let

SK = ⋃
u∈K

Su.

111

We first note the following result:

Lemma 4.2.16. Let K ⊆ A∗ be a finite set. Then SK is a regular language.

Proof. For each word u = a1 . . . an in K the set Su is given by Su = A∗a1A∗ . . . anA∗

and so is a regular language. Hence SK is a union of finitely many regular languages

and so is itself regular.

We then have the following theorem:

Theorem 4.2.17. Let L ⊆ A∗, let k, l ≥ 1 and let K be the set of words in L of length

at most k + l. Then

A∗/Avk,l(L) = SK ∪ (⋃
∣u∣=k,∣v∣=l

Su(u−1Lv−1)Sv).

Proof. (⊆) Let y be a word in A∗/Avk,l(L). Then there is a word x ∈ L with x ≤k,l y.

If ∣x∣ < k + l then we have x ∈ K, and so y ∈ SK . Now suppose ∣x∣ > k + l and write

x = uzv where ∣u∣ = k and ∣v∣ = l. Then z belongs to the set u−1Lv−1. Now let α,β ∈ A∗

be such that u ≤w α, v ≤w β and y = αzβ. Then α ∈ Su and β ∈ Sv, so

y ∈ Su(u−1Lv−1)Sv.

(⊇) Let y be a word belonging to the set on the right hand side. If y ∈ SK then there

is some x ∈K such that x ≤w y. Since x ∈K we have ∣x∣ ≤ k + l and so x ≤k,l y. Hence

y ∈ A∗/Av(L). Now suppose y belongs to

Su(u−1Lv−1)Sv

for some u, v ∈ A∗ with ∣u∣ = k and ∣v∣ = l. Write y = αzβ where α ∈ Su, z ∈ u−1Lv−1
and β ∈ Sv. Then u ≤w α, uzv ∈ L and v ≤w β. We then have uzv ≤k,l y, and since

uzv ∈ L we have y ∈ A∗/Av(L).

Lemma 4.2.18. Let L ⊆ A∗ be a regular language and let k, l ≥ 1. Then the language

Avk,l(L) is regular.

112

Proof. We have shown that

A∗/Avk,l(L) = SK ∪ (⋃
∣u∣=k,∣v∣=l

Su(u−1Lv−1)Sv).

The set Reg(A) is closed under complementation, so to prove that Avk,l(L) is regular

it suffices to show the regularity of A∗/Avk,l(L). The set SK is regular by Lemma

4.2.16, and the sets

Su(u−1Lv−1)Sv

are regular by Proposition 4.2.11 together with the fact that Reg(A) is closed under

concatenation. There are only finitely many choices for u and v, so A∗/Av(L)
is a union of finitely many regular languages, meaning that it is itself a regular

language.

Finally we have:

Corollary 4.2.19. Let L ⊆ A∗ be a regular language and let k, l ≥ 1. Then it is

decidable whether Avk,l(L) is WQO under ≤k,l .

Proof. This is seen by combining Theorem 4.2.14 and Lemma 4.2.18.

4.3 The class of I-factor orderings

Definition 4.3.1. For a finite set I ⊆ A∗ we define the insertion closure of I, denoted

by cl(I), to be the smallest subset of A∗ which contains I and is closed under

insertion. By convention, we stipulate that ε ∈ cl(I).

Ehrenfeucht et al. [11] introduced a class of orderings ≤I on A∗, which are defined

as follows:

Definition 4.3.2. Let I ⊆ A∗ be a finite set. The ordering ≤I on A∗ is defined by

(u ≤I v)⇔ (∃a1, . . . , an ∈ A)(∃v0, v1, . . . , vn ∈ cl(I))(u = a1 . . . an & v = v0a1v1 . . . anvn).

113

Intuitively, we have u ≤I v if v can be obtained from u by inserting words from cl(I).
Another way to view this is that v can be obtained from u by repeated insertions of

words from I.

Example 4.3.3. Let A = {a, b, c} and I = {aa, bb}. Then aa ≤I abba and ccc ≤I
cabbacaac.

In their paper Ehrenfeucht et al. also make the following definition1:

Definition 4.3.4. Let I ⊆ A∗. We say I is factor unavoidable in A∗ if only finitely

many words in A∗ do not have a factor in I, and factor avoidable otherwise.

Example 4.3.5. The set I = {aa, ab, bb} is factor unavoidable in {a, b}∗ since the

only words without a factor in I are ε, a, b and ba. The set J = {aa, bb} is factor

avoidable since every word of the form (ab)i has no factor in J .

It is decidable whether a given finite (indeed, regular) set I ⊆ A∗ is factor unavoidable.

To see this we note that I is factor unavoidable if and only if the set Avf(I) is finite.

This language is regular and therefore it is decidable whether it is finite.

In their paper Ehrenfeucht et al. prove the following remarkable result2:

Theorem 4.3.6 (Ehrenfeucht et al.). Let I ⊆ A∗ be finite. Then the following are

equivalent:

(i) The set I is factor unavoidable in Alph(I)∗.

(ii) The set cl(I) is a regular language.

(iii) The ordering ≤I is a WQO on Alph(I)∗.

Our goal in this section is to develop a class of orderings on A∗ which extend the class

introduced by Ehrenfeucht et al. and also encompass aspects of the factor ordering.

These orderings are defined as follows:

1In their paper, they use the word subword to mean what we mean by factor.
2We state this as a single theorem. In their paper, it is stated disjointedly as Theorems 4.8 and

4.12.

114

Definition 4.3.7. Let I ⊆ A∗. The I-factor ordering on A∗ is denoted by ⊴I and

defined by:

(u ⊴I v)⇔ (∃α,u′, β ∈ A∗)(u ≤I u′ & v = αu′β).

Informally, the ordering ⊴I behaves like ≤f on the exterior of a word and like ≤I on

the interior, i.e. u ⊴I v if we can obtain v from u by inserting words from A∗ at the

start and end of u, and inserting words from cl(I) in-between the letters of u.

Example 4.3.8. Let A = {a, b, x, y} and I = {aa, bb}. We have aa ≤I abba, so

aa ⊴I xyabbax.

The following proposition, which we state without proof, provides two alternative

characterisations of this class of relations:

Proposition 4.3.9. Let I ⊆ A∗ be a finite set, let u, v ∈ A∗ and write u = a1 . . . an.
Then the following are equivalent:

(i) We have u ⊴I v.

(ii) There is a word u′ ∈ A∗ such that u ≤I u′ and u′ ≤f v.

(iii) There are words v1, . . . , vn−1 ∈ cl(I) and v0, vn ∈ A∗ such that v = v0a1v1 . . . anvn.

We wish to show that each relation ⊴I is an ordering. First we establish the following

lemma concerning the orderings ≤I of Ehrenfeucht et al.:

Lemma 4.3.10. Let I ⊆ A∗ be a finite set and let u, v ∈ A∗ with u ≤I v. Suppose

we can write u = xyz for some x, y, z ∈ A∗. Then we can write v = x′y′z′ for some

x′, y′, z′ ∈ A∗ such that x ≤I x′, y ≤I y′ and z ≤I z′.

Proof. Write u = a1 . . . an and write v = v0a1v1 . . . anvn where each vi ∈ cl(I). Let i, j

be such that x = a1 . . . ai, y = ai+1 . . . aj and z = aj+1 . . . an. Let x′ = v0a1v1 . . . aivi,
y′ = ai+1vi+1 . . . ajvj and z′ = aj+1vj+1 . . . anvn. Then v = x′y′z′, and we have x ≤i x′,
y ≤I y′ and z ≤i z′.

We then have:

Proposition 4.3.11. Let I ⊆ A∗ be a finite set. Then the relation ⊴I is an ordering

on A∗.

115

Proof. It is clear that the relation ⊴I is reflexive and anti-symmetric, so we show it

is transitive. Let u, v,w ∈ A∗ be such that u ⊴I v ⊴I w. By Proposition 4.3.9, we can

write v = αu′β where u ≤I u′ and we can write w = γv′δ where v ≤I v′. From Lemma

4.3.10 we can write v = α′u′′β′ where α ≤I α′, u′ ≤I u′′ and β ≤I β′. We then have

u ≤I u′ ≤I u′′ so u ≤I u′′, and w = γα′u′′β′δ so u ⊴I w.

WQO under ⊴I

Each ordering ⊴I contains the orderings ≤f and ≤I and incorporates elements of them

both. Interestingly, there are certain sets which are anti-chains under each of these

orderings but WQO under ⊴I . We first note the following:

Observation 4.3.12. Let I ⊆ A∗ be a finite set and let u, v ∈ A∗ with u <I v. Then

v has a factor in I.

We then have:

Example 4.3.13. Let I = {aa, bb}. Then:

(i) The set S given by the regular expression a(bb)∗a is an anti-chain under ≤f but

is a chain under ⊴I .

(ii) The set T given by the regular expression (ab)∗ is an anti-chain under ≤I but

is a chain under ⊴I .
Proof. (i) It is clear that S is an anti-chain under ≤f . Now let u, v ∈ S with ∣u∣ ≤ ∣v∣
and write u = ab2ia and v = ab2ja. Then v = ab2ib2(j−i)a and so u ⊴I v.

(ii) No word in T has a factor in I, so T is an anti-chain under ≤I by Observation

4.3.12. It is clear that T is a chain under ≤f .

We will go on to show that, despite this, the ordering ⊴I will be WQO precisely when

≤I is.

Lemma 4.3.14. Let I ⊆ A∗ be a finite set which is factor unavoidable in A∗. Then

there exists a word u ∈ A∗ such that every power of u has no factor in I.

Proof. Since I is factor unavoidable, its avoidance set Avf(I) under the factor or-

dering is infinite. Furthermore, since I is finite, the set Avf(I) is regular, so let

116

A = (Q,A, δ, q0, F) be a reduced DFA accepting Avf(I). The set Avf(I) is infinite

so A must have a loop-state, that is, there must be a state q ∈ Q and a non-empty

word u ∈ A∗ such that δ∗(q, u) = q. Since A is reduced we can select words v and w

such that δ∗(q0, v) = q and δ∗(q,w) ∈ F . Then for all i ≥ 0 we have

δ∗(q0, vuiw) ∈ F

and so vuiw ∈ Avf(I). For each i the word ui is a factor of vuiw, and since Avf(I) is

downward-closed under the factor ordering this means that ui belongs to Avf(I).

For the following theorem we recall that a word γ is said to be a left extension of

a power of α if we can write γ = σαi where σ is a suffix of α, and that δ is a right

extension of a power of α if we can write δ = αiσ where σ is a prefix of α.

Theorem 4.3.15. Let I ⊆ A∗ be regular. Then the ordering ⊴I is a WQO if and

only if I is factor unavoidable in A∗.

Proof. (⇒) If I is factor unavoidable in A∗ then by Lemma 4.3.14 there is a word u

such that every power of u has no factor in I. Write u = a1 . . . an, and let c ∈ A/{an}
and d ∈ A/{a1}. Then c is not a left extension of a power of u and d is not a right

extension of a power of u, so by Lemma 1.3.10 the set

S = {cuid ∣ i = 1,2, . . .}

is an infinite anti-chain under the factor ordering. Our aim is to show that S is also

an anti-chain under ⊴I . Suppose instead that there are words v,w ∈ S with v ⊴I w
and write v = cuid and w = cujd. Write ui = b1 . . . bm and write

w = zcw0b1w1 . . . bmwmdt

where z, t ∈ A∗ and each wi ∈ cl(I). Since ∣zc∣, ∣dt∣ ≥ 1 we see that w0b1w1 . . . bmwm is

a factor of uj, but uj has no factor in I and so each wi = ε. Hence v = w.

(⇐) Suppose that I is factor unavoidable in A∗. By Theorem 4.3.6, the ordering ≤I
is a WQO, and since ⊴I contains ≤I we see that ⊴I is also a WQO.

117

This leads us to considering that nature of anti-chains under ⊴I . Our study is moti-

vated by the following example:

Example 4.3.16. Let I = {aa, bb} and let S ⊆ {a, b}∗ be an infinite set with no

factor in I. Then S is WQO under the ordering ⊴I .

Proof. In fact we can show that this holds as long as ∣S∣ ≥ 3. The set S has no factor

in I and so S is contained in the avoidance set Avf(I) of I under the factor ordering.

The set Avf(I) is regular and is accepted by the automaton A shown below:

start

a

b

ba

Let u, v and w be distinct non-empty words in S. Two of these words must start

with the same letter, and we may assume without loss of generality that these words

are u and v and that this letter is a. Furthermore we may assume that ∣u∣ ≤ ∣v∣. The

words u and v are both accepted by the automaton B shown below:

start

a

ba

We see that each state of B has out-degree 1, and so the language accepted by it is a

chain under the prefix ordering by Theorem 2.1.2. This means u is a prefix of v and

118

hence a factor of v, and so u ⊴I v. This shows that if S contains an ant-chain under

⊴I then that anti-chain contains at most 2 non-empty words, so S is WQO.

The above result does not hold for every choice of I. Indeed if I = {aa} then the set

ab∗a has no factor in I and is an anti-chain under ⊴I . This leads to the following

more general statement:

Proposition 4.3.17. Let I ⊆ A∗ be a finite set and suppose that the ordering ≤I is

not WQO. Then there exists an infinite set X ⊆ A∗ which is an anti-chain under ≤I ,
but which is WQO under ⊴I .

Proof. By Theorem 4.3.6 the set I is factor unavoidable in A∗. By Lemma 4.3.14

there exists a word u ∈ A∗ such that every power of u has no factor in I, and so the

set

S = {ui ∣ i = 1,2, . . .}

is an anti-chain under ≤I . The set S is a chain under the factor ordering, and so it

is also a chain under the ordering ⊴I . Hence S is WQO under ⊴I .

119

120

Chapter 5

The consecutive involvement ordering on

permutations

5.1 Atomicity in the consecutive involvement ordering

In this section we show it is decidable whether a given finitely-based set C of per-

mutations is atomic. Our approach will be similar to that for the factor ordering

on words, in that we will employ a graph G(C) whose paths correspond to all suffi-

ciently long permutations in C. A key difference from the word case will be that a

given path need not correspond to a unique permutation in C. In fact, we will show

that if G(C) is not strongly connected then any occurrence of this ‘non-uniqueness’

phenomenon will imply that C is not atomic. We will therefore explore this prop-

erty in detail and show that it is decidable whether a given graph G(C) exhibits it.

Deciding atomicity will then essentially boil down to testing for this condition and

performing the same analysis on G(C) as we did in the word case.

We remark that much of the framework employed in this chapter, particularly around

ambiguous sequences and graphs of permutations, has already been considered by

Avgustinovich and Kitaev [4]. To help with the material which will follow, we will

introduce it here under our own terminology.

121

5.1.1 Overlapping k-sequences and ambiguity

We begin by making some definitions, which are analogous to those used for words.

Definition 5.1.1. Let σ = s1 . . . sn be a permutation and let k ∈ {1, . . . , n}. We

define seqk(σ) to be the sequence of permutations seqk(σ) = (σ1, . . . , σn−k+1) where

each σi = ρ(si . . . si+k−1).

The sequence seqk(σ) can be thought of as the sequence of consecutive length k

permutations which are involved in σ.

Example 5.1.2. Let σ = 34512. Then seq3(σ) = (123,231,312) and seq2(σ) =
(12,12,21,12).

Notation 5.1.3. If σ = s1 . . . sn is a permutation then we let σP = ρ(s1 . . . sn−1) and

σS = ρ(s2 . . . sn).

Definition 5.1.4. Let S = (σ1, . . . , σn) be a sequence of permutations of the same

length k. We say S is an overlapping k-sequence if it satisfies σSi = σPi+1 for all

i ∈ {1, . . . , n − 1}.

For words it was always possible to take an overlapping k-sequence and recover

a unique word, but for permutations this is not always be the case. Indeed, let

S = (231,312), σ = 2413 and τ = 3412. Then σ and τ are distinct but we have

seqk(σ) = seqk(τ) = S. We show each of these permutations below.

●
●

●

●

●
● ●

●

●

● ●
●

●
●

231 312 σ = 2413 τ = 3412

It therefore makes sense to introduce the following definition:

Definition 5.1.5. Let S be an overlapping k-sequence. We say S is unambiguous

if there is a unique permutation σ satisfying seqk(σ) = S. Otherwise we say S is

ambiguous.

122

We will explore this concept in further detail later on. For now we turn our attention

to defining a graph corresponding to a finitely-based class.

5.1.2 Consecutive involvement graphs

We will use the following notation, which is identical to that used for words:

Notation 5.1.6. If C is a finitely-based set of permutations then we let Ck denote the

set of permutations in C of length k. We also let C≥k denote the set of permutations

in C of length at least k, and make analogous definitions for the sets C>k,C≤k and

C<k.

We then make the following definition:

Definition 5.1.7. Let B be a finite set of permutations, let k = maxσ∈B ∣σ∣, let

C = Av(B) and let l be an integer with l ≥ k. Then the l-consecutive involvement

graph for C is the directed graph Gl(C) which has vertex set Vl = Cl and edge set

El = {(σ, τ) ∣ σS = τP}. In the case that l = k we will omit the subscript and simply

refer to this graph as G(C).

Example 5.1.8. Let B = {123,132,231,312} and C = Av(B). Then maxσ∈B ∣σ∣ = 3,

and we have C3 = {213,321} and C4 = {4321,3214,4213}. We show the graphs

G(C) = G3(C) and G4(C) below.

321 213
4321

4213

3214

As with words, all sufficiently long permutations in C correspond to paths in Gl(C).
We state without proof the following result, which is analogous to Proposition 2.2.14

for words:

Proposition 5.1.9. Let B be a finite set of permutations, let k = maxσ∈B ∣σ∣, let

C = Av(B) and let l ≥ k. Then

123

(i) If σ ∈ C≥l then seql(σ) is a path in Gl(C).

(ii) If S is a path in Gl(C) and σ is a permutation with seql(σ) = S then σ ∈ C≥l.

When considering words we observed the following: if in G(C) we have S ≤ T then in

C we have w(S) ≤f w(T). However, for permutations the equivalent implication does

not always hold. For instance, if we consider the graph G(C) from Example 5.1.8

then S = (321,213) and T = (321,321,213) are paths in G(C) with S ≤ T . However,

α = 4213 and β = 43215 are permutations in C with seq3(α) = S and seq3(β) = T ,

but α /≤ β. However, we can state the following:

Lemma 5.1.10. If σ, and τ are permutations with σ ≤ τ then seqk(σ) ≤ seqk(τ).

Proof. Write σ = s1 . . . sn and τ = t1 . . . tm and let j be such that ρ(tj . . . tj+n−1) = σ.

Write seqk(σ) = (σ1, . . . , σn−k+1) where each σi = ρ(si . . . si+l−1) and write seqk(τ) =
(τ1, . . . , τm−k+1) where each τi = ρ(ti . . . ti+k−1). Then we have:

(τj, . . . , τj+n−k) = (ρ(tj, . . . , tj+k−1), . . . , ρ(tj+n−k . . . tj+n−k)).

The sequence on the right-hand side is just (ρ(s1 . . . sk), . . . , ρ(sn−k+1 . . . sn)), and we

have

(ρ(s1 . . . sk), . . . , ρ(sn−k+1 . . . sn)) = (σ1, . . . , σn−k+1) = seqk(σ),

so seqk(σ) ≤ seqk(τ).

An alternative construction for l-consecutive involvement graphs

Once we have constructed G(C), we can determine each graph Gk+l−1(C) without

considering the sets B or C. To do this we let Pl(C) denote the set of length l paths

in G(C) and for S = (σ1, . . . , σl) ∈ Pl(C) we let V (S) be the set of all permutations τ

of length k + l − 1 satisfying seqk(τ) = S. We then define the vertex set of Gk+l−1(C)
to be

Vk+l−1 = ⋃
S∈Pl(C)

V (S)

and construct the edge set Ek+l−1 as follows: if S = (σ1, . . . , σl) and T = (τ1, . . . , τl)
are paths of length l in G(C) satisfying (σ2, . . . , σl) = (τ1, . . . , τl−1) then we add an

edge from every vertex in V (S) to every vertex in V (T).

124

Example 5.1.11. Let B = {132,213,231} and let C = Av(B). Then maxσ∈B ∣σ∣ = 3

and C3 = {123,132,213}. The graph G(C) is shown below.

321 312 123

We will construct the graph G5(C), whose vertices correspond to length 3 paths in

G(C). The table below shows the paths S of length 3 in G(C) and the corresponding

vertex sets V (S) in G5(C).

S Members of V (S)
(321,321,321) 54321

(321,321,312) 54312

(321,312,123) 43125,53124,54123

(312,123,123) 31245,41235,51234

(123,123,123) 12345

The graph G5(C) is shown below.

54321 54312

43125

53124

54123

31245

41235

51234

12345

With this construction in mind we can observe the following:

Lemma 5.1.12. Suppose G(C) is strongly connected, let k = maxσ∈B ∣σ∣ and let l ≥ 1.

Then Gk+l−1(C) is strongly connected.

Proof. Let α and β be vertices of Gk+l−1(C) and let S = (σ1, . . . , σl) and T =
(τ1, . . . , τl) be such that seqk(α) = S and seqk(β) = T , so that α ∈ V (S) and β ∈ V (T).

125

Since G is strongly connected there is a path in G(C) from σl to τ1, say

P = (σl, σl+1, . . . , σl+n, τ1).

For i ∈ {1, . . . , n} let Ri = (σi+1, . . . , σi+l) and select a permutation γi ∈ V (Ri). Then

(α, γ1, . . . , γn, β) is a path in Gk+l−1(C) from α to β.

Lemma 5.1.13. Let k = maxσ∈B ∣σ∣ and suppose G(C) is strongly connected. Then

C≥k satisfies the join property.

Proof. We first note that in a graph which is strongly connected, there are arbitrarily

long paths containing any given vertex. Now let α,β ∈ C≥k and let S = seqk(α) and

T = seqk(β). Let n = ∣S∣ andm = ∣T ∣ and assume without loss of generality that n ≤m.

By Lemma 5.1.12 the graphs Gk+n−1(C) and Gk+m−1(C) are strongly connected. The

permutation α is a vertex in Gk+n−1(C), and since Gk+n−1(C) is strongly connected

it has a path R of length m − n containing α. Let γ be a permutation satisfying

seqk(γ) = R. Then γ is a vertex of Gk+m−1(C) and α ≤ γ. Since Gk+m−1(C) is

strongly connected, it has a path Q from β to γ. Now let δ be a permutation

satisfying seqk(δ) = Q. Then we have α ≤ δ and β ≤ δ, so δ is a join for α and β.

We will therefore once again focus on graphs which are connected but not strongly

connected.

5.1.3 Deciding ambiguity

In this subsection we show that it is decidable whether a given graph G(C) has

ambiguous paths. We will go on to show that this is pivotal to deciding whether C

is atomic. We begin with the following:

Lemma 5.1.14. Let S and T be overlapping k-sequences such that S ≤ T and suppose

T is unambiguous. Then S is unambiguous.

Proof. We will prove that if S = (σ1, . . . , σn) is ambiguous then S′ = (σ1, . . . , σn, σn+1)
is ambiguous. It will follow by symmetry that a sequence of the form (σ0, σ1 . . . , σn)

126

is ambiguous. If S ≤ T then T can be constructed from S by some sequence

S = S0 < S1 < ⋅ ⋅ ⋅ < SN = T

obtained by appending elements in this way, so this will mean T is ambiguous.

Suppose α = s1 . . . sm and β = t1 . . . tm are two distinct permutations such that

seqk(α) = seqk(β), and write σn+1 = r1 . . . rk. First suppose that rk = k. Let

sm+1 = tm+1 = k + 1 and let α′ = s1 . . . sm+1 and β′ = t1 . . . tm+1. Then α′ and β′

are distinct since α and β are distinct, and we have seqk(α′) = seqk(α)′ = S′, so S′

is ambiguous. Next suppose rk < k and let j ∈ {1, . . . , k − 1} be such that rj = rk + 1.

Now let p1 . . . pm be the sequence given by

pi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

si + 1 if si ≥ sn+j−1
si if si < sn+j−1

and let pm+1 = sn+j−1. Also let q1 . . . qm be the sequence given by

qi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ti + 1 if ti ≥ tn+j−1
ti if ti < tn+j−1

and let qm+1 = tn+l−1. Then α′ = p1 . . . pm+1 and β′ = q1 . . . qm+1 are distinct permuta-

tions and we have seqk(α′) = seqk(β) = S′, so S′ is ambiguous.

With this in mind we can make the following definition:

Definition 5.1.15. Let S = (σ1, . . . , σn) be an overlapping k-sequence. We say S is

a minimal ambiguous k-sequence if it is ambiguous and the sequences (σ1, . . . , σn−1)
and (σ2, . . . , σn) are unambiguous.

Example 5.1.16. Let S = (132,312,231). Then S is ambiguous since

seq3(15342) = seq3(25341) = S,

and S is minimal since σ = 1423 is unique such that seqk(σ) = (132,312) and τ = 4231

is unique such that seqk(τ) = (312,231).

127

The reason for considering minimal ambiguous sequences is the following:

Observation 5.1.17. A graph G(C) has ambiguous paths if and only if it has min-

imal ambiguous paths.

We can therefore reduce the problem of deciding whether G(C) has ambiguous paths

to that of deciding whether G(C) has minimal ambiguous paths. Our approach will

be to show that, for a fixed k, there is a bound on the length of minimal ambiguous

k-sequences. This would not be worthwhile if, for instance, every possible minimal

ambiguous sequence had length at most 3. We therefore describe how minimal

ambiguous sequences can be arbitrarily long, in the sense that, for any given n, there

exists a k such that there are minimal ambiguous k-sequences of length n.

Indeed, we can select n = k. Define a sequence of permutation S = (σ1, . . . , σk)
by

σi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1⊕ δk−1 if i = 1

δk−i ⊖ αi if i ∈ {2, . . . , k − 1}
αk−1 ⊖ 1 if i = k.

This sequence is sketched below.

●

●
⋅⋅⋅

●

● ⋅⋅⋅
●

●
● . . .

●

●
⋅⋅⋅

●

●
⋅⋅⋅

●

●

σ1 σ2 σk−1 σk

The sequence S is ambiguous since the permutations

σ = (1⊕ (δk−1 ⊖ αk−1))⊖ 1,

τ = 1⊕ (δk−1 ⊖ αk−1 ⊖ 1)

satisfy seqk(σ) = seqk(τ) = S. These are sketched below.

128

●

● ⋅⋅⋅
●

●
⋅⋅⋅
●

● ●

● ⋅⋅⋅
●

●
⋅⋅⋅
●

●

σ = (1⊕ (δk−1 ⊖ αk−1))⊖ 1 τ = 1⊕ (δk−1 ⊖ αk−1 ⊖ 1)

Finally, S is a minimal ambiguous sequence since the sequence S′ = (σ1, . . . , σk−1)
uniquely determines the permutation 1⊕(δk−1⊖αk−1) and S′′ = (σ2, . . . , σk) uniquely

determines the permutation δk−1 ⊖ αk−1 ⊖ 1.

Intervals

We will consider intervals of values in a permutation. Geometrically, we mean inter-

vals on the vertical axis, as shown below.

The interval (2,4){
●
●

●
●
●

1 2 5 3 4

For our purposes, the intervals present in a permutation of length k will be all the

ordered pairs of the form I = (x, y) where 0 ≤ x < y ≤ k + 1. The integers x and y are

said to be the endpoints of the interval I. We emphasise that, for our purposes, an

interval is an ordered pair rather than a set of numbers, so that the intervals (0,1)
and (2,3) are considered distinct despite the fact that

{n ∈ N ∣ 0 < n < 1} = {n ∈ N ∣ 2 < n < 3} = ∅.

An interval (x, y) is said to contain n if x < n < y. We say an interval is non-empty

if it contains some n and empty otherwise. We will say that an interval (x, y) is a

129

sub-interval of an interval (z, t) if z ≤ x and y ≤ t. Two intervals are said to overlap

if they are equal or if one contains at least one endpoint of the other.

Lemma 5.1.18. Suppose that I and J are intervals and that there is an integer n

contained in both I and J . Then the intervals I and J overlap.

Proof. We will suppose that the intervals I and J are distinct and prove that one

contains at least one endpoint of the other. Write I = (x, y) and J = (z, t) and

assume without loss of generality that x < z. Since n is contained in both I and J

we have x < n < y and z < n < t, and so x < z < y. Hence z is contained in I.

We now develop some definitions pertaining to overlapping k-sequences.

Definition 5.1.19. Let S = (σ1, . . . , σn) be an overlapping k-sequence and let α =
a1 . . . am be a permutation such that seqk(α) = S. Let i ∈ {1, . . . , n} and write

σi = s1 . . . sk. For j ∈ {1, . . . , k} we define the α-representative of sj to be the point

s′j = ai+j−1. By convention we also define 0′ = 0 and k + 1′ = m + 1. If I = (x, y) is an

interval in σi then we define the α-representative of I to be Iα = (x′, y′).

Intuitively, the point in position j of si will ‘manifest’ as the point in position i+j−1

of α. We note that a particular point of α will typically be the α-representative of

several points, for instance, the second point of α will be the α-representative of the

second point of σ1 and of the first point of σ2.

Example 5.1.20. Let S = (σ1, σ2, σ3) where σ1 = 213, σ2 = 123 and σ3 = 132. These

are illustrated below.

●
●

●

●
●

●

●

●
●

σ1 σ2 σ3

Let α = 21354, so that seq3(α) = S. Then the α-representative of (σ2)1 is (α)2 and

the α-representative of (σ3)3 is (α)5. These points are highlighted below in red and

blue respectively.

130

●
●

●

●
●

Definition 5.1.21. Let σ = s1 . . . sk and τ = t1 . . . tk be two permutations of the same

length satisfying σS = τP . If tk ≠ 1 then we let i be such that ti = tk − 1, and if tk ≠ k
then we let j be such that tj = tk + 1. We then define the right-insertion interval

for the pair (σ, τ) to be the interval (si+1, sj+1) in σ. By convention if tk = 1 then

we instead define this interval to be (0, sj+1) and if tk = k then we define it to be

(si+1, k + 1).

Intuitively, one can take a permutation whose last k points are order isomorphic to

σ and ‘extend’ it to one whose last k points are order isomorphic to τ by inserting a

point anywhere in the interval (si+1, sj+1).

Example 5.1.22. Let σ = 3412 and τ = 4132. Then the right-insertion interval for

the pair (σ, τ) is the interval (1,2) in σ. We highlight its endpoints in red below.

●
●

●
●

●

●

●
●

Definition 5.1.23. Let σ = s1 . . . sk and τ = t1 . . . tk be two permutations of the

same length satisfying σS = τP . If sk ≠ 1 then we let i be such that si = sk − 1, and

if sk ≠ k then we let j be such that sj = s1 + 1. We then define the left-insertion

interval for the pair (σ, τ) to be the interval (ti−1, tj−1) in τ . By convention if tk = 1

then we instead define this interval to be (0, tj−1) and if tk = k then we define it to

be (ti−1, k + 1).

Example 5.1.24. Again let σ = 3412 and τ = 4132. Then the left-insertion interval

for the pair (σ, τ) is the interval (3,4) in σ. We highlight its endpoints in red below.

131

●
●

●
●

●

●

●
●

Results

We now present our results pertaining to ambiguity. The end goal will be to show

that the length of minimal ambiguous paths in a given graph is bounded, from which

we will deduce that it is decidable if a given graph has ambiguous paths.

Lemma 5.1.25. Let S = (σ1, . . . , σn) be an overlapping k-sequence such that the

sequence S′ = (σ1, . . . , σn−1) is unambiguous. Let α = a1 . . . am be the unique permu-

tation such that seqk(α) = S′ and let J be the right-insertion interval for the pair

(σn−1, σn). Then S is ambiguous if and only if Jα is non-empty.

Proof. (⇒) We prove the contrapositive. Suppose that Jα is empty and that β and

δ are permutations such that seqk(β) = seqk(δ) = S. We will prove that β and δ are

order isomorphic and hence equal.

Write β = b1 . . . bm+1 and δ = c1 . . . cm+1. W note that the sequences β′ = b1 . . . bm and

δ′ = c1 . . . cm are order isomorphic. This is because S(ρ(β′)) = S(ρ(δ′)) = S′, and

since S′ is unambiguous we have ρ(β′) = ρ(δ′) = α. Hence for i, j ∈ {1, . . .m} we have

bi < bj if and only if ci < cj, so we just have to prove that bi < bm+1 if and only if

ci < cm+1.

Write Jβ = (x, y) and Jδ = (z, t). Since Jα is empty and ρ(β′) = ρ(δ′) = α, we see

that bm+1 is the only point in β between x and y and that cm+1 is the only point in

δ between z and t. Hence we have

bi < bm+1⇔ bi ≤ x⇔ ci ≤ z⇔ ci < cm+1.

132

(⇐) Suppose Jα contains the point aj. Let b1 . . . bm be the sequence given by

bi =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai + 1 if ai > aj
ai if ai ≤ aj

then let bm+1 = aj + 1. Also let c1 . . . cm be the sequence given by

ci =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ai + 1 if ai ≥ aj
ai if ai < aj

and let cm+1 = aj. Then β = b1 . . . bm+1 and δ = c1 . . . cm+1 are two distinct permuta-

tions and we have seqk(β) = seqk(δ) = S, so S is ambiguous.

By symmetry with Lemma 5.1.25 we can immediately observe the following result,

which we state without proof:

Lemma 5.1.26. Let S = (σ1, . . . , σn) be an overlapping k-sequence such that the se-

quence S′′ = (σ2, . . . , σn) is unambiguous. Let α = a1 . . . am be the unique permutation

such that seqk(α) = S′′ and let I be the left-insertion interval for the pair (σ1, σ2).

Then S is ambiguous if and only if Iα is non-empty.

The key insight for deciding ambiguity is the following:

Theorem 5.1.27. Let S = (σ1, . . . , σn) be an overlapping k-sequence with n ≥ 3 such

that S′ = (σ1, . . . , σn−1) and S′′ = (σ2, . . . , σn) are unambiguous. Let δ be the unique

permutation such that seqk(δ) = (σ2, . . . , σn−1). Let I be the left-insertion interval

for the pair (σ1, σ2) and let J be the right-insertion interval for the pair (σn−1, σn).

Then S is ambiguous if and only if Iδ = Jδ.

Proof. Throughout we will let α = a1 . . . am be the unique permutation such that

seqk(α) = S′ and β = b1 . . . bm be the unique permutation such that seqk(β) = S′′.

(⇒) If S is ambiguous then by Lemma 5.1.25 the interval Jα is non-empty. Since S′′

is unambiguous we see that Jδ is empty, and so the only point which can be in Jα

is a1. The intervals Iα and Jα therefore both contain a1 and so they must overlap,

and since a1 is the only point in Jα we see that Jα is a sub-interval of Iα. Hence also

133

Jδ is a sub-interval of Iδ. Similarly, by Lemma 5.1.26 the interval Iβ is non-empty.

Since S′ is unambiguous we see that Iδ is empty, and so the only point which can

be in Iβ is bm. This means that the intervals Iβ and Jβ both contain bm and so they

must overlap, and since bm is the only point in Iβ we see that Jβ is a sub-interval of

Iβ. Hence also Jδ is contained in Iδ. The intervals Iδ and Jδ therefore contain each

other and so are equal.

(⇐) Since Iδ = Jδ we see that Jα contains the point a1. Hence S is ambiguous by

Lemma 5.1.25.

This leads to the following result, which gives the desired bound on the length of

minimal ambiguous k-sequences:

Corollary 5.1.28. If S = (σ1, . . . , σn) is a minimal ambiguous overlapping k-sequence

then n ≤ k.

Proof. If n = 2 then the result certainly holds. If n ≥ 3 then let δ = c1 . . . cn+k−3

be the unique permutation such that seqk(δ) = (σ2, . . . , σn−1). Let I be the left-

insertion interval for the pair (σ1, σ2) and J be the right-insertion interval for the

pair (σn−1, σn). Since S is a minimal ambiguous sequence, we have Iδ = Jδ by Theorem

5.1.27. Let K denote the interval Iδ = Jδ. At least one of the endpoints of K is a

point1 in δ, say the point ci. Since K = Iδ, the point ci is the δ-representative of a

point in σ2. Moreover, since I is the left-insertion interval for the pair (σ1, σ2), the

point ci cannot be the δ-representative of the final point of σ2, and so the number

of points to the left of ci is at most k − 2. Similarly since K = Jδ, the point ci is

the δ-representative of a point in σn−1. Since J is the right-insertion interval for the

pair (σn−1, n), the point ci cannot be the δ-representative of the first point of σn−1,

and so the number of points to the right of ci is at most k − 2. Hence the number of

points in δ is at most

(k − 2) + (k − 2) + 1 = 2k − 3.

We know there are exactly n + k − 3 points in δ and so n + k − 3 ≤ 2k − 3, meaning

that n ≤ k.
1As opposed to being either 0 or ∣δ∣ + 1.

134

Finally we have:

Corollary 5.1.29. It is decidable whether G(C) has any ambiguous paths.

Proof. The graph G(C) has ambiguous paths if and only if it has minimal ambiguous

paths. Minimal ambiguous paths in G(C) have bounded length by Corollary 5.1.28,

so there are only finitely paths which can possibly fall into this category. We can

test whether any given path is ambiguous, so the property is decidable.

5.1.4 Deciding atomicity

We recall the following theorem from Chapter 2:

Theorem 2.2.36. Let G be a directed graph which is connected but not strongly

connected. Then P(G) is atomic under the contiguous subpath ordering if and only

if G is a bicycle.

We will therefore explore the impact of ambiguous paths in G(C) when G(C) is a

bicycle.

Definition 5.1.30. A path (p, p1, . . . , pn, q) is called (p, q)−simple if p, q /∈ {p1, . . . , pn}.

We note the following about bicycles:

Observation 5.1.31. Let G be a bicycle and let p and q be any two vertices of G.

Then there is at most one (p, q)-simple path in G.

We can use this to prove the following:

Lemma 5.1.32. Suppose that G(C) is a bicycle and has an ambiguous path of length

l ≥ 1. Then the set of paths in the graph Gk+l−1(C) is not atomic.

Proof. We prove that Gk+l−1(C) is not a bicycle, and the result will follow from

Theorem 2.2.36. Suppose the ambiguous path in question is given by S = (σ1, . . . , σl).
Then in Gk+l−1(C) there are at least two vertices α and β in the set V (S). If in G(C)
there is no vertex τ such that (τ, σ1) is an edge, or if there is no vertex π such that

(σl, π) is an edge, then there is no path in Gk+l−1 from α to β or from β to α. Hence

the graph Gk+l−1(C) is not connected and so is not a bicycle. Suppose then (τ, σ1)

135

and (σl, π) are edges in G(C). In Gk+l−1(C), fix a vertex γ ∈ V (τ, σ1, . . . , σl−1) and

a vertex δ ∈ V (σ2, . . . , σl, π). Then there are two (γ, δ)-simple paths in Gk+l−1(C),
one which goes via α and one which goes via β. Hence Gk+l−1(C) is not a bicycle by

Observation 5.1.31.

Lemma 5.1.33. Let k = maxσ∈B ∣σ∣, let l ≥ k and suppose that S and T are paths in

Gl(C) which have no join and that σ and τ are permutations satisfying seql(σ) = S
and seql(τ) = T . Then σ and τ have no join in C.

Proof. We prove the contrapositive. Suppose there is a permutation π ∈ C which is

a join for σ and τ , so that σ ≤ π and τ ≤ π. Since π ∈ C we see that seql(π) is a path

in Gl(C), and so by Lemma 5.1.10 we have S ≤ P and T ≤ P . Hence P is a join for

S and T .

Lemma 5.1.34. Suppose G(C) has no ambiguous paths and that S and T are paths

in G(C) satisfying S ≤ T . If σ and τ are permutations satisfying seqk(σ) = S and

seqk(τ) = T then σ ≤ τ .

Proof. Write σ = s1 . . . sn and τ = t1 . . . tm, and write T = (τ1, . . . , τm−k+1) so that each

τi = ρ(ti . . . ti+k−1). Let j be such that S = (τj, . . . , τj+n−1). Then (τj, . . . , τj+n−1) =
seqk(tj . . . tj+n−1), and sinceG(C) has no ambiguous paths we have ρ(tj . . . tj+n−1) = σ,

so σ ≤ τ .

This gives us:

Lemma 5.1.35. Suppose that G(C) is a bicycle. Then set C≥k satisfies the join

property if and only if G(C) has no ambiguous paths.

Proof. (⇒) We prove the contrapositive. Suppose that G(C) has an ambiguous path

of length l. By Lemma 5.1.32 the set of paths in the graph Gk+l−1 is not atomic,

and so there are paths S and T in this graph which have no join. If σ and τ are

permutations in C≥k satisfying seqk+l−1(σ) = S and seqk+l−1(τ) = T then by Lemma

5.1.33 the permutations σ and τ have no join in C≥k.

(⇐) Let σ, τ ∈ C≥k and let S = seqk(σ) and T = seqk(τ). Since G(C) is a bicycle,

the paths S and T have a join P , so that S ≤ P and T ≤ P . Since G(C) has no

136

ambiguous paths we have σ ≤ π and τ ≤ π by Lemma 5.1.34. Hence π is a join for σ

and τ .

Finally we have our main theorem:

Theorem 5.1.36. Let B be a finite set of permutations, C = Av(B) and k =
maxσ∈B ∣σ∣. Then C is atomic if and only if:

(i) The graph G(C) is either strongly connected, or is a bicycle and has no am-

biguous paths.

(ii) For each permutation σ ∈ C<k there is a permutation τ ∈ Ck with σ ≤ τ .

Proof. (⇒) We prove the contrapositive. First suppose condition (i) does not hold.

Then by Lemma 5.1.35 the set C≥k does not satisfy the join property, and so neither

does C. Now suppose condition (ii) does not hold. Then there is a permutation

σ ∈ C<k such that for each τ ∈ Ck we have σ /≤ τ. Fix a permutation τ ∈ Ck and

suppose that σ and τ have a join π ∈ C, so that σ ≤ π. Then ∣π∣ ≥ k and so there is a

permutation τ ′ ∈ Ck such that σ ≤ τ ′ and τ ′ ≤ π, which is a contradiction as τ ′ ∈ Ck.

(⇐) Let σ, τ ∈ C. By condition (ii), there are permutations σ′, τ ′ ∈ C≥k such that

σ ≤ σ′ and τ ≤ τ ′. By condition (i) together with Lemmas 5.1.13 and 5.1.35, the set

C≥k satisfies the join property. Hence we can find a join π in C≥k for σ′ and τ ′, so

that σ′ ≤ π and τ ′ ≤ π. We have σ ≤ σ′ ≤ π and τ ≤ τ ′ ≤ π, so σ ≤ π and τ ≤ π by

transitivity. Hence C satisfies the join property and is atomic.

Corollary 5.1.37. Let B be a finite set of permutations. Then it is decidable whether

Av(B) is atomic.

Proof. The set Av(B) is atomic if and only if the two conditions in Theorem 5.1.36

hold. By Lemmas 5.1.13 and 5.1.35, condition (i) is the case if and only if G(C) is

either strongly connected, or is a bicycle and has no ambiguous paths. It is certainly

decidable whether a graph is strongly connected and whether it is a bicycle, and

by Corollary 5.1.29 it is decidable whether G(C) has ambiguous paths. Condition

(ii) is decidable since there are only finitely many permutations in C≤k, so the result

follows.

137

Example 5.1.38. Let B = {231,312,321,1243,2134,3142} and let C = Av(B). Then

maxσ∈B ∣σ∣ = 4 and C4 = {1234,1324,2134,2143}. The graph G(C) is shown below.

2143 1324 2134 1234

We will show that C is atomic. The graph G(C) is clearly a bicycle. By Lemma

5.1.28, any minimal ambiguous paths in G(C) have length at most 4. The table

below lists the paths S of length 4 in G(C) and the corresponding permutation sets

V (S). For ease of legibility we have written α = 2143, β = 1324, γ = 2134 and δ = 1234.

S Members of V (S)
(α,β,α, β) 2143657

(α,β, γ, δ) 2143567

(β,α, β,α) 1325476

(β,α, β, γ) 1324657

(β, γ, δ, δ) 1324567

(γ, δ, δ, δ) 2134567

(δ, δ, δ, δ) 1234567

We see from this table that every path of length 4 in G(C) is unambiguous, so G(C)
has no minimal ambiguous paths and hence no ambiguous paths. Furthermore, for

every permutation σ in the set C<4 = {1,12,21,123,213} we have σ ≤ 2134. Hence C

is atomic by Theorem 5.1.36.

5.2 WQO in the consecutive involvement ordering

5.2.1 Examples of anti-chains

In the factor ordering on words we observed the following method of constructing

an anti-chain: suppose α and β are words and that S is an infinite collection of

138

words such that for all w ∈ S we have α /≤f αSwβ and β /≤f αwβP . Then the set

αSβ is an infinite anti-chain under ≤f . Naturally there is a similar construction for

the consecutive involvement ordering on permutations, as our next two examples

show.

Example 5.2.1. For n ≥ 1 let

σn = δ2 ⊕ αn ⊕ δ2,

and let M = {σn ∣ n ≥ 1}. We show the permutations σ1, σ2 and σ3 below.

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

σ1 σ2 σ3

We claim that the set M is an infinite anti-chain. To see this we note that every

permutation σn in M satisfies both 213 ≤ σn and 231 ≤ σn. If τ < σn then either

τ ≤ σPn or τ ≤ σSn . In the former case we see that 213 /≤ τ and in the latter we see that

231 /≤ τ , meaning that in either case we have τ /∈M .

Example 5.2.2. For n ≥ 1 let

σn = 2413⊖ 21⊖ 21⊖ ⋅ ⋅ ⋅ ⊖ 21
´¹¹¸¹¹¶

n copies of 21

⊖2413,

and let T = {σn ∣ n ≥ 1}. We show the permutations τ1 and τ2 below.

139

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

τ1 τ2

We claim that the set T is an anti-chain. Indeed, if n ≥ 1 and τ < σn then either

35241 /≤ τ or 52413 /≤ τ , and so τ /∈ T .

For the consecutive involvement ordering, there is another type of anti-chain con-

struction. The incomparability of the permutations built from this method depends

on the relationship between their points, and so the construction has no analogue in

the factor ordering on words. We will explore this concept in greater detail later in

the following section, and for now present a simple example.

Example 5.2.3. For n ≥ 1 let

σn = 1⊖ (δn ⊕ 1)

and let J = {σn ∣ n ≥ 1}. We show the permutations σ1, σ2 and σ3 below.

●

●
●

●

●
●

●
●

●
●

●

●

σ1 σ2 σ3

We claim that the set J is an anti-chain. Indeed, if n ≥ 1 and τ < σn then either τ is

a descent or the final point of τ lies above every other point, and in either case we

have τ /∈ J .

140

5.2.2 Deciding WQO

We recall the following result from Chapter 2:

Proposition 2.2.46. Let G be a directed graph. The following are equivalent:

(i) The graph G has no in-out cycles.

(ii) The graph G is a union of bicycles.

(iii) The set P(G) is WQO under the contiguous subpath ordering.

Our approach for deciding WQO for the consecutive involvement ordering will be

as follows. Let C be a finitely-based set of permutations and suppose G(C) can be

expressed as a union of bicycles B1, . . . ,Bn. Let Pi denote the set of permutations

in C arising from each Bi, so that

C =
n

⋃
i=1
Pi.

Then C will be WQO if and only if each Pi is WQO. Our approach will therefore

be to develop a procedure to determine whether each Pi is WQO, by considering

each bicycle Bi. This will rely on an analysis of the ambiguous paths in Bi, and an

understanding of the structure of permutations arising from cycles.

Ambiguous cycles

Our first step will be to prove that if G(C) has a cycle containing an ambiguous

path (an ambiguous cycle) then C is not WQO.

Notation 5.2.4. Hereafter, if S is a cycle with edges

(σ1, σ2), . . . , (σn−1, σn), (σn, σ1)

then we will describe S using the notation S = (σ1, . . . , σn), rather than the notation

S = (σ1, . . . , σn, σ1) which we used before.

Definition 5.2.5. Let S = (s1, . . . , sn) be a sequence, let i ∈ {1, . . . , n} and let l ≥ 1.

We define Si,l to be the sequence of length l whose first element is si and whose

141

remaining elements are the successive elements of S in cyclic order.

Example 5.2.6. Let S = (a, b, c, d). Then S3,8 starts with the 3rd element of S, i.e.

c, and has length 8, so is given by S3,8 = (c, d, a, b, c, d, a, b).

We note the following without proof:

Lemma 5.2.7. Suppose G(C) contains a cycle S = (σ1, . . . , σn). Then for every

l ≥ 1 and for every choice of permutations

τ1 ∈ V (S1,l), . . . , τn ∈ V (Sn,l),

there is a cycle in Gk+l−1 given by (τ1, . . . , τn).

Example 5.2.8. Suppose G(C) contains the cycle S = (σ1, σ2, σ3) where σ1 = 3412,

σ2 = 3124 and σ3 = 2341. Then S1,3 = (σ1, σ2, σ3), S2,3 = (σ2, σ3, σ1) and S3,3 =
(σ3, σ1, σ2). We have:

● V (S1,3) = {τ1} = {452361},

● V (S2,3) = {τ2, τ ′2} = {524613,534612},

● V (S3,3) = {τ3, τ ′3} = {245136,345126},

so G6 will contain the cycles (τ1, τ2, τ3), (τ1, τ ′2, τ3), (τ1, τ2, τ ′3) and (τ1, τ ′2, τ ′3).

We then have:

Lemma 5.2.9. Suppose G(C) contains an ambiguous cycle. Then C is not WQO.

Proof. Suppose that the cycle in question is given by S = (σ1, . . . , σn) and let P

be an ambiguous path starting and ending on S. Suppose that P starts on σi and

has length l, so that P = Si,l. Then in Gk+l−1(C) there are at least two vertices

α,β ∈ V (P). Select vertices

τ1, . . . , τi−1, τi+1, . . . , τn

in Gk+l−1 where each τj ∈ V (Sj,l). By Lemma 5.2.7 we see that

(τ1, . . . , τi−1, α, τi+1, . . . , τn)

142

is a cycle in Gk+l−1(C). This cycle has an entrance (β, τi+1) and an exit (τi−1, β), so

is an in-out cycle. Hence by Proposition 2.2.46 the set of paths in Gk+l−1(C) is not

WQO, and so neither is C.

From this point on, we will therefore focus on graphs G(C) whose cycles do not

admit any ambiguous paths.

Bicycles and juxtapositions

We discussed bicycles in Chapter 2 and in the previous section of the current chapter.

Since we have changed our notation for cycles we will also introduce an adjusted

definition of a bicycle.

Definition 5.2.10. A bicycle is a directed graph B consisting of two simple cycles

S = (σ1, . . . , σn) and E = (π1, . . . , πm), and a path P = (σn, τ1, . . . , τl, π1) from S to

E. We will describe B as an ordered triple B = (S,P,E).

Below is an illustration of a bicycle as described above.

σn

σ1

⋮

σn−1

τ1 ⋯ τl π1

π2

⋮

πm

Hererafter, if α,β are permutations with α ≤ β then we will say α is a factor of β.

If β can be expressed as β = α′γ where ρ(α′) = α then we will say α is a prefix of β,

and if β can be expressed as β = γα′ where ρ(α′) = α then we will say α is a suffix

of β.

We now give some motivation for the work which is to follow. Suppose that G(C)
has no ambiguous cycles and let B = (S,P,E) be a bicycle in G(C). Then we can

find permutations α and γ such that every permutation arising from B is a factor of

a permutation of the form

αi . . . α1βγ1 . . . γj

where αi, . . . , α1 and γ1, . . . , γj are sequences satisfying ρ(αi) = ⋅ ⋅ ⋅ = ρ(α1) = α and

143

ρ(γ1) = ⋅ ⋅ ⋅ = ρ(γj) = γ. Moreover, any sequence γ1 . . . γj as described above can be

constructed by juxtaposing some number of copies of γ next to one another, according

to some fixed rule. This rule will take the form of a permutation φ = γ1γ2 where γ1

and γ2 are sequences satisfying ρ(γ1) = ρ(γ2) = γ. This will enable us to construct

every such sequence γ1 . . . γj, because γ corresponds to a path in a cycle of G(C),
and there will only be one way to juxtapose two copies of γ in C, since G(C) has no

ambiguous cycles. Similarly, to construct sequences αi . . . α1 as described above, we

will use a particular permutation θ = α2α1 where α1 and α2 are sequences satisfying

ρ(α2) = ρ(α1) = α.

Specifically, suppose that S = (σ1, . . . , σn) and E = (π1, . . . , πm), and let k be the

maximum length of a basis element for C. In order to determine the permutations

γ and φ corresponding to E we will let j be minimal such that mj ≥ k and

2mj ≥ l + k − 1.

We will then select γ to be the length mj permutation whose path starts at π1

and φ to be the length 2mj permutation whose path starts at π1. The restriction

2mj ≥ l+k−1 is chosen so that φ will have every permutation from E as a factor, and

the restriction mj ≥ k is chosen so that γ will have π1 as a prefix. The permutation γ

will be called the generator for the cycle E, and φ will be called the γ-juxtaposition

rule. Likewise, in order to determine the permutations α and θ corresponding to the

cycle S we will let i be minimal such that ni ≥ k and 2ni ≥ n + k − 1. We will then

select α to be the length ni permutation whose path ends at σn and θ to be the

length 2ni permutation whose path ends at σn. The permutation α will be called

the generator for the cycle S and θ will be called the α-juxtaposition rule.

Example 5.2.11. Let B = (S,P,E) where S = (4321), P = (4321,4213,2134,1243)
and E = (1243,1423,4123). We show B below.

4321 4213 2134 1243

1423

4123

144

We have k = 4 and the length of E is m = 3, so the smallest j such that mj ≥ k
and 2mj ≥ m + k − 1 is j = 2. Hence the generator for E is γ = 126345 and the

γ-juxtaposition rule is φ = (1,2,12,3,4,11,5,6,10,7,8,9). These are shown below.

●
●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●
●

γ = 126345 φ = (1,2,12,3,4,11,5,6,10,7,8,9)

The length of S is n = 1, so the smallest i such that ni ≥ k and 2ni ≥ n+k−1 is i = 1.

Hence the generator for S is α = 4321 and the α-juxtaposition rule is θ = 87654321.

These are shown below.

●
●
●
●

●
●
●
●
●
●
●
●

α = 4321 θ = 87654321

Intervals

In order to understand the structure of large permutations arising from a given

bicycle B = (S,P,E), we will consider the relative positioning of intervals within

the two copies of γ in φ, and within the two copies of α in θ. We will largely

prove results for the permutations γ and φ arising from E and simply state the

corresponding results for the permutations α and φ arising from S, as the arguments

will be analogous.

145

Definition 5.2.12. Let B = (S,P,E) be a bicycle and write S = (σ1, . . . , σn) and

E = (π1, . . . , πm). A minimal interval I of π1 is unbounded if for every l ≥ 1 there is a

permutation δ whose path starts at π1 such that the δ-representative of the first copy

of I contains at least l points. Likewise, a minimal interval I of σn is unbounded if for

every l ≥ 1 there is a permutation δ whose path ends at σn such that δ-representative

of the final copy of I contains at least l points.

Since π1 is a prefix of γ, we can extend the above definition to minimal intervals of

γ, where a minimal interval I of γ is unbounded if and only if the corresponding

interval of π1 is unbounded. We can also extend this definition to α in an analogous

fashion.

Example 5.2.13. Let S = (3241,2314), P = (2314,2134,1234) and E = (1234) and

consider the bicycle B = (S,P,E). This is shown below.

3241 2314 2134 1234

We first consider the minimal intervals of π1 = 1234. If δ is a permutation whose

path begins at π1 then δ is an ascent αn for some n ≥ 4. We sketch a typical δ below,

where the δ-representatives of the points from π1 are highlighted.

● 1′
● 2′

● 3′
● 4′

●
●
⋅⋅⋅

●

We can see that for any such δ, the δ-representatives of the intervals (0,1), (1,2),
(2,3) and (3,4) in π1 will be empty. On the other hand, for any n ≥ 1 there is clearly

a choice of δ such that the δ-representative of the interval (4,5) in π1 contains at

146

least n points, namely δ = αm+4, so the interval (4,5) is unbounded.

We now consider the minimal intervals of σ2 = (2314). Any permutation δ whose

path ends at σ2 is a suffix of a permutation of the form shown in the sketch below,

where we have highlighted the representatives of the points from σ2.

●
● ⋅⋅⋅

●

●

●

●

●2′

●3′

●1′

●4′

We can see that for any such δ, the δ-representatives of the intervals (0,1), (1,2),
(3,4) and (4,5) in σ2 will be empty. On the other hand, for any n ≥ 1 there is clearly

a choice of δ such that the δ-representative of the interval (2,3) in σ2 contains at least

n points, namely the permutation arising from ⌈n2 ⌉ iterations of S, so the interval

(2,3) is unbounded.

Definition 5.2.14. Let I = (x, y) and J = (z, t) be distinct intervals. We say I

contains J if x ≤ z and t ≤ y, and denote this by I > J . We say I and J have a partial

overlap if either x < z < y < t or z < x < t < y, and denote this by I ∼ J . We will let ≳
denote the union of the relations > and ∼, so that I ≳ J if I contains or has a partial

overlap with J .

Observation 5.2.15. If I = (x, y) and J = (z, t) then I ≳ J if and only if x < t and

z < y.

In the material which follows, for each minimal interval I = (x, y) of γ we will let

I1 = (x1, y1) denote the corresponding interval in γ1 and I2 = (x2, y2) denote the

corresponding interval in γ2.

Lemma 5.2.16. Suppose that B has no ambiguous cycles and let I be a minimal

interval of γ. Then I1 /∼ I2.

147

Proof. Suppose instead that I1 ∼ I2. We will consider only the case where x1 < x2 <
y1 < y2, as the argument for the case where x2 < x1 < y2 < y1 will be analogous. Let

δ = γ′1γ′2γ3 be a permutation in C consisting of three copies of γ, so that ρ(γ′1γ′2) =
ρ(γ′2γ3) = φ. Let x1′, y1′ denote the copies of x, y in γ1′, let x2′, y2′ denote the copies of

x, y in γ2′ and let x3, y3 denote the copies of x, y in γ3. Then x1 < x2 < y1 < y2 implies

x2′ < x3 < y2′ < y3, but then x3 can be chosen to go above or below y′1, as illustrated

in Figure 5.1. This yields two different choices for a permutation consisting of three

copies of γ, contradicting the assumption that G(C) has no ambiguous cycles.

●x′1

●y′1

●x′2

●y′2

●x3

●y3

●x′1

●y′1 ●x′2

●y′2 ●x3

●y3

Figure 5.1: A partial overlap leading to an ambiguous cycle.

Definition 5.2.17. Let I = (x, y) and J = (z, t) be intervals. We say that I lies

below J if y ≤ z, and that I lies above J if x ≥ t.

Lemma 5.2.18. Let I, J be minimal intervals of γ such that I1 /> I2 and I1 ≳ J2.
Then J1 /> J2.

Proof. Write I = (x, y) and J = (z, t). We have I1 ≳ J2, so by Observation 5.2.15 we

have z2 < y1. We will consider only the case where I lies below J , as the argument

for the case where I lies above J will be analogous. Since I lies below J we have

y ≤ z. We will then also have y1 ≤ z1, and combining this with z2 < y1 we get z2 < z1,
so J1 /> J2.

Lemma 5.2.19. Let I, J,K be minimal intervals of γ such that I1 ≳ J2 and J1 ≳K2.

If I lies below (respectively, above) J then J lies below (respectively, above) K.

Proof. We will consider only the case where I lies below J , as the argument for

the case where I lies above J will be analogous. Write I = (x, y), J = (z, t) and

K = (a, b). Using the same argument as in the proof for Lemma 5.2.18, we have

148

z2 < z1. By Lemma 5.2.16 we have J1 /∼ J2, so z2 < z1 implies t2 < z1. Since J1 ≳ K2,

we have z1 < b2 by Observation 5.2.15. Combining t2 < z1 and z1 < b2 we get t2 < b2,
so also t < b. Since a is directly below b in γ we get t ≤ a, so J lies below K.

Definition 5.2.20. Let A = (I(1), . . . , I(n)) be a sequence of intervals. We say A is

increasing if I(i) lies below I(i+1) for all i ∈ {1, . . . , n − 1}, and decreasing if I(i) lies

above I(i+1) for all i ∈ {1, . . . , n − 1}. We say A is monotone if it is either increasing

or decreasing.

Lemma 5.2.21. Let A = (I(1), . . . , I(n)) be a sequence of minimal intervals from γ.

Suppose that I
(1)
1 /> I

(1)
2 and that I

(i)
1 ≳ I

(i+1)
2 for all i ∈ {1, . . . , n − 1}. Then the

sequence A is monotone.

Proof. We proceed by induction on n. If n = 2 then the result holds from Lemma

5.2.16 and if n = 3 then the result holds from Lemma 5.2.19. Now let n ≥ 4

and suppose the result holds for all such sequences of length n − 1. Clearly B =
(I(1), . . . , I(n−1)) is such a sequence. From Lemma 5.2.18 we have that I

(2)
1 /> I(2)2 , so

C = (I(2), . . . , I(n)) is also such a sequence. By induction the sequences B and C are

both monotone. If I(2) lies below I(3) then B and C are both increasing, so A is also

increasing. Similarly, if I(2) lies above I(3) then B and C are both decreasing, so A

is also decreasing. Hence in either case A is monotone.

Lemma 5.2.22. Let I be a minimal interval of γ. Then I is unbounded if and only

if I1 > I2.

Proof. (⇒) We prove the contrapositive. Suppose that I1 /> I2. Let δ be a permuta-

tion whose path starts at π1 and let I ′ denote the δ-representative of I. Then every

point in I ′ arises from a sequence A = (I(1), . . . , I(n)) of minimal intervals from γ

where I(1) = I and where I
(i)
1 ≳ I(i+1)2 for all i ∈ {1, . . . , n − 1}. We have I1 /> I2, so by

Lemma 5.2.21 every such sequence is monotone, and therefore has bounded length.

Hence there is a bound on the number of such sequences, and therefore a bound on

the number of points which lie in I ′.

(⇐) Suppose that I1 > I2. Then for any n it is possible to construct a permutation δ

consisting of n copies of γ given by γ′1, . . . , γ
′
n where each γ′i has a copy of I given by

I ′i . We will then have I ′1 > ⋅ ⋅ ⋅ > I ′n so the interval I ′1 contains at least n points.

149

Definition 5.2.23. Let B = (S,P,E) be a bicycle, write E = (π1, . . . , πm) and let

I be a minimal interval of π1. Suppose there is a path Q = (β1, . . . , βl, π1) and a

permutation δ corresponding to Q such that δI overlaps with the δ-representative of

the right-insertion interval for the pair (β1, β2), or for (β1, π1) if l = 1. Then we say

that I is inserted into on the left, and that Q is a left-insertion path for I.

We note that since the length of a minimal ambiguous path at most k, a minimal

interval of π1 will be inserted into on the left if and only if it has a left-insertion path

of length at most k. We also make the following analogous definition:

Definition 5.2.24. Let B = (S,P,E) be a bicycle, write S = (σ1, . . . , σn) and let

I be a minimal interval of σn. Suppose there is a path Q = (σn, β1, . . . , βl) and a

permutation δ corresponding to Q such that δI overlaps with the δ representative of

the left-insertion interval for the pair (βl−1, βl), or for (σn, β1) if l = 1. Then we say

that I is inserted into on the right, and that Q is a right-insertion path for I.

Again, a minimal interval of σn will be inserted into on the right if and only it has

a right-insertion path of length at most k.

Lemma 5.2.25. Let B = (S,P,E) be a bicycle and write E = (π1, . . . , πm). Suppose

π1 has an unbounded interval which is inserted into on the left. Then C contains an

infinite anti-chain.

Proof. Let I ′ be the interval in question, and let I denote the corresponding interval

in γ. Since I ′ is unbounded, so too is I. Let Q = (β1, . . . , βl, π1) be a left-insertion

path for I ′. Let τ1, τ2, . . . be an infinite sequence of permutations such that each τi

traverses the path Q′ = (β2, . . . , βl) and then features i copies of γ. Then each τi

contains i nested copies of the interval I which we can label as

Ii,1 > Ii,2 > ⋅ ⋅ ⋅ > Ii,i.

We will consider only the case where I ≠ (k, k + 1), as the argument for the case

where I = (k, k + 1) will be analogous, since then I ≠ (0,1). For each i let τ ′i be the

permutation obtained from τi by inserting a point directly above the second endpoint

of Ii,i. This is sketched in Figure 5.2. We will show that the sequence τ ′1, τ
′
2, . . . is an

150

infinite anti-chain. Suppose instead that τ ′i < τ ′j for some i, j. Then by Lemma 5.1.10

we have seqk(τ ′i) < seqk(τ ′j). Both seqk(τ ′i) and seqk(τ ′j) have the sequence Q′ as a

prefix, and moreover this is the only occurrence of Q′ in either of these sequences,

so seqk(τ ′i) must be a prefix of seqk(τ ′j). Hence, as permutations, τ ′i must also be

a prefix of τ ′j . However, the first point of τ ′i lies above the second endpoint p of

Ii,i whereas the first point of τ ′j lies below the second endpoint of q of Ij,i. Write

τ ′i = s1 . . . sN and τ ′j = t1 . . . tM and let l be such that sl = p and tl = q. Then s1 > sl
and t1 < tl, so τ ′i is not a prefix of τ ′j , which is a contradiction.

●
● x′1

● y′1

●
● x′2

● y′2
⋯
●
● x′i
● y′i ●

●
● x′′1

● y′′1

●
● x′′2

● y′′2
⋯
●
●x′′i
● y′′i

τi τ ′i

Figure 5.2: Inserting a point into τi to construct τ ′i .

By symmetry with the previous lemma we can state the following:

Lemma 5.2.26. Let B = (S,P,E) be a bicycle and write S = (σ1, . . . , σn). Suppose

σn has an unbounded interval which is inserted into on the right. Then C contains

an infinite anti-chain.

In the work which follows we will be considering permutations of the form

σ = α′m . . . α′1βγ′1 . . . γ′n

arising from a particular bicycle B. We wish to be able to refer to the positions

of σ in terms of the various copies of α and γ, so that we can refer to a point in

position p and know that it means, say, the point in position 2 of γ′3. We can then

make statements along the lines of “for all positions p and for all permutations σ

arising from B...” without referring to the various permutations separately. We will

151

therefore adopt the convention of referring to the positions of σ as follows:

• The point in position j of α′i will be said to be in position (−i, j) of σ.

• The point in position j of β will be said to be in position (0, j) of σ.

• The point in position j of γ′i will be said to be in position (i, j) of σ.

These positions will then be ordered in lexicographic order, i.e. if p = (i1, j1) and

q = (i2, j2) are positions then p < q either if i1 < i2 or if i1 = i2 and j1 < j2.

Lemma 5.2.27. Let B = (S,P,E) be a bicycle and let γ be the generator for E.

Suppose that the first permutation in E has no unbounded interval which is inserted

into on the left. Then there is an integer N ≥ 1 such that for every point x of γ, for

every position p < (1,1) and for every permutation σ arising from B, either (σ)p < xn
for all n ≥ N or (σ)p > xn for all n ≥ N .

Proof. We prove the contrapositive. Suppose that for every N ≥ 1 there is a point

x of γ, a position p < (1,1) and a permutation σ arising from B such that either

xN < (σ)p < xN+1 or xN > (σ)p > xN+1. Then one of the minimal intervals of γ having

x as an endpoint can contain arbitrarily many copies of x and is hence unbounded,

and is inserted into on the left by the point in position p.

Intuitively, the above lemma tells us that given a particular position p and a point

x in γ, after a certain point all copies of x will be below the point in position p or

they will all be above it. By symmetry we can state the following:

Lemma 5.2.28. Let B = (S,P,E) be a bicycle and let α be the generator for S.

Suppose that the last permutation in S has no unbounded interval which is inserted

into on the right. Then there is an integer M ≥ 1 such that for every point x of α,

for position p > (−1, k) and for every permutation σ arising from B, either (σ)p < xm
for all m ≥M or (σ)p > xm for all m ≥M .

In the proof of the following lemma we will write σ ≅ τ to mean that σ and τ are

order isomorphic.

Lemma 5.2.29. Suppose that G(C) has no ambiguous cycles and let B = (S,P,E)
be a bicycle in G(C). Suppose that the first permutation in E has no unbounded

152

interval which is inserted into on the left and that the last permutation in S has no

unbounded interval which is inserted into on the right. Then the set of permutations

arising from B is WQO.

Proof. Let X be an infinite anti-chain arising from B, and let N and M be as in

the statements of Lemmas 5.2.27 and 5.2.28 respectively. There are three cases to

consider, which are:

(i) There are permutations in X with arbitrarily many copies of both α and γ.

(ii) There is a bound on the number of copies of α which a permutation in X has.

(iii) There is a bound on the number of copies of γ which a permutation in X has.

We will consider only case (i) as the others will be analogous. Since any infinite subset

of X will also be an infinite anti-chain, we can assume that every permutation in X

has at least N copies of α and at least M copies of γ. Every permutation σ ∈X has

a factor of the form

α′M . . . α′1βγ
′
1 . . . γ

′
N

where ρ(α′M) = ⋅ ⋅ ⋅ = ρ(α1) = α and ρ(γ′1) = ⋅ ⋅ ⋅ = ρ(γ′N) = γ. We will call this the core

factor of σ, and denote it by σC . Since σC is a finite sequence of a fixed length, we

may assume that σC ≅ τC for all σ, τ ∈X. Write X = {σ1, σ2, . . .} and for i ≥ 1 write

σi = δiσiCεi

Neither of the sequences ∣δ1∣, ∣δ2∣, . . . or ∣ε1∣, ∣ε2∣, . . . can be strictly decreasing, so we

can find i, j such that ∣δi∣ < ∣δj ∣ and ∣εi∣ < ∣εj ∣. Our goal is prove that σi < σj, and so

X is not an anti-chain. Let δ′j denote the length ∣δi∣ suffix of δj, let ε′j denote the

length ∣εi∣ prefix of δj and let

σ′j = δ′jσCj ε′j.

We will prove that σi ≅ σj ′. For each point a of σi we will let a′ denote the point in

the corresponding position of σj. Hence we wish to prove that a < b if and only if

a′ < b′. We note that δi ≅ δ′j since S is unambiguous, that σCi ≅ σCj by our choice of

X and that εi ≅ ε′j since E is unambiguous. Hence if a, b are both in δi, both in σCi

153

or both in εi then a < b if and only if a′ < b′. Now suppose that a is in δi and b is in

σCi . Let x be the point of α such that a = xm for some m ≥M . We than have:

a < b⇔ xM < b⇔ x′M < b′⇔ a′ < b′.

The argument for the case where a is in σCi and b is in εi is analogous. Finally

suppose that a is in δi and b is in εi. Let x be the point of α such that a = xm for

some m ≥M and let y be the point of γ such that b = yn for some n ≥ N . Then let p

be the position of x and q be the position of y. Then p < (1,1) and q > (−1, k) so the

points in positions p and q are in a fixed position relative to one another for every

permutation arising from B, hence a < b if and only if a′ < b′.

Below is our main theorem on WQO for the consecutive involvement ordering.

Theorem 5.2.30. Let C be a set of permutations which is finitely-based under the

consecutive involvement ordering. Then C is WQO if and only if:

(i) The graph G(C) has no in-out cycles.

(ii) The graph G(C) has no ambiguous cycles.

(iii) For every bicycle B = (S,P,E) in G(C), the last permutation in S has no

unbounded interval which is inserted into on the right, and the first permutation

in E has no unbounded interval which is inserted into on the left.

Proof. This is a combination of Lemmas 5.2.9, 5.2.25, 5.2.26 and 5.2.29, together

with Proposition 2.2.46.

Corollary 5.2.31. Let C be a set of permutations which is finitely-based under the

consecutive involvement ordering. Then it is decidable whether C is WQO.

Proof. It is certainly decidable whether G(C) has no in-out cycles, and it is decidable

whether G(C) has ambiguous cycles by Corollary 5.1.29. It is decidable whether a

given interval is unbounded by Lemma 5.2.22, and whether it is inserted into since

minimal ambiguous sequences have bounded length. Hence the result follows from

Theorem 5.2.30.

154

Bibliography

[1] E. Aichinger, P. Mayr, and R. McKenzie. On the Number of Finite Alge-

braic Structures. Journal of the European Mathematical Society, 16(8):1673–1686,

2013.

[2] M. Atkinson, M. Murphy and N. Ruškuc. Partially well-ordered closed sets of

permutations. Order, (19):101–113, 2002.

[3] A. Atminas, V. Lozin and M. Moshkov. Deciding WQO for Factorial Languages.

Lecture Notes in Computer Science, 7810:68–79, 2013.

[4] S. Avgustinovich and S. Kitaev. On uniquely k-determined permutations. Dis-

crete Math, 308:1500-1507, 2008.

[5] M. Bóna. Combinatorics of Permutations. CRC Press, 2004.

[6] R. Brignall, N. Ruškuc and V. Vatter. Simple permutations: decidability and

unavoidable substructures. Theoretical Computer Science, 391:150–163, 2008.

[7] G. Cherlin. Forbidden substructures and combinatorial dichotomies: WQO and

universality. Discrete Mathematics, 311(15):1534–1584, 2011.

[8] G. Cherlin and B. Latka. Minimal antichains in well-founded quasi-orders with

an application to tournaments. Journal of Combinatorial Theory Series B,

80(2):258–276, 2000.

[9] N. de Bruijn. A Combinatorial Problem. Koninklijke Nederlandse Akademie V.

Wetenschappen, 49:758-764, 1946.

155

[10] G. Ding. Subgraphs and well-quasi-ordering. Journal of Graph Theory,

16(5):489-502, 1992.

[11] A. Ehrenfeucht, D. Haussler and G. Rozenberg. On Regularity of Context-Free

Languages. Theoretical Computer Science, 27:311–332, 1983.

[12] S. Elizalde. A survey of consecutive patterns in permutations. Recent trends in

combinatorics, IMA Volume in Mathematics and its Applications, (159):601–618,

2016.

[13] T. Griffiths. The Unsolvability of the Equivalence Problem for Λ-Free Non-

deterministic Generalized Machines. Journal of the Association for Computing

Machinery, 15:409–413, 1968.

[14] L. Haines. On free monoids partially ordered by embedding. Journal of Combi-

natorial Theory, 6:94–98, 1969.

[15] G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the

London Mathematical Society, 2(7):326–336, 1952.

[16] N. Hine and J. Oxley. When excluding one matroid prevents infinite antichains.

Advances in Applied Mathematics, 45(1):74–76, 2010.

[17] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[18] S. Huczynska and N. Ruškuc. Well quasi-order in combinatorics: embeddings

and homomorphisms. Surveys in Combinatorics, London Mathematical Society

Lecture Series Notes, 424:261–293, 2015.

[19] J. Johnson. Rational Equivalence Relations. Theoretical Computer Science,.

47:37–60, 1986.

[20] D. Jurafsky and J. Martin. Speech and Language Processing. Prentice Hall, 2000.

[21] S. Kitaev. Patterns in Permutations and Words. Monographs in Theoretical

Computer Science, Springer, 2011.

156

[22] S. Kleene. Representation of Events in Nerve Nets and Finite Automata. Au-

tomata Studies, 3–42, 1951.

[23] N. Korpelainen and V. Lozin. Two forbidden induced subgraphs and well-quasi-

ordering. Discrete Mathematics, 311:1813–1822, 2011.

[24] J. Kruskal. Well-quasi-ordering, the Tree theorem, and Vazsonyi’s conjecture.

Transactions of the American Mathematical Society, 95(2):210–255, 1960.

[25] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta

Mathematicae, 15:271–283, 1930.

[26] M. McDevitt. A Class of Rational Relations Generalising the Subword Order.

Journal of Automata, Languages and Combinatorics, 23(4):361–386, 2018.

[27] M. Murphy. Restricted permutations, anti-chains, atomic sets and stack sorting

(PhD thesis). University of St Andrews, 2002.

[28] C. Nash-Williams. On Well-Quasi-Ordering Finite Trees. Mathematical Proceed-

ings of the Cambridge Philosophical Society, 59(4):833–835, 1963.

[29] A. Nerode. Linear Automaton Transformations. Proceedings of the American

Mathematical Society 9:541–544, 1958.

[30] M. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125, 1959.

[31] N. Robertson and P. Seymour. Graph Minors XX: Wagner’s conjecture. Journal

of Combinatorial Theory Series B, 92(2):325–357, 2004.

[32] E. Steingr̀ımsson. Some open problems on permutation patterns. Surveys in

Combinatorics, London Mathematical Society Lecture Notes Series, 409:239–263,

2013.

[33] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische An-

nalen,s 114:570–590, 1937.

157

