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Abstract
Marine fisheries are a significant source of protein for many human populations. In some locations, however, destructive
fishing practices have negatively impacted the quality of fish habitat and reduced the habitat’s ability to sustain fish stocks.
Improving the management of stocks that can be potentially damaged by harvesting requires improved understanding of the
spatiotemporal dynamics of the stocks, their habitats, and the behavior of the harvesters. We develop a mathematical model
for both a fish stock as well as its habitat quality. Both are modeled using nonlinear, parabolic partial differential equations,
and density dependence in the growth rate of the fish stock depends upon habitat quality. The objective is to find the dynamic
distribution of harvest effort that maximizes the discounted net present value of the coupled fishery-habitat system. The
value derives both from extraction (and sale) of the stock and the provisioning of ecosystem services by the habitat. Optimal
harvesting strategies are found numerically. The results suggest that no-take marine reserves can be an important part of the
optimal strategy and that their spatiotemporal configuration depends both on the vulnerability of habitat to fishing damage
and on the timescale of habitat recovery when fishing ceases.

Keywords Fisheries bioeconomics · Marine protected areas · Optimal control · Destructive fishing ·
Ecosystem-based management

Introduction

It is not uncommon for modern fishing gear to impact the
habitats of the fish being harvested. Trawls and dredges—
fishing gear that is dragged along the ocean’s floor—can be
particularly harmful to the benthic habitat upon which many
commercially valuable species rely. Indeed the effects of
these gears in some locations have been compared to forest
clearcutting (Watling and Norse 1998). These effects are
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well known; reviews of fishing gear impacts can be found
in papers by Dayton et al. (1995) and Chuenpagdee et al.
(2003) and Grabowski et al. (2014). Recent analyses suggest
that the extent of trawling, particularly in the deep sea, has
been underestimated (Victorero et al. 2018).

Given the collateral damage that fishing may impose on
essential habitat, it is reasonable to ask whether marine re-
serves—areas that are closed to fishing—might be a useful
part of management. After all, reserves would protect both
stocks and their habitats. Of course, closures might also
negatively affect yields or rents, by closing off a portion of
the stock to harvest as well as by changing the distribution
of harvesters (Kaiser et al. 2002; Kellner et al. 2007). The
analysis of bioeconomic models is useful for understanding
this tradeoff.

Spatially explicit models are necessary to fully address
the question of marine reserve utility, since reserves
are a form of spatial management (Herrera and Lenhart
2010). Previous analyses of spatial models (that ignore
the potential for habitat damage) have found that reserves
may be necessary as part of a strategy designed to
maximize yield or rent depending on the ecological and
economic circumstances (e.g., Neubert 2003; Joshi et al.
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2009; Ding and Lenhart 2009; Kelly et al. 2015). Building
on these results, Moeller and Neubert (2013, 2015) have
analyzed spatially explicit models with the object of
evaluating the role of marine reserves in optimal (i.e., rent
maximizing) harvesting when fishing has negative habitat
effects. In Moeller and Neubert (2015), they analyzed a
two-patch system and showed that reserves were necessary
to maximize sustainable profit when dispersal between the
patches was sufficiently high and habitat was especially
vulnerable to damage. They also showed that spatially
heterogeneity was not necessary for the result to hold. In
Moeller and Neubert (2013), fishing had one of two negative
effects: it either reduced the intrinsic growth rate of the
fish or increased the effects of density dependence. They
found that in the latter case, when fishing intensified the
negative effects of density dependence, marine reserves
were optimal under similar circumstances (that is, when
habitat was vulnerable to fishing damage).

Neither of these models explicitly track the amount
or quality of habitat. Rather, they assume that changes
in fishing effort directly and instantaneously change the
vital rates of the fish. However, in reality, habitat may
recover slowly when harvesting is stopped. In addition,
neither model accounted for the other benefits that habitat
might provide (e.g., existence values or ecosystem services).
In this article, we will construct a system of two
reaction-diffusion partial differential equations (PDEs) that
incorporates the deleterious effects of harvesting on habitat,
and that explicitly accounts for habitat dynamics. It also will
incorporate an existence value for the habitat to account,
for example, for non-extractive ecosystem services that
intact habitat may provide. Using that model, we derive a
harvesting strategy that maximizes the net present value of
the stock and explore the circumstances under which marine
reserves are part of that optimal strategy.

In “Model and objective functional,” we formulate the
coupled stock-habitat model and describe the optimization
problem. In “Derivation of the optimality system,”we derive
the optimality system—partial differential equations and asso-
ciated boundary conditions that must be satisfied by the opti-
mal state and adjoint variables with the corresponding optimal
control characterization. We solve the optimality system
numerically in “Numerical simulations” for several scenar-
ios and show how habitat dynamics and habitat vulnerability
(i.e., the degree to which fishing degrades habitat) affect the
optimal harvest. We finish with a brief discussion.

Model and objective functional

Following Joshi et al. (2009) and Ding and Lenhart (2009)
and Kelly et al. (2015), we consider a stock living in an one-
dimensional spatial domain � over the time interval [0, T ].

At the initial time (t = 0), we assume that the stock density,
u(x, t), is known. i.e.,

u(x, 0) = u0(x) (1)

on � × (t = 0). For t > 0, we assume that changes to the
stock density derive from four processes: population growth
due to reproduction and natural mortality (as described by
the function f ), spatial movement in the form of diffusion
(with strictly positive diffusion coefficient a1(x, t)) and/or
advection (with advection speed b1(x, t)), and harvesting at
a rate that is proportional to the effort h(x, t). Combining
these processes gives the parabolic partial differential
equation

ut = f (u, k) + (a1(x, t)ux)x − b1(x, t)ux − ch(x, t)u (2)

on Q = � × (0, T ). The “catchability coefficient” c

measures the effect of a unit of effort on fishing mortality;
without loss of generality, we take c = 1 for the remainder
of the paper. We imagine that the stock cannot survive
outside of the habitat and so adopt the Dirichlet boundary
condition

u(x, t) = 0 on ∂� × (0, T ). (3)

An important component of model (2) is the nonlinear
growth term f (u, k). This term depends both on the
stock density, u(x, t), and on k(x, t), which we take as a
measure of habitat quality. The function k(x, t) increases
with improved habitat quality. Therefore, larger values of
k(x, t) reduce the effects of density-dependent mortality
and increase the maximum density that the stock can attain
at location x. These effects can be captured by assuming
that f (u, k) has the form

f (u, k) = r1u

(
1 − u

M + k

)
, (4)

where r1 is the intrinsic growth rate of the stock (Fogarty
2005; Foley et al. 2012). We will require k(x, t) to be
nonnegative. In the absence of harvesting or dispersal, the
stock would grow to density M when k = 0, so we think of
M as the carrying capacity for the stock when its habitat is
most degraded.

Next, we must account for the dynamics of habitat quality
k(x, t), which we would like to have certain properties. We
expect that (1) habitat quality is nonnegative; (2) habitat
quality will, in the absence of harvesting, increase up to a
limit; (3) if habitat quality is low in some location, it can be
“filled in” by diffusive spread from adjacent locations; and
(4) habitat quality is reduced at a rate that is proportional
to the fishing effort employed at that location. A model that
has these properties is similar to the PDE (2):

kt = g(k) + (a2(x, t)kx)x − b2(x, t)kx − σkh(x, t), (5)
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which holds on on � × (0, T ), with boundary and initial
conditions

k(x, t) = 0 on ∂� × (0, T ), and (6)

k(x, 0) = k0(x) on � × (t = 0). (7)

Here, a2(x, t) (strictly positive) and b2(x, t) are the
diffusion and advection coefficients for habitat quality. We
assume nonlinear growth of habitat quality with g(k) given
by

g(k) = r2k

(
1 − k

K

)
. (8)

The negative effect of harvesting on habitat quality is
given by the term σkh(x, t); the parameter σ measures
the vulnerability of habitat to harvesting. We expect the
diffusion coefficient to be smaller for habitat quality k than
for the stock u. For the reader’s convenience, we have
summarized the parameters, and their units, in Table 1.

We now take the view of a social planner whose objective
is to maximize the present value of the stream of future rent.
Rent comes from selling the harvest (at a fixed unit price
PN ) less the costs of effort, and from the existence value of

quality habitat, which we take as constant PK . The cost of
effort, in turn, has two components. The first can be thought
of as the wage that must be paid to harvesters W0. The
second is a congestion cost W1h that accounts for fishermen
getting in each other’s way when effort is concentrated in
space. We assume that W0 ≥ 0 and W1 > 0.

If rent is discounted at the rate δ, then the net present
value is

J (h) =
∫ T

0

∫
�

e−δt [PNhu − (W0 + W1h)h + PKk] dx dt .

(9)

The social planner seeks to maximize J (h) by choosing the
harvest effort in space and time from the control set

H = {h(x, t) ∈ L∞(Q)| 0 ≤ h(x, t) ≤ hmax}. (10)

The optimal harvest h∗(x, t) thus satisfies

J (h∗) = max
h∈H

J (h). (11)

Table 1 Variables and parameters for models (1)–(11) in the special case of a linear habitat

Variables Description Units

x Space km

t Time Year

u(x, t) Stock population density Tonnes km−1

k(x, t) Habitat quality Tonnes km−1

h(x, t) Fishing effort Vessel days km−1 year−1

Parameters Simulation

Values

c Catchability coefficient km (vessel day)−1 1

hmax Maximum fishing effort vessel days km−1 year−1 1

a1(x, t) Diffusion coefficient, stock population density km2 year−1 1

a2(x, t) Diffusion coefficient, habitat quality km2 year−1 0.1

b1(x, t) Advection coefficient, fish population density km year−1 0

b2(x, t) Advection coefficient, habitat quality km year−1 0

r1 Growth rate of fish stock Year−1 1

r2 Growth rate of habitat quality Year−1 0.5

σ Habitat vulnerability km (vessel day)−1 0.5

K Maximum habitat quality Tonnes km−1 1

M Carrying capacity in most degraded habitat Tonnes km−1 0.01

T Final time Year 4

L Habitat length km 4

δ Discount rate Year−1 0.2

PN Yield value Dollars tonne−1 1

W0 Cost of effort Dollars (vessel day)−1 0.01

W1 Congestion cost Dollars (vessel day)−2 km year 0.001

PK Habitat quality value Dollars tonne−1 year−1 [0, 10]
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Derivation of the optimality system

Our state system consists of the PDEs for u and k and
their corresponding initial and boundary conditions. Given
a control h, there exists a unique weak solution to the
state system in L∞(Q) ∩ L2(0, T : H 1

0 (�)) with ut , kt in
L2(0, T : H−1(�)) using the standard techniques (Kelly
et al. 2015; De Silva et al. 2017). The solutions of the state
system satisfy a priori estimates in our weak solution space,
which leads to the existence of an optimal control (using
compactness results from Simon (1987)).

To characterize an optimal control, we need to differen-
tiate the map h → J (h) with respect to the control. Since
the state solutions depend on the control h and are explic-
itly in the integrand of J , we also must differentiate the
map h → (u, k), and the derivatives of this control-to-states
map are called the sensitivity functions. The limits in these
derivative calculations can be justified by the appropriate a
priori estimates (Evans 2010). We show the framework for
finding the sensitivity functions and then the corresponding
adjoint functions needed to characterize an optimal control
(Lenhart and Workman 2007; De Silva et al. 2017).

Sensitivity functions

To derive the optimality system, we first differentiate the
map h → (u, k), and those derivatives are the sensitivity
functions, which satisfy a linearized version of the state
system. Denote an optimal control by h∗, the sensitivity
functions are defined by the limits,

lim
ε→0

u(h∗ + εl) − u(h∗)
ε

= � (12)

and

lim
ε→0

k(h∗ + εl) − k(h∗)
ε

= �, (13)

where hε = h∗ + εl is another control in H . Note that we
are using directional derivatives in the direction l. The state
systems corresponding the controls hε and h∗ are given by

uε
t = f (uε, kε) + (a1(x, t)uε

x)x − b1(x, t)uε
x − uε(h∗+ εl)

(14)

kε
t = g(kε) + (a2(x, t)kε

x)x − b2(x, t)kε
x − σkε(h∗ + εl)

(15)

u∗
t = f (u∗, k∗) + (a1(x, t)u∗

x)x − b1(x, t)u∗
x − u∗h∗ (16)

k∗
t = g(k∗) + (a2(x, t)kε

x)x − b2(x, t)kε
x − σk∗h∗. (17)

We form difference quotients, dividing by ε, to obtain the
following PDE:(

uε
t − u∗

t

ε

)
= f (uε, kε) − f (u∗, k∗)

ε

+
(

a1(x, t)

(
uε

x − u∗
x

ε

))
x

− b1(x, t)

(
uε

x − u∗
x

ε

)

−
(

uε − u∗

ε

)
h∗ − uεl (18)

Extra consideration is required for the growth terms for
the population density of the stock and for the habitat
quality. For the growth term of the stock population density,
by adding and subtracting appropriate terms, we have(

uε
t − u∗

t

ε

)
=

(
uε − u∗

ε

)(
f (uε, kε) − f (u∗, kε)

uε − u∗

)

+
(

f (u∗, kε) − f (u∗, k∗)
kε − k∗

) (
kε − k∗

ε

)

+
(

a1(x, t)

(
uε

x − u∗
x

ε

))
x

− b1(x, t)

(
uε

x − u∗
x

ε

)

−
(

uε − u∗

ε

)
h∗ − uεl. (19)

Similarly for the habitat quality, the following PDE results
for the difference quotients:(

kε
t − k∗

t

ε

)
= g(kε) − g(k∗)

kε − k∗

(
kε − k∗

ε

)
+

(
a2(x, t)

(
kε
x − k∗

x

ε

))
x

− b2(x, t)

(
kε
x − k∗

x

ε

)
−

σ

(
kε − k∗

ε

)
h∗ − σkεl. (20)

By taking the limits as ε → 0, we have the PDE system
with corresponding boundary and initial conditions for the
sensitivity functions:

�t − fu(u
∗, k∗)�−

fk(u
∗, k∗)�−(a1�x)x +b1�x +�h∗ = −u∗l, (21)

with

�(x, t) = 0 ∂� × (0, T ) (22)

�(x, 0) = 0 � × (t = 0) (23)

and

�t − gk(k
∗)� − (a2�x)x + b2�x + σ�h∗ = −σk∗l (24)

with

�(x, t) = 0 on ∂� × (0, T ), (25)

and

�(x, 0) = 0 on � × (t = 0), (26)

where fu, fk , and gk are partial derivatives with respect to
u and k.
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Adjoint Functions

We use the operators in the sensitivity PDEs (21) and (24)
to find the adjoint functions, which we use to characterize
the optimal control. We rewrite the sensitivity PDEs as

L1� = −u∗l (27)

L2� = −σk∗l, (28)

where

L1� = �t − fu(u
∗, k∗)�

−fk(u
∗, k∗)� − (a1�x)x + b1�x + �h∗ (29)

and

L2� = �t − gk(k
∗)� − (a2�x)x + b2�x + σ�h∗. (30)

We rewrite the sensitivity system in Eqs. 27 and 28 as

L

(
�

�

)
=

(
L1�

L2�

)
+ B

(
�

�

)
=

( −u∗l
−σk∗l

)
, (31)

where

L1� = �t − (a1�x)x + b1�x (32)

L2� = �t − (a2�x)x + b2�x, (33)

and

B =
( −fu(u

∗, k∗) + h∗ −fk(u
∗, k∗)

0 −gk(k
∗) + σh∗

)
. (34)

The adjoint operators L∗
i are related to sensitivity

operators Li by L2 inner products in our weak solution
space, formally written as

< p,L1� > + < q, L2� >=
< L∗

1p,� > + < L∗
2q, � > (35)

we use L1� and L2� to get expressions for L∗
1p and

L∗
2q, the adjoint operators, where p and q are the

adjoint variables. By integration by parts on the sensitivity
operators, we obtain the adjoint operators,

L ∗
(

p

q

)
+ δ

(
p

q

)
=

(
PNh

PK

)
, (36)

where

L ∗
(

p

q

)
=

( −pt − (a1px)x − (b1p)x
−qt − (a2qx)x − (b2q)x

)
+BT

(
p

q

)
(37)

with

BT =
( −fu(u

∗, k∗) + h∗ 0
−fk(u

∗, k∗) −gk(k
∗) + σh∗

)
. (38)

Note that the δ terms will be used in the differentiation of J

with respect to h and take into account the discount factor
in J . Lastly, we have the transversality conditions,

p(x, T ) = 0 and q(x, T ) = 0, (39)

and the boundary conditions,

p(x, t) = 0 and q(x, t) = 0 on ∂� × (0, T ). (40)

Optimal control characterization

We now use the sensitivity and adjoint PDEs to find
the optimal control characterization. We differentiate our
objective functional J at h∗ in the direction l. Since J is
maximized at h∗, we obtain

0 ≥ lim
ε→0+

J (h∗ + εl) − J (h∗)
ε

(41)

= lim
ε→0+

∫
Q

e−δt

[
PNh∗

(
uε − u

ε

)
+ PK

(
kε − k∗

ε

)

+ (
PNu∗ − W0 − 2h∗W1 + εl

)
l

]
dx dt

(42)

=
∫

Q

e−δt

[(
� �

)·
(

PNh∗
PK

)

+ (
PNu∗ − W0 − 2h∗W1

)
l

]
dx dt . (43)

Then, using the weak form of the sensitivity and adjoint
PDEs, we obtain

0 ≥
∫

Q

e−δt

[(
� �

)·
(

PNh∗
PK

)

+(
PNu∗−W0−2h∗W1

)]
dx dt (44)

≥
∫

Q

e−δt

[(
� �

) ·
(

L ∗
(

p

q

)
+ δ

(
p

q

))

+ (
PNu∗ − W0 − 2h∗W1

)
l

]
dx dt (45)

=
∫

Q

e−δt

[(
� �

)·
((

L1p

L2q

)
+δ

(
p

q

)
+BT

(
p

q

))

+ (
PNu∗ − W0 − 2h∗W1

)
l

]
dx dt (46)

=
∫

Q

e−δt

[(
p q

)·L
(

�

�

)

+(
PNu∗−W0−2h∗W1

)
l

]
dx dt (47)

=
∫

Q

e−δt
[(−pu∗ − qσk∗)

+ (
PNu∗−W0−2h∗W1

)]
l(x, t) dx dt (48)
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Using this with appropriate variations l and the required
bounds on h∗, we obtain our desired optimal control
characterization,

h∗(x, t) =
min

[
hmax,max

[
0,

u∗(PN −p)−σk∗q−W0

2W1

]]
. (49)

Since the states u, k and the adjoints are 0 at the boundary
of the spatial domain, we expect the fishing effort to be
small (or vanish) near that boundary. Note that increasing σ ,
the vulnerability of the habitat to harvesting, would likely
decrease the optimal fishing effort h∗.

Numerical simulations

We now turn to numerical simulations to illustrate optimal
solutions to the problem. We solved the optimality system
(state and adjoint systems coupled with optimal control
characterization) with a forward-backward sweep method
(Hackbusch 1978; Lenhart and Workman 2007), using
explicit finite differences to solve the PDEs. In addition
to the optimal spatiotemporal distribution of effort, habitat
quality, and stock density, we also computed the total effort

htot =
∫ T

0

∫ L

0
h(x, t) dx dt, (50)

the average stock density

uavg = 1

LT

∫ T

0

∫ L

0
u(x, t) dx dt, (51)

and the average habitat quality

kavg = 1

LT

∫ T

0

∫ L

0
k(x, t) dx dt . (52)

For our numerical solutions, we assume (for simplicity)
that all of the parameters are constant in space and time. We
also assume that habitat quality grows more slowly than the
stock (r2 < r1) and that habitat quality diffuses more slowly
than stock (a2 < a1). The parameter values we used in our
simulations are listed in Table 1.

We considered two initial conditions. For most simula-
tions, we assumed pristine initial conditions; i.e., we choose
u0(x) and k0(x) as the equilibrium of an unexploited stock
(Fig. 1, left panel). Because many stocks are far from pris-
tine, we also computed harvesting strategies starting with an
overexploited, open-access stock (Fig. 1, right panel). Under
open access, we assume that effort increases until, at equi-
librium, rent is dissipated at every location in space; i.e.,
PNuh−(W0+W1h)h = 0. Solving for h, we have h = 0 or

h = PNu − W0

W1
. (53)

Thus, the open access effort level h̄(x) is given by

h̄ = min

(
hmax,max

(
0,

PNu − W0

W1

))
. (54)

We substitute h̄ for h in the partial differential equations (2)
and (5), and, with corresponding boundary conditions, find
the equilibrium solution.

In the remainder of this section, we explore the conse-
quences of habitat quality dynamics, habitat vulnerability,
habitat recovery rates, habitat existence values, and initial
conditions on the optimal distribution of effort, and on the
resulting distribution of stock and habitat quality. Given this,
our model is relatively complex. Thus, we explore these
consequences one at a time with a view towards improved
understanding.

Habitat quality dynamics To assess the role that the dynam-
ics of habitat degradation and recovery play in structuring
the optimal harvesting strategy, we first computed the solu-
tion in a baseline case where there are no impacts of
harvesting on habitat quality (σ = 0), there is no existence
value associated with habitat quality (PK = 0), and in which
habitat quality is constant in space and time (k = 1) (Fig. 2,
top row). For the parameters, we chose (summarized in
Table 1), the optimal distribution of harvesting begins with
an initial period of intense harvest, which has the benefit
of reducing negative effects of density dependence. Sub-
sequently, a large central closed area gradually grows in

Fig. 1 Initial stock density
(u0(x), blue curves) and habitat
quality (k0(x), orange curves)
were derived by finding the
equilibrium densities for an
unexploited fishery (left panel)
or an over-exploited open-access
fishery (right panel). The open-
access distribution of harvesting
effort (h̄(x)) is shown on the
right panel in yellow. Parameter
values reported in Table 1
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Fig. 2 Stock dynamics and optimal harvesting strategies for three
habitat dynamic scenarios: a constant, invulnerable habitat (k(x) ≡ 1,
σ = 0, top row); a dynamic, invulnerable habitat (σ = 0, middle
row); and a dynamic vulnerable habitat (σ = 0.5, bottom row). In each

case the initial condition is the unexploited stock condition. This initial
condition in the latter two cases is shown in Fig. 1 (left panel). Other
parameter values as in Table 1 with PK = 0



138 Theor Ecol (2019) 12:131–144

Fig. 3 Optimal distributions of fishing effort (top row), stock density
(middle row), and habitat quality (bottom row) for increasing levels
of habitat vulnerability (σ = 0, 0.5, 1, 5, 10 from left to right). Initial

conditions are an unexploited equilibrium (Fig. 1, left panel). Other
parameters as in Table 1 with PK = 0

size. As the end of the time horizon approaches, the in situ
value of the stock evaporates and as a result the central
reserve gradually closes.1 These results are consistent with
the results in Joshi et al. (2009) and Kelly et al. (2015).

In our simulations, the central reserve is also present,
and is approximately the same size, when habitat quality
is dynamic but invulnerable to fishing damage (i.e., when

1We do not refer to the unfished areas at the habitat boundaries, or,
when they occur, unfished areas at the end of the time horizon as
“reserves.” In these areas, the marginal rent (PNu − W0 − 2W1h) is
negative and no regulation would be required to prevent fishing.

σ = 0; Fig. 2, middle row). There are small decreases in
the present value of the fishery, average stock size, and total
effort. These decreases are the result of reductions in habitat
quality near the boundaries.

Habitat vulnerability Next, we assume that habitat quality
is not only dynamic, but also is negatively impacted by
harvesting (i.e., σ > 0; Fig. 2, bottom row; Fig. 3). The net
present value and average stock size are both smaller in this
scenario than when habitat is invulnerable (σ = 0). These
reductions are primarily caused by the erosion of habitat
quality towards the end of the time horizon. Interestingly,
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the total optimal effort is largest in this scenario and
the increase comes largely from a reduction in the size
and duration of the central closed area. This pattern does
not continue; for larger habitat vulnerability, total effort
decreases again (Fig. 4).

The optimal harvesting strategy in our model is partic-
ularly affected by the degree of habitat vulnerability (σ ).
All else equal, more vulnerable habitats (or, equivalently,
those subject to more destructive gear) are less valuable,
and exhibit lower average stock densities, lower average
habitat quality, and (usually) lower total effort (Fig. 4). In
addition to affecting these aggregate quantities, the habi-
tat vulnerability also affects the spatiotemporal distribution
of fishing effort (Fig. 3). As habitat vulnerability increases,
the central reserve becomes smaller and shorter in dura-
tion. For extreme sensitivities, a reserve is no longer opti-
mal and the optimal strategy is to essentially extirpate the
stock.

Habitat recovery rate An important timescale in our model
is the time required for habitat quality to recover when
harvesting ceases (1/r2). This time ultimately affects the
ability of the stock to grow and recover within the planning
horizon. In effect, the economic timescale (T ) is longer if r2
is large than it is when r2 is small. (The discount rate will
also play a role here.) As a result, increasing the recovery
rate (r2) increases the size and duration of reserves (Fig. 5).
The net present value of the fishery, the stock density and the
habitat quality all increase with habitat quality recovery rate
(Online Resource 1). Conversely, effort remains essentially

constant. Note that these results derive in part from the
change in equilibrium initial conditions associated with the
change in parameter.

Existence value of habitat quality In the preceding results,
we assumed that the only value that could be derived
from the coupled stock-habitat system (1)–(8) was produced
by the capture and sale of the stock. We now consider
cases when habitat quality has additional intrinsic value,
for example, because it provides for recreation or other
ecosystem services. In these cases, PK > 0. Not
surprisingly, our numerical results show a direct relationship
between the intrinsic value of habitat quality and the extent
and duration of no-take reserves (Fig. 6). As a direct
consequence, the total effort varies inversely with habitat
quality value. The net present value of the fishery, as
well as the stock size and habitat quality, also increase
monotonically with PK (Online Resource 1).

Initial conditions Because our model is dynamic, the
optimal control will typically depend upon the initial
data. In the previous examples, we took the stock and
habitat quality distributions to be what they would be
if they had been unharvested for a long time. Many
marine fish stocks currently face a drastically different
situation: they have been over-harvested for a long time.
The classical example of over-harvesting is produced by the
“tragedy of the commons” which results from unregulated
open access (Clark 1990). In our model, open-access
harvesting (see (54)) results in an extremely low stock

Fig. 4 Effect of habitat
vulnerability (σ ) on optimal
levels of the net present value
(J ), total harvesting effort (htot),
average stock density (uavg), and
average habitat quality (kavg).
Parameters as in Table 1, with
PK = 0. Initial conditions were
for an unexploited fishery as in
the left panel of Fig. 1
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Fig. 5 Optimal distributions of fishing effort (top row), stock density (middle row), and habitat quality (bottom row) for increasing levels of
habitat quality recovery rate; r2 = [0.5, 1, 5, 10] from left to right. Other parameters as in Table 1, with PK = 0

population density as well as a lower habitat quality than
would be found in an unexploited stock (Fig. 1, right
panel).

Open-access initial conditions also generate a very
different pattern of optimal harvesting: there is no
harvesting at the beginning of the time interval, allowing the
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Fig. 6 Optimal distributions of fishing effort (top row), stock density
(middle row), and habitat quality (bottom row) for increasing levels
of habitat quality value, PK . From left to right, PK = 0, 0.1, 0.2, 0.5

and 1. Other parameters as in Table 1. Initial conditions were for an
unexploited fishery as in the left panel of Fig. 1

stock to replenish. Eventually, harvesting (at maximal rates)
opens up at the edges of the habitat and expands towards
the center of the domain as the time horizon approaches
(Fig. 7). A central reserve area persists almost until the
end.

Discussion

Our bioeconomic analysis of the coupled stock-habitat qual-
ity model (1)–(11) has revealed several important conclu-
sions. Some of these echo and reaffirm the conclusions of

Moeller and Neubert (2013, 2015); one would seem to stand
in contrast to their results.

First, we, like Moeller and Neubert, found that the
optimal spatiotemporal allocation of fishing effort can
include no-take reserve areas. Our results add to a growing
theoretical literature demonstrating that no-take reserves
can theoretically have economic as well as conservation
benefits (e.g., Neubert 2003; Sanchirico et al. 2006; Costello
and Polasky 2008; White et al. 2008; Ding and Lenhart
2009; Hastings et al. 2017). Evidence for these conservation
benefits in the real world seems to be clear (Costello 2014;
Baskett and Barnett 2015; Sala and Giakoumi 2017). The
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Fig. 7 Optimal distributions of stock, habitat quality, and effort for an initially unregulated open-access stock. Parameters as in Table 1 with
PK = 0 and T = 16. Initial conditions are illustrated in the right panel of Fig. 1

extent to which the theoretical economic benefits have
materialized, or have the potential to materialize, in practice,
however, is currently a topic of debate (Hilborn 2017;
Pendleton et al. 2018). When there is a mismatch between
potential and realized benefits, some of the difference can
be attributed to imperfect implementation (Agardy 2018).

Also in agreement with Moeller and Neubert, we found
that the optimal effort distribution can change dramatically
when the effects of habitat damage are incorporated into the
model. We extended the analysis of Moeller and Neubert
by including habitat dynamics in our model to account for
the fact that the cessation of harvesting does not result in
an instantaneous restoration of habitat quality. These habitat
dynamics introduce two new timescales in our model: the
timescale over which harvest at a given intensity of effort
h decreases habitat quality (1/σh) and the characteristic
timescale for habitat to recover when harvesting stops
(1/r2). As we highlighted in Figs. 3 and 5, the relationship
between these two timescales (and the length of the planning
horizon T ) plays an important role in structuring the optimal
harvest, including the size and duration of no-take reserves.

If fishing is particularly destructive (i.e., habitat qual-
ity can be reduced quickly by harvesting, and the habitat
recovery time is relatively long) then reserves are subop-
timal for maximizing the net present value over a finite
time horizon (Fig. 3, rightmost column). If, on the other
hand, habitat quality is relatively resilient (i.e., habitat
responds slowly to fishing and recovers relatively quickly,
then reserves are necessary for optimal harvesting (Fig. 5,

rightmost columns). This pattern would seem to contra-
dict the findings of Moeller and Neubert (2013, 2015) who
found that the more damaging fishing was, the more likely it
was that reserves would be part of a rent-maximizing effort
distribution. This apparent disagreement is resolved, how-
ever, when one accounts for the fact that the objective in
the papers by Moeller and Neubert was either the maxi-
mization of (undiscounted) sustainable equilibrium rent (in
Moeller and Neubert 2013) or of the net present value over
an infinite time horizon (in Moeller and Neubert 2015).
Further, in both of these papers, habitat recovery was essen-
tially instantaneous. Thus, habitat was always apparently
relatively resilient in these previous analyses due to the
effectively infinite time horizon.We conjecture that a signif-
icantly longer time horizon, possibly combined with a lower
discount rate, would restore the optimality of reserves for
vulnerable habitat in the model analyzed here.

Another conclusion (which probably does not need to
be explained) is that optimal reserves are prominent when
intrinsic habitat value is high. This result is consistent with
the findings of Viana et al. (2017), who found the size
of reserves should be larger with increasing tourism value,
which was tied to increased stock density. In their analysis,
however, tourism and fishing were essentially incompatible;
that is, tourism only generated value when it occurred within
a reserve. In the present model, habitat quality has value
irrespective of fishing intensity. This would be the case if the
value of habitat quality flowed from ecosystem services that
were compatible with fishing. Incorporating incompatible
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services in our model would require the price of habitat
quality to depend nonlinearly on harvest effort.

These conclusions and conjectures must be evaluated
in light of the standard caveats that accompany any
mathematical modeling. For example, our model has 18
parameters, so our exploration of the model’s outcomes was
necessarily limited to a very small parameter set (Table 1).
In keeping our focus on the effects of habitat vulnerability
and dynamics, we have ignored the effects of habitat size,
advection, and of potentially fascinating geometric effects
that might have been revealed by the analysis of a two-
dimensional habitat. (We note that it would not be difficult
to extend the optimality system to two spatial dimensions
(see, e.g., Joshi et al. 2009).) We have also only considered
the case when congestion costs are small. As a result, the
objective functional (9) is nearly linear in the control and the
optimal effort distribution is approximately ”bang-bang,”
with effort levels either at zero or at their maximum hmax

(cf. Figs. 3, 5, and 6). Solutions would doubtless change
quantitatively if congestion costs were higher (as in Neubert
and Herrera 2008) or if the effort constraint were relaxed. It
remains for now an open question whether such adjustments
would change our qualitative conclusions.

Another caveat is that our model is admittedly (and
intentionally) stylized. Some extensions that have the
potential to change or generalize our results, such as two
spatial dimensions, could, in principle, be straightforward to
implement. Others will require more thought. For example,
our models for the dynamics of “habitat quality,” and for
the way habitat quality impacts the dynamics of the stock,
are strictly phenomenological. We structured these models
so that they would have certain properties that seemed
reasonable and, to the extent that habitat quality modifies
stock carrying capacity, matched with previous theoretical
treatments and empirical findings (Fogarty 2005; Shephard
et al. 2010; Foley et al. 2012). Habitat quality might also
affect other vital rates (e.g., the density-independent birth
and death rates that make up the intrinsic growth rate
r1) or the dispersal behavior of the fish—a topic that
deserves further investigation (but see Langebrake et al.
2012). In our opinion, this phenomenological approach is
the correct starting point. Nevertheless, a more concrete and
mechanistic connection between habitat quality and the vital
rates of the fish would be beneficial—particularly in an
applied setting.

Finally, lest it escape the reader’s attention, we note
that all four of our indices of aggregate “bioeconomic
health”—present value, total effort, average stock density,
and average habitat quality—are significantly larger when
fishing does not damage habitat (Fig. 4). This suggests
that there may be substantial economic value, as well
as ecological value, in improving and implementing
technologies that reduce the impact of fishing gear.
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