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Abstract 

1.  Distance sampling (DS) is a widely-used framework for estimating animal abundance.  DS 

models assume that observations of distances to animals are independent.  Non-independent 

observations introduce overdispersion, causing model selection criteria such as AIC or AICc 

to favour overly complex models, with adverse effects on accuracy and precision. 

2.  We describe, and evaluate via simulation and with real data, estimators of an 

overdispersion factor (ܿ̂), and associated adjusted model selection criteria (QAIC) for use 

with overdispersed DS data.  In other contexts, a single value of ܿ̂ is calculated from the 

“global” model, i.e., the most highly-parameterized model in the candidate set, and used to 

calculate QAIC for all models in the set; the resulting QAIC values, and associated ΔQAIC 

values and QAIC weights, are comparable across the entire set.  Candidate models of the DS 

detection function include models with different general forms (e.g., half-normal, hazard rate, 

uniform), so it may not be possible to identify a single global model.  We therefore propose a 

two-step model selection procedure by which QAIC is used to select among models with the 

same general form, and then a goodness-of-fit statistic is used to select among models with 

different forms.  A drawback of this approach is that QAIC values are not comparable across 

all models in the candidate set. 

3.  Relative to AIC, QAIC and the two-step model selection procedure avoided overfitting 

and improved the accuracy and precision of densities estimated from simulated data.  When 

applied to six real data sets, adjusted criteria and procedures selected either the same model 

as AIC or a model that yielded a more accurate density estimate in 5 cases, and a model that 

yielded a less accurate estimate in 1 case.   
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4.  Many DS surveys yield overdispersed data, including cue counting surveys of songbirds 

and cetaceans, surveys of social species including primates, and camera-trapping surveys.  

Methods that adjust for overdispersion during the model selection stage of DS analyses 

therefore address a conspicuous gap in the DS analytical framework as applied to species of 

conservation concern. 

 

Keywords: animal abundance, camera trapping, cue counting, distance sampling, model 

selection, overdispersion, QAIC 

 

Introduction 

Distance sampling (DS) is an established framework for estimating animal abundance 

(Buckland et al. 2001, 2004; Borchers, Buckland & Zucchini et al. 2002).  It allows for 

imperfect detection by assuming detection probability is a function of the distance between 

objects (e.g., animals or their sign), and observers.  Careful modelling of this function is 

required to obtain accurate abundance estimates (Buckland et al. 2001, 2004).  Exploratory 

analyses, goodness-of-fit (GOF) testing, and model selection are therefore critical 

components of DS analyses (Buckland et al. 2001, 2004; Marques et al. 2007).  GOF tests 

evaluate the null hypothesis that a model adequately fits the data; tests for continuous and 

binned DS data were described by Buckland et al. (2001).  Rejection may indicate problems 

in the data or the structure of the model being tested, or violations of model assumptions.  

The purpose of model selection is the identification of a model or models that optimize the 

trade-off between bias and precision of the parameters estimated from a data set, where the 

inclusion of more parameters reduces both bias and precision (Burnham and Anderson 2002; 

Johnson and Omland 2004).  The remainder of this paper assumes readers are familiar with 
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both distance sampling, and information-theoretic model selection, as described by Buckland 

et al. (2001, 2004), and Burnham and Anderson (2002). 

DS methods assume that observations are independent (Buckland et al. 2001), but 

some DS surveys violate this assumption.  For example, some animals travel in groups.  

Violation of the independence assumption can be avoided by treating the group as the unit of 

observation, measuring or estimating distances to the center of detected groups, and 

estimating animal density as the product of group density and mean group size (Buckland et 

al. 2001).  However, this is only effective if the size and central location of the group are 

measured accurately (Buckland et al. 2001, 2010).  When they cannot be, for example 

because groups are widely-spread or in motion, the recourse is to treat the individual as the 

unit of observation, and to record distances to all group members detected, in which case the 

data include non-independent observations.  Furthermore, some animals, such as cetaceans 

that are often submerged, or songbirds that perch concealed in trees, are only available to be 

observed intermittently.  However, if they give discrete cues of their presence and location, 

such as whale blows or bursts of birdsong, density of cues can be estimated using DS 

methods, and converted to estimates of animal density by dividing by the cue production rate 

(Buckland et al. 2001; Buckland 2006).  During cue counting surveys, distances to all cues 

are recorded, so the data may include observations of distances to multiple cues given by the 

same animal(s), which again violates the independence assumption (Buckland et al. 2006).  

Finally, Howe et al. (2017) extended DS methods to accommodate data from camera traps 

(CTs).  Distances to animals when first detected by CTs are expected to be positively biased, 

so authors recommended programming cameras to record video, or multiple still images, each 

time the sensor is triggered, and measuring distances to each detected animal multiple times 

at predetermined “snapshot moments” during an independent encounter with a CT.  Authors 

acknowledged that these observations would not be independent of each other.  Violations of 
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the independence assumption do not bias point estimates of model parameters, but introduce 

overdispersion (Buckland et al. 2001). 

When distance data are overdispersed: (1) GOF tests, and likelihood ratio tests 

(LRTs) to compare the fit of nested models, are invalid and prone to reject the null 

hypotheses that a model adequately fits the data (GOF tests), or that the simpler of two 

models provides a better fit than a more complex one (LRTs); (2) model-based analytic 

variances underestimate the actual uncertainty associated with the estimates, though 

empirical design-based estimators are robust (Fewster et al. 2009), and bootstrap estimators 

that resample points or transects are unaffected (Buckland 1984); (3) model selection criteria 

that have not been adjusted for overdispersion favour overly complex models with more than 

the optimal number of parameters (Cox and Snell 1989; Burnham and Anderson 2002; 

Buckland et al. 2001, 2010).  Akaike’s Information Criterion (AIC; Akaike 1973) is usually 

recommended for selecting among candidate models of the detection function (Buckland et 

al. 2004; Marques et al. 2007), however, if the data are overdispersed, AIC is likely to favour 

unnecessarily complex models (Buckland et al. 2001, 2010; Buckland 2006).  This additional 

complexity reduces precision, and can cause bias if it affects the slope of the detection 

function near the point.  Criteria adjusted to account for overdispersion have not been 

developed previously.  

Detectability may vary in response to multiple factors other than distance.  DS 

methods are pooling robust, so the total or average density estimated from the entire data set 

will generally be unbiased even when variation in detectability is ignored (in the case of 

differences between distinct spatial subsets of the greater study area, sampling effort should 

be proportional to the areas of the subsets; Buckland et al. 2004).  However, density estimates 

specific to different population strata among which detectability varies, which might be 

different species, treatments, habitat types, time periods, etc., are expected to be biased if 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

estimated from a common detection function (Buckland et al. 2004; Marques et al. 2007).  

Observations within different strata can be analyzed separately to avoid this bias, but this can 

reduce sample sizes to the point where densities of some strata may not be estimable, or 

estimates may be too imprecise to be useful.  The multiple covariate approach to DS analysis 

improves efficiency by modelling variation in detectability using covariates (Buckland et al. 

2004; Marques et al. 2007).  It also casts decisions about how much stratification is necessary 

as a model selection problem, but in this case the quality of inferences about strata-specific 

densities is affected by the reliability of the model selection criterion.  When the 

independence assumption is suspected or known to have been violated, it has been 

recommended that analysts constrain the complexity of the detection function and the number 

of covariates to avoid overfitting (Buckland et al. 2004, 2010; Marques et al. 2007).  

However, limiting the candidate set to simple models may not be desirable if there are 

multiple potential covariates of the detection function.  Model selection criteria unadjusted 

for overdispersion will tend to select models that subdivide the data more than necessary, 

with adverse effects on precision.  Conversely, “underfitting”, i.e., failure to include 

significant sources of variation in the estimating model, would cause stratum-specific 

densities to be underestimated if true detection probabilities in that stratum tend to be lower, 

and vice versa.  Adjusted criteria could underfit if they overcompensated for overdispersion 

(e.g., if the magnitude of overdispersion was overestimated).  

Although explicitly modeling the sources of overdispersion would be ideal, this is not 

always possible or practical with real data (Cox and Snell 1989; Lebreton 1992; Burnham and 

Anderson 2002).  An approximation that is often sufficient in practice is to estimate a single, 

omnibus overdispersion factor (ܿ̂) from a χ2 GOF test of the global model (i.e., the most 

highly parameterized or most general model) divided by its degrees of freedom (df), and to 

include ܿ̂ in the calculation of information criteria adjusted for overdispersion for all models 
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in the candidate set (Cox and Snell 1989; Lebreton 1992; Liang and McCullagh 1993; 

Burham and Anderson 2001, 2002).  The adjusted version of AIC (QAIC) is:   

ܥܫܣܳ = 	−2 ቊlog ܮ ൫ߠ෠൯ܿ̂ ቋ +  	ܭ2
where log L is the log likelihood value, ߠ෠ is a vector of maximum likelihood parameter 

estimates, and K is the number of parameters in the current model (Lebreton et al. 1992).  

Burnham and Anderson (2001, 2002) clarified that ܿ̂ should be included as one of the K 

parameters. 

Given an estimator of c (ܿ̂), the same approach could be used to calculate QAIC for 

models of the DS detection function.  However, candidate sets usually include models with 

different general forms (termed “key functions”; e.g., half-normal, hazard rate, and uniform; 

Buckland et al. 2001) as well as different numbers of adjustment terms and covariate 

combinations (Buckland et al. 2004; Marques et al. 2007).  Models with different key 

functions are not nested, hence it may not always be straightforward to identify a single 

“global” model from which to estimate ܿ̂.  Below we propose and evaluate two estimators of ܿ̂, and a two-step model selection procedure that does not require that a single global model is 

identifiable, for use with overdispersed DS data. 

 

Methods 

Model selection criteria and procedures 

We suggest the χ2 GOF statistic for binned distance data (Buckland et al. 2001, p. 71, 

eqn. 3.57) divided by its degrees of freedom as one estimator of c (ܿ̂1).  To allow for the 

possibility that multiple models may include the maximum number of parameters, and the 

fact that DS models have different general forms, we propose the following two-step model 

selection procedure.  In step one we use QAIC to identify the best-supported model within 
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each key function, and in step two we compare the GOF of the best-supported models with 

different key functions.  More specifically, in step one, we obtain ܿ̂ଵ from the most highly-

parameterized model within each key function (rather than from the most highly-

parameterized model overall), use those values of ܿ̂ଵ to calculate QAIC for all models with 

the same key function, and use QAIC to identify the best-supported model within each key 

function.  In this step, the same value of ܿ̂ଵ is used to calculate QAIC for all models with the 

same key function, but different values of ܿ̂ଵ are used to calculate QAIC for different key 

functions.  In step two, we compare values of the χ2 GOF statistic divided by its df across 

QAIC-selected models (one from each key function), and choose the model with the smallest 

value for estimation.  If continuous distances are recorded in the field, distance observations 

will first need to be grouped into categories so that the GOF test for binned data can be 

performed. See Buckland et al. (2001) for advice regarding binning continuous observations. 

The number of distance observations recorded per independent encounter between an 

animal and an observer provides an alternative measure of the magnitude of overdispersion 

(ܿ̂ଶ).  ܿ̂ଶ will often be calculable from the raw data, and will be the same for all models in the 

candidate set.  In CT surveys of solitary animals, ܿ̂ଶ would be the mean number of distance 

observations recorded during a single pass by an animal in front of a CT.  In surveys of social 

animals employing human observers, ܿ̂ଶ would be the mean number of detected animals per 

detected group, and in CT surveys of social animals ܿ̂ଶ would be the mean number of 

distance observations recorded during an encounter between a group of animals and a CT.  ܿ̂ଶ 

could be used instead of multiple values of  ܿ̂ଵ to calculate QAIC values as in step one above.  

QAIC values would still be compared only within key functions, and the χ2 GOF statistic 

divided by its df would still be used in step two to select among QAIC-selected models with 

different key functions.  Hereafter, we will refer to QAIC calculated from ܿ̂ଵ as QAIC1, and 

from ܿ̂ଶ as QAIC2. 
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Simulations  

We conducted simulations where non-independent observations were all at the same 

distance so that we could evaluate performance where the true magnitude of overdispersion 

(c), and the true underlying model were known, but we would not expect this scenario to arise 

in practice.  When non-independent observations during a single independent encounter are at 

different distances (e.g., to different members of a group, different cues from a moving 

animal, or as an animal moves past a CT), true c is unknown because the different distance 

observations contribute information about the shape of the detection function.  We therefore 

also simulated camera-trapping (CT) surveys of moving animals where cameras recorded 

video and distance was recorded every two seconds as animals moved through the field of 

view.  These simulations mimic real surveys where animals move and c is unknown.  

Furthermore, the distribution of observed distances differed from the expected distribution of 

independent detections (see Supplemental Material), so the true underlying model was also 

unknown. 

 For the simulations with known c, we sampled distances to animals within a circular 

point transect with radius 20 m, where the true density was 2.00 / m2.  To generate 

independent DS data, we simulated detections via random trials where detection probability 

declined according to a half-normal function with scale parameter (σ) of 7.  Each observation 

was arbitrarily assigned one of three levels of a spurious categorical covariate that had no 

effect on detectability, which we will refer to as “observer”.  We then replicated each data set 

5 times to generate overdispersed data with c = 6.  We fitted eight point transect DS models 

to each data set, including the half normal model used to generate the data, and 

overparameterized models.  
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For the CT surveys, we simulated sampling of ungulates inhabiting old growth 

forests, recently-logged forests, and previously logged but regrowing forests.  Simulation 

parameters were based on Howe et al.’s (2017) survey of Maxwell’s duikers, but were also 

selected to ensure that data were overdispersed, not sparse, and included multiple potential 

covariates of detectability.  We assumed that the density of understory vegetation increased 

immediately after logging and decreased gradually as forests regrew, such that food supply 

and therefore animal density was highest, but detection probability as a function of distance 

was lowest, in recently-logged forests; we further assumed a larger difference in detection 

probability between old growth and logged forests than between recently-logged and 

regrowing forests (Table 1). 

We simulated movements of 10, 12, and 15 animals within 1 km2 study areas in old 

growth, regrowing, and recently-logged habitats, respectively.  Each animal started with a 

random initial location and heading, after which new locations were generated every two 

seconds for 12 hours.  Step lengths were drawn from an exponential distribution with a rate 

parameter of 2, and turn angles were drawn from a normal distribution with mean of 0 and 

standard deviation of 0.05 radians.  Animals that moved beyond the boundaries of the study 

areas reappeared on the opposite side of the same study area at the same heading.  We 

simulated sampling at a grid of 36 CTs at 150 m spacing within each study area.  We defined 

the zone of potential detection by a CT as a sector with a central angle of 0.733 radians and a 

radius of 25 m, and recorded distances between CTs and animal locations that fell within 

these sectors.  We initially conducted random trials according to a half-normal function with 

σ as in Table 1 to determine whether animals were detected at each time step.  However, we 

assumed that cameras were programmed to record video when triggered, so once an animal 

was detected we set the probability of subsequent detection to 1.0 for as long as the animal 

remained within the sector.  Therefore, the observed distances were those recorded within the 
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sector defined by the location and angle of view of the CT, at predetermined snapshot 

moments after initial detection, following Howe et al. (2017).  Each animal travelled 10.7 to 

11.0 km in a meandering path over 12 hours.  Most step lengths were between 0 and 0.5 m, 

which ensured that animals would be observed multiple times, including at similar distances, 

during each independent encounter, and hence distance data would be severely overdispersed.  

Density remained constant, and the expected distribution of animal locations was uniform 

within each study area. 

We analysed data from all three habitat types simultaneously using multiple covariate 

distance sampling.  Different habitat types were treated as different strata, with the potential 

to estimate a common detection function across all strata, or to model differences in 

detectability among strata using categorical covariates affecting the scale parameter of the 

detection function.  We considered a habitat type covariate with two levels (old growth or 

logged), and one with three levels (old growth, regrowing, and recently-logged).  The 36 

cameras in each study area were arbitrarily assigned to one of three different CT models (12 

of each type).  Detectability therefore varied among habitat types (Table 1) but not among 

camera trap models.  Both habitat type and camera trap model were considered as potential 

covariates of the detection function; only one habitat type covariate was included in any 

model.  We fitted twenty models with either the half-normal or hazard rate key function, 0 or 

1 cosine adjustment terms, and different covariate combinations to each data set. 

During both sets of simulations, distance data were binned into intervals prior to 

analysis.  Howe et al. (2017), were confident of their assignments of duikers into 1 m 

intervals out to 8 m, but found it more difficult to estimate distances to this level of precision 

beyond 8 m.  We similarly binned data into one-meter intervals out to 8 m, and at 10, 12, 15, 

and 20 m.  In the case of the CT survey of moving animals, distance observations <1 m and 

>20 m were truncated.  We conducted 500 replicate iterations, recording the number of 
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estimated parameters, the log-likelihood value, the estimated density (ܦ෡) and associated 

empirical, design-based variances (Fewster et al. 2009), and the χ2 GOF statistic and its df 

and P-value, from all models fit to each data set.  We selected among candidate models by 

comparing AIC values across all models fitted to the same data set, and using both QAIC1 

and QAIC2 following the two-step procedure described in the methods section.  Simulations 

were performed using R software, version 3.3.2 (R Core Team 2016). 

 

Applications with real data 

 We applied the same model selection criteria and procedures used in the simulations 

to real data from Maxwell’s duikers in Taï National Park, Côte d’Ivoire, originally presented 

in Howe et al. (2017).  We also reanalyzed point count data from singing males of four 

species of songbirds sampled at Montrave Estate in Fife, Scotland, originally presented in 

Buckland (2006).  The Montrave study area was small enough that densities of singing males 

were estimable by mapping their territories; these estimates were expected to have low bias, 

and served as benchmarks by which the accuracy of DS estimates were assessed (Buckland 

2006).  Aware of the potential for overdispersion and therefore overfitting with cue count 

data, Buckland (2006) did not consider models with >2 parameters, and used a combination 

of AIC and plots of fitted probability density functions and detection functions to select 

among six models with different key functions and numbers of adjustment terms.  We fitted a 

total of 9 models to each data set (uniform with 1, 2, or 3 cosine adjustment terms, half-

normal with 0, 1, or 2 Hermite polynomial adjustment terms, and hazard rate with 0, 1, or 2 

cosine adjustment terms) and used the two-step procedure with QAIC1 to select among them.  

Truncation distances and cutpoints for the χ2 GOF test followed Buckland (2006).  QAIC2 

could not be calculated because ܿ̂ଶ was unknown.  We used diagnostic plots only to identify 
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and exclude implausible models, such as cases where estimated detection probabilities 

exceeded 1.0, or fitted detection functions that were not monotonically nonincreasing. 

 

Results 

Simulations 

In simulations where c and the correct underlying model were known, mean sample 

sizes of distance observations in overdispersed data sets was 3630.  The χ2 GOF test rejected 

the null hypothesis of adequate fit of the correct model for 492 of 500 data sets.  ܿ̂ଵ varied 

among iterations, but on average it estimated the true magnitude of overdispersion reasonably 

accurately (mean and median ܿ̂ଵ from the data generating model were 6.16 and 5.73, 

respectively; true c was 6.0).  AIC selected the most highly-parameterized model most 

frequently, selected models with the spurious observer covariate for 71.4% of data sets, and 

selected the correct model for only 2.8% of data sets (Table 2).  QAIC selected the correct 

model most frequently, followed by the hazard rate model with one adjustment and no 

covariates.  QAIC1 and QAIC2 selected models with the spurious covariate for 14% and 13% 

of data sets, respectively (Table 2).  ܦ෡ from QAIC-selected models was both more accurate 

and more precise than ܦ෡ from AIC-selected models (Table 3). 

In our simulated CT surveys of moving animals, where we assumed that, after initial 

detection, detection probability was 1.0 for as long as the animal remained in the field of 

view of the CT (as though CTs were programmed to record long bursts of still images or 

videos) observed distances included more observations at longer distances than where 

animals were detected via random trials at each time step (as though CTs were programmed 

to record a single image when triggered).  The mode of the distribution was shifted right, and 

the number of observations at longer distances declined more slowly than under the data 

generating model (Fig. S1).  These differences arose because detected animals moving away 
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from the CT continued to contribute observations at longer distances where detection 

probability would otherwise be low.  As a result, hazard rate models frequently provided a 

better fit than the half-normal model from which the random detections were simulated (Fig. 

S1).   

 The χ2 GOF test rejected the null hypothesis of adequate fit of 89% of the 10000 

models fitted.  Sample sizes, and numbers of observations per independent encounter (ܿ̂ଶ), 

were slightly higher in old growth forests where detection probability as a function of 

distance was highest, even though densities there were lowest (Table 4).  ܿ̂ଵ was generally 

lower, indicating less overdispersion, than ܿ̂ଶ from a given data set and model; ܿ̂ଵ was also 

more variable among iterations than ܿ̂ଶ (Table 4). 

AIC again tended to select highly-parameterized models.  Density was not estimable 

from the AIC-minimizing model in 9 cases, and in 53 other cases, estimates were 

unrealistically high (>10 times the true density).  QAIC1 and QAIC2 each selected models 

from which density was not estimable twice, and from which density was severely 

overestimated 4 times; these problems were associated with the same six data sets.  AIC 

favoured detection function models with more complex forms, selecting adjusted hazard rate 

models for 49% of data sets, and either unadjusted hazard rate or adjusted half normal models 

for another 45%, whereas QAIC selected unadjusted hazard rate models most frequently, 

followed by unadjusted half normal models (Table 5).  AIC always supported an effect of 

habitat type on detection probability, and supported the 3-level habitat covariate for 77% of 

data sets (Table 5).  QAIC1 and QAIC2 selected models with habitat type covariates for 89% 

and 81% of data sets, respectively, but tended to favour the 2-level covariate (selected for 

59% and 68% of data sets, respectively) over the 3-level covariate (Table 5).  Most (88% of) 

AIC-selected models, 27% of QAIC1-selected models, and 5% of QAIC2-selected models 

included the spurious CT model covariate (Table 5).  Model selection uncertainty across 
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iterations was greatest with QAIC1 (Table 5), which is not surprising given the variability of ܿ̂ଵ across data sets (Table 4). 

  QAIC2 and the two-step model selection procedure maximized both the accuracy and 

precision of ܦ෡ (Fig. 1, Table S1).  AIC-selected models yielded negatively biased ܦ෡ on 

average (Fig 1).  AIC-selected models yielded the most accurate ܦ෡ only in recently-logged 

forests (Fig. 1).  QAIC-selected models rarely included the 3-level habitat covariate, and as a 

result, ܦ෡ in recently-logged forests, and differences in ܦ෡ among habitat types, were 

underestimated (Fig 1, Table S1).  However, QAIC-selected models yielded more accurate 

estimates of total density, and of density in regrowing and old growth forests (Fig. 1).  

QAIC2-selected models yielded the most precise density estimates, followed by QAIC1-

selected models (Table S1). 

 

Applications with real data 

The number of observations of Maxwell’s duikers per independent encounter (ܿ̂ଶ) was 

15.35 during the daytime, and 16.98 during times of peak activity.  The χ2 GOF statistic 

divided by its df (ܿ̂ଵ) from different models fitted to the daytime data set ranged between 20 

and 25, and from models fitted to the peak activity data set ranged between 12 and 35 (Tables 

S2 & S4).  Model selection criteria and procedures adjusted for overdispersion selected the 

same models as AIC for estimation from each data set (the unadjusted hazard rate model, see 

Howe et al. 2017 and Tables S2–S5), so ܦ෡ was unaffected. 

In our reanalysis of songbird data from Montrave Estate, QAIC1 did not consistently 

outperform either AIC, or the combination of AIC, a constrained candidate model set, and 

reference to diagnostic plots employed by Buckland (2006).  Model selection via QAIC1 

yielded a superior density estimate for European robins, the same estimate as Buckland 

(2006) for winter wrens and great tits, and an inferior estimate for common chaffinches (Fig. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

1).  See the supplemental material for a detailed description of the results of our reanalysis 

including comparisons to models selected by AIC and Buckland (2006).   

 

Discussion 

Simulations with known c demonstrated that: (1) AIC was prone to overfitting, 

selecting unnecessarily complex models, (2) ܿ̂ଵ was an accurate if variable estimator of the 

true magnitude of overdispersion, and (3) QAIC and our two-step procedure outperformed 

AIC in that it selected the correct underlying model more frequently, and QAIC-selected 

models yielded more accurate and precise ܦ෡ than AIC-selected models. 

Our simulations with animal movement were designed to be challenging from a 

model selection perspective, in that we sought criteria and procedures that would support 

small but real differences in detectability while excluding spurious effects from estimating 

models.  AIC consistently supported models with adjustment terms even though density was 

sometimes inestimable or drastically overestimated by these models, and models with a 

covariate that had no real effect on detectability.  Associated inferences regarding both 

animal abundance and sources of variation in detectability were flawed.  Models selected by 

QAIC and our two-step model selection procedure included fewer adjustment terms, were 

much less likely to include the spurious CT model covariate, and yielded more accurate and 

precise ܦ෡.  Of the two proposed estimators of the magnitude of overdispersion, the mean 

number of observations per independent encounter (ܿ̂ଶ) was more consistent than the χ2 GOF 

statistic divided by its degrees of freedom (ܿ̂1).  QAIC2-selected models yielded the most 

accurate and precise density estimates on average. 

Relative to AIC, QAIC more frequently supported models where detectability differed 

between old growth and logged forests, but not between recently-logged and regrowing 

forests.  This suggests that QAIC underfitted, selecting models with fewer parameters than 
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the optimal model.  This may not indicate that QAIC will underfit generally because the 

difference in detectability between recently-logged and regrowing forests was slight.  

Furthermore, the effect of certain detection after initial detection on the distribution of 

observed distances would have obscured differences between study areas.  Sources of 

variation in detectability that have small effect sizes may go undetected by any model 

selection criteria.  Nevertheless, failure to detect and support this difference in our simulated 

data caused underestimation of density where detection probability was lowest.  The 

difference in density between recently-logged and other forest types was therefore 

underestimated, however, differences among all three habitat types were still apparent. 

We applied model selection criteria and procedures “blindly”, in that we always 

estimated ܦ෡ from the model that minimized AIC, or χ2 / df from the QAIC-minimizing model 

within each key function.  AIC might have performed better if we had followed established 

practices for DS analyses and multimodel inference, including exploratory analyses of 

relationships between distance observations and covariates, careful examination of fitted 

detection functions and associated parameter estimates, and consideration of ΔAIC values 

and AIC weights (Buckland et al. 2001, 2004; Burnham and Anderson 2002; Marques et al. 

2007).  Therefore our results, where adjusting for overdispersion improved inferences from 

simulated data, but only improved inferences from real data in one of six cases, as well as 

Buckland et al.’s (2010) simulation results, suggest that adverse effects of overfitting by AIC 

may often be minor.  Furthermore, our two-step approach to model selection using QAIC 

leads to the selection of a single model for estimation.  QAIC values are not comparable 

between key functions, so metrics like ΔQAIC and QAIC weights cannot be used to compare 

relative support for models with different key functions, or to estimate detectability by model 

averaging across all models in a candidate set that includes different key functions.   
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We did not attempt to fit density surface models that allow researchers to assess 

support for covariation between density and spatially referenced covariates (Hedley and 

Buckland 2004; Miller et al. 2013).  However, we note that such analyses can be performed 

either in two stages, where detectability is estimated during the first stage, and plot-specific 

counts or abundance estimates are modelled during the second stage, or by maximizing a full 

likelihood model whereby parameters related to both detectability and local abundance are 

estimated simultaneously (Hedley and Buckland 2004; Johnson, Laake & Ver Hoef 2010; 

Miller et al. 2013).  If a two-stage approach to fitting density surface models is adopted, any 

model selection criteria or procedures, including those described here, could be used when 

estimating detectability.  It is therefore possible to account for overdispersion in the distance 

data when estimating the detection function, and still fit density surface models to test for 

effects of spatial covariates on density.  Johnson, Laake & Ver Hoef (2010) proposed a one-

stage, model-based approach for simultaneously estimating detectability and spatially 

variable abundance from DS data.  They also evaluated the effectiveness of an overdispersion 

factor calculated from a χ2 test performed on transect-specific counts for inflating model-

based variances around abundance estimates to account for overdispersion introduced by 

fine-scale variation in local abundance.  They found that variances were still underestimated 

except where there were many transects, and suggested the χ2 GOF test for binned distance 

data divided by its degrees of freedom (our ܿ̂ଵ) as an alternative estimator.  However, it is not 

clear to us how a statistic derived from the observed distances would quantify overdispersion 

induced by variation in local abundance, and we prefer to use this statistic to adjust for 

overdispersion only when modeling the detection function.  

 We analyzed overdispersed data from simulated and real cue counting and CT 

surveys; however, model selection criteria adjusted for overdispersion could also be useful 

when social animals that travel in loosely-clumped or moving groups are surveyed.  Buckland 
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et al. (2010) simulated line transect sampling of primate groups and found that treating the 

individual as the unit of observation and selecting among models of the detection function 

using AIC yielded more accurate and precise ܦ෡ than approaches that treated the group as the 

unit of observation, “despite obvious overfitting in some cases” (p. 835). 

 

Synthesis and recommendations 

We described novel approaches to estimating an overdispersion factor (ܿ̂), and QAIC-

based procedures for selecting among models of the DS detection function when the 

assumption that observations are independent is violated.  These novel methods improved 

inference from simulated data.  However, we conducted limited simulations with severely 

overdispersed data, and reanalyses of real data sets did not unambiguously indicate that 

adjusting for overdispersion at the model selection stage improved inference.  We therefore 

recommend additional research, but also that these criteria and procedures be considered as 

alternatives to AIC when the independence assumption is violated.  They are most likely to 

be useful where: (1) overfitting by AIC is apparent (e.g., if AIC favours models that include 

both adjustment terms and covariates, multiple adjustment terms, or weak or imprecisely-

estimated covariate effects); (2) it is not practical or not desirable to constrain the candidate 

set to include only simple models (e.g., where there are multiple potential covariates of the 

detection function, or where models with unadjusted key functions do not fit the observed 

data well); or (3) where researchers wish to avoid subjectivity during model selection.  
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Table 1. Animal densities (D) and scale parameters (σ) of a half normal detection probability 

function in different habitat types used to generate simulated distance sampling data. 

Forest type D σ 

Old growth 10 7.0

Regrowing 12 5.5

Recently-logged 15 5.0

Mean 12.33  
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Table 2.  Number of times each detection function model fitted to simulated, overdispersed 

data from stationary animals was selected by AIC, and by each of QAIC1 and QAIC2 

following the two-step procedure described in the methods section, of 500 replicate iterations.  

“Key” denotes the key function, either half-normal (hn) or hazard rate (hr); “Adj.” denotes 

the number of adjustment terms. 

Models Model selection criteria 

Key Covariates Adj. parameters AIC QAIC1 QAIC2 

hn None 0 1 14 248 238 

hn Observer 0 3 54 21 29 

hn None 1 2 9 32 39 

hn Observer 1 4 92 9 4

hr None 0 2 1 30 29 

hr Observer 0 4 8 1 2 

hr None 1 3 57 120 127 

hr Observer 1 5 265 39 32 
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Table 3. Medians of density estimates (ܦ෡) and of coefficients of variation (CV) of those 

estimates, from models fitted to simulated, overdispersed data from stationary animals, 

selected by AIC, and by QAIC1 and QAIC2 following the two-step procedure, across 500 

iterations.  True D was 2.00. 

 AIC QAIC1 QAIC2

Median  ܦ෡ 1.89 2.00 2.00 

Median CV (ܦ෡) 0.054 0.029 0.028 

 

Table 4. Mean (SD) sample sizes (n) of distance observations and numbers of observations 

per independent encounter (ܿ̂ଶ) from each habitat type and from data pooled across habitat 

types, and mean values of the χ2 GOF statistic divided by its degrees of freedom (ܿ̂ଵ) from the 

most highly parameterized half-normal and hazard rate models fitted to the pooled data sets, 

across 500 iterations.   

 Old growth Regrowing Recently-logged Pooled data 

n 919 (149) 730 (134) 787 (130) 2437 (246) ܿ̂ଵ half-normal -- -- -- 6.70 (3.61) ܿ̂ଵ hazard rate -- -- -- 8.57 (7.74) ܿ̂ଶ 16.8 (1.66) 14.8 (1.78) 14.2 (1.65) 15.3 (0.99) 
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Table 5. The number of times, out of 500 iterations, that each of the 20 candidate models was 

selected by each model selection criterion, and below this, the number of times each of four 

forms of the detection function, and each of three covariate effects, was included in the 

selected models.  “Key” denotes the key function, either half-normal (hn) or hazard rate (hr); 

covariates were: Logging (2), with differences in detectability between logged and old 

growth forests, Logging (3), with differences among all habitat types, and camera trap model 

(CT), which did not affect detectability; “Adj.” denotes the number of adjustment terms. 

Models Model selection criteria 

Key Covariates Adj. parameters AIC QAIC1 QAIC2 

hn None 0 1 0 8 26 

hn Logging (2) 0 2 0 52 104 

hn Logging (3) 0 3 3 34 19 

hn Logging (2) + CT 0 4 9 32 7 

hn Logging (3) + CT 0 5 20 14 3 

hn None 1 2 0 0 0 

hn Logging (2) 1 3 3 37 28 

hn Logging (3) 1 4 6 22 5 

hn Logging (2) + CT 1 5 16 18 0 

hn Logging (3) + CT 1 6 71 13 0 

hr None 0 2 0 45 70 

hr Logging (2) 0 3 2 106 182 

hr Logging (3) 0 4 15 48 35 

hr Logging (2) + CT 0 5 31 31 12 

hr Logging (3) + CT 0 6 79 18 1 

hr None 1 3 0 0 0 
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hr Logging (2) 1 4 4 11 8 

hr Logging (3) 1 5 28 2 0 

hr Logging (2) + CT 1 6 50 7 0 

hr Logging (3) + CT 1 7 163 2 0 

Forms AIC QAIC1 QAIC2 

hn (0 adjustment terms) 32 140 159 

hn (1 adjustment term) 96 90 33 

hr (0 adjustment terms) 127 248 300 

hr (1 adjustment term) 245 22 8 

Covariate effects AIC QAIC1 QAIC2 

Logging (2-level) 115 294 341 

Logging (3-level) 385 153 63 

CT model 439 135 23 

Figure 1. Animal densities (on y-axes) estimated from AIC-, QAIC1- and QAIC2-selected 

models fitted to simulated distance sampling data collected at camera traps in three different 

habitat types, and total density across all 3 habitat types.  Dashed grey lines show true 

densities.  Heavy black lines show medians across 438 and 494 AIC- and QAIC-selected 

models, respectively, from which density was estimable and the estimate of total density was 

within an order of magnitude of the true value. Whiskers extend 1.5 times the interquartile 

range from the boxes; outliers were excluded from the plots. 

Figure 2. Densities of songbirds at Montrave Estate (on y-axes), estimated from models 

selected by Buckland (2006; “B2006” on x-axes), AIC-minimizing models, and models 

selected by QAIC1.  Densities estimated by mapping territories, which were assumed to have 

low bias, are shown as dashed lines. Error bars show the point estimate +/- one standard 

error.  
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