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Abstract 
Smartphones have become powerful tools for data capture due 
to their computational power, internet connectivity, high 
quality sensors and user-friendly interfaces. This also makes 
them attractive for the recording of voice data that can be 
analysed for clinical or other voice health purposes. This 
however requires detailed assessment of the reliability of 
voice parameters extracted from smartphone recordings. In a 
previous study we analysed reliability of measures of 
periodicity and periodicity deviation, with very mixed results 
across parameters. In the present study we extended this 
analysis to measures of added noise and spectral tilt. We 
analysed systematic and random error for six frequently used 
acoustic parameters in clinical acoustic voice quality analysis. 
22 speakers recorded sustained [a] and a short passage with a 
studio microphone and four popular smartphones 
simultaneously. Acoustic parameters were extracted with Praat 
and smartphone recordings were compared to the studio 
microphone. Results indicate a small systematic error for 
almost all parameters and smartphones. Random errors 
differed substantially between parameters. Our results suggest 
that extraction of acoustic voice parameters with mobile 
phones is not without problems and different parameters show 
substantial differences in reliability. Careful individual 
assessment of parameters is therefore recommended before 
use in practice.  

Index Terms: acoustic voice parameters, reliability, 
smartphone, clinical voice analysis  

1. Introduction
Smartphones are increasingly used to collect speech data for 
acoustic analysis, and several authors have suggested that 
smartphones have sufficient reliability for voice analysis with 
a clinical purpose [1]–[6]. [7] took a less optimistic stance on 
this and argued that previous analyses partly rested on false 
assumptions about the nature of the problem. For example, 
some studies have used non-significance between a 
smartphone recording and a reference recording as evidence 
that smartphone measurement are reliable. [7] have argued 
that this approach can only ever assess systematic error and 
that the random error of a measurement is completely ignored 
with this approach, or even worse, a high random error 
supports a non-significant result and thus a ‘positive’ 
conclusion. If both systematic and random error are 
quantified, then some acoustic parameters show worrying 
levels of random error.  

[7] investigated four acoustic parameters with high
relevance for clinical voice analysis, mean F0, smoothed 
Cepstral Peak Prominence (CPPS), jitter (RAP) and shimmer 
%, across four popular smartphone devices (two Samsung and 
two Apple models) and for two different types of voice 
material, i.e. sustained vowels and the reading of a passage. 
The smartphone recordings were compared to simultaneous 
recordings with a Neumann U89i studio microphone. 

F0 measurements were generally judged to be sufficiently 
reliable. All phones showed a systematic error of less than 2 
Hz and a random error of ± 5Hz for passage data, which was 
deemed acceptable for most practical purposes. 

CPPS also showed a small bias across all phones, never 
exceeding 1 dB. The random error was also below ±1 dB, but 
assessing the relevance of this amount of random error is more 
difficult than for F0. [7] suggested relating the random error to 
the range of values observed in a sample and to clinical 
thresholds, if available. In the study sample, the random error 
of CPPS corresponded to about 10% of the total range of 
values. This was preliminarily accepted as sufficiently 
reliable, especially as data from other studies suggests that the 
range of CPPS values in the population is actually much 
wider. 

Both Jitter (RAP) and Shimmer % showed large random 
errors across recording devices and were therefore not deemed 
reliable enough for practical purposes. 

The study by [7] therefore suggests that smartphone 
reliability for acoustic voice assessment very much depends 
on the parameter under question. The study presented here is a 
continuation study of [7], extending the analysis to the 
quantification of added noise and glottal pulse efficiency as 
reflected in the spectral tilt of the voice spectrum.  

We analysed five acoustic parameters with high relevance 
in studies of clinical voice assessment: ‘Harmonics-to-noise 
ratio’ is a well-established measure of the level of noise added 
at the glottis. There are various implementations of this 
measure. We used the standard implementation in Praat. 
Glottal noise excitation ratio (GNE) attempts to measure 
added noise independent of shimmer- and jitter-type 
deviations from periodicity [8][9].  

The second aspect of glottal characteristics considered 
here is the effectiveness of the glottal pulse in generating 
acoustic energy. Various parameters quantify the decrease of 
energy over frequency (often referred to as spectral tilt), with 
steeper slopes indicating less overall effectiveness of the 
glottal pulse.  

Different measures of spectral tilt vary in the frequency 
range they take into account. Some measures, especially those 
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related to estimates of vocal fry, mainly consider the energy 
difference between the first two harmonics (H1 and H2). In 
this paper we used both an uncorrected estimate of H1 minus 
H2 (H1-H2) as well as a version that aims at correcting for 
vocal tract influence (H1*-H2*) [10]. Simpler spectral slope 
measures consider energy differences between frequency 
regions, for example the ‘tilt’ and ‘slope’ measures suggested 
in [11], which calculate spectral slope by comparing the 
energy in two frequency bands, either directly or from a 
regression line.  

2. Method

2.1. Speakers and procedure 

Recording procedures followed the procedures described in 
[7] and used the same data. We recorded 12 women and 10
men in a sound-treated recording studio. All participants were
recorded simultaneously with five devices, four smartphones
and one studio microphone. The smartphones used were a
Samsung Galaxy S8+ (SG8), an iPhone 6s (i6s) and an iPhone
7 (ip7).

The smartphones were arranged in a semi-circular array 
directly below the studio microphone to ensure comparable 
microphone-to-mouth distance (~20 cm). The position of 
smartphones was systematically changed between participants, 
so that each smartphone took one of the five positions 
(including the central position) in turn. 

Participants produced sustained [a] vowel sounds and read 
a shortened version of the phonetically balanced passage ‘The 
Dog and Duck Story’ [12]. Prompts were displayed on the 
phone screens, using the smartphone app ‘Fitvoice’ [13]. 
Reliability of passage data was generally higher in our 
previous study, therefore only passage data is presented here. 

2.2. Acoustic analysis 

Acoustic analysis was performed with Praat [14]. Voiced 
segments were extracted following the procedure described in 
[11]. ‘Slope’ and ‘tilt’ were extracted using the procedures 
from the same source. GNE was extracted with the Praat ‘To 
Harmonicity (gne):’ command, with minimum frequency set 
at 500 Hz, maximum frequency set at 5000 Hz, bandwidth set 
at 3000 Hz and step at 300, following recommendations by 
[9]. H1-H2 and H1*-H2* were calculated following the 
procedure described in [10] and implemented in Praat. 

2.3. Statistical analysis 

As in [7], Bland-Altman analysis was performed using R 3.4.0 
(R Core Team, 2017) with R package ‘BlandAltmanLeh’ [15]. 
This package calculates a 95% confidence interval for the 
systematic error. Systematic errors (bias) were deemed 
significant if the confidence interval did not include zero.  

The random error was derived from the ‘limits of 
agreement’ of the difference between the two measures, i.e. ± 
1.96 SD around the mean [16]. The absolute value of this 
range divided by two is referred to as the ‘critical difference’. 
The critical difference describes the expected random error of 
any measured value of a certain parameter.  

As described above, the assessment of a random error with 
respect to its practical relevance requires some meaningful 
quantity to relate it to. Here we relate the random error to the 
total range of values, as measured with the studio microphone. 
As a preliminary and somewhat ad-hoc guideline, we suggest 

that random errors that do not exceed 10% of the total range 
could be acceptable. 

3. Results
Here we present systematic and random error for the six 
parameters (cf. Tables 1 to 6). Significant systematic errors are 
marked with an asterisk (*). In addition, we provide Bland-
Altman (BA) plots for all phones and parameters. The Bland-
Altman plots show males (red dots) and females (blue 
triangles) separately. This allows us to assess whether separate 
calculations for male and female values would be likely to 
change the random or systematic error calculations. 

3.1. Slope 

All phones, with the exception of the Samsung Galaxy S8, 
showed significant bias for spectral slope measures. All 
devices had critical differences that constituted between 13.5 
and 16.9% of the range.  

Table 1: Systematic and random error for slope 
measures 

Phone bias Crit. Diff. Range% 
gs8 0.29 dB 2.27 dB 14.4 
sj3 1.38* dB 2.68 dB 16.9 
ip7 0.56* dB 2.21 dB 14.0 
i6s 0.79* dB 2.13 dB 13.5 

Figure 1: BA plot for slope parameter (unit dB). Solid line: 
mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

3.2. Tilt 

All devices showed significant negative bias in the range of 
0.41-2.45 for spectral tilt measures. The critical difference for 
the Samsung devices was in the range of 47.4-51.3%. The 
critical difference for the iPhone devices was in the range of 
21.6-27.8%. 



Table 2: Systematic and random error for tilt 
measures 

Phone bias Crit. Diff. Range% 
gs8 -1.23* dB 1.37 dB 47.4 
sj3 -2.45* dB 1.49 dB 51.3 
ip7 -0.55* dB 0.63 dB 21.6 
i6s -0.41* dB 0.80 dB 27.8 

Figure 2: BA plot for tilt parameter (unit dB). Solid line: 
mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

3.3. HNR 

All devices showed significant negative bias in the range of 
1.02-1.80 for HNR measures. Critical differences were in the 
range of 0.58-0.75 dB. The two Samsung devices had random 
error values <10% of the range, whereas the iPhone devices 
were between 10-11% of the range. 

Table 3: Systematic and random error for HNR 
measures 

Phone bias Crit. Diff. Range% 
gs8 -1.02* 0.58 dB 8.6 
sj3 -1.80* 0.63 dB 9.2 
ip7 -1.10* 0.71 dB 10.5 
i6s -1.22* 0.75 dB 11.0 

Figure 3: BA plot for HNR parameter (unit dB). Solid line: 
mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

3.4. GNE 

All devices showed significant negative bias in the range of 
0.025-0.04 for GNE measures. The critical difference for all 
devices constituted between 13.9-20.8% of the range. 

Table 4: Systematic and random error for GNE 
measures 

Phone bias Crit. Diff. Range% 
gs8 -0.025* 0.032 16.7 
sj3 -0.04* 0.040 20.8 
ip7 -0.026* 0.030 15.7 
i6s -0.030* 0.027 13.9 

Figure 4: BA plot for GNE parameter (no unit). Solid line: 
mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

3.5. H1-H2 

All devices showed significant negative bias in the range of 
0.53-5.09 dB for uncorrected H1-H2 measures. Critical 
differences were in the range of 22.1-36%. 

Table 5: Systematic and random error for H1-H2 
measures 

Phone bias Crit. Diff. Range% 
gs8 -2.91* dB 2.17 dB 28.2 
sj3 -5.09* dB 2.78 dB 36.0 
ip7 -0.54* dB 2.10 dB 27.2 
i6s -0.53* dB 1.70 dB 22.1 



Figure 5: BA plot for H1-H2 parameter (unit dB). Solid line: 
mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

3.6. H1*-H2* 

All devices showed significant negative bias for H1*-H2* 
measures in the range of -0.51 to -4.12 dB. The critical 
differences were between 1.38 dB and 4.68 dB constituting 
between 16.2% and 54.5% of the reference range. The 
Samsung devices showed a higher critical difference than the 
Apple devices. 

Table 6: Systematic and random error for H1*-H2* 
measures 

Phone bias Crit. Diff. Range% 
gs8 -2.10* dB 3.29 dB 38.2 
sj3 -4.12* dB 4.68 dB 54.5 
ip7 -0.51* dB 1.86 dB 21.7 
i6s -0.51* dB 1.38 dB 16.1 

Figure 6: BA plot for H1*-H2* parameter (unit dB). Solid 
line: mean, dashed lines: limits of agreement (± 1.96SD). Blue 
triangles: female values; red dots: male values. 

4. Discussion
Of the parameters tested here, only HNR fulfilled the 10% 
criterion. However, besides just considering the range of 
values observed in this sample it might be worth looking at 
ranges from other corpora. A study of acoustic parameters 
derived from the Kay-Pentax Disordered Voice Database 
(DVDB) [17] provided us with comparative values from a 
larger sample comprising healthy and disordered voices. For 
GNE, the range of values observed in this database is 
considerably larger (0.42 compared to 0.19 in the current 
sample). This results in a relative error below 10% for all 
phones. 

For tilt, the parameter with the highest relative random 
error in the current study, the DVDB data has a range of 5.37 
dB compared to 2.89 dB in the current sample. This would 
reduce the mean relative error across all phones to 20%, which 
is still substantial. As tilt is used in the popular Acoustic Voice 
Quality Index (AVQI) [18], this high random error warrants 
further investigation. The slope measure (also an AVQI 
component) shows a random error around 14%, and the range 
for the DVDB database is 21.73, reducing the mean relative 
random error to 10.7%. 

Relative random errors for H1-H2 and H1*-H2* are also 
considerable.  They reduce to a mean of 6.2% and 8.8% 
respectively if DVDB ranges are considered. However 
especially for H1*-H2* and the Samsung phones, the Bland-
Altman plots suggest that the random error is not uniformly 
distributed across the range. This will require further 
exploration. 

5. Conclusion
This study suggests that extraction of acoustic voice 
parameters with smartphones requires careful, parameter-
specific consideration. While HNR, GNE and slope seem 
relatively unproblematic parameters, tilt has a very high 
random error, and both H1-H2 measures suggest issues with 
the distribution of the random error. 

This is also a caveat against assuming that the random 
error will be uniform across a parameter’s possible range. So 
far, we have analysed typical voices, therefore the extension to 
pathological voices is speculative and requires further study. 

It is important to consider in which contexts the random 
and systematic errors are most relevant. For repeated 
recordings with the same device, the systematic error might be 
less important, especially if only within speaker variation is 
considered. As soon as comparisons to other devices are 
required, or a comparison to thresholds derived with studio 
equipment is planned, the systematic error should be 
considered, and the values presented here could provide a 
basis for calibration.  

The random error, however, will also affect repeated 
recordings with the same device and should guide the 
interpretation of change. Value changes that fall within the 
range of the random error might not be reliable.  

Future studies should investigate to what extent calibration 
can reduce systematic error and how far other field recording 
conditions (e.g. noise and room configuration) impact 
measurement.  Furthermore, more general studies of typical 
and clinical ranges of acoustic parameters would support 
overall validity and reliability of clinical acoustic analysis. 
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