
EKE, H.N., PETROVSKI, A. and AHRIZ, H. 2019. The use of machine learning algorithms for detecting advanced
persistent threats. Presented at the 12th International on security of information and networks conference 2019

(SINCONF 2019), 12-15 September 2019, Sochi, Russia. New York: ACM [online], (accepted). Available from:
https://doi.org/10.1145/3357613.3357618

The use of machine learning algorithms for
detecting advanced persistent threats.

EKE, H.N., PETROVSKI, A., AHRIZ, H.

2019

This document was downloaded from
https://openair.rgu.ac.uk

© Owner/Author | ACM 2019. This is the author's version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in Proceedings of the 12th International
on security of information and networks conference 2019 (SINCONF 2019),
http://dx.doi.org/10.1145/3357613.3357618.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access Institutional Repository at Robert Gordon University

https://core.ac.uk/display/228201517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3357613.3357618
http://dx.doi.org/10.1145/3357613.3357618

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

The Use of Machine Learning Algorithms for Detecting
Advanced Persistent Threats

Hope Nkiruka Eke∗
h.eke@rgu.ac.uk

School of Computing Science and
Digital Media, Robert Gordon

University
Aberdeen, Scotland, UK

Andrei Petrovski
a.petrovski@rgu.ac.uk

School of Computing Science and
Digital Media, Robert Gordon

University
Aberdeen, Scotland, UK

Hatem Ahriz
h.ahriz@rgu.ac.uk

School of Computing Science and
Digital Media, Robert Gordon

University
Aberdeen, Scotland, UK

ABSTRACT
Advanced Persistent Threats (APTs) have been a major challenge in
securing both Information Technology (IT) and Operational Tech-
nology (OT) systems. Due to their capability to navigates around
defenses and to evade detection for a prolonged period of time,
targeted APT attacks present an increasing concern for both cyber
security and business continuity personnel. This paper explores
the application of Artificial Immune System (AIS) and Recurrent
Neural Networks (RNNs) variants for APT detection. It has been
shown that the variants of the suggested algorithms provide not
only detection capability, but can also classify malicious data traffic
with respect to the type of APT attacks.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; Neural networks.

KEYWORDS
Advanced Persistent Threats(APTs), Artificial Immune System (AIS),
Human Immune System (HIS), Long Short-Term Memory (LSTM),
Recurrent Neural Network (RNN)
ACM Reference Format:
Hope Nkiruka Eke, Andrei Petrovski, and Hatem Ahriz. 2019. The Use of
Machine Learning Algorithms for Detecting Advanced Persistent Threats.
In The 12th International Conference on Security of Information and Networks
(SIN 2019), September 12–15, 2019, Sochi, Russian Federation. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3357613.3357618

1 INTRODUCTION
Threats to information and network security remain one of the
biggest challenges facing organisations and industries at differ-
ent levels of operation. There have been a number of successful
breaches of critical infrastructure. Stuxnet is one example of a
sophisticated APT attack purposefully launched to target critical
nuclear infrastructure in Iran as highlighted in [9]. This type of at-
tack has drawn special attention to the possibilities of APT attacks

Permission to make digital or hard copies of all or part of this work for personal or

on the Industrial Control System (ICS) such as Supervisory Control
and Data Acquisition (SCADA) network. It has also led to a number
of research interests in developing methods to detect intrusions
within network and isolated devices.

The application of Artificial Intelligence (AI) inspired by AIS
[5, 19], Deep Learning (DL) [25, 31] and Machine Learning (ML)
algorithm[13] in APT intrusion detection has attracted more re-
search attention. Security practitioners believe that these approaches
may be a solution to APT and other cybersecurity issues.

In spite of recent popularity of the above mentioned techniques
and extensive academic research, there is a need to exploit this
knowledge of the system in detection of operational behaviour since
sensors are been controlled in real-time similar to how the human
body immune system detects and removes or destroys threats from
numerous pathogens such as viruses, bacteria and parasites [26, 33].
Various techniques and models have been developed and applied
in securing Information system infrastructures such as ICS devices
and different network devices and platforms against APT and cyber
threats.

Sim et al [30] have applied the combination of immune metaphor
with genetic programming in their work "Network for Lifelong
Learning (NELLI) system". NELLI is a first step towards creating
L2O systems that continue to adapt over time [15]. NELLI has been
applied to bin-packing and job-shop scheduling domains. In any
given domain, NELLI independently generates a group of optimisa-
tion algorithms that has the capability of solving a diverse range of
problem instances. NELLI has demonstrated that, in order to im-
prove its performance when exposed to more instances that exhibit
different characteristics from those previously seen, it generates
an ensemble of optimisation new algorithms that are capable of
solving a diverse range of problem instances in any given domain.
Also, since it retains memory, it quickly returns new algorithm that
exhibits good performance when re-exposed to any instances it
has seen in the past [30]. However, the NELLI model has not been
tested for APT detection in the cybersecurity domain.

Hence, adaptation of artificial immune system combined with
integration of optimised continues machine-learning approaches
to predict attack instances offers a great potential to pre-generate
algorithms in anticipation of future demand, thereby increasing the
efficiency of the system. As suggested in [15], for a shift towards the
direction of optimisation community rather than focusing effort on
developing more complex algorithms that is trained on large static
datasets, a move towards developing systems that independently
and continually generate specialised algorithms on demand may
bear considerable fruit.

https://doi.org/10.1145/3357613.3357618

2019-09-17 10:42. Page 1 of 1–8.

https://doi.org/10.1145/3357613.3357618
https://doi.org/10.1145/3357613.3357618

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SIN 2019, September 12–15, 2019, Sochi, Russian Federation Eke et al.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

This paper present the results of investigation of the application
of deep learning optimised ensemble stacked RNNs and its variants
as inspired by Life-Long Learning Optimiser (L2O) approach to
enhance performance [15] in Intrusion Detection Systems (IDSs)
and compared this with previously published results of AIS model -
Negative Selection (NS) with Antigen Feedback (AF) [22].

The contribution of this paper can be summarised as follows:
• We propose a novel approach using deep neural networks
for APT multi-step detection which takes stacked LSTM-
RNNs networks to automatically learn features from the raw
data to capture the malicious patterns.

• We carried out series of experiments to; evaluate
the ability of this model to (i) accurately detect and classify
an attack as abnormal and (ii) detect different type of attacks
family accurately.

• The achieved results suggest that the proposed approach
is a good candidate for developing attack detection systems.

The remainder of this paper is organised as follows. A brief
background of the AIS and RNNs variants application in security
domain is discussed in section 2. Experiments, evaluation metrics
and analysis results are discussed in Section 3. Section 4 and 5
presents the conclusion of this paper and future work respectively.

2 BACKGROUND
This section contains a brief background of the AIS and RNN ap-
plication in security domain through the examination of major
components and basic definition.

2.1 Artificial Immune System (AIS)
An AIS is a system that is capable of self adaption, self-learning, self
regulatory, distributed with self and non-self detection properties,
capable of identifying and eliminating any intruding foreign body
of antigenicity while maintaining the stability of the environment
within the body [19, 28]. This is relatively similar to Intrusion
Detection System (IDS) functionality in protecting the network
systems.

Human body has an in built mechanism for protecting itself
against harm fromharmful bacteria and viruses, known as pathogens.
This is achieved through the help of Human Immune System (HIS)
without a previous knowledge of the pathogens structure [2]. Since
HIS has the ability to detect and defend against previously and
unseen harmful invaders, this approach can as well be adopted to
protect computer system and critical infrastructure.

Application of AIS has gained popularity in many areas such as
but not limited to processing of text [3], anomaly detection [12]
and network security [17]. However, the most prominent AIS al-
gorithms are centered around these four algorithms- (1) Artificial
Immune network (AIN), (2) Clonal selection (CLONALG), (3) Neg-
ative Selection (NSA), and (4) Danger Theory and Dendritic Cell
Algorithms (DCA), while other approaches are based on the combi-
nation of these four approaches [5, 10].

Four Major AIS Algorithms:
• Artificial Immune Network (AIN): was proposed by [18]
which suggested that the immune system has the ability to

attained immunology memory by the existence of a mutually
reinforcing network of B cells as there is an interaction be-
tween its components to increase its tolerance and memory.
Immune system cells work as a group in a networked sys-
tem to eliminate any foreign body, this forms the basis for
cooperative agents based IDS [5, 10].

• The Clonal Selection algorithm (CLONALG): was put
forward by Frank in 1959 [7] This approach suggest that a
clonal expansion of the original lymphocyte occurs when the
original lymphocyte is activated by binding to the antigen;
however, any low-affinity detectors (clone of the activated
lymphocyte) are eliminated and replaced with the cloned
detectors during the development of the lymphocyte.

• Negative Selection Algorithm (NSA): is based on neg-
ative representation of information using either string or
real-valued vector representation [10]. There is a continuous
improvement on the existing methods and newmodels being
proposed, Bejoy et al. in [5] suggested that NSA is a major
candidate for designing IDS algorithms.

• Danger Theory (DT) and Dendritic Cell Algorithms (DCA):
was proposed by Matzinger in [23] which states that the im-
mune system responds to danger signals from injured cells
rather than self-nonself discrimination as danger signals
should not be sent by healthy cells. Greensmith et al. in
[14] proposed the Dendritic Cell Algorithm (DCA) which
suggest that dendritic cells when stimulated, it differentiate
and undergo maturation and migrate to secondary lymphoid
tissues where they can only work if there is a danger signal
by a cell when attacked by an antigen to stimulate an induce
immune response

2.2 AIS Model Application in Intrusion
Detection Systems (IDSs)

To implement AIS, this involves four different stages these includes
(a) encoding, (b) similarity measure, (3) selection and (4) mutation
as highlighted by [1], "Once an encoding has been fixed and a suit-
able similarity measure is chosen, the algorithm will then perform
selection and mutation, both based on the similarity measure, until
stopping criteria are met".

Gadi et al. in [12], applied AIS model in credit card fraud detec-
tion and compare their result to other classical classifiers such as
Neural Nets (NN) and Bayesian Nets (BN), Naive Bayes (NB) and
Decision Trees (DT).The result of this experiment indicates that AIS
performed better when parameters optimised by Genetic Algorithm
(GA) visualization procedure. Figure 1 is a representation of GA for
parameters optimisation.

The following GA multi-resolution optimization steps algorithm
are used in [12] are:

• They identified those parameters that have not changed, and
freezes the values for the respective parameter.

• Parameters were screened and the 20 best parameter sets for
each split and identify reasonable range.

• For all non-robust parameters, they choose an integer step s
so the searching space does not explode

• Next, they evaluated the costs for all possible combinations
according to the defined search space and find the parameter

2019-09-17 10:42. Page 2 of 1–8.

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

The Use of Machine Learning Algorithms for Detecting Advanced Persistent Threats SIN 2019, September 12–15, 2019, Sochi, Russian Federation

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

Figure 1: Genetic Algorithm for parameters optimization
[12]

set P that brings the minimum average cost among all the
different used splits

• Finally, zoomed the screen to the neighborhood of P , re-
fine steps s , and repeat the process from then on, until no
refinement is possible.

Investigation of system-level fault diagnosis using AIS model
was carried by [35], in their work they have introduced AIS-based
fault identification approach for multiprocessor and multi computer
systems. This model emulated the ability of the immune system
in recognising pathogenic agent (antigen) there by distinguishing
body own cells and molecules (self) from foreign antigens (non-self
) which was similar to the fault diagnosis problem, that aims at
identifying processors (cells) in a system (body) to be a faulty (non-
self) or fault-free (self). Their experimental results indicated that
the immune diagnosis model can successfully identify the faulty
processors and diagnose a faulty situation in short period of time.

An efficient proactive AIS based anomaly detection and preven-
tion system (EPAADPS) was introduced by Saurabh et al. in [28].
EPAADPS was developed by combination of AIS ideas with agents
to proactive defense system against unseen anomalies. Theses were
achieved using three modules: Repertoire Training Module (RTM),
Vulnerability Assessment Module (VAM) and Response module
(RM). The authors utilised the NSA self-tuning of detectors and
detector power in view to make a detector evolve and promote
a better and correct self and non-self coverage. RTM generates
and selects efficient detectors that forms detector set (DS) based
on a self-tuning. VAM creates detector agents (DA) and assigns
it Detector Set (DS) to evaluate Test Set instances. In a situation
where VAM discovered any abnormality within the system, RM
take action against the detected attacks.

A distributed multi-agent IDS using AIS approach that applied
all four AIS algorithms were proposed by [29]. In this approach,
elimination of low profile agents was done using NAS, the CLON-
ALG was used to proliferate agents with best fitness value while
agents communicate with each other was possible through AIN.
This approach used mobile and static agents with detector agents
as the main actors in MAIS-IDS. This approach also used NSL-KDD
[11] dataset to evaluate the system based on three factors- accu-
racy, false alarm (FA) and detection rate (DR). According to the

authors, this approach can be applied on both network and host
based settings.

2.3 Recurrent Neural Network
Recurrent neural network (RNN) is an effective class of artificial
neural network (ANN) that is used when dealing with very complex
supervised and unsupervised tasks [20].

Recently, deep learning techniques have been applied in cyber
security [24]. Since it can detect the cyber attacks by learning the
complex underlying structure, hidden sequential relationships and
hierarchical feature representations from a huge set of security data.
The authors of [20] Proposed and evaluated RNN model against
classical support vector machine classifier (SVM) for cybersecurity
in Android malware classification, incident detection, and fraud
detection.

RNN emerged as a powerful approach for deep learning archi-
tecture generally applicable for time-series data modelling. Despite
the RNN and its variant networks remarkable performance in long
standing AI sequence data modelling tasks such as time-series anal-
ysis, speech recognition and machine translation [21], applying the
same in cyber security task is in early stage of development [34].

Figure 2: Schema of Unfolded Basic Recurrent Neural Net-
work [4]

RNN were developed in the 1980s and it is similar to a feed-
forward network (FFN) with an additional internal feedback loop
(short-term memory to store and retrieve past information over
time scales and thereby execute the temporal task) which is a cir-
cular connections between higher- and lower-layer neurons and
optional self-feedback connections. These feedback connections en-
able RNNs to propagate data from earlier events to current process-
ing steps which is in contrasts to FFN. The formulated mathematical
representations of the RNN computational flow are represented in
Equations 1 and 2.

st = fw (st−1,xt) (1)
Equation 1 represent the basic recursive formula of RNN where

fw is the recursive function. The network has an input layer x ,
hidden layer s (also known as hidden state) and output layer o. The
current observed input to the network at time step t is denoted as
xt , the hidden state at time step t is denoted as st and st−1 represent
the previous hidden state.

st = f (Uxt +Wst−1) (2)
st is calculated based on the previous hidden state st−1 and the

input at the current step xt as shown in Equation 2. st is the short-
term "memory" of the network which captures information about

2019-09-17 10:42. Page 3 of 1–8.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

SIN 2019, September 12–15, 2019, Sochi, Russian Federation Eke et al.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

what happened in all the previous time steps, this can further be
fed to other stacked recurrent layer or final layer where the layer
has nonlinear activation function such as softmax function sf as
represented in Equation 3.

ot = s f (Vst) (3)

ot is the output at time step t and the vector of probabilities of
initial hidden state is set to V .

f denote the nonlinearity mapping function from the input fea-
tures to the output labels such as tanh or ReLU, where the weight
matrices of the previous state weight at time step t and input state
weight at time step t are represented asUxt andWst−1 respectively.
s−1 is required to calculate the first hidden state and is usually
initialised to zeroes.

Understanding the dynamics of RNN entirely is difficult due to
its cyclic connection. To overcome this an RNN structure input
sequence of length is transformed to a FFN structure by unfolding
over time-steps as represented in Figure 2. FFN consist of hidden
layers. This new structure can be analysed and also is adaptable to
the backward propagation (BP) of errors, at this point the predefined
error function are computed by comparing the output values with
correct values and then distributed back throughout the network
layers. This process is often used to train deep neural networks
(DNN). An unfolded RNN at any given time t is defined as a function
hT Equation 4.

hT = ST (x2x1) (4)

Where ST represents the unfolded graph of time-steps t .
The sum of all input-output pairs in a sequence over all the time-

steps is referred to as the loss L function represented in Equation
5.

L = d(tr ,pr) =
T∑
i=1

d(tr ,pr) (5)

The schema of unfolding of RNN in time of the computation is
shown in Fig. 4. In RNN cyclic connections, each layer represents
per time information similar to DNN but the unfolded RNN shares
weight parametersW across time-steps as represented in Figure 2.
This indicates the fact that network performs the same task with
various inputs over time-steps. In addition to learning the temporal
patterns with cyclic connections, unfolding allows the RNN model
to learn the association of static features between the input and
output sequences. In order to apply the feedback concept, the BP
is used to compute the gradients for weight parameters across
time-step t .

To find the recurrent weights, the computation of gradient at
t = 2 will involve back propagating 1 step and add them to find and
update the recurrent weight . This technique is known as back prop-
agation through time (BPTT) employed by RNN to reduce network
cumulative error. However, modeling large scale data sequence
with RNN and BPTT is not efficient due to vanishing and exploding
gradient problem as stated in [6] which usually occurs when we
BP the error back in many time-steps in the deep unrolled RNNs
network models.

Since RNN shares the parameters across all time step reducing
the amount of parameter to be trained, this is utilised to calculate
the gradient at each time t as in Equation 6 and 7.

st = tanh(Wxsxt +Wssst−1 + bs) (6)

ot = so f tmax(wsost + b0) (7)
where st is the hidden layer, tanh is the hidden layer nonlinear

activation function, the softmax function sf is used at the last layer
as, bs and bo are the bias terms for the hidden state and prediction
at time step t . Where the prediction at time step t is denoted as zt
while the weight shared between the hidden s and output o across
all the time sequence areWos andWss respectively.

2.4 Long Short-Term Memory (LSTM)
LSTM is a second order RNNs that is augmented by recurrent
gates known as Forget Gates (FG) [16]. LSTM has the capability
to remember information for long periods of time. It contains a
memory block which is a complex processing unit that is composed
of one or more memory cell and a pair of multiplicative gates
known as input and output gate with in-built recurrent connection
value 1 as constant error carousel (CEC). This value will be active
across the time-step and triggered when a memory block has not
received any value from outside signals [27]. In order to combat the
issue of vanishing gradient that prevents RNN from learning long
term dependencies through gating mechanism, the computation
of recurrent hidden state St can be seen as mean elementwise
multiplication as shown in Equation 8

i = σ (xtU
i + St−1W

i)

f = σ (xtU
f + St−1W

f)

o = σ (xtU
o + (St−1or)W

o)

д = tanh(xtU д + st−1orW
д)

ct = ct−1 + дoi

st = tanh(ct)oo

(8)

LSTM comprises of one cell state c and three gates; the input
i , forget f and output gates o used to illustrate interaction within
LSTM architecture as represented within Equation 8. These gates
are composed out of a sigmoid function σ that generate output vec-
tors between 0 and 1 through elementwise multiplication operation
o used in Equation 8 with another vector to decide how much of the
newly computed state for the current input you want to let through
by input gate i , the forget gate f defines how much of the previous
state you want to let through. The output gate defines how much
of the internal state to expose to next layer in time t step.

The candidate value д is calculated based on the current input
and the previous hidden state, the input gate i will decide which
part of this information to store in cell state memory ct as the new
hidden stateд. The internal memory of the unit is denoted as ct , this
is the combination of the previous memory ct−1 multiplied by the
forget gate f , and the newly computed hidden state д , multiplied
by the input gate.

Finally, the hidden state output state st can be computed by
multiplying the internal memory ct with output gate o.

2019-09-17 10:42. Page 4 of 1–8.

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

The Use of Machine Learning Algorithms for Detecting Advanced Persistent Threats SIN 2019, September 12–15, 2019, Sochi, Russian Federation

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

2.5 Gated Recurrent Unit (GRU)
GRUs are gating mechanism in recurrent neural networks. Its per-
formance on polyphonic music modeling and speech signal model-
ing are similar to that of LSTM with fewer parameters due to there
lack of output gate. A GRU has two gates, a reset gate r , and an
update gate z shown in Equation 9

z = σ (xtU
z + St−1W

z)

r = σ (xtU
r + St−1W

r)

h = tanh(xtU h + (St−1or)W
h)

st = (1 − z)oh + zost−1)

(9)

The computation of GRU gating mechanism to learn long-term
dependencies in neural network is similar to that of LSTM with
few variation as listed below.

• GRU has two gate; the reset gate that determines how to com-
bine new input with the previous memory, and the update
gate decides how much of the previous memory to keep

• GRU does not have output gate o.
• GRUs does not have internal memory c1 that differs from
the exposed hidden state.

3 EXPERIMENT
The purpose of this study is to examine the performance of two
different approaches, the AIS-NSA and LSTM-RNN in APTs de-
tection. In this study, we have carried out two different tasks that
involves LSTM-RNN model application using corrected 10% KDD-
Cup99 dataset containing 494021 records. The first task focused on
deriving hyper-parameter values for best performance model. In
the second phase, we applied the achieved hyper-parameter values
in measuring the model performance. We also compared the result
of LSTM-RNN model to previously published AIS-NSA[22, 27] and
[32] application.

All the standard data mining processes such as data cleaning and
pre-processing, normalisation, visualisation and classification were
implemented in Python. The batch size of 64 and epochs are run
up to 50 and 300 with a learning rate set in the range of 0.01-0.5
on a GPU-enabled TensorFlow network architecture. Also, various
traditional ML classification algorithms were used to perform the
classification experiments on 10% KDDCup99 dataset in order to
analyse the network protocol relationship with the attack used
by intruders in generating anomalous network traffic. The ML
classification result was compared to LSTM-RNN result in order
to further evaluate the performance of LSTM-RNN model. The
KDDCup99 dataset used consists of 22 attacks classes and 1 normal
class. These attacks were grouped into 4 main attack classes - Denial
of Service (DOS), Remote to User (R2L), User to Root (U2R) and
Probe. Figure 3 and 4 shows the number of records in each of the
classes. All features were used as input vector with 75% as training
set and 25% as testing set for the binary and multi classification
respectively . The training dataset were normalised from 0 to 1. This
was trained using sigmoid activation function through time with
ADAM optimiser, sigmoid function was used on all the three gates
and categorical/binary cross entropy as loss function for multi and
binary classification respectively.

3.1 Experimental Data

Figure 3: Visualisation of data classes in KDDCup99 dataset,
with classes defined as (0) for normal and (1) for attacks
(DOS, Probe, R2L and U2R as shown in Figure 4)

Figure 4: Four Main Attack Group and Normal Classes

3.2 Evaluation Metrics
The true positive rate (TPR) and false positive rate (FPR) were used
to evaluate the effectiveness of LSTM-RNN model.

• True Positive (TP) - abnormal instances correctly predicted
as abnormal.

• True Negative (TN) - normal instances correctly predicted
as normal

• False Positive (FP) - normal instances incorrectly predicted
as abnormal

• False Negative (FN) - abnormal instances incorrectly pre-
dicted as normal

3.3 Results and Discussions
To validate the approach of using the LSTM-RNNs model for de-
tecting attacks statistical matrices such as accuracy (Acc), precision
(Prec), true positive rate (TPR), false positive rate (FPR), recall (Rec)
and f-score are calculated (i) to evaluate the ability of the LSTM-
RNNs model to accurately detect and classify an attack as abnormal
and also (ii) to check the ability of this model to detect different
type of attacks accurately.

Table 1 contains an expanded name of all the algorithms as
used on this paper. Table 2 contains the comparative summary
result of the ML algorithms, the LSTM-RNNs network and result of
previously published AIS (NS-AFB to be more precise), while Table
4 shows the summary of the performance of each of the algorithms

2019-09-17 10:42. Page 5 of 1–8.

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

SIN 2019, September 12–15, 2019, Sochi, Russian Federation Eke et al.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

in detecting all the four attack groups including 1 normal class.
This is also shown in Figure 12, where AG represent algorithms,
DT represent detection and classification rate - other abbreviations
have been mentioned previously.

Table 1: List of Expanded Algorithms Names as Used

Algorithms (AG) Expanded Algorithms Name

SVM Support Vector Machine
KNN k-nearest Neighbors
DTC DecisionTree Classifier
RF Random Forest Classifier
LR Logistic Regression
ADB AdaBoost Classifier
NB Naive Bayes

LSTM Long Short-Term Memory
RNN Recurrent Neural Network
GRU Gated Recurrent Unit
AIS Artificial Immune System

(NS-AFB) Negative Selection with Antigen Feedback

Table 2: Average Binary Summary Results On 10% of KDD-
Cup99 Dataset

AG DT Acc TPR FPR Prec Rec F-score

SVM 0.994 0.981 0.998 0 1 0.999 1
KNN 0.999 0.999 0.998 0 1 0.999 1
DTC 0.999 0.999 0.998 0 1 0.999 1
RF 0.999 0.999 0.998 0 1 0.999 1
LR 0.997 0.998 0.993 0.001 0.999 0.998 0.998
ADB 0.998 0.999 0.997 0.001 0.999 0.999 0.999
NB 0.945 0.945 0.784 0 1 0.932 0.965

LSTM 0.999 0.999 0.999 0 1 1 1
RNN 0.999 0.999 0.998 0.001 0.999 1 0.999
GRU 0.999 0.999 0.998 0 1 1 1

AIS[22]
(NS-AFB)
Attacks 0.952 - 0.998 0.479 - - -
Normal 0.992 - 0.998 0.790 - - -

• Confusion Matrix: The model was trained on the full de-
velopment training set and scores are computed on the full
evaluation set. The confusion matrix of the LSTM-RNNs
shows the predicted and the actual true binary classifica-
tions of normal/attack and detection of all the four attacks
group for each of the RNNs as represented on Figure 5-7 and
8-10 respectively. Visual observation of the Figure 4 shows
a clear picture of the number of instances of the R2L, U2R
and Probes with lower connection records while normal and
DOS appear to have more connection records. Those group
with more records are learnt properly without confusing
their identity while those with fewer connection records
during training did not show good true positive rate and

Table 3: Performance Matrix Table for Binary Classification

Criteria LSTM RNN GRU

Total No of Samples 494021
True Positive (TP) 32187 32177 32178
False Positive (FP) 34 44 43
True Negative (TN) 130765 130734 130766
False Negative (FN) 41 72 40

True Positive Rate (TPR) 99.90% 99.80% 99.80%
False Positive Rate (FPR) 0 0 0

Score
Accuracy 99.90% 99.90% 99.90%
F-Score 1 99.90% 1
Recall 1 1 1

Precision 1 99.90% 1

Table 4: Average Multi-Class Summary Results On 10% KD-
DCup99 Dataset

AG DT Acc TPR FPR Prec Rec F-score

SVM 0.991 0.999 1 0 0.999 0.999 0.999
KNN 0.999 0.999 1 0 0.999 0.999 0.999
DTC 0.999 0.999 1 0 0.999 0.999 0.999
RF 0.999 0.999 1 0 0.999 0.999 0.999
LR 0.997 0.998 1 0.001 0.998 0.998 0.998
ADB 0.923 0.924 0.998 0.205
NB 0.931 0.931 1 0.033 0.984 0.931 0.954

LSTM 0.999 0.999 1 0 0.999 0.999 0.999
RNN 0.999 0.999 1 0 0.999 0.999 0.999
GRU 0.999 0.999 1 0 0.999 0.999 0.999

precision as it was had to identify them. This indicates data
imbalance problem. The dataset contains many examples for
"neptune" that belongs to DOS attack class, "satan" attacks
that belongs to Probe and "normal" but fewer examples of
the others.
The LSTM-RNNs model was used as classifier and detector.
As a binary classifier to separate normal from attacks in-
stances, the LSTM-RNNs were able to achieve a significant
result of 99.99% average accuracy. A closer observation of the
individual performance of each of the RNNs indicates that
LSTMmodel outperformed the RNNwith insignificant result,
indicating an outstanding overall performance of this model
as indicated with good DOS attack detection and acceptable
detection of Probe.

4 CONCLUSION
In this paper, we applied IDS based on LSTM-RNNs and evaluated
the effectiveness of RNN model and its variants, we also compared
our result to previously published work on AIS-NSA [22, 27] and
[32] application. We went further to implement attacks classifica-
tion with seven different classifiers as contained in Table 1, 2 and
4. The result from this classification were also compared to LSTM-
RNN results. We noticed that most of the algorithms applied in this

2019-09-17 10:42. Page 6 of 1–8.

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

The Use of Machine Learning Algorithms for Detecting Advanced Persistent Threats SIN 2019, September 12–15, 2019, Sochi, Russian Federation

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Figure 5: Binary Confusion Matrix for LSTM

Figure 6: Binary Confusion Matrix for RNN

Figure 7: Binary Confusion Matrix for GRU

Figure 8: Multi-Class Confusion Matrix for LSTM

Figure 9: Multi-Class Confusion Matrix for RNN

Figure 10: Multi-Class Confusion Matrix for GRU

Figure 11: Normal and Attack Binary Detection Accuracy

Figure 12: Performance Accuracy of Each Model on all Five
Classes

2019-09-17 10:42. Page 7 of 1–8.

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

SIN 2019, September 12–15, 2019, Sochi, Russian Federation Eke et al.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

study, achieved a competitive accuracy rate with insignificant FAR
while few such as ADB and NS-AFB achieved a noticeable FAR,
although NS-AFB achieved a good percentage detection accuracy of
95.20% on attacks, 99.20% on normal with TPR of 99.809% on both
attack and normal classes. During the training, we also noticed that
LSTM-RNN appear to be suitable for classifying high-frequency
attacks and also the low frequency attacks with lower confidence
prediction of 62.50%, 56.20% and 37.50% for LSTM, GRU and RNN
respectively on multi attack detection, while achieving a very sig-
nificant average accuracy of 99.99% for LSTM, GRU and RNN on
differentiating attacks from normal instances. The percentage accu-
racy of LSTM-RNNs model achieved on this study as represented
on the Figure 11 and 12 shows that the LSTM model performed
slightly better than GRU and RNN model especially in differentiat-
ing attack from normal instances. Overall, the result suggest that
the LSTM-RNNs model is a good candidate for developing attack
detection systems.

5 FUTURE WORK
This work on the application of stacked LSTM-RNN model on
IDS using a KDDCup99 dataset is an ongoing study. Further work
will explore modelling combination of an optimised LSTM-RNN
model and CNN on a time-series dataset - UNSW-NB15 datasets
(University of New South Wales 2015 Datasets) over a multi-stage
APT detection architecture. As APT is amulti-step attacks, detecting
a single stage of an APT technique itself does not imply detecting
an APT attack as mentioned by [13]. Patterns embedded in large
generated datasets through industrial processes may be dynamic,
hence the need for a system that can accurately detect APT in a
systematic way at different time step and has the ability to learn,
store and update existing patterns with the collection of new data,
and also be scalable to process data in large volumes [8]. Hence, the
combination of this two model to determine the efficiency of this
approach since RNN has the capability to learn temporal dynamic
behaviour over a time sequence data. The authors are currently
engaged in work in this domain.

REFERENCES
[1] Uwe Aickelin, Dipankar Dasgupta, and Feng Gu. 2013. Artificial immune systems

(intros 2). arXiv preprint arXiv:1308.5138 (2013).
[2] Uwe Aickelin, Julie Greensmith, and Jamie Twycross. 2004. Immune system ap-

proaches to intrusion detection–a review. In International Conference on Artificial
Immune Systems. Springer, 316–329.

[3] Luca Albergante. 2008. Wireless discussion forums: Automatic management via
artificial immune systems. In Performance Evaluation of Computer and Telecom-
munication Systems, 2008. SPECTS 2008. International Symposium on. IEEE, 74–81.

[4] Abdelrahman Ayad, Mohsen Khalaf, and Ehab El-Saadany. 2018. Detection of
false data injection attacks in automatic generation control systems considering
system nonlinearities. In 2018 IEEE Electrical Power and Energy Conference (EPEC).
IEEE, 1–6.

[5] BJ Bejoy and S Janakiraman. 2017. Artificial immune system based intrusion
detection systemsâĂŤa comprehensive review. Int J Comput Eng Technol 8, 1
(2017), 85–95.

[6] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[7] Sir Frank Macfarlane Burnet et al. 1959. The clonal selection theory of acquired
immunity. (1959).

[8] Meng-Hui Chen, Pei-Chann Chang, and Jheng-Long Wu. 2016. A population-
based incremental learning approach with artificial immune system for network
intrusion detection. Engineering Applications of Artificial Intelligence 51 (2016),
171–181.

[9] Thomas Chen and Saeed Abu-Nimeh. 2011. Lessons from stuxnet. Computer 44,
4 (2011), 91–93.

[10] Dipankar Dasgupta, Senhua Yu, and Fernando Nino. 2011. Recent advances in
artificial immune systems: models and applications. Applied Soft Computing 11,
2 (2011), 1574–1587.

[11] L Dhanabal and SP Shantharajah. 2015. A study on NSL-KDD dataset for intrusion
detection system based on classification algorithms. International Journal of
Advanced Research in Computer and Communication Engineering 4, 6 (2015),
446–452.

[12] Manoel Fernando Alonso Gadi, XidiWang, and Alair Pereira do Lago. 2008. Credit
card fraud detection with artificial immune system. In International Conference
on Artificial Immune Systems. Springer, 119–131.

[13] Ibrahim Ghafir, Mohammad Hammoudeh, Vaclav Prenosil, Liangxiu Han, Robert
Hegarty, Khaled Rabie, and Francisco J Aparicio-Navarro. 2018. Detection of
advanced persistent threat using machine-learning correlation analysis. Future
Generation Computer Systems 89 (2018), 349–359.

[14] Julie Greensmith, Uwe Aickelin, and Steve Cayzer. 2005. Introducing dendritic
cells as a novel immune-inspired algorithm for anomaly detection. In International
Conference on Artificial Immune Systems. Springer, 153–167.

[15] EmmaHart. 2017. Towards Lifelong Learning in Optimisation Algorithms. (2017).
[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[17] Hailing Huang, Weiqiang Guo, and Yu Zhang. 2008. Detection of copy-move

forgery in digital images using SIFT algorithm. In Computational Intelligence and
Industrial Application, 2008. PACIIA’08. Pacific-Asia Workshop on, Vol. 2. IEEE,
272–276.

[18] Niels K Jerne. 1974. Towards a network theory of the immune system. Ann.
Immunol. 125 (1974), 373–389.

[19] Bin Jia, Zhaowen Lin, and Yan Ma. 2014. Advanced Persistent Threat Detection
Method Research Based on Relevant Algorithms to Artificial Immune System.
In International Conference on Trustworthy Computing and Services. Springer,
221–228.

[20] Soman KP et al. 2019. RNNSecureNet: Recurrent neural networks for Cyber
security use-cases. arXiv preprint arXiv:1901.04281 (2019).

[21] Y LeCun, Y Bengio, and G Hinton. 2015. Deep learning. nature 521 (7553): 436.
Google Scholar (2015).

[22] Wanli Ma, Dat Tran, and Dharmendra Sharma. 2008. Negative selection with
antigen feedback in intrusion detection. In International Conference on Artificial
Immune Systems. Springer, 200–209.

[23] Polly Matzinger. 2002. The danger model: a renewed sense of self. Science 296,
5566 (2002), 301–305.

[24] Christopher D McDermott, John P Isaacs, and Andrei V Petrovski. 2019. Evaluat-
ing Awareness and Perception of Botnet Activity within Consumer Internet-of-
Things (IoT) Networks. In Informatics, Vol. 6. Multidisciplinary Digital Publishing
Institute, 8.

[25] Christopher D McDermott, Farzan Majdani, and Andrei V Petrovski. 2018. Bot-
net detection in the internet of things using deep learning approaches. In 2018
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[26] Lalit KMestha, OlugbengaMAnubi, andMasoud Abbaszadeh. 2017. Cyber-attack
detection and accommodation algorithm for energy delivery systems. In 2017
IEEE Conference on Control Technology and Applications (CCTA). IEEE, 1326–1331.

[27] Marek Ostaszewski, Franciszek Seredynski, and Pascal Bouvry. 2006. Immune
anomaly detection enhanced with evolutionary paradigms. In Proceedings of the
8th annual conference on Genetic and evolutionary computation. ACM, 119–126.

[28] Praneet Saurabh and Bhupendra Verma. 2016. An efficient proactive artificial
immune system based anomaly detection and prevention system. Expert Systems
with Applications 60 (2016), 311–320.

[29] Neda Afzali Seresht and Reza Azmi. 2014. MAIS-IDS: A distributed intrusion
detection system using multi-agent AIS approach. Engineering Applications of
Artificial Intelligence 35 (2014), 286–298.

[30] Kevin Sim, Emma Hart, and Ben Paechter. 2015. A lifelong learning hyper-
heuristic method for bin packing. Evolutionary computation 23, 1 (2015), 37–67.

[31] Ralf C Staudemeyer. 2015. Applying long short-term memory recurrent neural
networks to intrusion detection. South African Computer Journal 56, 1 (2015),
136–154.

[32] Thomas Stibor, Jonathan Timmis, and Claudia Eckert. 2005. A comparative study
of real-valued negative selection to statistical anomaly detection techniques. In
International Conference on Artificial Immune Systems. Springer, 262–275.

[33] S Venkatesan, Ramachandran Baskaran, C Chellappan, Anurika Vaish, and P
Dhavachelvan. 2013. Artificial immune system based mobile agent platform
protection. Computer Standards & Interfaces 35, 4 (2013), 365–373.

[34] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. 2017. Evaluation
of Recurrent Neural Network and its Variants for Intrusion Detection System
(IDS). International Journal of Information System Modeling and Design (IJISMD)
8, 3 (2017), 43–63.

[35] Hui Yang, Mourad Elhadef, Amiya Nayak, and Xiaofan Yang. 2008. Network
fault diagnosis: an artificial immune system approach. In Parallel and Distributed
Systems, 2008. ICPADS’08. 14th IEEE International Conference on. IEEE, 463–469.

2019-09-17 10:42. Page 8 of 1–8.

	EKE 2019 The use of machine.pdf
	SinConf2019_CameraReady_v1_Final.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Artificial Immune System (AIS)
	2.2 AIS Model Application in Intrusion Detection Systems (IDSs)
	2.3 Recurrent Neural Network
	2.4 Long Short-Term Memory (LSTM)
	2.5 Gated Recurrent Unit (GRU)

	3 Experiment
	3.1 Experimental Data
	3.2 Evaluation Metrics
	3.3 Results and Discussions

	4 Conclusion
	5 Future Work
	References

