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Context-aware Anomaly Detector for Monitoring Cyber Attacks
on Automotive CAN Bus

ABSTRACT
Automotive electronics is rapidly expanding. An average vehicle

contains million lines of software codes, running on 100 of elec-

tronic control units (ECUs), in supporting number of safety, driver

assistance and infotainment functions. These ECUs are networked

using a Controller Area Network (CAN). Security of the CAN bus

has not historically been a major concern, however, recent research

demonstrate that CAN has many vulnerabilities to cyber attacks.

This paper presents a contextualised anomaly detector for monitor-

ing cyber attacks on the CAN bus. Proposed algorithm is based on

message sequence modelling, using so called N-grams distributions.

It utilises only benign data (one class) for training and threshold

estimation. Performance of the algorithm was tested against two

different attack scenarios, RPM and gear gauge messages spoofing,

using data captured from a real vehicle. Experimental outcomes

demonstrate that proposed algorithm is capable of detecting both

attacks with %100 accuracy, using far smaller time windows (100ms)

which is essential for a practically deployable automotive cyber

security solution.
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In-Vehicle Networks, CAN bus, Automotive Cyber Security, Context-

aware Anomaly Detection
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1 INTRODUCTION
Modern automobiles are increasingly becoming intelligent and

smarter, offering range of exciting new features such as telemat-

ics, advanced driver assistance and augmented reality displays. An

average vehicle contains a million lines of software codes running

on 100 of micro computers (known as ECUs) to facilitate these

services [28]. These ECUs spread over the entire vehicle and largely

connected to one another using bus-based network called CAN, low

latency, low overhead high performance bus standard. Moreover

modern vehicles have number of external communication inter-

faces to communicate with the outside world, for example, with

personal devices, vehicular ad-hoc networks and the Internet. Esti-

mates show that 75% of cars shipped globally by 2020 will be built

Permission to make digital or hard copies of all or part of this work for personal or

with the necessary hardware to connect to the internet [1]. Despite

the fact that security of some of these connections and software

codes may be strengthened by automotive manufactures or original

equipment manufacturers (OEMs), having so many lines of codes

and increased connectivity extends the potential attack surface that

can be exploited by a cyber criminal. Security researchers demon-

strate that their ability to implement attacks to real vehicles [30].

Vehicle hacks are potentially disastrous. Illegitimately accessing

and modifying data in a vehicle is not only a security issue but also

a safety issue. For example, corrupted ECU driving the brakes can

lead to an accident with serious consequences for passengers, peo-

ple and goods in the surrounding environment. Therefore security

of connected and autonomous vehicles is a big concern for auto-

motive manufacturers and OEMs who are now seeking methods to

secure their products against Cyberattacks.

Security research in this area has taken many forms, encom-

passing anything from hardware security to encryption of various

aspects of the vehicle (see Section 2.2). One of the larger areas of

research identified was the need for the traffic stream of the inter-

nal vehicle to be in some way monitored for potentially malicious

behaviour. This paper focuses on contextualising anomaly detec-

tion on the intra-vehicular network bus (see Section 2.1). Anomaly

detection for security monitoring on the CAN bus has been difficult

due to the fact that many actions or reactions on a vehicle can be

construed as anomalous; for example, an emergency braking event

carried out by the driver, whilst legitimate, is always anomalous in

day-to-day driving scenarios. To mitigate or avoid false positives,

context is required to tell between a legitimate anomaly and one

that could be interpreted as a potentially malicious action.

The contribution of this paper starts bymodelling of normal CAN

behaviour, thenwe propose a novel context-aware anomaly detector

using n-gram distributions. The main features of the proposed

algorithm can be summarised as follows.

(1) The algorithm depends only on benign data (one class) for

the training purpose and threshold estimation. This avoids

the need of large amount of realistic attack data for model

building. Collecting benign data for training purpose is rela-

tively easier in our problem than collecting attack data.

(2) It is lightweight and can be used to detect anomalous CAN

messages in real time. Algorithm is capable of picking up

anomalies using far smaller time windows (e.g. 100ms). This

is an essential feature for a practically deployable automotive

cyber security solution.

(3) Threshold is estimated in a systematic way only using benign

training data. With the estimated threshold, attack messages

are assigned higher anomaly certainty scores, resulting in

100% accuracy rates of attack detection.

(4) It does not depend on prior knowledge of the CAN ID and

its purpose which is not generally shared by the vehicle

manufacturer. This feature enables the proposed algorithm
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to be retrofitted to existing vehicle infrastructure as shown

in Fig. 1.

Proposed 
Solution

ECU 1 ECU N

Figure 1: Demonstrative CAN network topology with the
proposed solution fitted as an ECU.

The rest of this paper is organised as follows: Section 2 lays out

the background including related work in this field. Section 3 pro-

vides a description of the proposed algorithm and its mathematical

basis. Section 4.1 details the dataset used in this work. Section 4.2

provides a description of experimental design, with Section 4.3 ex-

ploring the results and discussions thereof. Conclusions and future

work are discussed in Section 5.

2 BACKGROUND
In this section, we give the background on the ubiquitous automo-

tive CAN protocol and then explore related work in this field.

2.1 Controller Area Network (CAN)
The CAN protocol is a ubiquitous and pervasive standard of intra-

vehicular networking, the latest of which (CAN 2.0) is formally

embodied in a specification document by Bosch in 1991. It is a

broadcast protocol, with no addressing facilities. Instead, every ECU

receives every message, but only acts on those that it is specified

to recognise. Arbitration is bitwise; and every ECU in the vehicle

needs to be synchronised to sample every bit at the same time,

with dominant bits being the logical ‘0’ and the recessive bit being

‘1’. Each message is prefixed with (amongst other things) with a

CAN ID which identifies the priority of the message: the lower the

CAN ID, the higher the priority. The CAN ID and its purpose is not

generally shared by the vehicle manufacturer.

Due to its origin in non-connected vehicles, security of the CAN

bus has not historically been a major concern, however, recent

research demonstrate that CAN has many vulnerabilities to cyber

attacks due to the broadcast transmission nature of communica-

tion, and the lack of encryption and authentication. This makes it

susceptible to attacks, such as injection [10], replay [3], fuzzing [8],

flooding [2] or through lack of space within the protocol to embed

meaningful security such as encryption (although there have been

proposals [15]). In many cases ECUs are exposed through external

interfaces. For example, Miller et al. exploited a Wi-Fi port of a

popular Jeep model to gain access and reprogram its ECUs. Authors

managed to control a wide range of automotive functions remotely

(e.g. disabling brake and stopping engine) [21]. The attack surface

presented by the vehicle has grown due to the addition of Bluetooth,

Wi-Fi and 4G in car technology exposing weaker CAN protocol.

2.2 Related work
An increased number of automotive malicious attacks have been

noted in recent years. Consequently, research into anomaly detec-

tion on the automotive CAN bus has surged. This is primarily due to

technological advances in vehicles manufacture and the insufficient

security provisions offered by the CAN protocol. Several attempts

aiming at enhancing the CAN bus security had been proposed. Au-

thors in [16] have used a specification-based approach for intrusion

detection on the vehicle network, while [19] proposed a method of

blocking unauthorised data transmission on the CAN bus. In [9],

authors have proposed three anomaly detection measures, which

involve detection of an abnormal frequency of cyclic messages,

characteristics observation of low level communication and detec-

tion of message IDs misuse. Additionally, frequency-based anomaly

detection using network traffic characteristics was used for intru-

sion detection systems in [26]. This concept was adapted from the

work conducted in [29], which statistically evaluates anomaly de-

tection in industrial control system traffic. Such detection methods

can result in good accuracy and low false-positive rate, however,

their application is limited to periodic traffic. A detection model

based on time interval anomalies of CAN messages is proposed in

[27]. Moreover, authors in [23] have used generative adversarial

networks for attack detection on the CAN bus. They have used

randomly generated fake attacks to train their models, as opposed

to data from real attacks. Entropy-based attack detection mecha-

nism for CAN networks is presented in [22]. In [5] authors have

proposed carefully constructed defence messages to block attackers

permanently. Authors in [25] have applied time interval analysis for

intrusion detection. Their system was designed to detect message

injection attacks. In [18], authors have proposed an intrusion de-

tection algorithm that aims to identify malicious injected messages.

The algorithm’s detection performance was demonstrated through

experiments conducted on real traffic.

Though various studies have been published on anomaly de-

tection on the automotive CAN bus, none of them focus on con-

textualising the anomaly detection. Inspecting alerts generated by

an anomaly detector is not sufficient to identify the cause. Iden-

tifying the context of the CAN messages can provide meanings

behind events, which consequently would reduce false alarms in

complex scenarios. A recent comprehensive survey on intrusion

detection for in-vehicle networks had been published [30], none of

the stated works focus on context-aware anomaly detection. This

paper presents contextualised anomaly detection for monitoring

cyber attacks on the CAN bus network, therefore, this work is

different and unique.

2019-06-07 19:34. Page 2 of 1–8.
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3 PROPOSED ALGORITHM
We inspired by the successful applications of sequence modelling

techniques in other areas, particularly, use cases like speech recog-

nition, language translation and sentiment analysis in natural lan-

guage processing. Video activity recognition is another trending

use case of successful application of sequence modelling techniques,

in which the model predicts which activity is going on based on

input sequence of frames. Nevertheless, the most of data in real

life are in the form of sequences, for example, it can be a number

sequence, character sequence, network traffic sequence, image pixel

sequence, a video frame sequence or an audio sequence, and the

mathematical models have to map these input data to an output

which can also be a sequence or a scalar. In our problem, the input

would be a sequence of CAN messages and proposed algorithm

has to map them into a label, in streaming fashion as illustrated in

figure 2. In the rest of this section, we will discuss how to achieve

this task using n-grams distributions [11].

As mentioned in Section 2.1, CAN bus is a robust vehicle bus

standard designed for connecting ECUs and embedded computing

devices, referred as nodes hereafter, to communicate with each

other. Two or more such nodes are required to communicate and

the complexity of a node can range from a simple I/O device to an

embedded computing device with sophisticated software. Amodern

automobile contains about 100 of such nodes supporting various

safety critical subsystems in a vehicle, e.g. engine control, airbags,

ABS, power windows etc. Though some of these subsystems func-

tion independently, communications with others are essential to

control actuators and receive necessary feedback from other sen-

sors. Thus some nodes constantly broadcast their message(s) while

others broadcast in responding to an event (e.g. operator’s com-

mand). This forms arbitrarily long message sequences on the CAN

bus which can be mathematically modelled and used to predict

subsequent element(s) in the sequence, and hence to anomaly de-

tection.

3.1 N-gram modelling for the CAN bus
Let E = {e1, e2, e3, ..., em } be a finite set of nodes in a CAN network.

A is the massage alphabet. J={1,2,3,...,m} is an index set. Node ei
broadcasts the message si . Then A = {si |∀i ∈ J}. As mentioned

above CAN messages (i.e. si ∈ A) carry everything from operator

commands (e.g. roll down the windows) to readouts from sensors

(e.g. reporting engine temperature) and constantly flow on the CAN

bus. This process forms arbitrarily long repetitive or non-repetitive

message sequence (si )i ∈J over the alphabet A. Depending on sta-

tistical properties (see Figure 5), these sequences can be modelled

using n-grams and used to anomaly detection as described in rest

of the paper.

An n-gram is any sequence of contiguous messages. For a fixed

value of n, based on the Markov assumption [20], a probability

for each n-gram can be estimated using the Maximum Likelihood

Estimator (MLE) method. Markov assumption describes a property

in a stochastic process that the occurrence of an event(s) only

depends on a short history. In other words, instead of computing

the probability of occurrence a message given its entire history,

we can approximate the history by just the last few messages. For

example, in the bigram model

P(sm |s1s2s3...s(m−1)) ≈ P(sm |s(m−1)), (1)

in the trigram model

P(sm |s1s2s3...s(m−1)) ≈ P(sm |s(m−2)s(m−1)) (2)

and, in general, the n-gram model

P(sm |s1s2...s(m−1)) ≈ P(sm |s(m+1−n)s(m+2−n)...s(m−1)) (3)

and so on. Equation 3 can be extended for any value of n, and by

taking relative frequency counts (C), we can estimate MLE for each

n-grams. For example in the trigram model,

PMLE (sm |s(m−2)s(m−1)) =
C(s(m−2)s(m−1)sm )

C(s(m−2)s(m−1))
(4)

In principal, with a large enough corpus of CAN messages for

normal driving behaviour, we can compute these counts and esti-

mate the probability from equation 4. But, in practice, there might

be unseen n-grams to the system that does not appear in the train-

ing corpus. Different smoothing techniques have been proposed to

overcome this situation [4]. We use a technique proposed in [14]

for this purpose.

3.2 Context-aware anomaly detection
Since the CAN IDs and their purpose is not generally shared by

the vehicle manufacturer, it is not possible to identify the exact

function of a CAN message, therefore, the “context” learned from

normal driving behaviour is essential to identify anomalous mes-

sages respect to the learned context.

For example, a benign context can consist of driving with a speed

of 60 MPH, infotainment system is on, cruise control is on, and AC

is operating on a certain temperature. Subject to a certain varia-

tion, this will produce a set of message sequences (si )i ∈J that can
predict the expected behaviour with respect to the learned context.

A message to open the door at this instance would be certainly an

“out-of-context” message that would not occur in normal circum-

stances. In the proposed algorithm, even though we do not know

the exact nature of the messages that are being sent, we can still

contextualise the scenario to identify malicious behaviour by using

a sequence of messages and its frequency of appearance, which

allows to predict a set of benign messages that should follow as

part of that context.

When an attack progresses on the CAN bus, malicious activities

can occur in an on-off pattern in the time line. This occurrence can

be one time or a recurrence, and as a result, lack of agreement or

harmony between points in (si )i ∈J can occur in a similar or different

on-off fashion. However, in a Car attack, malicious CAN messages

can be exactly same as benign messages in terms of protocol data

unit (PDU) structure, but the context they come into the scene

may be different. To elaborate this further, as an example, take

harsh braking scenario on a motorway which can be used either

for malicious or benign purposes. An intruder can take over the

control of a fast moving vehicle and apply harsh breaking with

no driver intervention to instigate a collision. But in the benign

case, driver will apply harsh breaking with other controls (e.g.

steering, releasing accelerator, etc) in order to prevent a collision.

We argue that these two scenarios are different in the context

and produce two different message sequences, say (smi )i ∈J and

2019-06-07 19:34. Page 3 of 1–8.
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Figure 2: Illustrative diagram for the message sequence modelling on the CAN bus for anomaly detection: the input is a
sequence of CAN messages while the output is a label assigned for the input.

(sbj )j ∈J on the CAN bus. Though there can can be many overlaps

between (smi )i ∈J and (s
b
j )j ∈J, however, there would be a very small

chance both sequences to be identical, especially, for all possible

n values in n-gram modelling. This difference can be captured via

carefully trained mathematical models and used to distinguish two

different scenarios. A recent work [7] supports towards this claim

in which authors use in-vehicle sensor data on the CAN bus for

driver fingerprinting. As per authors, using less than 8 minutes

of training data, they were able to differentiate 15 drivers using

the same vehicle (popular 2009 sedan) with 100% accuracy. The

objective of our algorithm is to detect context dependent anomalies

using CAN messages and hence to add security intelligence to the

modern automobile.

3.3 Anomaly certainty ratio (λω )
An anomaly is an irregularity of data patterns (or points) which

deviates from expected (or normal) behaviour. The simple approach

to anomaly detection is to define a region representing expected

values and declare any observation lies outside that region as an

anomaly [13]. To this end we define an anomaly certainty ratio (λω )
for a smaller observation window ω in the the time line as follows.

Given the history hi = {s1s2...si−1} of i
th

message si , using n-

grams, we predict a set of expected values Θ for si . If the observed
value for si lies outside the predicted values then a weak anomaly

is declared at point of si . The process repeats for all messages in ω,
and then λω is computed as follows.

λω =
C(# weak anomalies in ω)

C(# benign messages in ω)
(5)

Counting relatively weak anomalies over an observation window

helps to reduce false positives. We use λω as a measurement of

suspicion for a ongoing attack during the ω. Algorithm 1 presents

the procedure for computing the λω .

3.4 Kernel density for threshold estimation
In probability theory, the distribution of a continuous random vari-

able can be characterised using its probability density function

(pdf). The pdf describes the likelihood of taking a given value by

a random variable. This is an important property which can be

used for anomaly detection, as an observation lies in a very low

density region of the pdf can be considered as an anomaly. We

utilise this property to define a threshold (T ) for the benign region

of λω values, and hence to anomaly detection. To this end we need

to obtain the pdf of our target variable λω . A variety of approaches

Algorithm 1 Procedure for computing the λω

global variables
ν , Pre-built n-grams models

T , Pre-defined threshold

ω, Observation window size

λω , Anomaly certainty ratio

end global variables
procedure ComputeAnomalyCertaintyRatio(ν ,ω)

k , Maximum length of n-grams to use

Θ, Best candidates for si
if ω > 0 then
read (si )i ∈J in ω
foreach si ∈ ω do

Take hi for si , i.e. the last k-1 messages of the corre-

sponding k-gram

Using ν , predict the next message for hi
Returns the best candidate messages Θ for the si
if si < Θ then

Declare a weak anomaly at point of si
end

end
λω ←

C(Number of weak anomalies in ω)
C(Number of benign messages in ω)

if λω > T then
return “Anomaly”;

else
return “Benign”;

end
end

end procedure

are available for this purpose [24], the most basic form is using a

re-scaled histogram (see Figure 3).

However, in histograms, the shape of a distribution is strongly

affected by the number of bins used, hence not an effective way

of estimating the density function. To avoid this weakness, Kernel

density plots estimation was employed in this work. Kernel density

estimation is a non-parametric way of constructing an estimate,

based on observed data, of an unobserved underlying probability

density function of a random variable. Figure 4 presents the Kernel

density plot obtained for the random variable λω , only using train-

ing (benign) data captured during a period of normal driving. Note

that vertical axis in this graph represents densities (probabilities per

unit), but not the actual probabilities, hence its values can exceed 1.

As seen in figure 4, p(λω > 0.26) = 0. In other words, according to
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Figure 3: Re-scaled histogram for the training data with a
normal curve fitted.

the pdf, there is a zero probability to take values greater than 0.26

by λω if we computed it using benign data. Hence any observation

taken λω > 0.26 can be considered as an anomaly, i.e. T = 0.26.
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Figure 4: Threshold (T) estimation: Kernel density function
obtained for the training data.

4 EXPERIMENTAL SETTING, RESULTS &
DISCUSSION

In this section we apply our algorithm to a dataset captured from a

real vehicle to demonstrate its validity in practice.

4.1 Dataset description
We use a publicly available dataset provided by Hacking and Coun-

termeasures Research Lab (HCRL) [17]. According to the authors,

the dataset was constructed by logging CAN traffic via the OBD-II

port from a real vehicle while message injection attacks were being

performed. HCRL provides dedicated datasets for the benign be-

haviour and each different attack types. Benign set contains 6082544

of CAN messages produced during a 50 minutes of normal driving

time. Each attack dataset contain 300 intrusions of message injec-

tion. Each intrusion is performed for 3-5 seconds, and each dataset

has a collection of 30-40 minutes of CAN traffic.

We perform our tests and analysis using benign traffic and traf-

fic traces from two spoofing attacks, which are spoofing engine

round per minute (RPM) and gear gauge CAN messages. Spoofing

attacks is defined as injecting messages of specific CAN IDs every

1 millisecond related to RPM and gear gauge information.

There are multiple attributes of the HCRL dataset, which are

Timestamp, CAN ID, DLC, DATA[0-7], and Flag. Those attributes

are defined as follows

(1) Timestamp : is the recorded time in seconds.

(2) CAN ID : is the identifier of CAN message in HEX.

(3) DLC : is the number of data bytes, ranging from 0 to 8.

(4) DATA[0-7] : is the data value (byte)

(5) Flag : There are two distinct flags, T and R, representing

injected messages and normal messages respectively.

4.2 Experimental design
As mentioned earlier, we train our models only using benign traffic

traces, taking so called one class based modelling approach [6, 12].

The idea here is to create the model only using benign instances,

and then use the trained model to identify new/unknown instances.

If the target-data is too different from the training instances then it

is reported as suspicious. To this end we split benign traffic traces

into two parts: training (80%) and testing (20%), but keep unchanged

the temporal order of message sequences. Training set was used to

build n-gram models and also to estimate the threshold value (T )
which was at λ = 0.26.

In order to create the test set, which includes both benign and

malicious traffic instances, above benign test set (i.e. remaining

20%) was merged with malicious traffic traces, and then resulted

data set was split into 100 milliseconds smaller windows (ω). In our

test set, attacks start at window number 676 in the time line and

then continue as time progresses (see figures 6 and 7). We created

two different test sets for RMP message spoofing attack and Gear

gauge message spoofing attack in order to investigate algorithm’s

ability to detect them in isolation.

We implemented the monitoring algorithm using R and Bash

scripts and run our experiments on a mobile workstation with an

Intel Core
TM

i7-6820HQ CPU and 32GB of RAM, by replaying the

traffic traces in the test set.

4.3 Results & discussion
Figure 5 shows histograms of top 50 n-grams for n=1,2,3,4. Notice

the case of 1-grams, a few message IDs have very high relative

frequencies, for example, the one-gram “0153” appears 320000 times,

followed by a set of 10 message IDs which appear 280000 times.

2019-06-07 19:34. Page 5 of 1–8.
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Figure 5: The top 50 n-gram distributions for n=1, 2, 3, 4.

The most common messages rapidly decrease in frequency. After

the top 30 terms, the frequency of the next common 1-gram is

below 10000. As we move forward in terms of the order of the

n-grams, the frequencies drop but the distributions become more

skewed to the left. For instance, the top 4-gram “0316 018f 0260

02a0”appears 130476 times. As we see in the plot, the top 50 4-grams

occur between 14333 and 130476 times. This exploratory analysis

discloses an interesting property in the CAN data, i.e. certain n-

grams have higher probabilities to occur while others have lower

probabilities to occur. This is an interesting property to observe as it

would be useful in our probabilistic modelling, and also occurrence

of an event(s) depends only on a short history.

Figures 6 and 7 present the outcomes which includes 3.3 minutes

duration snapshot of the monitoring period. As seen in graphs,

while both attacks progress, anomaly certainty ratio λω is fluctu-

ating far above the threshold value T . This may be due to, during

the attack period, message spoofing packets have been injected in

regular time intervals. If λω > T we alert suspicious activity in a

smaller window ω, otherwise benign behaviour.

It would be worth to mention here that the two second rule

in driving - the safe trailing distance at any speed which a driver

should maintain. Ability to detect suspicious activities using far

smaller time windows (100 milliseconds in our case) by our algo-

rithm should be acknowledged. It allows either vehicle operator or

vehicle itself enough time to react in advance when an incident is

alerted by the monitoring system. This is essential for a practically

deployable automotive cyber security solution. Thus proposed al-

gorithm is a practical automated solution for anomaly detection on

the CAN bus.

5 CONCLUDING REMARKS
Securing automotive controller area networks has proven to be a

necessity considering how cyber attacks can have highly disruptive

or even deadly consequences. In this paper, we have proposed

a context-aware anomaly detection algorithm where a regularly

updated anomaly certainty ratio λω is computed to determine the

level of suspicious to identify the out of context messages. Results

illustrate how the proposed algorithm is capable of successfully

identify the deployed attacks with 100% accuracy.

In this paper, we have used the data set presented by the Hack-

ing and Countermeasures Research Lab (HCRL), where benign and

attack data is collected from a single vehicle. Further investigation

will explore the performance of the proposed algorithm using dif-

ferent data sets with data collected from multiple vehicles within

multiple scenarios. Additionally, more attack scenarios will be in-

vestigated in addition to the currently deployed message spoofing

attacks to provide wider comprehension of the performance of the

proposed algorithm under different circumstances.

Our goal is to build a fully automated and effective anomaly

detection system for automotive Cyber Security. The performance

of the algorithm will be central to address scale. It is not clear at this

stage where the bottleneck will be when we deploy our approach to

2019-06-07 19:34. Page 6 of 1–8.
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Figure 6: Monitoring for RPM message spoofing attack:
Green line denotes λω values during the benign data. Red
line denotes λω values during the attack data. Blue dotted
line denotes the threshold T at λω = 0.26.
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Figure 7: Monitoring for Gear gauge message spoofing at-
tack: Green line denotes λω values during the benign data.
Red line denotes λω values during the attack data. Blue dot-
ted line denotes the threshold T at λω = 0.26.

real life applications in production environments. With help from

our industry partner HORIBA MIRA Ltd., further work will focus

on identifying these bottlenecks to optimise the proposed algorithm.

As discussed in section 3.2, distinguishing unique scenarios like

emergency breaks under all conditions would be challenging as

modelling such benign out of context scenarios will not be trivial.

We hope to investigate this extensively in the future.

ACKNOWLEDGMENTS
This work has been funded by XYZ grant ID XYZ, we are excited

to work on this challenging piece of research.

REFERENCES
[1] [n. d.]. Connecting cars to the internet has created a massive new business op-

portunity. https://www.businessinsider.com.au/connected-car-market-forecast-

report-2015-5. ([n. d.]). Accessed: 2019-06-02.

[2] Shaikh S. Haas O. Ruddle A Cheah, M. 2017. Towards a systematic security

evaluation of the automotive Bluetooth interface. (2017), 8–18.

[3] Stephen Checkoway, Damon Mccoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and

Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive

Attack Surfaces. In 20th USENIX Security Symposium, Vol. August. The USENIX

Association, San Francisco, 77–92. http://dl.acm.org/citation.cfm?id=2028067.

2028073

[4] Stanley F Chen and Joshua Goodman. 1999. An empirical study of smoothing

techniques for language modeling. Computer Speech & Language 13, 4 (1999),
359–394.

[5] Tsvika Dagan and Avishai Wool. 2016. Parrot, a software-only anti-spoofing

defense system for the CAN bus. ESCAR EUROPE (2016).

[6] Konstantinos Demertzis, Lazaros Iliadis, and Stefanos Spartalis. 2017. A spiking

one-class anomaly detection framework for cyber-security on industrial con-

trol systems. In International Conference on Engineering Applications of Neural
Networks. Springer, 122–134.

[7] Miro Enev, Alex Takakuwa, Karl Koscher, and Tadayoshi Kohno. 2016. Automobile

driver fingerprinting. Proceedings on Privacy Enhancing Technologies 2016, 1
(2016), 34–50.

[8] Bryans J. Shaikh S.A.Wooderson P Fowler, D.S. 2018. Fuzz Testing for Automotive

Cyber-Security. (2018), 239–246.

[9] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. 2008. Security threats to automo-

tive CAN networks–practical examples and selected short-term countermeasures.

In International Conference on Computer Safety, Reliability, and Security. Springer,
235–248.

[10] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. 2011. Security threats to

automotive CAN networksPractical examples and selected short-term coun-

termeasures. Reliability Engineering and System Safety 96, 1 (2011), 11–25.

https://doi.org/10.1016/j.ress.2010.06.026

[11] Dan Jurafsky and James H Martin. 2014. Speech and language processing. Vol. 3.
Pearson London.

[12] Harsha Kalutarage, Bhargav Mitra, and Robert McCausland. 2018. Modelling IoT

Anomaly Detection. ITNOW 60, 3 (2018), 44–45.

[13] Harsha K Kalutarage. 2013. Effective monitoring of slow suspicious activities on
computer networks. Ph.D. Dissertation. Coventry University.

[14] Slava Katz. 1987. Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE transactions on acoustics, speech,
and signal processing 35, 3 (1987), 400–401.

[15] Pierre Kleberger, Tomas Olovsson, and Erland Jonsson. 2011. Security aspects

of the in-vehicle network in the connected car. In 2011 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 528–533.

[16] U.E Larson, D.K Nilsson, and E Jonsson. 2008. . An approach to specification-based

attack detection for in-vehicle network. In IEEE Intelligent Vehicles Symposium.

IEEE, Netherlands, 220–225.

[17] H. Lee, S. H. Jeong, and H. K. Kim. 2017. OTIDS: A Novel Intrusion Detection

System for In-vehicle Network by Using Remote Frame. In 2017 15th Annual
Conference on Privacy, Security and Trust (PST), Vol. 00. 57–5709. https://doi.org/
10.1109/PST.2017.00017

[18] M Marchetti and D Stabili. 2017. Anomaly detection of CAN bus messages

through analysis of ID sequences. In 2017 IEEE Intelligent Vehicles Symposium
(IV). IEEE, USA, 1577–1583.

[19] T Matsumoto, H Masato, T Masato, Y Katsunari, and O Kazuomi. 2012. A method

of preventing unauthorized data transmission in controller area network. In IEEE
75th Vehicular Technology Conference (VTC Spring). IEEE, Yokohoma, Japan, 1–5.

[20] Sean P Meyn and Richard L Tweedie. 2012. Markov chains and stochastic stability.
Springer Science & Business Media.

[21] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA 2015 (2015), 91.

[22] Michael Müter and Naim Asaj. 2011. Entropy-based anomaly detection for

in-vehicle networks. In 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE, 1110–
1115.

2019-06-07 19:34. Page 7 of 1–8.

https://www.businessinsider.com.au/connected-car-market-forecast-report-2015-5
https://www.businessinsider.com.au/connected-car-market-forecast-report-2015-5
http://dl.acm.org/citation.cfm?id=2028067.2028073
http://dl.acm.org/citation.cfm?id=2028067.2028073
https://doi.org/10.1016/j.ress.2010.06.026
https://doi.org/10.1109/PST.2017.00017
https://doi.org/10.1109/PST.2017.00017


945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

CSCS ’19, October 08, 2019, Kaiserslautern, Germany XYZ et al.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

[23] E. Seo, H. M. Song, and H. K. Kim. 2018. GIDS: GAN based Intrusion Detection

System for In-Vehicle Network. In 2018 16th Annual Conference on Privacy, Security
and Trust (PST). 1–6. https://doi.org/10.1109/PST.2018.8514157

[24] Bernard W Silverman. 2018. Density estimation for statistics and data analysis.
Routledge.

[25] H.M Song, H.K Kim, and H.R Kim. 2016. Intrusion detection system based on

the analysis of time intervals of CAN messages for in-vehicle network. In inter-
national conference on information networking (ICOIN). Kota Kinabalu, Malaysia,

63–68.

[26] A Taylor, N Japkowicz, and S Leblanc. 2015. Frequency-based anomaly detection

for the automotive CAN bus. In 2015 World Congress on Industrial Control Systems
Security (WCICSS). IEEE, London, 45–49.

[27] Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara

Kalutarage. 2018. Detection of Automotive CAN Cyber-Attacks by Identifying

Packet Timing Anomalies in Time Windows. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops (DSN-
W). IEEE, 231–238.

[28] Shane Tuohy, Martin Glavin, Ciarán Hughes, Edward Jones, Mohan Trivedi, and

Liam Kilmartin. 2015. Intra-Vehicle Networks : A Review. IEEE TRANSACTIONS
ON INTELLIGENT TRANSPORTATION SYSTEMS 16, 2 (2015), 534–545.

[29] A Valdes and S Cheung. 2009. Communication pattern anomaly detection in

process control systems. In 2009 IEEE Conference on Technologies for Homeland
Security. IEEE, Massachusetts, USA, 22–29.

[30] W. Wu, R. Li, G. Xie, J. An, Y. Bai, J. Zhou, and K. Li. 2019. A Survey of Intrusion

Detection for In-Vehicle Networks. IEEE Transactions on Intelligent Transportation
Systems (2019), 1–15. https://doi.org/10.1109/TITS.2019.2908074

2019-06-07 19:34. Page 8 of 1–8.

https://doi.org/10.1109/PST.2018.8514157
https://doi.org/10.1109/TITS.2019.2908074

	KALUTARAGE 2019 Context aware anomaly.pdf
	Context_aware_Anomaly_Detector_for_Monitoring_Cyber_Attacks_on_Automotive_CAN_Bus.pdf
	Abstract
	1 Introduction
	2 Background
	2.1 Controller Area Network (CAN)
	2.2 Related work

	3 Proposed algorithm
	3.1 N-gram modelling for the CAN bus
	3.2 Context-aware anomaly detection
	3.3 Anomaly certainty ratio ()
	3.4 Kernel density for threshold estimation

	4 Experimental setting, results & discussion
	4.1 Dataset description
	4.2 Experimental design
	4.3 Results & discussion

	5 Concluding remarks
	Acknowledgments
	References


