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We investigate primordial tensor non-Gaussianity in single field inflation, during a phase of non-

attractor evolution when the spectrum of primordial tensor modes can be enhanced to a level

detectable at interferometer scales. Making use of a tensor duality we introduced in [1], we ana-

lytically compute the full bispectrum of primordial tensor fluctuations during the non-attractor

era. During this epoch the shape of the tensor bispectrum is enhanced in the squeezed limit,

its amplitude can be amplified with respect to slow-roll models, and tensor non-Gaussianity can

exhibit a scale dependence distinctive of our set-up. We prove that our results do not depend

on the frame used for the calculations. Squeezed tensor non-Gaussianity induces a characteristic

quadrupolar anisotropy on the power spectrum of the stochastic background of primordial tensor

perturbations. As a step to make contact with gravitational wave experiments, we discuss the

response function of a ground based Michelson interferometer to a gravitational wave background

with such a feature.
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1 Introduction

The possibility to directly detect a stochastic background of primordial tensor modes with grav-

itational wave experiments would offer new ways to probe the physics of inflation. Such an

opportunity would allow us to probe a much larger range of frequency scales than what can be

tested with CMB physics. Various scenarios have been proposed for enhancing the primordial

tensor spectrum at interferometer scales: from coupling the inflation to additional fields, whose

dynamics are characterised by instabilities that amplify the tensor spectrum (see e.g. [2–24]),

to models that break space-time symmetries during inflation, leading to a blue spectrum for

primordial tensor modes (see e.g. [25–37]). See the general discussion in [38].

In this work, we focus on a third possibility, and further develop on the idea introduced in [1].

We investigate single field scenarios in which the inflationary expansion undergoes a brief phase

of non-attactor dynamics that amplify the tensor modes. Non-attractor cosmological evolution

is known to enhance the scalar sector of fluctuations, for example during ultra-slow roll or in

constant roll inflationary systems [39–47]: this property has been exploited in models producing

primordial black holes in single field inflation (see e.g. [48–50] for reviews and [51–59] for specific

models). In [1] we showed that a similar behaviour can apply to the primordial tensor sector, if we

non-minimally couple the inflationary scalar field with gravity during inflation. During the non-

attractor phase, the amplitude of the would be decaying tensor mode becomes amplified instead

of suppressed at superhorizon scales (while the usual growing mode has constant amplitude),

and the total tensor spectrum can be enhanced to a level detectable with gravitational wave

experiments. Interestingly, there exists a ‘tensor duality’ (which generalises to the tensor sector

a similar duality for the scalar sector [60]) which maps the evolution of tensor fluctuations during

the non-attractor phase to the dynamics of tensor fluctuations in a slow-roll phase of expansion.

We use the duality to obtain an analytic control on the physics of tensor modes during the phase

of non-attractor evolution – even if we are far from a slow-roll approximation – and to analytically

compute the properties of tensor non-Gaussianity during the non-attractor phase. Tensor non-

Gaussianity is an interesting observable which can help to characterise and distinguish different

scenarios of inflation that enhance tensor modes at small or large frequency scales (see e.g.

[20, 23, 61–71] and the review in Section 5 of [72] for more a comprehensive reference list). In

our framework, tensor non-Gaussianity is characterised by the following properties, which we are

going to discuss in what follows:

• The amplitude of the tensor bispectrum during the non-attractor evolution can be en-

hanced with respect slow-roll inflation, and its shape is amplified in a squeezed limit. We

analytically show that the tensor bispectrum exhibits a characteristic scale dependence

distinctive of our scenario, which can make our model quantitatively distinguishable from

other frameworks with large tensor non-Gaussianity.

• We show that our results remain the same after applying a disformal plus a conformal

transformation to our system. These transformations, at quadratic level in a perturbative

expansion in tensor fluctuations, render the system identical to Einstein gravity minimally

coupled with a scalar field [73, 74]. On the other hand, as we shall discuss, at cubic level in a
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perturbative expansion tensor interactions include terms as ḣ3ij which cannot be associated

with contributions of standard Einstein gravity.

• The squeezed limit of the tensor bispectrum during non-attractor evolution does not satisfy

Maldacena’s consistency relations [61], and can be parametrically amplified with respect

to standard slow-roll scenarios. This is due to the fact that the would be decaying tensor

mode is also excited in our system, and the corresponding dynamics is not a ‘single tensor’

adiabatic system where Maldacena’s arguments apply. This is analogous to what happens

for models discussing non-attractor inflation in the scalar sector.

• Squeezed tensor non-Gaussianity induces a characteristic quadrupolar anisotropy on the

power spectrum of the stochastic background of primordial tensor perturbations. As a step

to make contact with gravitational wave experiments, we discuss the response function of

a ground based Michelson interferometer to a gravitational wave background with such a

feature.

Conventions

We will use natural units, ~ = c = 1, with reduced Planck mass M2
pl = (8πG)−1 = 1. Our

metric signature is mostly plus (−,+,+,+). The background metric is a FRW universe with line

element ds2 = −dt2 + a2(t) d~x2 = a2(τ)
(
−dτ2 + d~x2

)
. Throughout the paper, we adopt the

following Fourier convention

qij(x, t) =

∫
d3k

(2π)3
qij(k, t) e

−ik.x. (1.1)

2 Non-attractor dynamics and tensor fluctuations

We discuss a new method [1] for enhancing tensor fluctuations during inflation, which exploits the

structure of tensor kinetic terms in inflationary theories with non-minimal derivative couplings

between scalars and gravity. This Section is mainly intended as an enlightening review of the

methods and results developed in [1]. We fix the notation and set the stage for the calculations

of tensor non-Gaussianity in Section 3.

2.1 A mechanism for enhancing tensor fluctuations at super-horizon scales

We focus on spin-2 tensor fluctuations around a FRW cosmological background, defined as [61]

ds2 = −dt2 + a2(t)
(
eh
)
ij

dxidxj , (2.1)

with (
eh
)
ij

= δij + hij +
1

2
hikhkj +

1

6
hikhklhlj + . . . (2.2)

where hij is a transverse traceless spin-2 tensor perturbation. At leading order in a derivative

expansion, the quadratic action for tensor perturbations can be expressed as (see e.g. [75]. From
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now on, unless otherwise stated, we set Mpl = 1)

ST =
1

8

∫
dt d3x a3(t)

[
GT (t) (∂thij)

2 − FT (t)

a2(t)

(
~∇hij

)2]
,

=
1

2

∫
dy d3x z2T (y)

[
(∂yhij)

2 −
(
~∇hij

)2]
,

=
(zT hij ≡ vij)

1

2

∫
dy d3x

[(
v′ij
)2 − (~∇vij)2 +

z′′T
zT

v2ij

]
. (2.3)

The first line of this formula contains two functions of time GT , FT that characterise the tensor

kinetic terms 1. Their structure depends on non-minimal couplings of gravity to the scalar field

driving inflation, and on the homogeneous scalar profile (see Subsection 2.2 and [75]). In the

second line of eq (2.3) we redefine the time variable as

dt = a

(
GT
FT

)1/2

dy , (2.4)

=
a(y)

cT (y)
dy (2.5)

in order to express the action for tensor fluctuations as the one for a free field in a time dependent

background. We also introduce the convenient combination

z2T (y) =
a2(y)

4

√
GT (y)FT (y) , (2.6)

dubbed as tensor pump field in analogy with the nomenclature used in the literature for the scalar

sector.

Focussing on super-horizon evolution, defined in Fourier space as the condition k2 � |z′′T /zT |,
the equations of motion for tensor fluctuations associated with action (2.3) admits the following

solution

hij(y) = q1 + q2

∫ y dy′

z2T (y′)
, (2.7)

with q1 and q2 two integration constants, which can be fixed by matching with the solution at

sub-horizon scales. q1 corresponds to the usual constant mode at super-horizon scales, while

the coefficient of q2 would be the decaying mode, if zT were an increasing function of the time

variable y. On the other hand, whenever zT becomes a decreasing function of y, we enter in a

non-attractor phase where tensor modes can grow on super-horizon scales:

z′T
zT

< 0 =⇒ Tensor modes grow on super-horizon scales . (2.8)

This is a non-attractor phase for tensor fluctuations, since the would be decaying mode actually

1The quadratic action for tensor mode can be recasted into a canonical ‘Einstein frame’ action by applying a
disformal and a conformal transformation to the system [73]. Nevertheless, all our results remain the same in any
frame one uses, as anticipated in [1] and explained more at length in Section 3 and Appendix B of the present
paper.
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increases and controls the amplitude of tensor fluctuations at large scales. Such behaviour for

the pump field zT usually requires a departure from a slow-roll approximation, and the evolution

and properties of fluctuations cannot be described in terms of usual slow-roll formulae. On the

other hand, as shown in [1], we can make use of tensor duality – which generalises to the tensor

spectrum the scalar duality first pointed out in [60] (see also [76–83]) – to analytically investigate

the dynamics of tensor modes in the non-attractor phase.

Tensor duality is defined as follows. In the third line of eq (2.3) we rescale tensor modes as

hij ≡ vij/zT in order to rewrite the action as a free system in flat space with a time-dependent

mass term for the mode vij . The mass parameter z′′T /zT depends on time, and its value can change

during the inflationary evolution. We consider two distinct phases of cosmological expansion, each

lasting for a certain time interval, characterised respectively by two regimes for the parameters

zT and z̃T related by the duality condition

z̃′′T
z̃T

=
z′′T
zT

=⇒ z̃T (y) = zT (y)

(
c1 + c2

∫ y dy′

z2T (y′)

)
(2.9)

for constant values of c1, c2 (not to be confused with the q1, 2 of eq (2.7)). Then the quantity

vij is described by the very same action in the two phases (the third line of eq (2.3)) and the

corresponding mode hij is described by the same statistics in the two epochs – only the time-

dependent overall normalization changes. The most useful application of such tensor duality

is perhaps the tensor dual of a slow-roll phase characterised by constant functions GT and FT ,

leading to the slow-roll condition zT = const × a(y). In the dual epoch, |z̃T | = const/a2(y): we

are in a non-attractor phase of evolution, since z̃T decreases with time. On the other hand, in

both phases,
z̃′′T
z̃T

=
z′′T
zT

=
2

y2
. (2.10)

The corresponding spectrum of tensor modes h̃ij = z̃T vij is scale invariant (as in slow-roll), and

its amplitude increases with time at super-horizon scales during the non-attractor phase

Ph̃(t) =

(
a(t)

a0

)6

Ph (2.11)

with a0 being the value of the scale factor at the onset of the non-attractor era, and Ph is the

(nearly constant) value of the tensor spectrum at superhorizon scales in the initial slow-roll phase.

See the technical Appendix A and [1] for details on the computation of the tensor power spectrum

during the non-attractor phase, leading to the aforementioned amplification.

Such amplification of tensor fluctuations during a (typically short) non-attractor phase can lead

to a very steep increase of the tensor spectrum as a function of frequency, once the amplitude of

primordial tensor modes is transferred to the present cosmological epoch using standard formulae

– see e.g. [84]. In Figure 1, we show how the spectrum of the superhorizon modes can be amplified

to enter within the sensitivity curves for GW detectors, using formula (2.11), and assuming for

simplicity instantaneous transitions between attractor and non-attractor eras. The figure is only

indicative, because it does not take into account the transition phases during different epochs

and, above all, does not take into consideration additional model-dependent constraints from
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Figure 1. This figure shows qualitatively how primordial tensor modes get amplified during a non-attractor
phase. They can contribute to the GW energy density ΩGW , and thus enter within the sensitivity curves
for GW detectors in their appropriate frequency ranges (expressed in Hz). We model inflation as a pure
de Sitter phase, during which a short period of non-attractor evolution occurs – whose starting time and
duration depend on the model one considers – enhancing the tensor spectrum. We use formula (2.11), and
assume for simplicity instantaneous transitions between attractor and non-attractor eras. Our conventions
for the definition of the GW energy density ΩGW are the same as in [84].

amplification of scalar modes. In the next subsection we briefly review an example of a concrete

realisation of a tensor dual to a slow-roll phase in single field inflation.

2.2 A concrete realisation in single field inflation

We now briefly review an explicit realisation of the mechanism of the previous subsection in a

single field inflationary scenario, first presented in [1]. For convenience, we wish to find a single

field inflationary model where the functions FT and GT introduced in the action (2.3) are directly

proportional to the square of scalar field velocity φ̇ as

FT ∝
φ̇2

H2
0

, ; GT ∝
φ̇2

H2
0

, (2.12)

during the entire phase of the inflationary evolution, which for simplicity we describe in terms of

pure de Sitter evolution with constant Hubble parameter H0. The scalar field follows a slow-roll

evolution with constant velocity φ̇ = const for most of the inflationary phase, but there is a brief
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phase of non-attractor evolution (whose duration is tunable in terms of the available parameters)

during which φ̇ ∝ 1/a3:

φ̇ ∝

{
const during slow-roll phase

1/a3 during non-attractor phase

See Fig 2 for a representation of the scalar field time dependent profile. Plugging these scalar

profiles into the expressions for the functions FT , GT of eq (2.12) and recalling the definition of

the pump field zT , eq (2.6), it is easy to show that during the non-attractor phase we can use the

tensor duality of eq (2.9), and the tensor power spectrum is enhanced by a factor a6(t) in this era

(2.11). Indeed, such a scenario is conceptually similar to the model of Starobinsky [39], designed

to enhance scalar fluctuations during non-attractor inflation (see also [59] and references therein).

Figure 2. Behaviour of the scalar field derivative in our system.

The conditions described above can be realised if the scalar field has non-minimal couplings

with gravity during inflation. We consider a scenario based on Horndeski theory of gravity, the

most general scalar-tensor set-up with second order equations of motion, which is described by

the Lagrangian

Ltot = L2 + L3 + L4 + L5 , (2.13)

L2 = G2 , (2.14)

L3 = −G3�φ , (2.15)

L4 = G4R+G4X

[
(�φ)2 − (∇µ∇νφ)2

]
, (2.16)

L5 = G5Gµν ∇µ∇ν φ−
G5X

6

[
(�φ)3 − 3�φ (∇µ∇νφ)2 + 2 (∇µ∇νφ)3

]
. (2.17)

The quantities Ga = Ga(φ,X) (a = 1, . . . 5) are in principle arbitrary functions of the scalar field

7



φ and

X = − 1

2
∂µφ∂

µφ , (2.18)

R is the Ricci tensor, Gµν is the Einstein tensor, and GaX = ∂Ga/∂X. For simplicity, in this work

we focus on scenarios where a shift symmetry φ→ φ+ c is imposed, and the Gi only depend on

the kinetic function X. Inflation in scenarios based on Horndeski and Galileon Lagrangians have

a long history, starting from [85] and the more general G-inflation [75, 86] models. Scenarios of

ultra slow-roll, non-attractor G-inflation have been discussed in [87]. The quadratic Lagrangian

for tensor fluctuations is described by our initial action (2.3) with

FT = 2
[
G4 −X φ̈G5X

]
(2.19)

GT = 2
[
G4 − 2X G4X −XH0 φ̇ G5X

]
. (2.20)

In [1] we showed that the conditions (2.12) can be realised by choosing the following structure

for the functions Ga(X)

G2 = ρX +

√
2H2

0 α

3

√
X − ν , G3 =

√
2 δ

3H0

√
X ,

G4 = − β

6H2
0

X , G5 =
σ√

2H3
0

√
X , (2.21)

where the Greek letters are constant coefficients – which can be different during the three different

phases of evolution summarised in Figure 2 – and H0 is the constant Hubble parameter during

inflation. We refer the reader to [1] for a detailed analysis of the system, with a quantitative

discussion on the conditions necessary to avoid instability and to enhance the tensor power

spectrum at superhorizon scales during the non-attractor phase. Notice that besides the tensor

modes, scalar modes are also typically enhanced in these scenarios, although with a smaller

amplitude [1].

3 Tensor non-Gaussianity in non-attractor inflation

The mechanism we analysed in the previous Section shows that it is possible to enhance the

tensor power spectrum at small (interferometer) scales by exploiting the behaviour of the would-

be decaying mode, which can grow in a regime of non-attractor inflation. An interesting feature of

our mechanism is that there exists a tensor duality which allows us to obtain analytical expressions

for the tensor power spectrum even in regimes that are far from a slow-roll period. In this Section,

we study the tensor bispectrum, providing analytical expressions for this quantity during the

non-attractor phase, and showing that the amplitude, shape and scale dependence of the tensor

bispectrum can be different with respect to standard slow-roll inflation.

The tensor bispectrum is an interesting theoretical quantity which allows to discriminate be-

tween primordial and astrophysical sources of stochastic gravitational wave backgrounds (SGWB)

[72]: if large tensor non-Gaussianity is detected, then it is likely that the SGWB has primordial

origin, since an astrophysical GW background – formed by contributions from many unresolved
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sources – is likely to be Gaussian from the central limit theorem. The properties of the tensor

bispectrum – shape, scale dependence, its value in the squeezed limit – are important for charac-

terising the field content during inflation, and to further distinguish among different primordial

sources that can amplify the tensor spectrum at interferometer scales [72].

Remarkably, the cubic action for tensor fluctuations around FRW in single field inflationary

theories with second order equations of motion – the starting point for the computation of the

bispectrum – has a simple structure, and contains only two contributions [88, 89]

S
(3)
T =

∫
dtd3x a3

[
FT
4a2

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij +

φ̇XG5X

12
ḣij ḣjkḣki

]
,

= S
(3)
T (GR) + S

(3)
T (new) . (3.1)

This action is obtained expanding the Horndeski Lagrangian density (2.13) up to cubic order in

fluctuations, and the functions FT and G5 are given respectively in (2.19) and (2.17). The result

of standard single field inflation with canonical kinetic terms is obtained setting FT = 1 (recall

that we choose units such that M2
pl = 1). The structure of the first contribution, containing

spatial derivatives only, is the same as the one obtained expanding the Ricci scalar at cubic order

around a FRW background: this is the reason we denote it as S
(3)
T (GR). The second contribution,

S
(3)
T (new), is instead specific to the Horndeski action: notice that it contains three time derivatives

ḣ3ij , a feature to which we will return later. Tensor non-Gaussianity associated with the action

(3.1) was studied in detail in a slow-roll regime in [88, 89], where it was found that the ‘GR’

term gives a bispectrum enhanced in the squeezed limit, while the ‘new’ contribution gives a

bispectrum peaked in equilateral configurations. In this work, instead, we will work out the

tensor non-Gaussianity during a transient non-attractor phase, finding quite different results.

3.1 Amplitude of tensor non-Gaussianity

We discuss the amplitude and some properties of tensor non-Gaussianity during an era of non-

attractor inflation, which is dual to a slow-roll phase as explained in Section 2. For simplicity, we

focus on the case where the background geometry is exactly described by a de Sitter universe,

with constant Hubble parameter H0 (in [1] we proved that the equations of motion admit this

solution for the scale factor). We relegate all the technical details to Appendix A, and we discuss

here the physical consequences of our computation of the tensor three point function in Fourier

space during a non-attractor era. In order to express our results more concisely, we define two

polarisation modes as (here, e
(s)
ij is the polarization tensor with the helicity states s = ±, satisfying

e
(s)
ii (k) = 0 = kje

(s)
ij (k). See Appendix A for more information regarding our conventions on the

polarisation tensors)

ξ(s)(k) ≡ hij(k)e
∗(s)
ij (k), (3.2)

which allow us to express the three point function in the non-attractor era as

〈ξ(s1)(k1)ξ
(s2)(k2)ξ

(s3)(k3)〉 = (2π)7δ(k1 + k2 + k3)
P(end)2

h

Πi k3i

(
As1s2s3(new) +As1s2s3(GR)

)
, (3.3)
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≡ (2π)7 δ(k1 + k2 + k3)B
s1s2s3(ki) . (3.4)

Hence we define the tensor bispectrum Bs1s2s3(ki) as the coefficient of the δ-function in the

previous expression, which depends on the momenta as well as on the polarisation indices.

Using (A.18), (A.27), the amplitudes

As1s2s3(new),(GR) ≡ e
∗(s1)
i1j1

(k1)e
∗(s2)
i2j2

(k2)e
∗(s3)
i3j3

(k3)A(new),(GR)
i1jii2j2i3j3

can be calculated following the same methods of [89]. For our scenario, in the non-attractor

regime, we find

As1s2s3(new) = A(new)(k1, k2, k3)F (s1k1, s2k2, s3k3)

As1s2s3(GR) = A(GR)(k1, k2, k3)
(s1k1 + s2k2 + s3k3)

2

2
F (s1k1, s2k2, s3k3), (3.5)

where

F (x, y, z) =
1

64

1

x2y2z2
(x+ y + z)3(x− y + z)(x+ y − z)(x− y − z). (3.6)

A(GR) and A(new) are obtained in equations (A.26) and (A.31) respectively, which we rewrite

here:

A(GR) = −K
64

[1− 3

K3

∑
i 6=j

k2i kj −
6

K3
Πiki

 (−Kyend)2

− π

4

1− 4

K3

∑
i 6=j

k2i kj −
4

K3
Πiki

 (−Kyend)3 + . . .

]
, (3.7)

A(new) = −3Hµ(end)

16G(end)T

{K3 − 3
∑
i 6=j

k2i kj − 6 Πiki


− 1

4

(
K3 − 5

∑
i 6=j

k2i kj +
2

K2

∑
i 6=j

k3i k
2
j

)
(−Kyend)2

}
. (3.8)

In these formulae, K = k1 + k2 + k3,

µ(end) ≡ φ̇(end)X(end)G
(end)
5X

and the ‘end’ indicates the end of the non-attractor phase: our results then quantify the non-

Gaussianity accumulated by the tensor modes during the non-attractor era. Before proceeding,

some observations are in order:

• The squeezed limit of the bispectrum does not satisfy Maldacena’s consistency relations

[61]. Indeed, computing the bispectrum of eq (3.4) for s1 = s2 in the limit of squeezed

10



isosceles triangles, we find

Bs1s1s3(k1, −k1, k3 → 0) =

(
P(end)
h

)2
32 k31 k

3
3

[
3Hµ(end)

G(end)T

(
1 +

(−k1yend)2

2

)
+

(−k1yend)2

2

]
,

(3.9)

while we find zero for s1 6= s2. Instead, Maldacena’s consistency relation (with our conven-

tions) would read in this case

Bs1s1s3(k1, −k1, k3 → 0) =
3

64 k31 k
3
3

(
P(end)
h

)2
.

This can be expected, since during the non-attractor era, besides the usual growing tensor

mode, the would be tensor decaying mode is excited as well, and we are no longer working

in a ‘single tensor’ adiabatic system where Maldacena’s arguments apply 2. By tuning the

parameters of the model, this implies that the amplitude of the tensor bispectrum can be

enhanced in the squeezed limit (see also [27, 28, 94–96] for different scenarios with enhanced

squeezed tensor bispectrum), with potentially interesting phenomenological consequences

that we shall discuss in Section 3.3.

• While the scenario studied so far is characterised by non-standard kinetic terms for the

tensor sector, it is known that by performing a conformal followed by a disformal transfor-

mation the second order action for tensor modes – our eq. (2.3) – acquires the very same

structure of the second order action of Einstein gravity around FRW homogeneous back-

grounds [73]. On the other hand, the third order action we are considering here, eq (3.1),

contains a piece with three time derivatives ḣ3ij – an operator that cannot be recast into a

pure ‘GR’ contribution via disformal/conformal transformations. This said, in Appendix B

we show in detail that all our results remain the same also in an ‘Einstein frame’ with stan-

dard second order tensor action: the only difference is that in this frame the non-attractor

phase corresponds to a short period of universe contraction.

• Our expressions for the tensor bispectrum contain a characteristic scale dependence with

overall factors containing powers of (−K yend), that are distinctive of our scenario – being

absent in other frameworks with large tensor non-Gaussianity. The explicit dependence on

the time yend when the non-attractor phase ends is due to the fact that the bispectrum has

been computed specifically at the end of the non-attractor phase. For simplicity, we assume

that this era is immediately followed by a standard slow-roll inflation, where tensor modes

and their statistics are frozen in a super-horizon regime. The overall scale dependence of the

tensor bispectrum controlled by K is also distinctive of our set-up. Similar situations have

been encountered in the scalar sector, starting from the work [82], for models with non-

standard cosmological expansion history, leading to interesting observables associated with

scale-dependent non-Gaussianity (explored in general terms in [97–99]). A consequence of

2Similar considerations have been developed in various works for the scalar sector, see e.g. [43, 90–93], finding
non-attractor models with an enhanced scalar bispectrum in the squeezed limit.
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this fact is that non-Gaussianity depends on the scale and might be different at different

interferometer scales (for example, LIGO-VIRGO and LISA): it would be interesting to

further explore phenomenological consequences of this property, which goes beyond the

scope of our work.

We now continue by estimating the amplitude of non-Gaussian signal. As a measure for the

amount of non-Gaussianity, we use the following definition of the non-linearity parameter fNL,

as in the works [88, 89]

f̂s1s2s3NL(new),(GR) ≡ 30
As1s2s3(new),(GR)

K3

∣∣∣∣
k1=k2=k3

, (3.10)

which is analogous to the standard fNL for the scalar curvature perturbation. Notice that the fNL

above is defined in terms of equilateral configurations for tensor bispectra, and its value depends

on the polarisations. Using the definitions of the two amplitudes in (3.5), we find

f̂ s1s2s3NL(new) = −45

32

[
3 + 2(s1s2 + s1s3 + s2s3)

]A(new)(K/3,K/3,K/3)

K3
, (3.11)

f̂s1s2s3NL(GR) = − 5

64

[
21 + 20(s1s2 + s1s3 + s2s3)

]A(GR)(K/3,K/3,K/3)

K
. (3.12)

The dependence of the non-linerity parameter on the polarization implies the following symmetry

f̂++−
NL(new),(GR) = f̂+−−NL(new),(GR) and f̂+++

NL(new),(GR) = f̂−−−NL(new),(GR) which follows from the fact that

the interactions we consider do not violate parity. More concretely, we have

f̂+++
NL(new) =

135

512

Hµ(end)

G(end)T

(
1 +

5

36
(−Kyend)2

)
(3.13)

and

f̂++−
NL(new) =

15

512

Hµ(end)

G(end)T

(
1 +

5

36
(−Kyend)2

)
. (3.14)

Similarly for fs1s2s3NL(GR) we have

f̂+++
NL(GR) =

45

4096
(−Kyend)2

[
1 +

π

12
(−Kyend)

]
(3.15)

and

f̂++−
NL(GR) =

5

36864
(−Kyend)2

[
1 +

π

12
(−Kyend)

]
. (3.16)

These results show that the fNL parameter is generically positive during the non-attractor phase,

similar to the case of contracting universes considered in [82]. Importantly, due to the strong

scale dependence of the fNL(GR), fNL(new) dominates the bispectrum for −kiyend � 1 and

Hµ(end)/G(end)T ∼ O(1). Recall that GT ⊃ µH, in particular

GT = 2 (G4 − 2XG4X − µH) (3.17)

for the background model we discussed earlier. The expression above (3.17) indicates that we
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Figure 3. A+++
(new)(1, x2, x3)/(x2x3) as a function of x2 and x3 where we set Hµend/GendT → 1 (Left).

A+++
(GR)(1, x2, x3)/(x2x3) as a function of x2 and x3 (Right). In both plots we normalized the amplitudes

A+++
(new) and A+++

(GR) to unity for equilateral configurations x2 = x3 = 1 and took −Kyend = 10−2.

need accidental cancellations3 between the first two terms in GT > 0 and µH in order to en-

sure Hµ/GT � 1. We discuss in Appendix C a concrete scenario leading to large tensor non-

Gaussianity within the framework we reviewed in Section 2.2.

3.2 Shape of tensor non-Gaussianity

We now study the shape of non-Gaussianity in our model. Since both of the amplitudes have

non-trivial scale dependence, we examine the shape of the amplitudes 4 at fixed −Kyend. We

focus on the dimensionless ratio As1s2s3(new),(GR)/(k1k2k3) of both amplitudes in (3.5) following the

literature for scalar perturbations [100]. In particular, we will plot As1s2s3(new),(GR)/(k1k2k3) in the

x2−x3 plane where xj ≡ kj/k1 with j 6= 1 by restricting ourselves to the range 1−x2 ≤ x3 ≤ x2.
Note that the first inequality follows from the triangle inequality whereas the latter allows us to

avoid plotting the same configuration twice. The non-Gaussian amplitudes A+++
(new)/(k1k2k3) and

A+++
(GR)/(k1k2k3) are shown in Figure 3. We see that both the interaction terms in (3.1) give rise

to non-Gaussianity that peaks in the squeezed limit. This result is in contrast with the slow-roll

case where the new contribution peaks in the equilateral configuration. This difference is due

to the fact that during the non-attractor phase, the fluctuations in hij keeps growing outside

the horizon due to the dynamics of the would be decaying mode, i.e. ḣij = 3Hhij and therefore

the non-Gaussian amplitude peaks when one of the wave numbers is small, corresponding to

the squeezed-triangle limit5. In the standard attractor slow-roll background however, tensor

3Note that this situation is not special to the model under consideration in this work and arises for general
slow-roll scenarios as well [88].

4Recall that we are interested in modes that leave the sound-horizon during the non-attractor era, i.e. −kiy0 > 1
and −kiyend < 1. This implies that the modes of interest satisfy 1 > −Kyend > e−∆N , where ∆N is the duration
of the non-attractor era.

5See [82] for similar dynamics that lead an to enhanced squeezed bispectrum in curvature perturbations.
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fluctuations freeze on large scales, ḣij → 0 and therefore only wave-numbers comparable to the

size of the horizon can contribute to the non-Gaussianity for the interaction proportional to the

time derivatives of hij in (3.1).

3.3 Interferometer response function for anisotropic tensor power spectrum

As we explained in Subsection 3.1, our system does not satisfy Maldacena consistency relations:

the squeezed limit of the bispectrum can be enhanced by the contributions of the would be

decaying tensor mode. This means that we can develop a scenario where at the same time we have

a large tensor power spectrum at interferometer scales, accompanied by enhanced squeezed tensor

non-Gaussianity. In this subsection, we start with a brief ‘theory’ part to connect the squeezed

limit of the tensor bispectrum with a quadrupolar anisotropy of the tensor power spectrum; we

then continue with a discussion on possible ways to detect an anisotropic gravitational wave

power spectrum with ground based interferometers, building on the results of [101].

Theory: A large non-Gaussianity in the squeezed limit can induce couplings between modes at

different scales: the tensor power spectrum is modulated by long tensor modes that induce large

scale anisotropies. This fact has been explored in several contexts, mainly in the scalar, but also in

the tensor sector: see e.g. [102–105]. Other scenarios that can induce large tensor non-Gaussianity

in the squeezed limit, by violating the adiabaticity condition in the tensor sector, are supersolid

inflation [25–28, 32, 33], bigravity or higher spin theories [35–37, 94–96]; our considerations can

apply to these cases as well.

When focussing on the ‘GR’ operator of action, one finds that squeezed non-Gaussianity

induces a quadrupolar anisotropy in the tensor power spectrum, with6 (see e.g. [36, 106])

Ph(k, x) = P(0)
h (k)

[
1 +Qij(k, x) k̂ik̂j

]
(3.18)

and

Qij(k, x) =
∑
s1,s2

∫
L−1

d3q

(2π)3
eiqx

(
Bs1s1s2(q, k, −q− k)

Ph(q)Ph(k)

)
hqe

(s2)
ij (q) . (3.19)

We expect that the modulation (3.18) of the tensor power spectrum arises in any scenario with

enhanced squeezed tensor non-Gaussianity. The integral defining the anisotropy parameter is

evaluated in a patch centered at the position x and spans over long tensor modes with momenta

within the non-attractor phase, corresponding to scales well larger than the gravitational wave

wavelengths under consideration (see e.g. Section 4.4 of [36]). Being dependent on a linear

combination of the polarization tensors e
(s)
ij , the quantity Qij is traceless. It is convenient to

define the squeezed limit of the bispectrum as

lim
q→0

Bs1s1s2(k, −k,q)

Ph(q)Ph(k)
=

3

64
+ f̂ sqzNL , (3.20)

where the quantity f̂ sqzNL parameterises the deviation from the Maldacena’s consistency conditions.

In our case, the quantity f̂ sqzNL can be read from eq (3.9). The anisotropy parameter Qij is

determined in a statistical sense, averaging over many large patches. Its average equal to zero,

6Here Ph(k) ≡ 2π2Ph(k)

k3 and hq = vqa (see Appendix A).
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and its variance results (see e.g. [36, 106])

〈Qij(k)Qmn(k)〉 =
π

20

(
δimδjn + δinδjm −

2

3
δijδmn

) ∫
dk

k

∣∣f̂ sqzNL

∣∣2 P2
h , (3.21)

'
(
δimδjn + δinδjm −

2

3
δijδmn

) ∣∣f̂ sqzNL

∣∣2 P2
h ∆N (3.22)

where in the last line we specialised for simplicity to the case of scale invariant power-spectrum

and squeezed f sqzNL , and ∆N indicates the number of e-folds of cosmological evolution associated

with the non-attractor era. The value of Ph in the previous formula indicates the magnitude of

the tensor power spectrum at the end of non-attractor, which can be much larger than its value

during the initial phase of slow-roll. Assuming that the magnitude of tensor spectrum is of order

∼ 10−14 at large scales, and it receives a 1010 enhancement during three e-folds of non-attractor

inflation (using eq (2.11)), we learn that f sqzNL ∼ 100 is sufficient to give a value for
√
〈Q2

ij〉 of

the order of a few percent (but
√
〈Q2

ij〉 can be larger depending on the magnitude of tensor

non-Gaussianity).

These results imply that the size of the anisotropy parameter can be a probe of the squeezed

tensor bispectrum. We now outline a possible way to test such quantity with ground based

interferometers 7.

Connection with gravitational wave experiments: The possibility of detecting anisotropies

in a SGWB has started with the work [101], that derived the formalism necessary to quantitatively

address the subject. The motivation for such investigations is to detect signals from a stochastic

background due to astrophysical sources that can generate multipolar anisotropies. On the other

hand, the formalism of [101] is sufficiently general and can be used with little changes also to

investigate tensor anisotropies from the early universe. We apply the formulae and arguments of

[101] to analyse tensor power spectra with a quadrupolar anisotropic structure as in eq (3.18).

We focus for simplicity on analysing the response function for a single Michelson ground-based

interferometer (see [108, 109] for reviews).

The total signal detected by an interferometer can decomposed as S(t) = s(t) + n(t), with

n(t) the noise and s(t) the contribution due to the gravitational wave. The relation between s(t)

and the mode hij can be written as [108]

s(t) = Dij hij(t) , (3.23)

with Dij the detector tensor. For ground-based interferometers with arm directions û and v̂ it

reads

Dij =
1

2

(
ûiûj − v̂iv̂j

)
. (3.24)

We introduce the detector pattern function

F λ(k) = Dij e
(λ)
ij (k) . (3.25)

7Tensor non-Gaussianity can also be an important observable for characterizing the primordial stochastic grav-
itational wave background at CMB scales, and have been explored in other contexts, see e.g. [20, 23, 107].
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Figure 4. Modulation of the response function F of eq (3.26) as the interferometer rotates an angle φ
around an axis aligned with one of the interferometer arms. We assume that this arm points along the
earth’s rotation axis, and we choose a reference frame so that it corresponds to the direction x̂. The dashed
blue line shows the case with no anisotropy, Qij = 0, whereas the orange line shows the case with one
component Q33 = −Q11 = 0.1 turned on.

The single detector response function, as defined for example in Section 3 of [108] is the pro-

portionality constant F between the equal time 2pt function of the ground-based interferometer

signal and the integral over frequencies of the amplitude of the primordial power spectrum P(0).

Using the techniques developed in [101], we find that the response function reads in our case

F =
2

5
− 16

35
QijDikDkj . (3.26)

The first contribution 2/5 is the well known response function for an isotropic SGWB for a

single, ground-based Michelson interferometer (see [108], Section 3). The additional contribution

is instead new, and contains the anisotropic contributions of (3.18) to the interferometer response

function: notice that it depends on the detector tensor Dij .

As pointed out in [101], a response function as eq (3.26) can lead to a diurnal modulation of a

ground-based interferometer signal, since the interferometer arms change orientation with respect

to the anisotropy parameter Qij as the earth rotates around its axis. As a representative example,

we plot in Fig 4 the modulation of the interferometer response function as the interferometer arms

make a full rotation around the axis of rotation of the earth, when some of the components of

the anisotropy parameter Qij is turned on. From the figure we learn that if we can probe percent

variations of the interformeter response function – corresponding to diurnal modulations of the

same order in the stochastic background – then we can probe anisotropies of the same magnitude:

they correspond to values of f sqzNL of the order of one hundred, which can be achieved in the model

we are considering (see Appendix C).

It would be very interesting to study quantitatively whether current and future ground-based

interferometers can set constraints on the size of Qij for realistic values of f̂ sqzNL , by studying cor-

relations among signals from different instruments in the presence of the primordial quadrupolar

asymmetry, and by computing the corresponding signal-to-noise ratio. We plan to further develop
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these topics in a future publication.

4 Conclusions

We investigated the consequences of a non-attractor phase of cosmological evolution for the

dynamics of primordial tensor modes, focussing on the properties of primordial tensor non-

Gaussianity in scenarios with non-minimal couplings of gravity to the scalar sector. Thanks to a

tensor duality, we have been able to analytically compute the properties of the tensor bispectrum

during this phase. We have shown that the tensor bispectrum is enhanced in the squeezed limit

with respect to standard slow-roll scenarios, and can parametrically violate Maldacena’s consis-

tency relations. Moreover, tensor non-Gaussianity exhibits a scale dependence characteristic of

our set-up, that can help to distinguish our model from other scenarios with large tensor non-

Gaussianity. Squeezed tensor non-Gaussianity induces a characteristic quadrupolar anisotropy on

the power spectrum of the stochastic background of primordial tensor perturbations. To make

contact with gravitational wave experiments, we discussed the response function of a ground

based Michelson interferometer to a gravitational wave background with such a feature.

Much work is left for the future. It would be interesting to apply our approach to more general

scenarios then the ones considered so far, including theories of Beyond Horndeski or DHOST [110–

114]. This would also allow one to study in more general terms the transition phase between

attractor and non-attractor, and related possible instabilities associated with violations of energy

conditions (see the discussion in the Appendix of [1]). At the phenomenological level, it would

be important to further investigate to what extent gravitational wave experiments can probe the

quadrupolar anisotropy in the tensor power spectrum induced by squeezed non-Gaussianity, by

computing the corresponding signal-to-noise ratio for actual experiments, and relating it to the

size of non-Gaussian observables. We plan to return on these topics soon.
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A Technical appendix:

computation of two-point and three-point functions for tensor modes

In this Appendix, we go through the technical details of the results we discuss in the main text.

We start showing that tensor duality allows us to obtain an analytical expression for tensor mode

functions during the non-attractor era dual to a slow-roll phase: this is the basic ingredient we

need for then analytically evaluating two point and three point functions in the non-attractor

regime. For definiteness, the set-up we have in mind to realise this scenario is the same of

Subsection 2.2, first discussed in [1]. In this case,

FT ∝ 1/a6 c2T = FT /GT ∝ constant during non-attractor phase , (A.1)

FT ∝ constant c2T = FT /GT ∝ constant during slow-roll phase . (A.2)
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We start by discussing the computation of the quadratic case, leading to the tensor power spec-

trum. To investigate the behavior of the tensor fluctuations, we define the canonically normalized

tensor fluctuation vij = zThij to re-write the leading order action (2.3) as

S
(2)
T =

1

2

∫
dy d3x

[(
v′ij
)2 − (~∇vij)2 +

z′′T
zT

v2ij

]
. (A.3)

Using the expression (2.10), this leads to the following equation of motion in Fourier space

v′′k +

(
k2 − 2

y2

)
vk = 0, (A.4)

where we have used the following expansion for the canonical tensor perturbation

vij(y,k) =
∑
s

e
(s)
ij (k)

[
vk(y)as(k) + v∗−k(y)a†s(−k)

]
. (A.5)

Here, e
(s)
ij is the polarization tensor with the helicity states s = ±, satisfying e

(s)
ii (k) = 0 =

kje
(s)
ij (k). Our normalisation is

e
(s)
ij (k)e

∗(s′)
ij (k) = δss′ , (A.6)

and we choose the phase so that the following relations hold:

e
∗(s)
ij (k) = e

(−s)
ij (k) = e

(s)
ij (−k). (A.7)

The commutation relation for the creation and annihilation operators is

[as(k), a†s′(k
′)] = (2π)3δss′δ(k− k′). (A.8)

The mode equation in (A.4) implies that the power spectrum of the fluctuations vk is scale

invariant on large scales. In order to see this, we note the solution to the differential equation in

(A.4) that reduces to the adiabatic vacuum on small scales which reads

vk(y) =
1√
2k

(
1− i

ky

)
e−iky, (A.9)

so that Ph ∼ k3|vk|2 ∝ k0 in the limit −ky → 0, as anticipated. Using (A.9) and the formulae

for zT , we write the solution to the original tensor mode function by using hk ≡ vk/zT ,

hk(y) =
i
√

2H√
cTFTk3

(1 + iky) e−iky, (A.10)

which essentially has the same form as the one in the slow-roll approximation (see eq (11) of

[89]), although in this case FT is strongly time dependent, as discussed in Section 2.2 of the main

text. Indeed, FT is evolving rapidly as ∝ a−6 during the non-attractor regime contrary to the
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case in slow-roll where FT ' constant, see eqs (2.12).

The two point function and the tensor power spectrum

Starting from the two point function of tensor modes in Fourier space, the power spectrum of

tensor fluctuations can be defined by Ph = (k3/2π2)Pij,ij using the following expressions8

〈hij(k)hkl(k
′)〉 = (2π)3δ(k + k′)Pij,kl(k), (A.11)

Pij,kl(k) = |hk|2Πij,kl(k), (A.12)

where

Πij,kl(k) =
∑
s

e
(s)
ij (k)e

∗(s)
kl (k). (A.13)

We learn that on super horizon scales −ky → 0, one still gets a scale invariant power spectrum

of primordial tensor fluctuations during the non-attractor phase.

Ph = lim
−ky→0

k3

2π2
2|hk|2 =

2

π2
H2

FT cT
. (A.14)

However, since the tensor kinetic term evolves as FT ∝ a−6, the amplitude of the power spectrum

grows on super-horizon scales and therefore it has to be evaluated at the end of the non-attractor

era. These result shows an agreement with what one would expect from the duality arguments

discussed in [58], namely the power spectrum grows on superhorizon scales while it preserves a

scale invariant form.

The three point function and the tensor bispectrum

The tensor bispectrum can be computed by employing the in-in formalism (see e.g. [115]), starting

from the three point function in Fourier space

〈hi1j1(k1)hi2j2(k2)hi3j3(k3)〉

= −i
∫ t

ti

dt′ 〈
[
hi1j1(t,k1)hi2j2(t,k2)hi3j3(t,k3), Hint(t

′)
]
〉, (A.15)

where ti is some early time when the perturbation is well inside the sound horizon and the

interaction Hamiltonian is given by Hint(t) = −
∫

d3x L(3)T . We find it convenient to work with

the time coordinate y in evaluating the three point function. We express all the time dependent

quantities with respect to the time when the non-attractor era ends, yend. Using (A.10), the

mode functions therefore take the following form

hk(y) =
i
√

2H√
cTF (end)

T k3
(1 + iky) e−iky

(
yend
y

)3

, (A.16)

8Sometimes, it is also convenient to use the quantity Ph(k) ≡ 2π2 Ph(k)

k3 .
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where (0) denotes the value of the quantity at the beginning of the non-attractor era. Using the

expansions in (A.5) (and noting hij = vij/zT ), we take the commutators in (A.17) by taking into

account the relations between the polarization tensors (A.6),(A.7) and (A.8).

This procedure yields to the following expression for three point function,

〈hi1j1(k1)hi2j2(k2)hi3j3(k3)〉

= (2π)3δ(k1 + k2 + k3) T (α)
i1jii2j2i3j3

(
2 Im[ I(α)(y) ]

)
, (A.17)

where the form of tensorial part T (α) and the function I(α)(y) depends on the interaction term

under consideration in the third order action (3.1), denoted by the superscript α = (GR,new).

• The ‘GR’ contribution

We begin our calculations by the first term in the interaction Hamiltonian Hint(t) = −
∫

d3x L(3)T ,

using the interaction Lagrangian (3.1) which we denote by α → GR. In this case the tensorial

part is given by

T (GR)
i1j1i2j2i3j3

=

{
Πi1j1,ik(k1)Πi2j2,jl(k2)

[
k3kk3lΠi3j3,ij(k3) −

1

2
k3ik3kΠi3j3,jl(k3)

]
+ 5 perms of 1, 2, 3

}
. (A.18)

where recall the definition of the four-index tensor Π in eq (A.13). Since the tensor modes evolve

outside the horizon during the non-attractor regime, we need to evaluate the function I (and

hence the bispectrum) at the end of the non-attractor era beyond which we assume the mode

functions (as well as time dependent quantities such as FT ) freeze-out, since we return into a

standard slow-roll phase. We are therefore interested in the following expression

I(GR) = hk1(yend)hk2(yend)hk3(yend)

∫ yend

−∞
dy′

a2(y′)FT (y′)

4 cT
h∗k1

(y′)h∗k2
(y′)h∗k3

(y′), (A.19)

where we take yi → −∞ to ensure all modes of interest are inside the horizon initially and yend
denotes the end of non-attractor era. Noting the behavior of the mode functions in (A.10) and

of the tensor kinetic function FT ∝ y6 during the non-attractor era, the function I(GR) contains

integrals of the following form

C(α)p =

∫ xend

∞
dx′ (x′)−p e−ix

′
, (A.20)

where we defined x′ ≡ −Ky′ with K =
∑

i ki and |ki| = ki. For the GR contribution we are

focussing on, p is a positive integer with the following possible values, p = {5, 4, 3, 2}. The result

of the integration can be expressed in terms of the incomplete Gamma functions,

C(α)p = −(−i)1−p Γ(1− p, ixend) (A.21)
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which has the following series expansion for negative integer values of its first argument

Γ(−m, z) =
1

m!

(
e−z

zm

m−1∑
k=0

(−1)k(m− k − 1)! zk + (−1)m Γ(0, z)

)
. (A.22)

The results above are valid as far as we are away from the origin xend = 0 but diverges as xend → 0.

In the following, we will express our results for small but non-zero value of xend ≡ −Kyend < 1.

Moreover, notice that the incomplete Gamma Γ(0, z) (also known as the exponential integral

E1(z)) admits the following useful power series expansion in terms of elementary functions,

Γ(0, z) = −γE − ln(z)−
∞∑
k=1

(−z)k

k k!
, (A.23)

where γE is the Euler-Mascheroni constant. Following the discussion above, we use (A.21) with

(A.22) and (A.23) to present our results at next to leading order in −Kyend < 1. Keeping in

mind the full expression in (A.19), we thus have

2 Im[I(GR)] =
(2π)4P(end)2

h

Πi k3i

×−K
64

[1− 3

K3

∑
i 6=j

k2i kj −
6

K3
Πiki

 (−Kyend)2

− π

4

1− 4

K3

∑
i 6=j

k2i kj −
4

K3
Πiki

 (−Kyend)3

]
, (A.24)

where we made use of the expression for the power spectrum in (A.14) evaluated at the end of

the non-attractor era. With these ingredients, we can express the tensor three point function

associated with the ‘GR’ contribution as

〈hi1j1(k1)hi2j2(k2)hi3j3(k3)〉 = (2π)7δ(k1 + k2 + k3)
P(end)2

h

Πi k3i
A(GR)
i1jii2j2i3j3

, (A.25)

where we defined A(GR)
i1jii2j2i3j3

≡ A(GR)(k1, k2, k3) T (GR)
i1jii2j2i3j3

with T (GR) given in eq (A.18),

A(GR) = −K
64

[1− 3

K3

∑
i 6=j

k2i kj −
6

K3
Πiki

 (−Kyend)2

− π

4

1− 4

K3

∑
i 6=j

k2i kj −
4

K3
Πiki

 (−Kyend)3 + . . .

]
, (A.26)

and dots indicates sub-leading terms higher order in −Kyend. The amplitude A(GR) shows the

scale dependence of the non-Gaussianity parametrized by the powers of −Kyend < 1 during the
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non-attractor era.

• The ‘new’ contribution

In a similar fashion, we now move on to calculate the contribution to the tensor three point

function from the second term in the interaction Hamiltonian (see e.g. (3.1)). Following the same

steps as we did for the previous term, we write the three point function in the same form as in

(A.17) with

T (new)
i1j1i2j2i3j3

= Πi1j1,ij(k1)Πi2j2,jk(k2)Πi3j3,kl(k3) (A.27)

and

I(new) = −hk1(yend)hk2(yend)hk3(yend)

∫ yend

−∞
dy′

c2Taφ̇XG5X

2
h∗
′

k1
(y′)h∗

′
k2

(y′)h∗
′

k3
(y′). (A.28)

Here a prime on the mode functions denotes a time derivative with respect to their argument

y′. We note that since the integral contains these time derivatives, the calculation of the 3-pt

function associated with this contribution is more involved compared to the previous case. In

order to deal with the integral in (A.28), we note the time derivative of the complex conjugated

mode function as

h∗
′

k (y) = − i
√

2H√
cTF (end)

T k3

(
yend
y

)3 {
−3

y
(1− iky) + k2y

}
eiky, (A.29)

which reflects the rapid change of the mode functions after horizon crossing (−ky → 0). Noting

the time dependence of the functions inside the integral, i.e. φ̇ ∝ a−3, X ∝ a−6 and G5X ∝
a3, we see that we need to deal with integrals that has the same form as in (A.20) with p =

{7, 6, 5, 4, 3, 2, 1}. Therefore, repeating the same steps as we did for the “GR” term, we obtain

the following results for 2Im[I(new)] at next to leading order in −Kyend,

2 Im[I(new)] = −
(2π)4P(end)2

h

Πi k3i

3Hµ(end)

16G(end)T

{K3 − 3
∑
i 6=j

k2i kj − 6 Πiki


− 1

4

(
K3 − 5

∑
i 6=j

k2i kj +
2

K2

∑
i 6=j

k3i k
2
j

)
(−Kyend)2

}
,

(A.30)

where we defined µ(end) ≡ φ̇(end)X(end)G
(end)
5X . The contribution of this term to the 3pt function

can be written similarly to the expression in (A.25) where we define the amplitude A(new)
i1jii2j2i3j3

≡
A(new)(k1, k2, k3) T (new)

i1jii2j2i3j3
and

A(new) = −3Hµ(end)

16G(end)T

{K3 − 3
∑
i 6=j

k2i kj − 6 Πiki
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− 1

4

(
K3 − 5

∑
i 6=j

k2i kj +
2

K2

∑
i 6=j

k3i k
2
j

)
(−Kyend)2

}
. (A.31)

This result shows that the contribution of the new term to the amplitude of the bispectrum

has a scale independent piece plus a scale dependent subleading term, which becomes small as

−Kyend → 0. The difference between the scale dependence of the A(new) and A(GR) can be

understood by analyzing the time dependence of each term in the interaction Lagrangian (3.1).

For example, during the non-attractor phase the new term can be written schematically as a−6hhh

whereas the GR term scales with scale factor as a−8hhh where we have suppressed the indices on

the metric. This explains why the contribution from each term differs by a factor y−2end at leading

order in the amplitude of the bispectrum.

B Disformal transformation and tensor non-Gaussianity

The general quadratic action for tensors in (2.3) can be transformed into a form identical to the

action for tensor fluctuations in general relativity (GR) by applying a disformal and conformal

transformation to the metric successively [73, 74]. In this appendix, we discuss the implications9

of such transformations for the background dynamics and for the tensor bispectrum we discussed

earlier in Section 3 and Appendix A. For our system, the corresponding combination of disformal

and conformal transformation is given by

gµν →
FT
cT

[
gµν + (1− c2T )nµnν

]
, (B.1)

which corresponds to the following re-labeling of the time coordinate and re-definition of the scale

factor,

dt̂ = (cTFT )1/2dt, â(t̂) =

(
FT
cT

)1/2

a(t). (B.2)

Using the transformations in (B.2), the quadratic action in (2.3) take the standard form that

appear in GR,

S
(2)
T =

1

8

∫
dt̂ d3x â(t̂)3

[
(∂t̂hij)

2 − 1

â(t̂)2
(~∇hij)2

]
,

=
1

2

∫
dy d3x

â2

4

[
(∂yhij)

2 − (~∇hij)2
]
, (B.3)

where in the second line we have used the fact that the conformal time in the GR frame is defined

by the coordinate y , namely dt̂/â(t̂) ≡ dy, which can be seen by combining the expressions given

in (B.2).

In order to describe the time evolution of the background in the Einstein Frame, we make

use of the relation between two scale factors in (B.2) together with the fact that FT ∝ a−6 and

a ∝ −1/y. This procedure leads to the conclusion that, universe appear to be collapsing as in a

9See also [116] for a general analysis of the consequences of disformal transformations on cosmological fluctua-
tions.
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dust dominated universe, that is

â ∝ y2, (B.4)

as y → 0. Similarly, we can relate the Hubble rate in the Einstein frame, Ĥ = d ln â/dt̂, to the

Hubble rate in the Jordan frame using (B.2), which leads to

Ĥ = − 2H

(cTFT )1/2
∝ â−3/2, (B.5)

as expected from a dust dominated universe. Using the transformation (B.5) for the Hubble rate,

the power spectrum of tensor fluctuations in the Jordan frame can be expressed in terms of the

quantities in the Einstein frame as

Ph =
Ĥ2

2π2
∝ â−3. (B.6)

This expression reflects the equivalence of the interpretation of the results in both frames. In the

Einstein frame, the power spectrum of tensor fluctuations also appear to be increasing during

the transient collapsing10 phase as â→ 0.

The equivalence of the results in both frames also extends to the observables such as the tensor

non-Gaussianity. In the following, we prove that the calcuation of the bispectrum is equivalent

in both frames. For this purpose, we first realize from (B.3) and (B.4) that the canonical variable

vij = zThij with zT = â/2 satisfies the same equation in Fourier space similar to the case during

the non-attractor phase (See, e.g. eq. (A.4)). Therefore, in the Einstein frame, the mode functions

that reduces to the Bunch-Davies vacuum is given by,

hk =
−iĤ√

2k3
(1 + iky) e−iky. (B.7)

Notice that using the relation (B.5), the mode functions appear to have the same form as the

one in the non-attractor phase (A.16):

hk =
i
√

2H√
cTFTk3

(1 + iky) e−iky, (B.8)

where FT = F (end)
T (y/yend)6. In order to establish the equivalence of the in-in calculation in both

frames, we therefore only need to focus on the time dependence of the interaction Hamiltonian

in the Einstein frame, which is given by

Hint(y) = −
∫

d3x

[
Qnew(y)

12
h′ijh

′
jkh
′
ki +

â2(y)

4

(
hikhjl −

1

2
hijhkl

)
∂k∂lhij

]
, (B.9)

where prime denotes a time derivative w.r.t y and we have defined the time dependent pre-factor

of the new interaction as

Qnew =
âF3/4

T

G5/4T

Xφ̇G5X . (B.10)

10Note that similar to the time span y0 < y < yend of the non-attractor era in the Jordan frame, the collapsing
phase in the Einstein frame will last for a finite time.
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We proceed the in-in calculation in the Einstein frame by defining analogues of the functions

I(new) and I(GR) that we defined earlier in the Jordan frame. Following the same steps as we

before, these functions in the Einstein frame is given by

Î(GR) = hk1(yend)hk2(yend)hk3(yend)

∫ yend

−∞
dy′

â2(y′)

4
h∗k1

(y′)h∗k2
(y′)h∗k3

(y′),

Î(new) = −hk1(yend)hk2(yend)hk3(yend)

∫ yend

−∞
dy′

Qnew(y′)

2
h∗
′

k1
(y′)h∗

′
k2

(y′)h∗
′

k3
(y′), (B.11)

where yend denotes the end of the collapsing phase. Noting â ∝ y2 and Qnew ∝ â5/2 ∝ y5 and the

mode functions in (B.8), we see that we need to deal with identical integrals in the calculation

of bispectrum amplitude in the Einstein frame. In particular, defining the dimensionless variable

x′ = −Ky′, integrals have the same form as before (See for example, eq. (A.20)):

C(α)p =

∫ xend

∞
dx′ (x′)−p e−ix

′
, (B.12)

where α labels the new or the GR term with p = {7, 6, 5, 4, 3, 2, 1} and p = {5, 4, 3, 2}. There-

fore, as expected, one can reach at the same results we derived earlier for the amplitude of the

bispectrum in the Einstein frame.

C An explicit scenario with large tensor non-Gaussianity

In this appendix we apply the results presented in the main text, for the amplitude of tensor

non-Gaussianity during a phase of non-attractor inflation, to a concrete model. We use the

model introduced in Section 2.2, which is based on the Horndeski theory of gravity, choosing the

Horndeski functions as in (2.21). The model is discussed in detail in [1], and we present in this

appendix only a brief summary of the relevant dynamics and parameter space. In particular, our

purpose here is to identify a consistent parameter space for the model, which gives rise to a large

tensor bispectrum during a non-attractor phase.

We allow the free parameters, ρ, α, ν, δ, β and σ in (2.21) to take different values during three

different phases of inflationary evolution. Provided that the parameters satisfy certain relations,

the equations of motion admit a solution with a constant Hubble parameter and continuous

metric and φ̇, consisting of two slow roll inflationary phases, during which φ̇ = const, connected

by a transient non-attractor self-accelerating de Sitter phase that is tensor dual to the initial

slow roll phase, with φ̇ ∝ 1/a3. As we show in [1], such a solution is possible provided that the

parameters satisfy ρ = 2δ + 3β + 4σ and ν = 0, during the non-attractor phase.

Whilst the non-minimal derivative couplings between metric and scalar in Horndeski La-

grangians have been chosen to allow a non-attractor inflationary phase, tensor dual to slow roll,

care must be taken so that they do not also introduce ghost or gradient instabilities in the tensor

and scalar fluctuations. As discussed in detail in [1], the stability constraints restrict the param-

eter space to ρ < 0, β > 0, σ < 0, δ < 0, β + 9σ < 0, β + 3σ > 0 and fs > 0, during the
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non-attractor era, where

fs =
−2β2 + δ(β + 9σ) + 3σ(β + 3σ)

6(3β + δ + 6σ)
. (C.1)

Referring to [1] for the explicit solution for φ̇ in the non-attractor phase, we now write the

non-linearity parameter given in (3.10) in terms of the model parameters:

f̂+++
NL(new) =

135

512

Hµend

GendT

= −135

512

3σ

2(β + 3σ)
. (C.2)

It is clear from the expression above that bispectrum amplitude can be large, in the limit β →
−3σ. In order to parametrize the proximity to this limit and hence the enhancement of the

bispectrum, we thus set β = −3σ + ε where 0 < ε � −3σ. Notice that this parametrization

guarantees that the stability conditions β + 3σ > 0 and β + 9σ < 0 are satisfied, when σ < 0.

The condition fs > 0 can then be satisfied by fixing the parameter δ within the range:

3σ − 3ε+
5ε2

6σ
< δ < 3σ − 3ε. (C.3)

We can then set the final parameter ρ using ρ = 2δ + 3β + 4σ as required by the equations of

motion in the non-attractor self-accelerating de Sitter background.

The expressions (C.2) and (C.3) imply that in order to enhance the bisepctrum by an amount

ε−1, we require a cancellation between β and 3|σ| at the order of ε, together with a fine-tuning of

δ (and thus ρ) at the order of ε2. As shown in [1], an enhancement for the tensor power spectrum

is also achieved, by choosing the parameter α to be suppressed in the non-attractor regime, with

respect to the slow-roll regime preceding it. The scalar power spectrum is also enhanced, by a

smaller factor. For example, for the parameters considered in [1] – σ = −0.2, β = 1.5, δ = −4,

αsr/αna = 10−3 – the scalar power spectrum is enhanced by a factor 5.3× 106, the tensor power

spectrum by a factor of 5.0 × 107 and the non-linearity parameter, (C.2), is f̂+++
NL(new) = 0.088.

Fine-tuning instead σ = −1, β = 3.001, δ = −3.003007 and αsr/αna = 10−6, the scalar power

spectrum is enhanced by a factor 5.5×107, the tensor power spectrum by a factor of 1.3×108 and

the non-linearity parameter, (C.2), is f̂+++
NL(new) = 395.5. We see that – with sufficient fine-tuning

– large, potentially observable tensor non-Gaussianities can occur.
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