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Summary

In this work we estimate the diagnostic threshold of the instantaneous wave-free
ratio (iFR) through the use of a one-dimensional haemodynamic framework. To this
end we first compared the computed fractional flow reserve (FFR) predicted from a
1D computational framework with invasive clinical measurements. The framework
shows excellent promise and utilisesminimal patient data from a cohort of 52 patients
with a total of 66 stenoses. The diagnostic accuracy of the cFFR model was 75.76%,
with a sensitivity of 71.43%, a specificity of 77.78%, a positive predictive value of
60%, and a negative predictive value of 85.37%. The validated model was then used
to estimate the diagnostic threshold of iFR. The model determined a quadratic rela-
tionship between cFFR and the ciFR. The iFR diagnostic threshold was determined
to be 0.8910 from a receiver operating characteristic curve which is in the range of
0.89-0.9 that is normally reported in clinical studies.

KEYWORDS:
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1 INTRODUCTION

Coronary heart disease (CHD) is the leading cause of mortality worldwide and has been attributed to approximately 15.5%
of deaths-per-year. The prevalence of CHD creates a significant economic burden due to the direct healthcare costs, reduced
productivity, and informal public after-care caused by CHD and other cardiovascular diseases (CVD)1,2. The risk factors of CHD
and other types of CVD have been extensively studied and indicate the risk of developing a CVD is increased for individuals that
smoke, and those who are overweight3. There have been efforts from healthcare systems aimed at encouraging populations to
lead a healthier lifestyle4 as this has been shown to be effective at preventing many types of CVD and other diseases. However,
even with this guidance the prevalence of CHD (and other types of CVD) has continued to either remain constant or increase,
with a striking finding that approximately 48% of all Americans have a cardiovascular disease5. Due to advances in medicine
with improved diagnostic and treatment tools, themortality rates caused by CHD are reducing in high-income countries, however
this is not the case in middle-income and low-income countries where the number of deaths are increasing6,7. The economic
burden is also expected to significantly increase as health projections have indicated there will be an increase in CHD and other
types of CVD in part caused by ageing populations8,9. Thus it is important to not only improve access to medical facilities
that includes early diagnostic and treatment methods, but to reduce the costs and increase the efficiency of the various patient
treatment pathways for more sustainable healthcare systems10.
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CHD is caused by a narrowing (stenosis) of a coronary artery and is often from the process of atherosclerosis. The current gold
standard of care for assessing the functional significance of a stenotic lesion is fractional flow reserve (FFR)11,12,13. An FFR-
guided treatment strategy has been shown to reduce unnecessary stenting, reduce costs, and increase patient outcomes14,15,16,17
compared to a strategy that utilises only quantitative coronary angiography. FFR is an invasive procedure that is performed
during coronary angiography. The procedure requires a catheter and guide wire to be inserted into either the femoral artery or
radial artery. The catheter is then guided to the ascending aorta where the coronary arteries are located and a pressure-sensitive
wire is then used to measure the pressure ratio from a point distal of the stenosis to a point proximal to the stenosis (aorta).
Critical to the technique of FFR is that the measurement is performed under hyperaemic conditions and so requires a hyperaemic-
inducing drug to be administered to the patient. Hyperaemia increases the heart rate and cardiac output of the patient which
increases blood flow through the coronary arteries significantly18,19. However a study showed that 28% of patients experience
adverse reactions to adenosine, with 8% having such a severe reaction that the adenosine infusion had to be discontinued during
the procedure20. Other serious reactions to adenosine have also been reported, such as bronchospasms21, tachyarrhythmia and
even cardiac arrest22, although adverse effects as serious as these are rare.
Alternative diagnostic tools for CHD are continually being developed. One such technique is diastolic FFR (dFFR)23 which

refers to a collection of variants to FFR. In the same way as the conventional measurement, dFFR requires a hyperaemic drug to
be administered and the main idea behind this variant is that the largest flow rates and lowest resistances in the coronary arteries
are observed during diastole. The following are the main variants of dFFR: full-diastolic FFR, where the mean FFR over the
entire diastolic phase is used; mid-diastolic FFR, where the FFR is measured at a single point in time (the middle of diastole);
and end-diastolic FFR, where the FFR measurement is recorded only at end-diastole by utilising an electrocardiography gating
technique. End-diastolic FFR appears to be the most promising of these and has been shown to have a better correlation than
conventional FFR to the FFR measured using flow-probes24 although few studies on dFFR currently exist.
Another promising alternative to FFR is the instantaneous wave-free ratio (iFR)25,26. The iFR procedure also requires a

pressure sensitive catheter to be inserted in order to measure the pressure drop across stenotic lesion, but iFR is performed under
resting conditions so does not require a hyperaemic-inducing drug to be administered. The use of iFR was initially met with
significant resistance, particularly by the community who strongly supported the use of conventional FFR27,28 under maximum
hyperaemia, but many studies have shown the viability and potential of iFR in diagnosing functionally significant stenotic
lesions, showing similar diagnostic accuracy to conventional FFR29,30,31,32,33,34,35,36,37, and even showing a better repeatability
than conventional FFR38 and a stronger correlation with the coronary velocity flow reserve30. Questions still remain on whether
iFR can reliably be used to replace FFR as several studies have shown mismatches in patient categorisation between iFR and
the clinically trusted technique of conventional FFR32, while the reasons for these disagreements were not fully understood.
However, it has since been shown that the differences between the two indices was more likely related to FFR overestimating the
severity of the stenosis, rather than iFR underestimating the severity39. A hybrid iFR-FFR approach has also been proposed40,38

that enhances the diagnostic accuracy while reducing the number of patients who require adenosine to be administered. In the
DEFINE-FLAIR study41 iFR was shown to have non-inferior patient outcomes when compared with conventional FFR, and
is considered a practical alternative to FFR that can avoid adverse patient reactions to hyperaemic drugs while costing less.
The clinical cut-off points of FFR and iFR are generally 0.8 and 0.89 respectively, although different cut-off points have been
proposed for iFR, ranging from 0.83 to 0.9229,42,36, implying that the true cut-off point for iFR is still uncertain. In the FFR-iFR
hybrid approach a lesion with an iFR value in the grey-zone of 0.86-0.93 also undergoes FFR, while an iFR value of less than
0.86 requires treatment, and lesions with iFR values above 0.93 do not undergo surgical treatment40,38.
Non-invasive methods for estimating FFR are based on reconstructed and segmented coronary computed tomography angiog-

raphy (CCTA) images. Techniques from computational fluid dynamics are then applied to the patient geometry to determine the
FFR while avoiding the need for any invasive cardiac catheterisation. The technique is often called computed FFR (cFFR), and
relies on the estimation of several important modelling components that includes the patients’ cardiovascular response to the
hyperaemic drug infusion, that influences the elasticity of arteries, and boundary conditions of the model. Different computa-
tional methodologies have been proposed which include computationally expensive three-dimensional models43,44,45,46,47,48,49,50,
and reduced-order models51,52,53,54,55,56,57,58,59,60. One dimensional-models have been shown to have excellent agreement with
three-dimensional models53,60 but can be computed in seconds, rather than hours (for 3D). Computational models of iFR have
been proposed but are generally compared with: only invasive FFR measurements61, in which the estimated iFR cut-off point
was 0.82, however, rigid-wall conditions were assumed which is known to significantly overestimate the pressure drop across a
stenosis for cFFR62 and is likely to have a similar impact for ciFR; or utilised in a hybrid-approach63, although a monte-carlo
simulation that utilises a lumped model64 without patient-specific geometry has been implemented. Nevertheless, a comparison
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Stenosis Location (n = 66) n (%)
LCA 3 (4.5)
LAD 40 (60.6)
LCX 7 (10.6)
DA 3 (4.5)
MA 2 (3.0)
IA 1 (1.5)
RCA 10 (15.2)

FFR Characteristics (n = 66) n (%)
FFR < 0.8 21 (31.8)
FFR ≥ 0.8 45 (68.2)

TABLE 1 Distribution of stenosis location among the cohort and characteristics of the FFR measurements.

between the invasive iFRmeasurement and computational iFR was performed in65. However, the computational methodology is
not described in65, requires images from invasive coronary angiogragraphy, and the cut-off point for iFR is assumed to be 0.89.
The purpose of this work is to compare clinical FFRmeasurements with cFFR estimated via a one-dimensional haemodynamic

model in order to validate the cFFR strategy, and to determine the diagnostic cut-off point of iFR through the application of
computational models on patient-specific coronary arterial networks that have been extracted from non-invasive CCTA. By
using the same extracted patient-specific coronary network geometry, the boundary conditions of the 1D model can be easily
adjusted to change from hyperaemic conditions to resting physiological conditions, which essentially adapts the cFFR model
into a ciFR model. The correlation between ciFR and cFFR, and the clinically accepted FFR diagnostic threshold of 0.8 will
then be used in order to estimate the diagnostic threshold for the iFR procedure. An advantage of using this computational
framework is that variability of surgical techniques and of the patients’ physiological conditions can be eliminated which allows
the iFR diagnostic threshold to be estimated in a more controlled environment. The patient data was collected retrospectively
and no patient specific measurements were used to aid the model parameter estimation.
The paper is organised into the following parts: in section 2 the characteristics of the data utilised in this paper and the one-

dimensional computational framework are described; the results in section 3 begin by comparing the cFFR predicted by the
computational framework with the clinically invasive FFRmeasurements, this leads on to the comparison of the model predicted
FFR and iFR values; in section 4 the results are discussed and compared with previous findings in literature; and finally the main
conclusions of the work are presented in section 5.

2 MATERIALS AND METHODS

2.1 Study characteristics
In this study an anonymised retrospective data set of 52 patients with a total of 66 lesions was collected. The exact clinical FFR
values were not available for a subset of 10 of these patients (15 stenosis). Only whether the FFR was positive or negative for
these patients was available. An overview of the locations and characteristics of these stenotic lesions can be seen in table 1.
The majority of lesions (78.43%) considered in this work are in the intermediate FFR range of 0.7 < FFR < 0.9, with 68.2%
of the total lesions having a negative FFR value and 31.8% having a positive FFR value. A stenosis location of the left anterior
descending artery (LAD) was most prevalent (60.6%). Patients who had undergone previous coronary surgical interventions
were included only if the intervention was performed within vessels that were not of interest for this study. Patients with serial
stenoses and CCTA data images which contained motion artefacts and significant levels of calcification were also included in
this study. Table 2 shows statistics on the characteristics of the CCTA images, that includes information on the percentage of
cases with calcification and motion artefacts that are present.

This article is protected by copyright. All rights reserved.
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Stenosis no. and
type Single focal Single diffuse Multiple

50 16.67 33.33
Stent no. 0 1 2

87.88 10.61 1.52
Occulsion no. 0 1 2

83.33 15.15 1.52
Bifurcation no within 1-2mm within 1mm

50 30 20
Calcification none minor major

22.73 48.48 28.79
Motion artefacts none minor major

74.24 19.7 6.06

TABLE 2 CCTA and stenosis characteristics. Percentage of cases that includes: single focal stenosis, single diffuse stenosis, or
if there multiple stenoses (either focal of diffuse); number of stents and vessel occlusions; number of cases with a stenosis near
(between 2mm and 5mm), and at (within 2mm) of a bifurcation; whether calcification is present, and to what severity (minor is
less likely to affect segmentation accuracy, while major is likely to impact segmentation accuracy); and whether motion artefacts
are present and to what severity. All values given as a percentage of the cohort

2.2 Computed FFR methodology
The segmentation of CCTA images, centreline and vessel geometry extraction, were all performed in the image segmentation
software VMTKLab, (Orobix, Italy).

2.2.1 One-dimensional haemodynamic model
The modelling methodology implemented in this work is described in66 and involves the one-dimensional haemodynamic
equations in a pressure-volumetric flow rate formulation67,66 that is given by: the conservation of mass

Ca
)P
)t
+ )Q
)x

= 0, (1)

where Ca is the vessel compliance, P is the mean hydrostatic pressure in a cross section, and Q is the volumetric flow rate; and
the momentum equation
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where � = 1.05g/cm3 is the density of blood,A is the cross-sectional area of the vessel, � = 0.04Poise is the blood viscosity, and
the magnitude of the viscous coefficient of 22 is from68 and was shown to be the best fit to experimental data for the coronary
system. The vessel compliance is calculated as )A

)P
from the following visco-elastic constitutive law69,
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with

b =
2�c20

P0 − Pcollapse
(4)

where the reference wave speed c0 is calculated from the vessel diameter using the empirical formula70,69 as
2
3�

[

k1exp
(

k2D0∕2
)

+ k3
]

, (5)

where D0 is the reference diameter, and the fitting parameters are k1 = 20 g/s2/cm, k2 = −22.5 cm−1, and k3 = 86.5 g/s2/cm.
The reference pressure P0 is set to equal the diastolic pressure, and the collapsing pressure Pcollapse = −10 mmHg. The wall
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viscous coefficient Γ69 is calculated from
Γ = 100

D
+ 400, (6)

where D is the vessel lumen diameter.
The system of equations are solved using a sub-domain collocation scheme71,66 that is second-order accurate in both time and

space.

2.2.2 Boundary conditions
The inlet and outlet boundary conditions for the model are predicted by using a two-tiered parameter estimation technique.
The first tier utilises a general, non-patient-specific, closed-loop 1D-0D network to estimate the volumetric inflow rate for the
coronary arteries; while the second tier uses the inflow rate determined from the first tier as the coronary inflow boundary
condition, and then estimates the vascular bed resistances for the patient-specific coronary arterial network that was extracted
from the CCTA image data.

First-tier of the parameter estimation
The first-tier of the parameter estimation utilising the closed-loop cardiovascular model with an initial and adaptive parameter
estimation technique that are described in66,72. The purpose of this technique is to provide an estimate for the volumetric flow rate
at the inlet of the coronary arteries, and to provide an estimate for the left and right ventricular pressures, as they add an external
pressure to the coronary vascular beds. The first tier is performed twice: once for hyperaemic conditions, and once for resting
conditions. As no clinical data on patient pressures or heart rates were available, only population averaged values from literature
were used. The population averaged values for both hyperaemic and resting conditions (assumed the same for all patients) are
described in table 3, and are from population averages of previous coronary artery studies18,19. The assumption that the values
of parameters such as the heart rate and blood pressures are consistent among patients is valid as: FFR has been shown to be
independent of heart rate, blood pressure and heart contractility73,12, the relationship between iFR and FFR is also independent
of heart rate26, and iFR has also been shown to be independent of heart rate, blood pressure and heart contractility25.
An additional change from the resting condition to the hyperaemic condition is performed by reducing the total coronary

vascular bed resistance by 78 %, this causes the mean flow rate in the coronary arteries for the hyperaemic condition to be 3.5
times larger than in resting conditions18. This means that there are only two different defined inflow waveforms for the coronary
arteries, which allows a more straightforward comparison between cFFR and cIFR.

Second-tier of the parameter estimation
The inlet boundary condition for all simulations is a defined flow rate (one for hyperaemic conditions, and one for resting
conditions) that was generated by the closed-loop cardiovascular model described in the first parameter estimation tier. The
second tier uses the patient-specific coronary geometry that was extracted via segmentation. The outlet boundary condition is
a lumped-parameter model that includes external pressure from the left and right ventricles66 (saved from the first-tier of the
parameter estimation). The total coronary resistance of each branch is calculated using the commonly used relation

Ri =
1
3
Systolic Pressure + 2

3
Diastolic Pressure

Qi
, (7)

where the subscript i represents the branch (left or right) of the coronary artery network, and Qi is the defined inflow into the
coronary branch from the first tier. The resistance of each branch is then distributed to each terminal vessel using the proximal
Murray’s law with a power of 2.2774. This means that the second tier of parameter identification relies solely on the patient
specific geometry for the distribution of the vascular resistance.

Model cFFR and ciFR
Both conventional FFR and iFR are measurements that involve the ratio of the pressure proximal (Pp) to a stenosis (usually
aortic pressure), and the pressure distal (Pd) to a stenosis. The ratio of Pd∕Pp is used for all cases. The main differences between
these two methods are as follows: Conventional FFR is measured under maximal hyperaemic conditions, which requires a drug
such as adenosine to be administered and is the mean of the pressure ratio Pd∕Pp over one cardiac cycle (in clinical practice
multiple cycles); iFR is performed under resting conditions and is the mean of the pressure ratio Pd∕Pp during the wave-free
period, which is shown in Figure 1 as the grey shaded region. In this model ciFR is assumed to begin 1∕5tℎ into diastole to the
end of the cardiac cycle.
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6 Carson ET AL

FIGURE 1 Overview of iFR (average Pd∕Pp of the shaded region) and example of the wave-free period during diastole

resting hyperaemic
systolic pressure (mmHg) 115 115
diastolic pressure (mmHg) 74 70
cardiac output (L/min) 5.19 7.6

heart rate (BPM) 65 90

TABLE 3 Parameters used in the model for resting and hyperaemic conditions

no. true positive 15
no. false positive 10
no. true negative 35
no. false negative 6
Sensitivity, % 71.43
Specificity, % 77.78

PPV, % 60.00
NPV, % 85.37

Diagnostic accuracy % 75.76

TABLE 4 Diagnostic results of cFFR prediction showing the total number of true positive, false positive, true negative, false
negative, sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy

3 RESULTS

3.1 cFFR comparison with clinical invasive FFR
An overview of results for the reduced-order cFFR model in comparison with the invasive clinical FFR measurement is shown
in table 4 with the correlation and Bland-Altman graphs shown in figure 2. The diagnostic accuracy of the model is 75.76%. The
mean absolute difference between the cFFR and FFR values is 0.059, with a mean difference of −0.015 and a standard deviation
of 0.0813. A Pearson coefficient of 0.484 shows a moderate linear correlation between the cFFR and invasive FFR values.
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FIGURE 2 Comparison cFFR with the invasive FFR measurements

3.2 Correlation between cFFR and ciFR
The main results are shown in figure 3 with a a Pearson correlation coefficient of � = 0.95352 showing a strong linear correlation
between cFFR and ciFR values. The Bland-Altman plot shown in figure 3b shows the mean difference between cFFR and ciFR
to be 0.08402.
Lines of best-fit can be used to aid determining the correct relationship between cFFR and ciFR, as many correlation measures

are based on the assumption of a linear relation. Figure 3a compares ciFR to cFFR using the the following polynomials of
best-fit: the linear polynomial

ciFR1 = 0.6469cFFR + 0.3688, (8)
the quadratic polynomial

ciFR2 = −0.5926cFFR2 + 1.5616cFFR + 0.0218, (9)
and the cubic polynomial

ciFR3 = 0.6770cFFR3 − 2.1472cFFR2 + 2.7307cFFR − 0.2654. (10)
The polynomials of best fit allow the determination of the cut-off point for iFR by comparing the iFR value to the diagnostic
cut-off point of FFR = 0.8. The linear polynomial estimates a value of ciFR1 = 0.8863, the quadratic polynomial estimates
ciFR2 = 0.8918, and the cubic polynomial estimates ciFR3 = 0.8916. The results indicate that the relationship between FFR
and iFR is better described by a second-order polynomial that provides an excellent fit for the data.

Receiver operating characteristic curve
It is common to use receiver operating characteristic curves (ROC) to determine the optimum threshold of a methodology. Figure
4 shows the ROC curve of ciFR for different threshold values, when compared with cFFR (with a threshold of 0.8), where the
area under the curve is AUC= 0.9971. The optimum threshold for ciFR via ROC analysis is determined to be ciFR= 0.8910.

4 DISCUSSION

The performance of the reduced-order cFFR methodology in comparison with the invasive FFR measurements is very satisfac-
tory at this early stage of development and shows a similar level of accuracy to several three dimensional cFFRmethodologies75.
The diagnostic accuracy of the reduced-order methodology is 75.76% which is in the region seen from other studies, however
the current methodology did not have patient information along with the CCTA data, and hence a population average blood
pressure, heart rate, and cardiac output from published studies18,19 was chosen. The utilisation of routinely measured patient
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FIGURE 3 Comparison of the model predicted cFFR and ciFR values
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FIGURE 4 Receiver operating characteristic curve of cFFR and ciFR over the a range of threshold points for ciFR

data may improve the models estimation of cFFR by integrating more patient-specific parameters. Even with the lack of patient-
specific data the strategy performed well with a sensitivity of 71.43%, a specificity of 77.78%, a positive predictive value of 60%
and a negative predictive value of 85.37%. Furthermore, the mean difference between cFFR and invasive FFR was −0.015314,
which is lower in magnitude than the mean difference shown in the three dimensional methodology performed for different
patient data in the DISCOVER-FLOW43 (0.022), DeFACTO44 (0.058) and NXT45 (0.03) studies. The standard deviation of the
reduced-order model is 0.0813, which is close to the lowest standard deviation from the other studies of 0.07445. The model
predicted cFFR showed a lower Pearson correlation with the FFR than in other studies75, however this could be attributed to
the smaller cohort size and the low range of measured FFR values, as the majority (78.43%) of invasive cFFR measurements
were in the range 0.7 < FFR < 0.9. Overall the results indicate that the reduced-order methodology presented here provides a
high level of diagnostic accuracy for cFFR.
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FIGURE 5 Separation of forward and backward-propagating waves in the left main coronary artery

The framework presented does need to be tested on a larger cohort in fully blinded conditions and ideally using prospective
data. In the current cohort there are several patients that would have been excluded in other studies due to poor image quality75,
however the diagnostic performance of the methodology was not the only objective of this paper. The main reason for the
comparison at this stage was to validate the methodology and provide confidence that the predicted cFFR values of the model
are close to the invasive FFR measurements, which in turn will provide an indication that the iFR values predicted by this model
can be trusted. The methodology also allows the computed iFR values to be implemented within the same framework as cFFR
and thus the developed software could easily be adapted to automatically perform the hybrid iFR-FFR technique40,38. The use
of the same inlet volumetric flow rate and estimated heart rate also ensures that only the geometry and downstream resistance
of the coronary network are the main variables which affect the FFR and iFR value predictions.

4.1 cFFR and ciFR comparison
The use of iFR in combination with, or instead of FFR has received increased attention in recent years. However many studies use
different threshold values of iFR to determine whether a patient needs further treatment36. The estimation of the iFR diagnostic
threshold ranges from 0.9276, 0.931,29,77,78, 0.8979,80, 0.8881, and even 0.8382, which obviously indicates that the best diagnostic
threshold for iFR is still not known. The results from this paper indicate that the diagnostic threshold for iFR is close to 0.89, and
that the relationship between ciFR and cFFR is quadratic in nature. This agrees with the observed behaviour from a comparison of
invasive FFR and iFR measurements39. Other studies have reported an approximately linear behaviour from measurements32,83,
and from a monte-carlo simulation with a lumped parameter model64, however there is a noticeable deviation from the linear
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line of best fit at lower FFR and iFR values, which indicates that a non-linear relationship would provide a better fit between
FFR and iFR measures.
Another interesting aspect to consider is whether the cardiovascular system is a pressure-driven or flow-driven system, which

depends on whether the heart is a flow generator or pressure generator84. The fact that the heart contracts and creates a pressure
that acts on coronary capillary vessels complicates matters as there would be: a forward-propagating pressure wave originating
from the heart that travels into the aorta and then through the coronary arteries from the proximal to distal location; and also a
backward-propagating pressure wave that originates from the coronary capillaries as a result of the contracting heart that travels
from the distal region of the coronary arteries to the proximal region85. In reality it is more likely that the cardiovascular system
is a complex combination of both pressure-driven and flow-driven phenomena84. However, due to the forward and backward
pressure waves during systole and at the start of diastole, which can be seen in figure 5, a pressure index based on the diastolic
phase could be more reliable as the lowest resistance to flow in the coronary arterial network is observed during diastole.
Many of the fundamental assumptions needed for FFR have since been proven incorrect. For example, the pressure and flow

are assumed to be directly proportional (have a linear relationship) when the resistance is constant and minimal86 but has since
been shown have a curvilinear relationship experimentally87 and mathematically. This essentially means that FFR relies on the
assumption that the characteristics of flow are the same in both diseased and healthy vessels. The assumption of the micro-
circulatory resistance being constant and minimal during hyperaemia is also questionable and has been proven incorrect in the
presence of several conditions including micro-vascular dysfunction86. In hyperaemia the resistance averaged over a cardiac
period may be consistent during hyperaemia, but the micro-vascular resistance will vary significantly over a cardiac cycle as
the heart contraction squeezes on the micro-circulation during systole which increases resistance88. These assumptions are not
required for iFR, instead the main assumption for iFR is that the resistance of the micro-circulation is stable during the wave-
free period, which is during a period in diastole where no waves are generated, such as seen in figure 5c from a normalised time
of 0.6 to 1.
Many studies compare the diagnostic performance of iFR to FFR and consider the latter index to be the ‘perfect measure’.

This generally means that iFR looks worse than FFR, but this is a rather unfair comparison. Further studies have indicated that
iFR and FFR have a similar number of negative cardiovascular events after one year41 and thus is at least on-par with FFR.
Several studies have compared iFR and FFR29,30,31,32,33,34,35,36,37, however only one attempted to explain the cause of the various
diagnostic disagreements observed between iFR and FFR39. The study concluded that it was actually the FFR that was likely
overestimating the severity of the stenosis due to the hyperaemic condition rather than iFR underestimating the stenosis, and
for the cases that had a positive FFR but negative iFR the observed coronary flow characteristics were similar to that seen in
angiographically unobstructed vessels, which indicates that iFR may be the more reliable and suitable measure.
From a non-invasive standpoint for the determination of iFR and FFR, iFR has more advantages over FFR as it does not require

an estimation of how the patient will react to the administered hyperaemic inducing drug. Many cardiac and haemodynamic
parameters can be measured by non-invasive means, including cardiac output estimations, brachial artery blood pressures, and
heart rate. These parameters can be directly utilised by any non-invasive iFR model predictions rather than attempting to predict
the effects of a hyperaemic condition which are variable between patients and are required for FFR estimations. In addition,
in the majority the patient CCTA scans are performed at resting conditions. This is particularly important as the inducing of
hyperaemic conditions through the use of a drug, such as adenosine, was observed to increase coronary vessel diameters by up
to 15%89, thus there is even significant uncertainty for cFFR regarding the actual patient geometry that is extracted from CCTA
data.

4.2 Limitations
The main limitations of this study are that the size of the cohort is relatively small with 52 patients and a total of 66 stenoses.
Furthermore, we assume that there are no pressure losses at vessel junctions, and do not have patient data such as age, blood
pressures, heart rate, or gender, which may play a role in FFR prediction. We do not have any invasive iFR measurements, only
FFR measurements and the patient CCTA images were available. As the data is retrospective, we do not know the exact location
of the pressure measurement taken during invasive FFR, as only the general location is normally recorded in the clinic. However,
the main target of this study was to determine the diagnostic threshold of iFR in a more controlled environment, and although
the cFFR performance of the model is very good, it was not the focus of this paper and thus the additional patient data is not of
importance here.
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It has been observed that vessels with coronary artery disease90 can cause a long-term auto-regulatory response in the coronary
micro-vasculature resistance to preserve flow. This may impact the accuracy of the flow estimates. However, it is not known how
or if this auto-regulation affects flow rates in hyperaemia; and would add an additional unknown and source of uncertainty in the
model, which will make comparison between FFR and iFR more challenging. Thus we have not included this auto-regulatory
response in this study.

5 CONCLUSIONS

The diagnostic performance of the cFFR with the invasive FFR measurement is very promising. The methodology showed a
lower correlation between cFFR and FFR than in other studies, but also showed the lowest magnitude of mean difference and
one of the lowest standard deviations between the computed and measured FFR when compared to other studies. The lower
correlation coefficient may be due to the lower patient numbers considered in this cohort and also on the non-selective nature
in this study with regards to image quality such as the presence of significant motion artefacts, blooming artefacts, and high
levels of calcification that can have a large impact on the accuracy of the segmentation process. The methodology must now be
performed on a significantly larger cohort in a fully blinded fashion and ideally prospectively in order to improve the confidence
in the 1D modelling methodology for both FFR and iFR predictions.
A comparison between cFFR and computed iFR was also performed by utilising the patient CCTA data. The model predicted

an iFR diagnostic cut-off point of 0.891 with the correlation and polynomial of best fit between cFFR and ciFR being quadratic
in nature. Further studies involving comparisons between FFR and iFR must be performed in order to determine whether FFR or
iFR is the more reliable measure. There is a significant advantage of iFR, as it does not require a hyperaemic drug infusion which
can cause negative side affects in patients and would also be less expensive. When considering a computational methodology
for prediction purposes, ciFR is also more attractive as a diagnosis index when compared to cFFR, as the patients non-invasive
measurements can be utilised directly without the need to predict hyperaemic conditions.
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