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Abstract 

Mutations induced in somatic cells and germ cells are responsible for a variety of human 

diseases, and mutation per se has been considered an adverse health concern since the early 

part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most 

commonly used by regulatory agencies for hazard identification, i.e., determining whether or 

not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-

response data are being used increasingly for risk assessments. Efforts are currently underway 

to both improve the measurement of mutations and to refine the computational methods used 

for evaluating mutation data. We recommend continuing the development of these approaches 

with the objective of establishing consensus regarding the value of including the quantitative 

analysis of mutation per se as a required endpoint for comprehensive assessments of 

toxicological risk. 
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Introduction 

Mutagenicity data most often are used in a dichotomous ‘screen and bin’ approach to identify 

mutagens (i.e., hazard identification or hazard ID) (Gollapudi, 2017). This paradigm is predicated 

on two assumptions: that mutagens are rare, and that they increase mutation frequencies 

above the ever-present background throughout the exposure range (i.e., there are no true 

thresholds). It has been known for some time, however, that neither of these assumptions are 

necessarily true. In general, mutagens are not rare. For instance, Zeiger and Margolin (2000) 

estimated that ~20% of the >60,000 organic compounds in commercial use are mutagenic and 

Snyder and Green (2001) found that 28.7% of marketed pharmaceutics with genetic toxicology 

data are positive in at least one standard genotoxicity test.  In addition, it is now commonly 

accepted that mutagenicity dose-response data, even for direct-acting alkylating agents, can 

have distinct non-linear responses. Low doses can display little or no apparent mutagenicity 

increases relative to the background, while higher doses show appreciable response increases, 

displaying at least ‘practical’ thresholds for mutagenicity (e.g., Doak et al., 2007; reviewed in 

Jenkins et al., 2010). 

 
Nevertheless, rather than being used quantitatively to establish an exposure limit, in most 

jurisdictions classification as a mutagen is used to modify the assumptions used in quantitative 

risk assessments for health outcomes such as cancer or reproductive damage.  This 

Commentary advocates recognition that mutation is a bona fide toxicological endpoint, and 

recommends employing quantitative analyses of dose-response mutagenicity data, along with 

other available toxicity information, to determine Health-Based Guidance Values (HBGVs) 

and/or Margins of Exposure (MOEs) for regulatory decision-making (ECHA, 2012; Dourson et al., 

2013; WHO, 2014; ICH, 2016, 2017; Hardy et al., 2017). 

Mutations in germ cells have been known to cause adverse effects on human health since the 

early 20th Century.  In this Special Issue, Marchetti et al. review germ cell mutagenesis, where a 

single mutation can result in a phenotype that affects the resulting offspring, e.g., Lesch-Nyhan 

syndrome, sickle cell anemia.  With somatic cell mutagenesis, mutants may clonally expand to a 

degree that affects the phenotype of an organ or tissue, with the expanded mutant cell 



  11 September 2019 

4 
 

populations potentially contributing to a variety of diseases. Somatic cancer driver mutations 

confer phenotypic properties promoting cellular expansion and the malignancy of the resulting 

cell population (see Harris et al., this issue). Also, somatic mutations that are induced early in 

development can expand through normal cell division to populate a large portion of a tissue.  

Termed somatic mosaicism, these mixtures of wild-type cells and mutant cell clones are being 

increasingly recognized as a cause of human diseases other than cancer, e.g., paroxysmal 

nocturnal hemoglobinuria and perhaps autism (see article by Godschalk et al., this issue).  

Around the time that the Environmental Mutagen Society was founded, the attention of the 

regulatory community was directed toward the relationship between somatic cell mutation and 

cancer, and the use of short-term in vitro testing to rapidly and efficiently identify mutagens 

and potential carcinogens (Zeiger, 2004; White and Johnson, 2016; see article by DeMarini in 

this issue). The resulting screen-and-bin hazard ID paradigm led to a lack of emphasis on germ 

cell mutation and somatic mosaicism as health concerns. This was partially due to the absence 

of practical in vivo assays for these endpoints, particularly assays able to detect treatment-

induced gene mutations in humans and in the model rodent systems most relevant to health 

risk assessment. Although transgenic rodent (TGR) assays measure both germ cell and somatic 

cell mutations, these tests only became available after short-term tests for the identification of 

environmental mutagens had become established. Moreover, the use of TGR dose-response 

data for risk assessment is limited to genetically manipulated rodent models because the 

endpoint (transgene mutation) cannot be evaluated in humans or non-transgenic animals. 

Prior to the development of TGR assays, germ cell mutagenicity testing could be done, but it 

required extraordinary numbers of animals (e.g., Russell et al., 1998). With respect to somatic 

cell mosaicism, it has been demonstrated definitively in humans and animals (e.g., Lupski, 2013; 

Erickson, 2014; Mortazavi et al. 2003; McConnell et al., 2017; Meier et al., 2017; Luderer et al., 

2019; Yizhak et al., 2019); however, detection and analysis of mosaicism is challenging 

(Campbell et al., 2015) and there are no standardized strategies to specifically assess this 

endpoint. Currently, germ cell mutation is considered for toxicological risk assessments (e.g., 

Health Canada, 1993; United Nations, 2017), and Adverse Outcome Pathways (AOPs) have been 
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developed that treat germ cell mutation as an Adverse Outcome (Yauk et al., 2015b; Marchetti 

et al., 2016; see Sasaki et al., this issue). Because the phenotypes associated with a germ cell 

mutation have the potential to be expressed in offspring carrying the mutation, germ cell 

mutations conferring a phenotype are likely to cause adverse health effects. Accordingly, 

mutation is already considered as a bona fide toxicological endpoint in germ cells, and can be 

evaluated both in both qualitative and quantitative terms (reviewed by Marchetti et al., this 

issue). 

In contrast, several, often poorly understood steps must occur in the clonal expansion of cells 

with a somatic cell mutation before an adverse health effect becomes evident. Furthermore, 

many mutations and mutant clones with the potential for causing disease exist at low levels in 

apparently healthy individuals (e.g., Tomasetti, 2019; Yizhak et al., 2019; Harris et al., this 

issue).  Nevertheless, since useful methods to assess in vivo mutation in relevant species, 

including humans, now exist, and potentially better methods are on the horizon, they should be 

increasingly employed for generating mutation data that can be interpreted in a quantitative 

manner for regulatory decision-making. Because somatic mutations have a marked potential 

for causing adverse health effects, they, like germ cell mutations, should be considered Adverse 

Outcomes, as defined for the development of AOPs, and bona fide toxicological endpoints. With 

advances in our knowledge about the relationships between mutation and disease, it is 

conceivable that, in the future, mutation data also can be used routinely as a quantitative 

biomarker for cancer and other diseases associated with somatic mosaicism (see below).  

While the hazard ID paradigm has clear benefits in terms of screening substances for genotoxic 

activity and in prioritizing research and follow-up testing, there are several compelling benefits 

to using mutation as a toxicological endpoint. Relying solely on hazard ID testing effectively 

eliminates exposure to mutagens (and by extension, carcinogens) in regulated consumer 

products. An unintended consequence of eliminating exposure to any dose of a mutagen, 

however, might be the loss of potentially valuable substances (e.g., drugs) that are unlikely to 

induce mutations in humans, due to, for instance, the route or level of exposure, effective DNA 

repair at low doses, and/or active detoxification at low doses (MacGregor et al., 2015). Besides 
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the loss of valuable products, the screen-and-bin paradigm also has the potential for the 

unnecessary diversion of resources to address existing exposures that have no practical 

consequence. In fact, endogenous exposure to known mutagens already occurs in humans (e.g., 

Nakamura et al., 2014).  In contrast, if mutation per se is considered a toxicological endpoint, 

and compensatory mechanisms (e.g., DNA repair or detoxification) acknowledged as affecting 

dose-responses, quantitative analysis of mutagenicity dose-response data can be used as the 

basis for risk assessments. More specifically, Point of Departure (PoD) metrics such as No 

Observed Adverse Effect Level (NOAEL) or Benchmark Dose (BMD), suitably adjusted using 

uncertainty/safety/adjustment factors, can be used to define human exposure limits, and such 

limits can be compared to actual human exposure data. This concept is not foreign to 

regulatory science, and indeed the following examples demonstrate that such concepts have 

been employed previously. 

 

Mutation as a toxicological endpoint: examples where dose-response data have been used 

In several instances quantitative interpretation of mutagenicity dose-response data have been 

used for risk assessment and regulatory decision-making. For example, in 2007, a batch of the 

AIDS drug Viracept became contaminated with a genotoxic carcinogen, ethyl methanesulfonate 

(EMS; Müller and Singer, 2009). In the absence of rodent tumor data suitable for assessing the 

cancer risk to exposed patients, the drug manufacturer, in consultation with the European 

Medicines Agency, the Committee for Medicinal Products for Human Use, and other experts, 

conducted a comprehensive toxicological evaluation of EMS that included an extensive in vivo 

mutagenicity study. Dose-response gene mutagenicity data generated using the transgenic 

MutaMouse, and dose-response micronucleus data from the mouse bone marrow 

micronucleus test, showed non-linear patterns for EMS genotoxicity. Their data supported the 

existence of a ‘practical threshold’ below which the likelihood of a response above background 

was negligible. The analysis indicated that the oral NOAEL for EMS-induced transgene mutation, 

i.e., the highest dose that failed to elicit a response significantly greater than the control, was 

454-fold greater than the maximum daily human intake of the EMS contaminant (Müller et al., 
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2009).  The data were used in a risk assessment of EMS, which concluded that patients using 

the contaminated drug product were unlikely to be at increased risk of cancer. 

In a more recent example, the Committee for Risk Assessment (RAC) of the European Chemicals 

Agency (ECHA) used mutagenicity data in responding to a European Commission request to 

evaluate the Occupational Exposure Limit (OEL) for benzene (ECHA, 2018).  A combination of 

epidemiological and experimental data indicated that bone marrow and the hematological 

system are targets for benzene-induced toxicity, with acute myeloid leukemia being the major 

health concern from occupational exposure. The RAC concluded that the carcinogenicity of 

benzene was closely associated with its aneugenicity and clastogenicity and that, in their 

opinion, the OEL could be a dose with a negligible risk of aneugenicity and clastogenicity in the 

bone marrow.  

In these two cases, mutation was used not only as a toxicological endpoint, but as a 

quantitative biomarker of an adverse outcome that is mechanistically linked to a particular 

disease, i.e., cancer. As indicated previously, the exact mechanistic and quantitative 

relationship between mutant frequency and cancer outcome is affected by many factors (see 

Harris et al., this issue). The regulators, however, considered the multiple lines of evidence 

indicating that mutations produced by environmental substances are causative factors in 

cancer, including cancer in humans, to be sufficiently strong for conducting quantitative 

assessments of risk. In the Viracept-EMS case, using the available mutation data as a basis for a 

regulatory decision was considered preferable to waiting for the results of a cancer bioassay 

before deciding on how best to protect the health of the affected patients.  

Finally, we cite two examples where dose-response mutation data were considered, but not 

used for the final risk assessment. In a regulatory decision regarding formaldehyde, the 

Bundesinstitut für Risikobewertung (BfR) decided that mutation was not the most appropriate 

quantitative biomarker for cancer so other toxicities were used for the risk assessment (BfR, 

2006). Thus, the cancer risk assessment conducted by the BfR was based on dose-response data 

for cytotoxicity and compensatory cell proliferation. Here, mutation (inferred from DNA 

damage) was one of the toxicological endpoints used by the BfR for conducting the risk 
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assessment, but as is common regulatory practice, the more sensitive endpoints were chosen 

for calculating HBGVs for formaldehyde exposure.  Similarly, in their screening assessment of 

natural gas condensates (NGCs) and NGC components, the Government of Canada 

quantitatively considered in vivo clastogenicity dose-response data. These genotoxicity dose-

response data, however, were deemed to be inadequate relative to those for other toxicities, 

which were ultimately used as the basis for the risk assessment (Environment Canada and 

Health Canada, 2016). 

 

Recent developments, issues, and possible advancements 

Encouraged by the acceptance of the risk assessment conducted in response to the Viracept 

contamination incident, the Genetic Toxicology Technical Committee (GTTC) of the Health and 

Environmental Sciences Institute (HESI) established a program to develop computational 

methods for analyzing genetic toxicology dose-response data, with the objective of selecting 

PoD metrics (e.g., NOGEL, BMD) for use in quantitative risk assessments (Gollapudi et al., 2013; 

Johnson et al., 2014). Some of the authors of this Commentary have been part of this effort 

(see White and Johnson, 2016), and the Commentary by White and Johnson in this Special Issue 

updates the status of these continuing efforts. Additionally, a case study described in this 

Special Issue outlines how these quantitative methods can be used to establish HBGVs for 

benzene (Luijten et al.). 

In the context of these case studies, the term ‘mutation’ encompasses both large and small 

sequence changes including the relatively small DNA sequence alterations associated with 

many gene mutations, as well as larger changes such as structural and numerical chromosomal 

aberrations. All of these genetic changes are at least potentially heritable, and all have been 

associated with human disease phenotypes (e.g., Campbell et al., 2015; Stenson et al., 2017).  

In the absence of information that would narrow the analysis to a particular class of mutation, 

as was the case with the benzene occupational exposure example described above, it is 

important to note that a comprehensive analysis of mutation as a toxicological endpoint would 

include gene mutation, clastogenicity, and aneugenicity. 
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Measuring both gene mutation and chromosomal mutations using standard genotoxicity 

assays, however, may not yield a comprehensive assessment of mutagenic activity because 

these assays have inherent limitations and biases. With gene mutation assays, only a single or a 

small number of loci are typically examined, and depending on the locus, the mutations 

detected are generally only a small subset of all possible genetic alterations. For TGR assays, 

base substitutions and small insertions and deletions are measured most commonly in a very 

specific target gene that has a different functionality than those that lead to disease (Lambert 

et al., 2005; Boverhof et al., 2011; Nohmi et al., 2017). Gene mutation, however, can be caused 

by megabase deletions, mitotic recombination spanning a large portion of a chromosome, and 

even aneuploidy (e.g., Wang et al., 2009). Also, mutagens differ not only by the types of 

sequence changes they cause, but where they cause them (Thilly, 1990; Chuang and Li, 2004; 

Lynch, 2010; Kucab et al., 2019); there are many examples demonstrating that mutations in 

both transgenes  and endogenous genes differ with respect to both frequency and type (Moore 

et al., 1989; DeMarini et al., 1989; Monroe et al., 1998; Walker et al., 1999). Differences in 

locus-specific mutation frequencies appear to be related to sequence context and methylation 

status, target size, overall gene structure, and chromosome type (i.e., autosomal versus sex-

determining). 

For chromosome mutations, the peripheral blood micronucleus assay measures the frequency 

of an induced response that is not heritable, although the mechanism involved in micronucleus 

formation is believed also to result in heritable structural and numerical chromosomal 

alterations. Likewise, the structural chromosome aberration assay directly measures known 

heritable aberrations only if special techniques are used (e.g., chromosome banding or 

painting).  

The TGR assay, and assays that can be conducted in both humans and rodents like the PIG-

A/Pig-a gene mutation assay and the peripheral blood chromosome aberration and MN assays, 

measure the appropriate endpoints in the appropriate species for assessing potential adverse 

outcomes. These assays, however, have limitations in terms of what they measure and the 

tissues and animal models that can be evaluated, and, thus, have the potential to give 



  11 September 2019 

10 
 

imprecise measurements of mutation frequency. The justification for the quantitative 

interpretation of dose-responses from these assays can be summarized as follows. What is 

measured, both in humans and in animal models, is sufficiently related to the mutations 

actually caused by the exposure that they provide useful, if imprecise data for assessing and 

managing potential adverse health outcomes.  

We anticipate, however, that the newer error-corrected next generation sequencing (EC-NGS) 

technologies that directly measure mutations at any location in the genome or over the entire 

genome (Dong et al., 2017; Revollo et al., 2018; Guo et al. 2018; Zhang et al., 2019; see Salk, 

this issue) will: 1) provide a more comprehensive evaluation of smaller gene mutations and 

hence more appropriate estimates of mutation frequency; and, 2) be able to evaluate gene 

mutation in any tissue of any animal without the need for using transgene reporters.  With the 

use of longer-read NGS technologies, EC-NGS also may be able to evaluate chromosomal 

mutation. Although these novel methods have great promise for comprehensively quantifying 

mutations induced by exogenous agents, they require further development and validation 

before they can be used for regulatory applications.  

A final issue concerning the use of mutation as a toxicological endpoint is that quantitative 

evaluations of mutations, including the examples cited above, generally have used mutation in 

the context of cancer as the sole human health concern. While demonstrating the value of 

evaluating mutation quantitatively, this restricted focus may have limited how the analysis was 

performed. The International Workshops on Genotoxicity Testing (IWGT) committee report of 

Yauk et al. (2015) indicates that there are quantitative differences between the induction of 

germ cell and somatic cell mutations, and in some cases higher frequencies are detected for 

germ cell than somatic cell mutation. For example, 1,1,-dimethylhydrazine, dimethylni-

trosamine, diethylnitrosamine, and beta-propiolactone produced negative results for bone mar-

row micronucleus induction, an endpoint commonly used for cancer hazard assessment, but 

increased micronucleus frequencies in male rodent germline cells (Cliet et al., 1993; Yauk et al., 

2015).  Although some of these differences are undoubtedly due to differences in metabolism 

and the exposure of the tissues used for the assays, these observations suggest that it may not 
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be health-protective to assume that regulating on somatic cell effects, specifically those 

involved with cancer, also protects against germ cell mutation (for further discussion on this 

topic, see Marchetti et al., this issue). In addition, it may be sufficiently health-protective to 

measure somatic mutant frequencies without confirming clonal expansion, but it also may be 

necessary to evaluate transplacental mutagenesis to accurately quantify induced mutations 

involved in somatic mosaicism.  The value of evaluating mutation following transplacental 

exposure was recently demonstrated by Meier et al. (2017) who found that tissues like brain, 

which are resistant to mutation induction in adult animals, may be readily mutagenized by in 

utero exposure to a potent mutagen. 

All these issues make it a major challenge to evaluate the different types of mutations that 

occur in different tissues, at different life stages, and with differing manifestation times in a 

manner that is consistent with global initiatives to conserve animal resources. The current 

deliberations to revise the OECD Test Guideline for the TGR gene mutation assay (TG 488; 

OECD, 2013) indicate that it may be possible to devise a compromise protocol that is capable of 

measuring the induction of both somatic cell and germ cell mutation in a single set of animals 

with acceptable sensitivity (Marchetti et al., 2018a,b). Ideally, if mutation is to be used as a 

bona fide toxicological endpoint, its analysis should be integrated into standard repeat-dose 

toxicology studies (e.g., OECD TG 407, 415, and 422). It also may be possible to integrate 

mutagenicity assays into reproductive toxicity studies so that the induction of somatic 

mosaicism due to exposure during early developmental stages can be assessed. Integration into 

general toxicity or reproductive toxicity testing also may enable comparison of mutation data 

with other toxicity endpoints to establish the most sensitive endpoint to use in establishing a 

safe level of exposure, a common regulatory practice. There is currently resistance to using 

transgenic animals in general toxicology assays primarily due to lack of adequate comparative 

data with non-mutation endpoints in wild-type rodent strains. But, as noted above, EC-NGS 

may overcome this problem by allowing mutation analysis in any animal.   

 

Next steps 
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If increases in mutation induced by exogenous substances is a bona fide adverse health effect, 

as extensive scientific data indicate, we contend that regulatory risk assessments should treat 

mutation as a toxicological endpoint and employ quantitative analyses to determine exposure 

levels below which the risk of adverse outcomes (in this case mutation) can be deemed 

negligible (i.e., establish HBGVs). However, because our knowledge of how to use mutation 

data to quantitively assess disease outcomes requires further refinement, we are not currently 

recommending the next logical step, that quantitative mutation analysis routinely replace the 

measurement of tumors and other adverse health effects in making regulatory decisions. We 

do, however, suggest that this should be a long-term goal for the field of genetic toxicology. For 

the time being, however,  regulators who may be considering the use of mutation as a 

toxicological endpoint will benefit from a critical review of case studies that compare HBGVs 

and/or MOEs derived from mutagenicity studies with those derived from carcinogenicity 

studies or studies of other disease-endpoints. In addition, the following is recommended: 

1. Where possible, samples should be collected from ongoing cancer bioassays and other 

repeat-dose toxicity studies to enable parallel and/or future mutational analyses, e.g., 

for micronucleus, Pig-a mutation, and error-corrected NGS analysis (as done in 

Mittelstaedt et al., 2019). This recommendation applies to routine toxicology testing 

that is not normally conducted in TGRs. 

2. Advanced DNA sequencing methods should be validated for somatic and germ cell 

analyses so that they can be used to comprehensively measure induced mutations 

directly. 

3. Protocols and guidelines for designing and conducting regulatory mutation studies 

should be developed that enhance the utility of dose-response data for quantitative 

analysis and determination of HBGVs and/or MOEs. For example, assay guidelines 

should include recommendations regarding tissue selection, sampling times, number of 

doses, study design and animal allocation, acceptable data quality and background 

frequencies, possible assay integration, and computational approaches for dose-

response assessment. Current recommendations in OECD TGs should be adjusted to 

derive maximum value from dose-response data. 
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4. The uncertainty factors, also referred to as extrapolation or adjustment or safety 

factors, that are employed to calculate HBGVs and/or MOEs, should be scrutinized with 

respect to their applicability to mutagenicity. This complex issue, and the issues 

surrounding the quantitative interpretation of genotoxicity PoD values more generally, 

are more thoroughly discussed by White and Johnson in this Special Issue. 

 

Conclusions 

Mutations take different forms that require different analytical methods to detect, and their 

induction can differ quantitatively among tissues and particularly for different life stages: all of 

which makes a comprehensive analysis of mutagenesis extremely challenging. However, we 

argue that practical methods for considering mutation as a toxicological endpoint exist today, 

and that such methods already have been used for regulatory decisions. The well-established 

TGR assay can measure gene mutation in any tissue of transgenic rats and mice, and the MN 

and chromosome aberration assays, as well as the HPRT/Hprt and emerging PIG-A/Pig-a gene 

mutation assays, can be used to measure chromosome and gene mutations in both rodent 

models and humans. Information focusing the analysis on mutations associated with a 

particular health concern in specific tissues has been helpful in conducting these studies. 

Additional methods to comprehensively measure mutation and generate mutagenicity dose-

response data in both somatic and germ cells are developing rapidly, potentially increasing the 

value of mutation as an endpoint for regulating new and existing substances. In the not-too-

distant future, EC-NGS may overcome limitations of the current assays in terms of 

transferability between species and tissues and the range of genetic changes detected. 

Implementing quantitative methods for risk assessment will make better use of mutation data, 

and will be of value in mitigating the negative health outcomes of environmental exposures. 

Nevertheless, in light of current regulatory mandates, hazard ID approaches for interpretation 

of mutagenicity data will continue to be important for screening commercial products under 

development and for conducting regulatory decision-making; hazard ID data also can be used 

for prioritizing testing and designing follow-up studies. Integrating mutation analysis with other 
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toxicological endpoints not only optimizes the utilization of resources (e.g., personnel and 

animals), but also benefits the mutation-based risk assessment by providing the contextual data 

(e.g., data on absorption, distribution, metabolism and excretion, and non-neoplastic effects) 

that are gathered routinely in general toxicology testing. By establishing HBGVs and/or MOEs 

for mutation induction, procedures that are both pragmatic and beneficial to public health can 

be implemented for effectively managing the risk of mutations, and after appropriate 

validation, the incidence of diseases associated with mutations. Importantly, the uncertainty 

factors employed to routinely calculate HGBVs will need to be carefully considered prior to 

routine application of mutagenicity dose-response analysis in regulatory risk assessments. 
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