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Abstract 
Adoption of weather-dependent renewable generation of electricity has introduced additional 

complexity to the challenge of maintaining a dynamic equilibrium between generation and 

electricity demand.  At the same time the need for electricity to power heating and transport in 

place of fossil fuels will lead to congestion in distribution networks.  Part of the solution will be to 

manage domestic electricity demand using signals between the smart grid and smart home, but this 

must be done in a way that does not provoke further instability.  We use an agent-based model of 

household electricity consumption and supply to show how the complexity of domestic demand can 

be shaped allowing it to make a contribution to system stability.   A possible role for this method in 

balancing conflicting interests between electricity consumers, suppliers, and distribution network 

operators is discussed.       
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Introduction 
The variation of electricity demand in time and space is inherently complex because it arises from 

multiple human decisions that are themselves driven by complexity phenomena such as the chaotic 

patterns of weather or social clustering around a televised football match (leading to a demand peak 

at half time when kettles go on).  However, safe and reliable delivery of gigawatts of electrical 

energy to satisfy this demand requires a precise and continuous dynamic equilibrium to be 

maintained between electricity generation and demand.  This has been achieved successfully for 

about 100 years with a simple engineering solution that responds to temporal changes in demand 

with more or less fossil fuel input to the prime mover.  Changes are detected and tracked by the shift 

in alternating current frequency that arises as generator rotation is slowed by an increasing load or 

accelerated by a reducing load.  Spatial variation is addressed by generous sizing of distribution 

networks so that they can always handle the peak demand that can reasonably be expected at any 

location.           

This mature paradigm must now change, driven by two factors.  The first is the adoption on a large 

scale of renewable energy resources such as wind and solar photovoltaic generation which share 

some of the temporal variability properties of demand and cannot be controlled except by 

discarding some of the valuable energy they would otherwise produce.  These resources are also far 

more geographically dispersed than conventional large scale generators.  The second factor is 

increasing demand due to electrification of transport and space heating, motivated by the need to 

replace consumption of fossil fuels. This increase is not yet apparent, but a doubling of demand by 

2050 is expected through policy action (DECC, 2011:6).  Simply expanding distribution capacity to 

match this increase would be very expensive - Pudjianto, et al. (2013:83) predict a cost of £35bn for 

the UK.  This expense could be substantially reduced if demand can be locally smoothed at the 

timescale of a day so that cables and transformers whose capacity is limited do not always have to 

support any possible peak.  The “smart grid” is an epithet for the evolved electricity system that is 

needed to respond efficiently to these two challenges.  The difficulty these present is illustrated by 

the potential within the existing system for small deviations from equilibrium to grow, propagate 

and cascade into catastrophic failures such as occurred in 2003 over part of North America.  

In this paper we focus on one of the main issues in the design of the smart grid, the method by 

which electricity demand can be made subject to some degree of control.  Because the supply side 

now has some of the complex variability previously limited to demand, controllability must be 

introduced on the demand side to enable the dynamic equilibrium to be maintained.  Any method 

for achieving this (known generically as demand response) should also be capable of smoothing 

localised demand peaks to enable distribution networks to support the additional load.  However 

the expectations and needs of consumers will continue to present complex patterns of demand 

making this problem, as recognised by Elliot (2010:14), a prime topic for complex systems modelling. 

Having undertaken such a modelling investigation, we have identified a method that satisfies these 

requirements. 

Signals and Responses 
In order to influence demand, a central authority responsible for maintaining equilibrium, known as 

the system operator, must be able to provide a signal to consumers indicating when electricity use is 

desirable or undesirable. In practice the system operator’s role is often mediated by an electricity 

market and a retail electricity supplier who transmits the signal to the consumer.  There must also be 
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an agent, human or automatic, to change electricity consumption in response to the signal in a way 

that is predictable to the system operator and electricity supplier.  The essence of the problem is 

therefore to specify the signal, identify the agent(s) that will respond to it, and characterise their 

behaviour.         

The research performed so far has tended to employ a price signal, because the human response to 

price is reasonably well understood and such signals are already employed in a limited way by the 

industry.  However, the price elasticity of electricity demand is quite small - in a review of 15 trials 

Faruqui and Sergici (2010:216) found a reduction in peak demand of about 2%-6% could be achieved 

routinely.  Given the modest financial gain and possible inconvenience from switching off any 

individual appliance this is not surprising.  This has led to a variety of experiments with automated 

“smart home” devices that respond to the price signal by seeking to minimise the consumer’s cost 

for operation of appliances under their control.  The results show much greater impact on demand; 

for example Faruqui and Sergici (2010:216) found variation in the range 21%-32% was achieved. 

However, attracting a substantial proportion of demand into intervals during the day when the price 

was low had the effect of creating new demand peaks.  This could not deliver the smoothing 

capability required and also as shown by Roscoe and Ault (2010:379) can have the effect of inducing 

oscillation in electricity market prices.    

In effect the feedback provided by a dynamic price signal introduces new forms of complex system 

behaviour and seems unlikely to be able to deliver the functionality required. This behaviour arises 

from the non-linear response to the signal by the smart home device and also the consumers.  So 

our goal was to find a way to make the response linear enough to provide controllability and stability 

without constraining consumers.  One element of a suitable scheme must be energy storage to 

decouple supply and demand - in fact a simple way to solve the entire problem would be to provide 

sufficient storage between supply and demand so that the variability of both is absorbed.  Using the 

established large scale solution this is impractical – if all the mountain valleys in the UK suitable for 

pumped storage of electricity were flooded for the purpose it would only provide 25% of the 

capacity needed (MacKay 2009: 194).  However, traditional UK building construction in brick, stone 

and concrete results in high mass which can be used to store some thermal energy, as can the hot 

water tanks found in about 50% of homes.  Electric vehicles also bring with them their own batteries 

that can be exploited.  These adventitious stores combined with a realistic level of user tolerance in 

the operation of their appliances and a suitable control and signalling scheme can provide a useful 

level of demand flexibility. 

In our proposed scheme linearisation at the level of aggregate demand is achieved using this 

flexibility without constraining the non-linear behaviour of individual consumers, as follows:  

 The signal sent by electricity suppliers to consumers is a daily 48-value vector S that is not 

inherently a tariff, but structured so that high values deter, and low values attract, 

electricity use in each half hour timeslot of the next 24 hours.  The length of 48 is employed 

because the electricity market conventionally operates in half-hour timeslots. 

 A “smart” control unit in the home or office responds to this signal by scheduling demand 

within a time window that meets user’s needs but in proportion to the attractiveness of the 

signal in each timeslot.  The user needs are either determined automatically (such as the 
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amount of heat needed to achieve a comfortable room temperature) or are entered by the 

user (such as the time window within which the dishwasher must run).  

 Minimisation of cost with respect to wholesale prices is performed by the electricity 

supplier who sets the shape of S to meet their business needs and regulatory constraints.   

To illustrate the operation of the smart controller, for electric space heating it introduces gaps in 

heating that occur in the less attractive timeslots with a probability proportional to the 

unattractiveness of the timeslot. These gaps are controlled in their duration and make use of the 

thermal mass of the building so that the user’s comfort is not impaired.  Refrigeration appliances are 

similarly “gapped” such that their cooling function is not impaired.  In the case of water heating, this 

is performed in one or two of the more attractive timeslots with a probability proportional to the 

attractiveness, taking into account any cooling losses between the heating time and the user’s 

habitual time for a shower.  Wet appliances also run in timeslots selected randomly within the user’s 

acceptable time but with an attractiveness bias.  For vehicle charging, the charge in each timeslot 

within the user’s acceptable time window is proportional to the attractiveness.   

The effect of a proportionally biased random response to the attractiveness of the signal, when 

aggregated across a population of consumers equipped with a control unit having this behaviour, is 

to ensure that at least part of the aggregate demand D has an approximately linear relationship with 

the signal S.  This relationship can be described by equations for each of the i=1:48 half hour 

timeslots in each day with the form: 

 Di = Bi (1+ Si ki) + ci      

where B is the baseline demand in the absence of any signal.  The values of ki and ci vary for each 

timeslot because of the different types of appliance in operation and resulting level of demand in 

each half hour.  They can be determined from the response to S and potentially provide a model 

which the supplier can use to predict demand and shape it within limits determined by the baseline 

demand and the constraints applied by consumers.  A more comprehensive mathematical 

description of this scheme is given in Boait et al. (2013). 

Modelling Methodology 
An agent-based model has been constructed to evaluate this concept (and others relating to the 

smart grid) using the Repast toolkit and framework developed by North et.al.(2005).  For this 

simulation there are 1000 agents each representing a household comprising a dwelling, occupants, a 

set of electricity consuming appliances and a smart control unit that executes the probabilistic 

algorithm described above when managing the appliances under its control.  A single agent 

represents the retail electricity supplier who holds contracts with these households and is able to 

send them the signal S each day.  The attributes of each household, such as the number of 

occupants, the size of dwelling and usage pattern of electric vehicles are taken from distributions 

corresponding to UK national statistics.  These attributes and their sources are summarised in Tables 

1-3.  In the absence of a signal, the operating cycle of each appliance is determined stochastically to 

model the individual decisions of the occupants such that in aggregate the total electricity 

consumption of that class of appliance corresponds with observed data both in magnitude and its 

distribution over 24 hours.  This is the default daily profile indicated in Table 2.  
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Table 1 
Household properties 

Attribute Values Notes 

Occupancy Between 1 and 6 with a mean of 

2.4 

Distributed according to national 

statistics for 2010 (ONS, 2013) 

Hot water use 46+26n litres per day where n is 

occupancy 

Energy Saving Trust usage model for 

UK households (EST,2013) 

Thermal loss rate 

of dwelling 

Distributed between 0.05 and 0.4 

kW/ oC with a mean of 0.225 

Consistent with national building 

energy  ratings (DCLG, 2012) and 

energy use (DECC, 2013) 

Thermal mass of 

dwelling 

Distributed between 5 and 20 

kWh/oC with a mean of 12.5 

Consistent with thermal loss rates and 

conventional UK construction 

 

Table 2  
Domestic appliance electricity use 

Appliance type Default daily 

profile 

Average 

demand 

(kWh/day)  

Notes 

Cold (fridge, freezer) Flat 1.48 Average given total UK consumption 

in 2010 of 14TWh (DECC, 2013) 

Wet (washing machine, 

dishwasher) 

Simulated 

aggregate 

profile 

1.52 Average given total UK consumption 

in 2010 of 14.4 TWh (DECC, 2013) 

Heat pump (providing hot 

water) 

Average hot 

water use 

profile 

4.4 Profile from EST study (EST,2013) 

Heat pump (providing 

space heating) 

Determined by 

external 

temperature 

29.5 Typical weather data for 

Birmingham, UK, from CIBSE (2013) 

Non-controllable (cooking, 

lighting, entertainment, 

computers) 

Simulated 

aggregate 

profile 

5.82 Average given total UK consumption 

in 2010 of 55 TWh (DECC, 2013) 

 



5 
 

 

Table 3  
Electric vehicles 

 

Attribute Values Notes 

Vehicle population A single car in 25% of households, of 

which 50% are battery-only, 50% plug-

in hybrid 

Based on 75% of households with a 

car (DfT, 2013) and 28% of cars are 

EVs 

Battery capacity 24kWh for battery only EV, 16kWh for 

plug-in hybrid  

Manufacturers’ specifications for 

Nissan Leaf (Nissan,2013), and 

Vauxhall Ampera (General Motors, 

2013) 

Energy 

consumption 

0.17 kWh/km (battery-only), 0.2 

kWh/km (plug-in hybrid) 

From manufacturers’ running cost 

specifications 

Frequency of use 0.74 journeys/day, return time 

distributed as indicated in Fig.1 

Derived from National Transport 

Survey 2010 (DfT, 2013) 

Journey distance Average 27km, Poisson distributed 

between minimum of 4 and maximum 

bounded by battery capacity. 

Weekday modelled, distance from 

DfT (2013) 

Recharge time Distributed between the minimum 

possible time and 07:00 next day 

Models the expectation for  

recharge time applied by the user  

 

When a signal S is transmitted by the electricity supplier agent, the control unit simulated within 

each household agent executes the proportionately biased random selection of running times (or 

not running times) of appliances as described above.  In order to compare this mode of operation 

with the conventional cost-minimising objective function that has been employed to date in practical 

trials, the simulated control unit is also capable of treating the signal as a price and seeking to 

minimise cost for the consumer given their available flexibility in electricity consumption.  In both 

modes the simulation assumes that the signal is presented to the occupants in the form of a price, so 

they are aware of those times of the day when electricity is more or less costly. The resulting limited 

price elasticity found in trials of about 5% is then modelled for non-controlled appliances, such as 

lighting and entertainment devices, to simulate occupants switching them on or off in response to 

the price.  When the control unit is in proportionate mode, this occupant behaviour contributes to 

the k factor for each timeslot calculated by the retail electricity supplier.   

Results 
The simulation commences with an interval of a few days in which a null signal is provided to the 

household agents so that their baseline behaviour is obtained.  Figure 1 shows the resulting 
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electricity consumption over 24 hours, on a cold winter day with overnight temperatures falling to -

1.4 oC.  The same weather conditions and population of 1000 households are employed for all the 

results shown. 

 

Figure 1. Baseline winter demand for 1000 households from agent-based model 

Then with the control units in proportionate mode a training sequence of values for S is transmitted 

over several days by the simulated retail electricity supply agent allowing it to learn the linear 

response characteristics of its customers.  Finally the electricity supplier agent uses this learned 

model of customer response to construct and send a signal optimised to elicit a particular desired 

response depending on the scenario and the result is captured.  Figure 2 illustrates the training 

response for a single ith timeslot by plotting SiBi on the x- axis and the resulting δBi on the y-axis for 

different values of Si. The slopes of the regression lines either side of the y-axis and their y-axis 

intercepts provide ki and ci values for positive and negative values of S.  The scatter of points reflects 

the stochastic nature of the demand response as the attraction offered by Si varies.  
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Figure 2. Linear response of aggregate demand to S with proportionate control 

 

Figure 3. Comparison of proportionate and cost-minimising control algorithms 

In Figure 3 a comparison is provided of the total demand profiles resulting from proportionate and 

cost-minimising responses in the control unit when the population is presented with a signal that 

follows the shape of the national aggregate demand on a winter day.  Since electricity market prices 

tend to track demand this is a reasonable proxy for an actual price profile.  The peak in demand at 

the cost minimum illustrates the expected non-linear response of a cost driven scheme. Obviously if 
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this response was a significant proportion of the national demand this spike would feed back into 

price setting in subsequent days with path dependent consequences that would not be helpful to 

maintenance of system equilibrium.  By contrast the proportionate response has less variation than 

the signal so has an inherent damping effect that should assist system stability.    

The full ability of the proportionate control scheme to flatten demand is shown in Figure 4, where 

the supplier agent uses the model of household demand response obtained during training to 

calculate a signal that is optimised to produce a response with minimum deviation from the mean.  

Alternatively a retail electricity supplier might choose to send a signal that is optimised to make use 

of an overnight surge in wind generation as shown in Figure 5.  The scope for shaping demand using 

this method and scenario is shown in Figure 6 in the form of upper and lower limits. It can be seen 

that the available flexibility as a proportion of baseline demand varies from 43% at 00:00 to 13% at 

24:00.  This falling flexibility is partly a consequence of the fact that an essential demand arising from 

a user need that must be satisfied by a given time can only be made to happen earlier.  It is also an 

artefact of an assumption that the signal is transmitted at midnight for the following day and 

responses to that signal can only take place within the day.  A more complex scheme allowing a 

rolling update to the signal would allow needs such as hot water for morning showers to be met 

using electricity drawn the previous evening hence reducing the discontinuity at midnight.        

 

Figure 4. Demand response to a signal optimised for flattening 
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Figure 5. Demand response optimised to exploit overnight availability of wind generated electricity 
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Figure 6. Upper and lower limits to demand response from proportionate control 

Discussion and summary 
In this agent-based modelling experiment we have demonstrated how it should be possible to use a 

distributed “smart home” technology to introduce a degree of imperfect linearity into the otherwise 

complex patterns of domestic electricity consumption.  This somewhat linear response to a signal 

from the electricity supplier is sufficient to allow the flexibility in electricity consumption afforded by 

consumer behaviour and the energy storage properties of buildings, heating systems and electric 

cars to contribute to the dynamic stabilisation of the grid.  It also illustrates how a complexity 

perspective can expose possible solutions to a system scale problem that cannot be solved with 

price structures and rational economics alone. 

In order to apply this capability to the two challenges outlined in the Introduction, of flattening 

demand on distribution networks and responding to variability of weather-dependent renewable 

electricity generation, an additional organisational issue must be confronted.  In the UK as in other 

countries with a competitive electricity market, regional distribution networks are owned by 

companies that are regulated monopolies.  These must operate at arm’s length from retail electricity 

suppliers who compete to hold the relationship with the consumer.  So a distribution network 

operator concerned about the loading on a cable in a single street must interact with the relevant 

households via several retail suppliers.  Also, to preserve consumer and commercial confidentiality, 

the metering data for a single household cannot be shared with the network operator, who must 

manage with aggregated data for each network segment.  Meanwhile some of the suppliers with 

customers on the street may wish to exploit a surge in wind generation as shown in Figure 5 by 

boosting the demand from their customers at the relevant time of day. 
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From this investigation we are able to outline a process by which these competing interests might be 

reconciled.  The network operator is faced with physical limits for the power that can be carried by 

its network assets so these must take priority over efficient use of renewable generation.  So the 

network operator notifies all the suppliers with customers on our example street (and every other 

street on the network) of a maximum power limit for each household. This limit might be profiled 

during the day, for example if there were industrial premises on the street that did not operate out 

of working hours then a higher limit might be available to domestic consumers in the evening and 

overnight while the industrial consumers would be given lower limits.  The limit would of course 

have to be determined equitably using rules set by the electricity market regulator.  The supplier 

compares the limit for each consumer with their historic metering data and assesses the risk of that 

consumer exceeding the limit.  Depending on the risk, each consumer is assigned to a group that will 

receive a particular signal. A consumer with little headroom, either because of their heavy 

consumption or because they are on a constrained network segment, would be sent a flattening 

signal with results as shown in Figure 4.  A consumer with low electricity use or a network 

connection with ample capacity could be sent a signal that shaped demand according to the 

electricity supplier’s preferred outcome as shown in Figure 5.  Consumers with intermediate 

characteristics could be assigned to intermediate groups, it is envisaged that only a few would be 

needed.  This simple categorisation allows the process to be manageable at the scale of the millions 

of customers held by each supplier and will result in groups that are big enough for their linear 

properties in aggregate to emerge.  

To ensure the network operator’s limits were respected, the supplier would be obliged to operate a 

regulated audit process that would identify from metering data those consumers who exceed their 

profile and give the network operator statistics for such occurrences.  The stochastic nature of the 

response to the signal S means that a certain incidence of profile exceptions will inevitably occur.  

Where the level is excessive then the supplier would have to review their consumer categorisation 

and signalling policy.  In a situation where the demand was being flattened as far as possible through 

induced response and the profile limits were still being exceeded, then that would be evidence 

which the network operator could present to the regulator to justify network reinforcement or 

imposition of a physical tripping limit on consumption. 

 Testing this concept requires a further elaboration of the agent-based model that is work in 

progress, to include a physical representation of distribution network elements and the network 

operator agent, and also a simulation of the electricity market so that the commercial pressures and 

associated learning processes of the retail supplier agents are brought into play.  This will be a 

realisation of one of the “new tools” identified by Elliott (2010:14) as necessary for analysis and 

design of sustainable energy systems. 
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