

Constrained Dynamic Rule Induction Learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228200999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fadi Thabtaha, Issa Qabajehb, Francisco Chiclanac

 a. Applied Business and Computing, NMIT, Auckland, New Zealand
 b. School of Computer Sciences and Informatics, De Montfort University,

Leicester, UK
 c Centre for Computational Intelligence, Faculty of Technology, De Montfort

University, Leicester, UK

Abstract

One of the known classification approaches in data mining is rule induction (RI). RI algorithms such as
PRISM usually produce If-Then classifiers, which have a comparable predictive performance to other
traditional classification approaches such as decision trees and associative classification. Hence, these
classifiers are favourable for carrying out decisions by users and hence they can be utilised as decision
making tools. Nevertheless, RI methods, including PRISM and its successors, suffer from a number of
drawbacks primarily the large number of rules derived. This can be a burden especially when the input
data is largely dimensional. Therefore, pruning unnecessary rules becomes essential for the success of this
type of classifiers. This article proposes a new RI algorithm that reduces the search space for candidate
rules by early pruning any irrelevant items during the process of building the classifier. Whenever a rule
is generated, our algorithm updates the candidate items frequency to reflect the discarded data examples
associated with the rules derived. This makes items frequency dynamic rather static and ensures that
irrelevant rules are deleted in preliminary stages when they don’t hold enough data representation. The
major benefit will be a concise set of decision making rules that are easy to understand and controlled by
the decision maker. The proposed algorithm has been implemented in WEKA (Waikato Environment for
Knowledge Analysis) environment and hence it can now be utilised by different types of users such as
managers, researchers, students and others. Experimental results using real data from the security domain
as well as sixteen classification datasets from University of California Irvine (UCI) repository reveal that
the proposed algorithm is competitive in regards to classification accuracy when compared to known RI
algorithms. Moreover, the classifiers produced by our algorithm are smaller in size which increase their
possible use in practical applications.

Keywords: Classification, Data Mfining, Prediction, PRISM, Rule Induction, Online Security

1. Introduction
Data mining, which is based on computing and mathematical sciences, is a common intelligent tool
currently used by managers to perform key business decisions. Traditionally, data analysts used to spend a
long time gathering data from multiple sources and little time was spent on analysis due to the limited
computing resources. Though since the rapid development of computer networks and the hardware
industry, analysts nowadays are spending more time on examining data, seeking useful concealed
information. In fact, after the recent development of cloud computing, data collection, noise removal, data
size and data location are no longer obstacles facing analysts. Data analysis or data mining is concerned
about finding patterns from datasets that are useful for users, particularly managers, to perform planning
(Thabtah and Hamoud, 2014).

 One of the known data mining tasks that involve forecasting class labels in previously unseen data
based on classifiers learnt from training dataset is classification. Normally, classification is performed in
two steps: Constructing a model often named the classifier from a training dataset, and then utilising the
classifier to guess the value of the class of test data accurately. This type of learning is called supervised
learning since while building the classifier the learning is guided toward the class label. Common
applications for classification are medical diagnoses (Rameshkumar et al., 2013), phishing detection
(Abdelhamid et al., 2014), etc. There have been many different classification approaches including decision
trees (Witten and Frank, 2005), Neural Network (NN) (Mohammad et al., 2013), Support Vector Machine
(SVM) (Cortes and Vapnik, 1995), Associative Classification (AC) (Thabtah, et al., 2004), rule induction
(RI) (Holt, 1993) and others. The latter two approaches, i.e. AC and RI, extract classifiers which contain
“If-Then” rules so this explains their wide spread applicability. However, there are differences between AC

and RI especially in the way rules are induced as well as pruned. This article falls under the umbrella of RI
research.

 PRISM is one of the RI techniques which was developed in (Cendrowska, 1987) and slightly
enhanced by others, i.e. (Stahl and Bramer, 2008) (Elgibreen and Aksoy, 2013) (Stahl and Bramer, 2014).
This algorithm employs separate-and-conquer strategy in knowledge discovery in which PRISM generates
rules according to the class labels in the training dataset. Normally for a class, PRISM starts with an empty
rule and keeps appending items to the rule’s body until this rule reaches zero error (Definition 8- Section
2.2). When this occurs, the rule gets induced and the training data samples connected with the rule are
discarded. The algorithm continues building other rules in the same way until no more data connected with
the current class can be found. At this point, the same steps are repeated for the next-in-line class until the
training dataset becomes empty.

One of the obvious problems associated with PRISM is the massive numbers of rules induced, which
normally results in large size classifiers. This problem is attributed to the way PRISM induces the rules
where it keeps adding items to the rule’s body until the rule becomes 100% accurate despite the low data
coverage. In other words, PRISM does not mind inducing many specific rules, each covering a single data
sample, rather producing a rule, say, with 90% accuracy covering 10 data samples. This excessive learning
limits the applicability of PRISM as a decision making tool for managers in application domains and
definitely overfits the training dataset. This is since managers normally prefer a summarised set of rules
that they are able to control and comprehend rather a larger high maintenance set of rules. In fact, there
should be a trade-off between the number of rules offered and the predictive accuracy performance of these
rules.

This paper investigates shortcomings associated with PRISM algorithm. Specifically, we look into
three main issues:

1) The search space reduction: When constructing a rule for a particular class, PRISM has to evaluate
the accuracy of all available items linked with that class in order to select the best one that can be
added to the rule’s body. This necessitates large computations when the training data has many
attribute values and can be a burden especially when several unnecessary computations are made
for items that have low data representation (weak items). A frequency threshold that we call (freq)
can be employed as a pre-pruning of items with low frequency. It prevents these items from being
part of rules, and therefore the search space gets minimised.

2) PRISM only generates a rule when its error is zero, which may cause overfitting the training
dataset. We want to derive good quality rules, not necessarily with 100% accuracy, to reduce
overfitting and increase data coverage. We utilise rule’s strength parameter (Rule_Strength) to
separate between acceptable and non-acceptable rules in our classifier.

3) When removing training data linked with a rule, we ensure that other items which have appeared
in the removed data are updated. In particular, we amend the frequency of the impacted items.
This indeed maintains the true weight of the items rather the computed frequency from the initial
input dataset.

In response to the above raised issues, we are developing in this article, a new dynamic learning method
based on RI that we name enhanced Dynamic Rule Induction (eDRI). Our algorithm discovers the rule one
by one per class and primarily uses a freq threshold to limit the search space for rules by discarding any
items with insufficient data representation. For each rule, eDRI updates items frequency that appeared
within the deleted training instances of the generated rule. This indeed gives a more realistic classifier with
lower numbers of rules leading to a natural pruning of items during the rule discovery phase. Lastly, the
proposed algorithm limits the use of the default class rule by generating rules with accuracy <100%. Often
these rules are ignored by PRISM algorithm since they don’t hold zero error. These rules are only used
during class prediction phase instead of the default class rule and when no 100% accuracy rule is able to
classify a test data.

This paper is structured as follows: Section 2 illustrates the classification problem and its main related
definitions. Section 3 critically analyses PRISM and its successors, and Section 4 discusses the proposed
algorithm and its related phases besides a comprehensive example that reveals eDRI’s insight. Section 5 is
devoted to the data and the experimental results analysis, and finally, conclusions are provided in Section 6.

Input: Training dataset T
Output: A classifier that consists of If-Then rules
Step 1: For each subset Ti in T that belong to wi Do
Step 1.1 Make an empty rule, rj: If Empty then wi
Step 1.2: Calculate Attx in Ti p(wi = i| Attx);
Step 1.3: Append the Attx with the largest p(wi = i| Attx) to the body of rj
Step 2: Repeat steps 1.1-1.3 until rj has 100% accuracy or no longer can be improved
Step 2.1: Generate rj and insert it into the classifier
Step 3: Discard all data examples from Ti that match rj’s body
Step 4: Continue producing rules until Ti is empty or no rule with accepted error can be found
Step 5: Repeat steps 1-4 until no more data subsets of can be wi found
Step 6: IF(Ti does not contain any data examples of class wi)
Generate the classifier.

Fig. 1 PRISM Pseudocode

2. The Classification Problem and Definitions
Given a training dataset T, which has x distinct columns (attributes) Att1, Att2, … ,Attn, one of which is the
class, i.e. cl. The cardinality of T is |T|. An attribute may be nominal which means it takes a value from a
predefined set of values or continuous. Nominal attributes values are mapped to a set of positive integers
whereas continuous attributes are preprocessed by discretising their values using any discretisation method.
The aim is to make a classifier from T, e.g. clAttClassfiier → : , which forecasts the class of previously
unseen dataset.

Our classification method employs a user threshold called freq. This threshold serves as a fine line to
distinguish strong items ruleitems<item, class> from weak ones based on their computed occurrences in T.
Any ruleitem that its frequency passes the freq is called as a strong ruleitem, otherwise it is called weak
ruleitem. Below are the main terms used and their definitions.

Definition 1: An item is an attribute plus its values name denoted (Ai, ai).

Definition 2: A training example in T is a row consisting of attribute values (Aj1, aj1), …, (Ajv, ajv), plus a
class denoted by cj.

Definition 3: A ruleitem r has the format<body, c>, where body is a set of disjoint items and cis a class
value.

Definition 4: The frequency threshold (freq) is a predefined threshold given by the end user.

Definition 5: The body frequency (body_Freq) of a ruleitem r in T is the number of data examples in T
that match r’s body.

Definition 6: The frequency of a ruleitem r in T (ruleitem_freq) is the number of data examples in T that
match r.

Definition 7: A ruleitem r passes the freq threshold if, r’s |body_Freq|/ |D| ≥ freq. Such a ruleitem is said
to be a strong ruleitem.

Definition 8: A rule r expected accuracy is defined as |ruleitem_freq|/ |body_Freq|.

Definition 9: A rule in our classifier is represented as: clbody→ , where body is a set of disjoint
attribute values and the consequent is a class value. The format of the rule is:

121 ... claaa n →∧∧∧

3. Literature Review
PRISM is a key algorithm for building classification models that contain simple yet effective easy to
understand rules. This algorithm was developed in 1987 based on the concept of separate and conquer
where data examples are separated using the available class labels. For each class (wi) data samples, an
empty rule (If nothing then w1) is formed. The algorithm computes the frequency of each attribute value
linked with that class and appends the attribute value with the largest frequency to the current rule’s body.
PRISM terminates the process of a building a rule when that rule has an accuracy 100% according to
definition (8). When the rule is generated, the algorithm continues producing the remaining possible rules
from w1’ s data subset until the data subset becomes empty or no more attribute value can be found with an
acceptable accuracy. At that point, PRISM moves to the second class data subset and repeats the same
steps. The algorithm terminates when the training dataset is evaluated and when this happens the rules
formed make the classifier. Figure 1 below depicts PRISM algorithm major steps.

Below are the main pros and cons associated with PRISM algorithm based on the comprehensive review
that we have done,

PRISM Pros

1) The simplicity of rules generation in which only the rule’s accuracy parameter is computed to
decide on the rule significance.

2) The classifier contains easy to understand rules which can empower decision makers particularly
in domain applications that necessitate interpretations.

3) Easy implementation especially with the available computing resources. Actually, PRISM can be
easily implemented in different versions: local, online, distributed and in environments that
require parallelism.

4) The predictive power of its classifier can be seen as acceptable when contrasted to other classic
data mining approaches such as search methods, decision trees, neural networks, associative
classification and many others.

PRISM Cons

1) In the original PRISM algorithm, there is no clear search space reduction mechanism for candidate
items and therefore for large dimensional datasets, the expected numbers of candidate items can be
huge. This may limits its use for certain applications.

2) Noisy datasets that contain incomplete attributes and missing values. This can been as a major
challenge for PRISM since no clear mechanisms for handling noise is presented. Currently,
adopted approaches from information theory are used to handle noise (Bramer, 2000) (Stahl and
Bramer, 2014).

3) Handling numeric attributes. No build-in strategy is available in PRISM to discretise continuous
attributes.

4) No clear rule pruning methodology is present in the original PRISM. This may lead to the
discovery of large numbers of rules and lead to combinatorial explosion (Abdelhamid and
Thabtah, 2014). There is a high demand on pruning methods to cut down the number of rules
without hindering the overall performance of the classifiers.

5) Conflicting rule: There is no clear mechanism on how to resolve conflicting rules in PRISM.
Currently the choice is random and favours class labels with the largest frequency linked with the
item rather than keep multiple class labels per item.

6) Breaking tie among items frequency while building a rule: When two or more items have the same
frequency, PRISM looks at their denominator in the expected accuracy formula. Yet, sometimes
these items have similar accuracy and denominators which makes the choice random. Arbitrary
selection without scientific justification can be seen as a biased decision and may not be useful for
overall algorithm’s performance.

One of the major challenges faced by PRISM algorithm is noisy training datasets. These are datasets
that contain missing values, data redundancy, and incomplete data examples. A modified version has been
developed called N- RISM to handle noisy datasets besides focusing on maximising the prediction
accuracy (Bramer, 2000). Experimental tests using eight datasets from the UCI (Lichman, 2013) have
showed consistent performance of N-PRISM when compared with classic PRISM particularly on
classification accuracy obtained from noisy and noise-free datasets. It should be noted that the differences
between the original PRISM and N-PRISM are very minimal.

Modified PRISM methods were developed based on a previously design pre-pruning method called J-
Pruning by (Bramer, 2002) (Stahl and Bramer, 2012). The purpose was to reduce overfitting the training
dataset. J-Pruning is based on the information theory test performed typically in decision tree by measuring
the significance of removing an attribute from the rule’s body. The algorithm of (Stahl and Bramer, 2012)
was proposed to address rule pruning issue during the process of building rules for each class label.

Experimental results using sixteen UCI datasets showed decrement on the number of items per rule. In
2015, (Othman and Bryant, 2015) have investigated instance reduction methods as a paradigm for rule
pruning in RI. They claimed that minimising the training dataset to the subset needed to learn the rules is
one way to shrink the search space. The authors have applied three common instance reduction methods
namely DROPS, ENN and ALLKNN on limited number of datasets to evaluate their impact on the
resulting classifiers. The limited results obtained can be seen as a promising direction for using instance
reduction methods as pre-pruning phase in RI.

The database coverage pruning (Liu et al., 1998) and its successors (Abdelhamid, et al., 2014)
(Thabtah, et al., 2011) were one of the major breakthroughs in associative classification that can be
employed successfully in RI as late or post pruning methods. These pruning methods necessitate a positive
data coverage per rule with a certain accuracy so the rule can be part of the classifier. A new version of the
database coverage pruning was developed by (Ayyat, et al., 2014) as a rule prediction measure. The authors
have proposed a method that considers the rule rank as a measure of goodness besides the number of
similar rules sharing items in their body. These two parameters play a critical role in differentiating among
available rules especially in predicting the test data class labels.

Recently, (Elgibreen and Aksoy, 2013) investigated a common problem in PRISM and RULES (Pham
and Soroka, 2007) family of algorithms which is the tradeoff between training time and classification
accuracy during constructing the rule based classifiers. Moreover, the same article also highlighted
performance deterioration of RI methods when applied to incomplete datasets. The result is a new covering
algorithm that utilises “Transfer Knowledge” approach to fill in missing attribute values specifically the
target attribute in the training dataset before mining kicks in. The “Transfer Knowledge” is basically
building up a knowledge base based on learning curves via agents from different environments and from
previous learning experience and then using this knowledge base to fill in incomplete data examples
(Ramon et al., 2007). Experimental results against eight datasets revealed that the improved covering
algorithm consistently produced competitive classifiers when compared with other RI algorithms such as
RULES-IS and PRISM.

One of the major obstacles facing the data mining algorithm is the massive amount of data that are
stored and scattered in different geographical location. Decision makers are striving to have an “on the fly”
mining approach that processes very huge database simultaneously hoping to improve planning decisions.
Most of the research works on parallelisation in classification are focused on decision trees. However, RI
may present simple classifiers to decision makers. The big data problem have been investigated by
amending PRISM algorithm to handle parallelisation (Stahl and Bramer, 2012). The authors developed a
strategy for parallel RI called Parallel Modular Classification Rule Induction (PMCRI). This strategy is a
continuation of an early work by the same authors in 2008 which resulted in parallel PRISM (P-PRISM)
(Stahl and Bramer, 2008). P-PRISM algorithm was disseminated to overcome PRISM’s excessive
computational process of testing the entire population of data attribute inside the training dataset. The
parallelism involves sorting the attribute values based on their frequency in the input dataset and the class
attribute. This means the algorithm will need only this information for processing the rules and hence
holding these data rather than the entire input data reduces computing resources such as processing time
and memory. The attribute values and their frequency are then distributed to clusters and rules are
generated from each cluster. All rules are finally merged to form the classifier. Experiments using a
replication of the Diabetes and Yeast datasets from UCI repository have been conducted. The results show
that P-PRISM as well as the parallel RI strategy scales well. However, a better approach to evaluate the
parallelisation is to utilise unstructured real data such as Bioinformatics or text mining where
dimensionality is huge and number of instances vary rather structured datasets.

(Stahl and Bramer, 2014) developed a PRISM based method for ensemble learning in classification.
Usually ensemble learning is an approach in classification used to improve the classifier’s predictive
accuracy by deriving multiple classifiers using any learning approach such as Neural Network, decision
trees, etc, and then merging them to form a global classifier. Since PRISM often suffers from overfitting
problem to decrease this risk, the authors have built multiple classifiers based on PRISM using the
ensemble learning approach. The results derived from fifteen UCI datasets revealed that the ensemble
learning model based on PRISM was able to generate results comparable with classic PRISM algorithm.
Moreover, a parallel version of the new model has also been implemented by the authors and tested with
respect to training time. Results on run time showed that the parallel version scales well during the process
of constructing the classifier.

PRISM successors have focused mainly on improving the algorithm scalability or reducing overfitting.
We have seen approaches such as P-PRISM that showed promising research direction toward parallel data
mining using RI. Other approaches such as Ensemble Learning based PRISM was able to minimise
overfitting the training data by generating ensemble classifiers that later on are integrated together to make
a final classifier. Lastly, early pruning has been introduced to further minimise the search space by the
introduction of J-pruning. There are needs to further cut down the irrelevant candidate items during
forming the rules in PRISM. This indeed will have a positive impact on the algorithm’s efficiency in
mining the rules and building the classifier. We think that post pruning is essential in PRISM and should
increase its chance of being used as a data mining solution and decision making tool in practical
applications. Yet since the classifiers produced by this family of algorithms is large in size this limits its
usage.

One promising solution to shrink the size of the classifier is by eliminating rules overlapping in the
training example and having rules to cover larger data samples. This solution can be accomplished by
having live items frequency during the mining phase since PRISM relies primarily on item’s frequency to
build rules. In particular, PRISM algorithm often employs the rule’s accuracy as a measure to generate the
rule especially when the rule’s accuracy reaches 100%. This normally results in low data coverage rules.
We want each candidate item that can be part of a rule body to be associated with its true frequency in the
training dataset that usually changes when a rule is generated. Recall that when a rule is outputted by
PRISM, all training data linked with it are discarded and this may affect items appearing in those discarded
rows. When each item has its true data representation while building the classifier this indeed decreases the
search space and all insufficient candidate items will be deleted rather stored as in PRISM. The overall
benefit will be that of having fewer number of rules classifiers. These classifiers can be seen as a real
decision support system since they hold concise knowledge that are maintainable and usable by decision
makers.

4. Enhanced Dynamic Rule Induction Algorithm
The proposed algorithm (Figure 2) has two primary phases: rule production and class assignment of test
data. In phase (1), eDRI produces rules from the training dataset that have accuracy>=Rule_Strength. This
parameter is similar to the confidence threshold used in associative classification (Thabtah, et al., 2004)
that aims to generate near perfect rules besides rules with 100% accuracy as classic PRISM. The proposed
learning method ensures the production of rules that have zero error as well as rules that survive the
Rule_Strength parameter. The algorithm terminates building up the classifier when no more rules have an
acceptable accuracy or the training dataset becomes empty. When this occurs, all rules get merged together
to form the classifier. There is another parameter utilised by eDRI algorithm in phase one to minimise the
search space of items. This parameter is called freq and it is similar to the minimal support threshold used
in the association rule. The freq parameter is primarily utilised to differentiate between items that are
frequent (have high number of occurrences in the training dataset) from those which are not frequent. This
surely eliminates items which have low frequency, i.e. <freq threshold, as early as possible and thus saving
computing resources as well as ensuring only significant items (frequent items) can be part of any rule’s
body. The infrequent items are kept in PRISM in the hope of producing 100% accuracy rules, which indeed
can be seen a major deficiency.

All rules are induced in phase (1). Whenever a rule is built, training data examples linked with it are
deleted, and the frequency of the waiting candidate items to be added which appeared in the discarded data,
are instantly updated. The update involves decrementing their frequencies. This can be seen as a quality
assurance measure of not relying on the original frequency of items computed initially from the training
dataset. Rather we have a dynamic frequency per item that is continuously changing whenever a rule is
generated. Having said this, eDRI is a RI algorithm that does not allow items inside rules to share training
data examples, hence ensuring live classifiers that are not dependant on a static training datasets, instead a
dynamic dataset that lessens every time a rule is formed. In phase (2), rules derived are used to guess the
type of the class for test cases. Our algorithm assumes that the attributes inside the training dataset are
nominal and any continuous attribute must be discretised before the inducing the rules starts.

4.1 Rule Production and Classifier Building

Input: Training dataset T, Minimum Rule_Strength, Minimum Frequency (freq) thresholds
Output: A classifier that consists of If-Then rules
Step 1: For each Attx in T Do
Step 1.1: Calculate Attx in Ti p(wi = i| Attx);
Step 1.2: Append the Attx with the largest accuracy (wi = i| Attx) to the body of rj
Step 2: Repeat steps 1.1-1.2 until rj has either

a) 100% accuracy
b) or no longer can be improved and it has strength >= Rule_strength

Step 2.1: Generate rj
Step 3: Discard all data examples from T that contained rj’s body
Step 3.1: Update the frequency of all impacted candidate items to reflect step 3
Step 3.2: Continue producing rules from Ti until all remaining unclassified items have frequency <freq threshold
 or no more data in Ti can be found
Step 4: Generate the classifier.

Fig. 2 eDRI Pseudocode

The proposed algorithm scans the training dataset to record items plus their frequencies. Then it creates the
first rule by appending the item that when added to the current rule achieves the best accuracy. Any item
with frequency less than the freq threshold is ignored. The algorithm continues adding items to the current
rule’s body until the rule becomes with 100% accuracy. For any rule that cannot reaches 100%, our
algorithm checks whether its accuracy is greater than the Rule_Strength threshold. If the rule passes the
Rule_Strength it will be created otherwise it will be deleted. Two noticeable differences between our
algorithm and PRISM successors in building rules:

a) In eDRI, no item is added to the rule’s body unless it has the minimum frequency requirement.
Otherwise the item gets ignored and will not be part of any rule

b) In eDRI, there is a possibility of creating rules that has accuracy less than 100% whereas PRISM
only allows the generation of perfect rules.

In eDRI, whenever a rule is generated, the following applies

1. The rule’s data samples in the training dataset are discarded
2. Before building the next in-line rule, our algorithm updates items frequencies which have appeared

in the removed data samples.

The proposed algorithm continues creating rules for the current class until no more items with sufficient
frequency can be found. At this point, eDRI moves to the next class and repeats the same process until the
training dataset becomes empty.

The above rule discovery procedure keeps items rank dynamic specifically since an item frequency with
the class is continuously amended whenever a rule is derived. The dynamism provides a distinguishing
advantage for the algorithm in determining items which become weak during constructing the classifier.
This minimises the search space for candidate items and should provide smaller in size classifiers. As matter
fact, the proposed algorithm develops a pruning procedure that reduces overfitting and results in rules with
larger data coverage than PRISM. To clarify, PRISM keeps adding items to the rule’s body regardless the
number of data examples that are covered by the rule. The focus of PRISM is maximising rule’s accuracy
even when the discovered rule covers one data example. This obviously may overfit the training data and
results in large numbers of specific rules. A simple run of PRISM algorithm over the “Weather.nominal”
(14 data samples) dataset from the UCI repository revealed two rules covering a single data example each.
In other words, 33.33% of the PRISM classifier (2 rules out of six) covers just two data examples. This
result if limited show how PRISM continues training without providing a red flag when to stop rule
learning. For eDRI, these two rules are basically discarded since they don’t hold enough data representation.

Since PRISM algorithm creates only rules with 100% accuracy, there is no rule preference procedure. On
the other hand, eDRI classifier may contain rules with good accuracy not necessarily 100% and hence our
algorithm utilises a rule sorting procedure to differentiate among rules. The rule’s strength and frequency are
the main criteria employed to sort rules. When two or more rules have the same strength then eDRI uses the
rule’s frequency as a tie breaker. Finally, whenever two or more rules have identical strength and frequency
then the algorithm prefers rules with less number of items in their body.

 Table 1: Sample training dataset from (Witten and Frank, 2005)

outlook temperature humidity windy play covering
rule

sunny hot high FALSE no Rule 2

sunny hot high TRUE no Rule 2

overcast hot high FALSE yes Rule 1

rainy mild high FALSE yes Rule 3

rainy cool normal FALSE yes Rule 3

rainy cool normal TRUE no Default
Rule: NO

overcast cool normal TRUE yes Rule 1

sunny mild high FALSE no Rule 2

sunny cool normal FALSE yes Rule 3

rainy mild normal FALSE yes Rule 3

sunny mild normal TRUE yes Default
Rule: NO

overcast mild high TRUE yes Rule 1

overcast hot normal FALSE yes Rule 1

rainy mild high TRUE no Default
Rule: NO

4.2Test Data Prediction
Our classifier consists of two types of rules

a) Rules with 100% accuracy: Primary rules (higher rank)

b) Rules with good accuracy, i.e. < 100%: Secondary rules (lower rank)

Whenever a test data is about to be classified, eDRI goes over the rules in the classifier in top down fashion
starting with the primary rules. The first rule that has items identical to the test data classifies it. In other
words, if the rule’s body is contained with the test data then this rule’s class is assigned to the test data. If
no primary rules match the test data then eDRI moves into the lower rank rules to forecast the test data
class. This procedure limits the use of the default class rule which may increase the numbers of
misclassifications. It should be noted that when no rules are in the classifier match the test data then the
default class rule is fired.

4.4 Example on the Proposed Algorithm and PRISM
This section provides a thorough example to distinguish the learning process of PRISM and our proposed
algorithm, In particular, we show how rules are induced. The dataset displayed in Table 1 is used for the
purpose of comparison. Assume that the freq threshold is set to 3 and the Rule_Strength to 80%. eDRI
picks the item that has the largest accuracy when linked with a class after calculating the frequency of all
items in Table 2.The largest accuracy item, i.e. (4/4), is associated with “Outlook=overcast” and it is linked
with class “YES”. Our algorithm generates the below rule since it achieves 100% accuracy and removes its
training data (Red text of Table 1) besides updating the frequency of all items appeared in the removed
data as shown in Table 2. All items highlighted in red in Table 2 failed to pass the freq threshold therefore
they are ignored. Our algorithm has substantially minimised the search space by keep only strong items
(the one not highlighted red in Table 2). Whereas, PRISM keeps these items aiming to seek for specific
rules.

RULE (1) If “Outlook=overcast” then YES (4/4)

After R1 is created, three items linked with class “YES” will be discarded since they become weak and
these are “Temperature=cool”, “Humidity=high” and “Windy=true”. Their frequency is highlighted in red
within the third column of Table 2. eDRI starts building a new rule from the remaining data examples
excluding the removed data of RULE (1). The largest accuracy (item+class), i.e. 80%, is linked with
“Humidity=high, NO” according to the updated frequency and accuracy of Table 2 (Columns 4 and 5). So
the algorithm starts making the second rule below

RULE (2) If “Humidity=high” then NO (4/5)

Since RULE (2) is not yet 100% accurate, all instances associated with it are separated in Table 3 to seek
another possible item that can maximise the accuracy. eDRI computes the frequency of items of Table 3 as
shown in Table 4. Based on Table 4, the highest rule’s accuracy, i.e. 3/3, is linked with “Outlook=sunny”
so this item is added to the current rule’s body, and the rule’s accuracy becomes 100%. Hence, we generate
Rule (2) below, remove all training data connected with it (the yellow text of Table 1), and update the
frequency and accuracy for the remaining impacted items.

RULE (2) If “Humidity=high and Outlook=sunny” then NO (3/3)
After creating RULE (2), four items have been ignored since they become weak (their frequencies are
highlighted in red in Table 1- Column 6). Actually, there are no longer items linked with class “NO”
simply because none of the remaining ones survive the freq threshold. The first two rules cover
successfully seven examples in Table 1 and only seven data examples are left. eDRI calculates again the
accuracy of possible remaining items. Item “Windy=False, YES” is the largest accurate item with accuracy
100% (4/4) hence a the below rule is formed.

Table 2: Candidate items frequency and accuracy during rule generation process

 During Rule 1
Generation

After generating Rule
(1)

After generating Rule
(2)

After generating Rule
(3)

 Candidate
Item+Class

Original
Frequency
in the
training
data

Rules
Accuracy

Freq. status Rules
Accuracy

Freq. status Rules
Accuracy

Freq. status Rules
Accuracy

Outlook=sunny,
NO 3 60% 3 60% 0

Outlook= rainy,
NO 2

Temperature=
hot, NO 2

Temperature=
mild, NO 2

Temperature=
cool, NO 1

Humidity= high,
NO 4 57.15% 4 80% 1

Humidity=
normal, NO 1

Windy= true,
NO 3 50.00% 3 75% 2

Windy= false,
NO 2

Outlook=overcas
t, YES 4 100% 0

Outlook=sunny,
YES 2 40.00%

Outlook= rainy,
YES 3 60.00% 3 60% 3 60% 0

Temperature=
hot, YES 2 0

Temperature=
mild, YES 4 66.67% 4 66.67 4 80% 2

Temperature=
cool, YES 3 75.00% 2

Humidity= high,
YES 3 42.85% 1

Humidity=
normal, YES 6 85.71 4 80% 4 80% 1

Windy= true,
YES 3 50.00% 1 2

Windy= false,
YES 6 75.00% 4 66.67 4 100% 0

Table 3: Data samples associated with item “Humidity=high”

outlook temperature humidity windy play

sunny hot high FALSE no

sunny hot high TRUE no

rainy mild high FALSE yes

sunny mild high FALSE no

rainy mild high TRUE no

Table 4: Updated accuracy of items computed from
Table 3

Item+ NO Frequency Rule's
Accuracy

Outlook=sunny 3 100%

Outlook=rainy 2 50%

Temperature= hot 2 100%

Temperature= mild 3 67%

Windy= true 2 100.00%

Windy= false 3 67%

Windy= false 3 67%

RULE (3) If “Windy=false” then YES (4/4)

This rule covers four data examples so they will be deleted (highlighted in green in Table 1) and three
examples are left unclassified since non of the remaining items pass the freq threshold hence a default class
rule is generated based on the largest frequency class connected with the unclassified instances (Default
class rule is “NO” 2/3).

The classifier of eDRI contains 3 rules and one default class rule as follows

RULE (1) If “Outlook=overcast” then YES (4/4)
RULE (2) If “Humidity=high and Outlook=sunny” then NO (3/3)
RULE (3) If “Windy=false” then YES Otherwise “YES”
Otherwise “NO” (2/3)

In the above example, eDRI was able to induce three possible rules and a default class whereas PRISM
produced six possible rules and a default class as shown below. Actually, most of PRISM rules cover very
limited data examples (1 or 2 rows) whereas our algorithm rules cover at least three data examples. This
makes a difference especially in large datasets or datasets with high dimensionality as we will see in the
experimental section. The fact that our algorithm derived less rules by 42.85% than PRISM from a dataset
of just 14 examples is an evidence if limited on the power of the new rule induction procedure proposed.

Prism rules

1) If outlook = overcast then yes
2) If humidity = normal and windy = FALSE then yes
3) If temperature = mild and humidity = normal then yes
4) If outlook = rainy and windy = FALSE then yes
5) If outlook = sunny and humidity = high then no
6) If outlook = rainy and windy = TRUE then no

Otherwise “YES”.

5. Data and Experimental Results
5.1 Settings
For the rule discovery phase, all algorithms have utilised 10-fold cross validation in the experiments. This
procedure has been adopted to compute the error rate during constructing the classifiers since it reduces
overfitting and it is commonly used in classification. All experiments have been conducted on a computing
machine with 1.7 GHz processor. We have implemented our algorithm in WEKA (Witten and Frank, 2005)
for fair testing so WEKA environment was used for conducting all experimental results. WEKA is an open
source Java platform that was developed at the University of Waikato, New Zealand. It contains different
implementations of data mining and machine learning methods for tasks including classification, clustering,
regression, association rules and feature selection. We tested the applicability of eDRI algorithm and in
general RI on two sets of data: real data related to website security (Mohammad, et al, 2015) and sixteen
UCI datasets (Lichman, 2013). The aim of the experiments is to show the pros and cons of our algorithm

when compared to other RI algorithms. We have chosen three known RI algorithms (PRISM, OneRule
(Holt, 1993), Conjunctive Rule (Witten and Frank, 2005)) and one hybrid decision tree algorithm called
PART (Frank and Witten, 1998) for fair comparison. The choice of these algorithms are based on two facts:

1) They produce If-Then classifiers

2) They utilise different learning strategies to induce the rules

It should be noted that the majority of PRISM successors such as (P-PRISM, N-PRISM) focus on treating
noisy datasets and parallelism as described earlier in Section 3. Thus, their rule learning strategy is the
same as the one in PRISM so we use PRISM WEKA’s version for comparison. For eDRI, the frequency
threshold has been set to 1% and the Rule_Strength to 50%. These values have been obtained after running
a number of warming up experiments where the results show a balance between the classifier's size and the
classification accuracy. Below are the main evaluation measures used to analyse the experimental results

1) Classifiers error rate (%)

2) Classifier size measured in the available numbers of rules

3) The number of instances covered by the rule and the available number of items in the rule's body
(rule's length). We have introduced two measures named Average Rule Length and Weighted Average
Rule Length described later in this section along with their mathematical notations.

4) The number of data examples scanned to generate the classifier. We want to measure the increase
and decrease in the search space by eDRI when compared to PRISM.

5) Time taken to build the classifiers.

5.2 Security Data Results
Phishing is one of social engineering techniques used to exploit unawareness of people (Abdelhamid, et al.,
2014). It allows hackers to get an advantage of the weaknesses in the web by demanding confidential
information from users, such as usernames, passwords, financial account credentials and credit card details.
This is often performed by inserting links and objects within emails that direct users to fake websites,
which look like the original website. Often, victims of phishing may lose their bank details and other
private information to the phishy email senders (Phishers). As a matter of fact, phishing costs financial
institutions as well as online users hundreds of millions in monetary damages annually.

We consider a real dataset related to website phishing in the first sets of experiments. The data has been
collected using a PHP script of (Mohammad, et al., 2012) and contains thirty features plus the class. The
dataset features have been considered in previous research articles which supports our selection, i.e.
(Abdelhamid, et al., 2014). The phishing dataset is of type binary classification since there is two class
labels (Phishy, Legitimate). We have utilised over 11000 website examples from different sources
including Yahoo directory, Millersmiles and Phishtank archives. A sample of ten data examples associated
with sixteen features are depicted in Table 5. The first row of the table shows the sample features and the
last column in the table is the class attribute (Phishy (-1) / Legitimate (1)). Some features are given two
possible values (-1 for phishing and 1 for legitimate) and others ternary values (-1 for phishing, 1 for
legitimate and 0 for suspicious). Features used are not limited to “URL of Anchor”, “URL Length”,
“Having_IP_Address”, “Prefix_Suffix”, “Iframe”, “Right”Click”, etc. More details on the complete set of
features can be found in (Mohammad, et al., 2015.

Table 5: Sample of ten websites data related to sixteen phishing features

having_IP_
Address

URL_
Length

Shortining
Service

at-
Symbol

Double
Slash

Prefix_
Suffix

Sub
Domain

SS
Lfinal

Domain
_registr
ation

Favicon Port … Class

-1 1 1 1 -1 -1 -1 -1 -1 1 1 … -1

1 1 1 1 1 -1 0 1 -1 1 1 … -1

1 0 1 1 1 -1 -1 -1 -1 1 1 … -1

1 0 1 1 1 -1 -1 -1 1 1 1 … -1

1 0 -1 1 1 -1 1 1 -1 1 1 … 1

-1 0 -1 1 -1 -1 1 1 -1 1 1 … 1

1 0 -1 1 1 -1 -1 -1 1 1 1 … -1

1 0 1 1 1 -1 -1 -1 1 1 1 … -1

1 0 -1 1 1 -1 1 1 -1 1 1 … 1

1 1 -1 1 1 -1 -1 1 -1 1 1 … -1

having_IP_Address	 URL_Length	 Shortining_Service	 at-Symbol	 Double_Slash	 Prefix_Suffix	 Sub_Domain	 SSLfinal	 Domain_registration	 Favicon	 Port	 …	 Class	

-1	 1	 1	 1	 -1	 -1	 -1	 -1	 -1	 1	 1	 …	 -1	

1	 1	 1	 1	 1	 -1	 0	 1	 -1	 1	 1	 …	 -1	

1	 0	 1	 1	 1	 -1	 -1	 -1	 -1	 1	 1	 …	 -1	

1	 0	 1	 1	 1	 -1	 -1	 -1	 1	 1	 1	 …	 -1	

1	 0	 -1	 1	 1	 -1	 1	 1	 -1	 1	 1	 …	 1	

-1	 0	 -1	 1	 -1	 -1	 1	 1	 -1	 1	 1	 …	 1	

1	 0	 -1	 1	 1	 -1	 -1	 -1	 1	 1	 1	 …	 -1	

1	 0	 1	 1	 1	 -1	 -1	 -1	 1	 1	 1	 …	 -1	

1	 0	 -1	 1	 1	 -1	 1	 1	 -1	 1	 1	 …	 1	

1	 1	 -1	 1	 1	 -1	 -1	 1	 -1	 1	 1	 …	 -1	

Table 6: Best nine features detected by information gain filtering method

Feature name

IG IG
Rank Score

 SSLfinal_State 1 0.4994

 URL_of_Anchor 2 0.4770
 Prefix_Suffix 3 0.1230

 web_traffic 4 0.1145

having_Sub_Domain 5 0.1090

 Links_in_tags 6 0.0470

 Request_URL 7 0.0460

 SFH 8 0.0370

Domain_registeration_length 9

0.0360

Fig. 4 Number of rules generated by PRISM and eDRI
algorithms from the security data

Fig. 3 The One error rate(%) of the considered algorithms
on the phishing dataset

Figure 3 shows the error rate (%) results of all considered algorithms against complete 31-features and the
top 10-features after preprocessing the original dataset using information gain (IG) feature selection method
(Table 6). The reason for selecting these features is since they are the only ones that pass preprocessing
phase by scoring above the minimum score of IG. Figure 3 demonstrated a good and consistent
performance in regards to error rate by the RI algorithms considered. Precisely, eDRI achieved competitive
error rate to PRISM on the complete phishing data and outperformed all RI algorithms on the top ten
features set. Surprisingly PRISM outperformed eDRI on the 31-features dataset by 2.47% yet derived 626
more rules. On the other hand and for the selected ten features by IG, eDRI outperformed PRISM and the
rest of the RI algorithms. To be more specific, eDRI achieved 7.94%, 3.92% and 3.92% lower error rate
than PRISM, Conjunctive Rule and OneRule algorithms. These figures give a clear evidence that the
proposed algorithm’s learning strategy has improved the classifier predictive power at least of the reduced
features set of the security data. Actually, eDRI ability to limit the use of the default class has a positive
effect on its accuracy. Moreover, pruning useless and redundant rules enhanced the performance by
ensuring only effective rules are utilised in prediction. These rules unlike those of PRISM and its
successors cover larger portions of the training dataset. One notable result on the phishing dataset is that
PART decision tree algorithm produced the least error rate. PART has achieved less error than eDRI since
it adopts information theory pruning (Entropy) to further discards rules. In addition this algorithm employs
Reduced Error Pruning (REP) to prune partial decision trees which normally degrade error rate. We believe
that if eDRI utilises Entropy for post pruning we could end up with further improved classifiers.

We looked at the number of rules resulted by our algorithm and PRISM, which is shown in Figure 4.
This figure illustrates that eDRI substantially minimised the classifier size. In fact, PRISM has derived 626
and 326 more rules than eDRI from the 31-features dataset and 10-features dataset where many of its rules
are covering very limited data samples hence overfitting the training dataset. We looked further into the
classifier produced by eDRI from the complete phishing dataset and observed that out of the 44 rules
generated, there are 22 rules have error greater than zero, making them represent 50% of eDRI’s classifier.
Despite that these rules don’t hold an accuracy of 100%, they are new useful knowledge that PRISM
classifier don’t hold. This is a good indication that generating rules not necessarily perfect (100% accuracy)
not only minimises the classifier size but also covers larger numbers of training data examples per rule.
Hence the overall performance of the classifier gets enhanced besides improving human controllability. In
other words, having a smaller classifiers is a definite advantage for managers and decision makers since
they are able to govern less amount knowledge during the decision making process. These classifiers work
fine for applications such as medical diagnoses where general practitioners can enjoy a concise set of rules
for daily diagnoses of their patients.

We have investigated the relationship between the rule length in the classifier and the number of
instances each rule has covered. We created new simple measures called the average rule length (ARL) and
weighted average rule length (WARL) that are showing in the below equations:

ARL =
(# !" !"#$% !" !"#$%& ! ∗ !"#$!"#$%& !)

!"#$% # !" !"#!"

WARL = 𝑟𝑖!𝑠 𝑙𝑒𝑛𝑔𝑡ℎ ∗ # !" !"#" !"#$%&! !"#$%$!" !"
!"#$!" !!! !"#$%$%& !"#"$%#

!

!!!

For instance, assume that we have the following two rules:
Rule 1 (if a=windy b = mild then yes) (length 2), and this rule covers 3 data instances
Rule 2 (if a=sunny then no) (length 1), and this rule covers 97 data instances
ARL = (1+2)/2 = 1.5
WARL = 2 * 3/100 + 1 * 97/100 = 1.03

For the dataset we consider and based on PRISM’s classifier, the ARL and WARL computed from 10-
features and 31-features datasets are (7.19, 4.23) and (10.09, 3.99) respectively. Whereas and based on
eDRI’s classifier, the ARL and WARL computed from 10-features and 31-features datasets are (4.67, 3.18)
and (6.48, 3.96) respectively. The WARL figures demonstrate how the training attributes have been utilised
to build the classifier. For instance, PRISM needed more features to make the rules than eDRI especially
from the 10-features dataset. As a matter of fact, PRISM was excessively searching for more items to add
per rule during rule building process. This explains the many specific rules (rules associated with large
number of items) derived by PRISM which each classifies few training data examples. We assume that the
above rationale is behind a larger WARL of PRISM. On the other hand and for the ARL computed, it
seems that also eDRI has less number of items linked with each rule and this explains that our algorithm
prefers general rules with lower length than PRISM. These general rules may contain several specific rules
and this can be another reason behind the lower numbers of rules in eDRI’s classifiers.

Since eDRI has been implemented in WEKA, we have investigated the number of times our algorithm
pass over the training data examples when compared to PRISM. Hence, we recorded the number of rows
that both algorithms have to scan while building the rules. It turns out that PRISM has passed over
34,465,178 training examples during the process of creating 670 rules. Whereas eDRI scanned 9,388,208
data examples resulting in 44 rules. These results evidently show that the proposed algorithm has
substantially reduced the search space for rules. The fact that PRISM has to pass over many more millions
of data examples explains the poor rule discovery mechanism employed by this algorithm, which overfits
the training data, aiming to induce perfect yet low data coverage rules. This mechanism requires
overtraining by repetitively splitting data examples whenever an item is appended to a rule in order to
increase the rule’s accuracy. The outcome guarantees the production of rules having zero error but it is
definitely time consuming and computing resource demanding. The frequency threshold employed in eDRI
was able to successfully discard many items that have low data representation. This obviously decreased
the search space of items and therefore the classifier size is reduced. Moreover, allowing rule’s which are

 Table 7: UCI datasets characteristics besides the considered algorithms error rate generated from the UCI datasets

Dataset # of
classes

of
attributes

of
instances PRISM eDRI PART

Conjunctive
Rule OneRule

Contact lenses 3 5 24 45.84 33.33 16.66 37.50
29.16

Vote 2 17 435 6.67 6.43 4.96 4.96 4.37
Weather 2 5 14 64.28 35.71 42.85 35.71 57.14

Labor 2 17 57 25.35 22.80 17.54 24.56 31.57

Glass 7 10 214 51.40 47.66 39.25 53.73 48.59
Iris 3 5 150 12.04 10.00 4.66 39.33 4.00

Diabetes 2 9 768 39.01 27.08 26.56 34.37 26.43

Segment
Challenge 7 20 1500 14.66 13.08 11.77 70.93 47.60

Zoo 7 11 101 57.42 6.93 7.92 40.59 93.06

Tic-Tac 2 10 958 4.32 8.45 5.84 31.00 30.06

Pima 2 7 768 43.74 23.56 23.30 25.65 25.26

Breast cancer 2 10 286 41.50 32.51
30.41

33.56 34.26

German_credit 2 16 1000 36.20 28.80
30.70

30.60 28.90

Autos 2 15 690 21.30 17.86 14.20 14.49 14.49

Soybean 19 36 683 14.63 10.10 8.49 73.79 66.47

Unbalanced 2 33 856 4.20 3.03 1.63 1.40 1.40

not 100% accurate to be generated decreases the number of data examples that eDRI passes over. This is
since eDRI is not always eager to generate rules that are perfect rather it prefers rule’s with large data
coverage but with acceptable accuracy, and this was obvious in its classifier that contains 22 non-perfect
rules.

5.3 UCI Data Results
Different datasets from the UCI data repository have been used to generalise the performance of the
proposed algorithm. The datasets have been selected based on different characteristics including the
number of features (attributes), the size, the number of classes, and the type of the attributes as shown in
Table 7. All second sets experiments have been conducted in WEKA. Table 7 also displays the error rate
of the classifiers generated by PRISM, OneRule, Conjunctive Rule, PART and eDRI algorithms. We also
show the average error rate of all considered algorithms in Figure 5. Based on the average error rate results
of the classifiers, eDRI has derived on average the highest predictive RI classifiers but PART which is a
decision tree algorithm maintained the best classifiers. In the figure, it is clear that eDRI algorithm
performed on average well when compared to OneRule, PRISM and Conjunctive Rule algorithms. More
specific, on average eDRI gained lower error rate by 9.70%, 14.05%, 13.56% than PRISM, Conjunctive
Rule and OneRule algorithms respectively. This gain has been resulted from the dynamic rules production
by this algorithm which surely keeps the accurate rules which lead to improvement of the predictive
power. On the other hand, decision tree algorithm has higher classification accuracy on overage than our
algorithm. To be more precise, PART has on average 2.54% slightly higher accuracy than eDRI on the
sixteen UCI datasets used in the experiments. This can be attributed to the Reduced Error Pruning (REP),
which are used by this algorithm during the process of constructing the classifier. The fact that eDRI is
competitive to PART and produced on average higher predictive classifiers than its own kind is an
achievement.

We further analysed Table 7 to seek detailed performance per dataset by the considered algorithms.
Based on the table, the won-tie-lost records of eDRI against PRISM, Conjunctive Rule, OneRule and
PART are 14-0-2, 12-1-3, 10-0-6 and 3-0-13. In other words, the proposed algorithm consistently
outperformed PRISM and the other considered RI algorithms on the UCI datasets. This is evidently show
good predictive performance by the proposed algorithm on small, medium and large datasets which makes
it a favourable tool for decision making. PRISM performance on the UCI datasets has improved if
compared to the real data from the security domain. This could be since the security data features are
highlight correlated with the class attribute and this forces PRISM in searching deeply within the dataset
for several specific rules. This explains the large rule’s length vs. instances covered for PRISM.

The classifier size of both PRISM and eDRI are shown in Figure 5. The figure clearly demonstrates
that our algorithm’s pruning method has significantly minimised the number of rules and no deterioration
on the classifier’s accuracy has been observed. The average number of rules derived by PRISM and eDRI
from the sixteen UCI datasets are 117.18 and 33.31 respectively. This drastic decrease in the classifier size
of eDRI is attributed to a) the discarding of weak items during building the rule and b) the production of
rules not necessarily having 100%. These two distinctive advantages have resulted in concise classifiers of
eDRI if compared to PRISM. We think that the dynamic update of candidate items cuts down the search
space of the items and therefore less numbers of candidate items are presented. So removing the
overlapping of the training instances among rules has a good effect on the classifiers size. In particular,
eDRI ensures that all candidate items frequencies are amended on the fly whenever a rule gets produced,
this minimises the available numbers of candidate items for the next rules, and hence rules generated
quicker and usually classifies more data.

The time taken to construct the classifiers by PRISM, PART and our algorithm has been recorded to
evaluate the efficiency factor. Figure 7 depicts the results in ms for the considered algorithms and against
the UCI datasets we consider. The figure obviously illustrates that eDRI utilises less time to build the
classifier than PART and PRISM due to there is no need to keep splitting training data samples in order to
maximise each rule’s accuracy. This has definite advantage at least over PRISM algorithm, which
repetitively adds items to the rule aiming to reach 100% accuracy. This repetitive addition of items results
in three major disadvantages:

• The resulting rules covering very small data samples. This may lead to the production of several
redundant rules.

• More data samples need to scanned to identify the highest frequent items to be added to the
current rule and eventually overfitting the training dataset. There is no clear stopping
condition for rule learning in PRISM

• More training time is wasted

Figure 7 also demonstrated that PART is slower than eDRI in building the classifier due to the multiple
pruning procedures invoked by PART.

We investigated the search space used by PRISM and eDRI to determine the major differences between
both algorithms in constructing the classifier. Hence, we recorded the number of data samples (rows)
scanned by both algorithms in determining items frequency and accuracy while building the rules. Table 8
illustrates our finding. For most of the datasets considered, PRISM had to scan more data samples to come
up with the final classifier except for the “Labor” and “Vote” datasets. For instance and for the “Segment
Challenge” dataset which consists of 20 attributes and 1500 instances, PRISM has to pass over 7,147,542
rows whereas eDRI scanned 938,263 rows. This is a clear sign that the proposed algorithm had
substantially reduced the search space for rules in its classifier’s building process. The fact that eDRI on
average reduced the search space by around four times less than PRISM is a definite bonus. This is since it
stops building rules early when any rule has an acceptable error rate.

Table 8:# of scanned data samples during building the classifier
by PRISM and eDRI on the UCI datasets

Datasset
PRISM eDRI

Contact lenses
1503 168

Vote 212805 223797
Weather 1160 196
Labor 13796 19507
Glass 325951 58613
Iris 20613 15265
Diabetes 1979939 418680

Segment Challenge
7,147,542 938,263

Zoo 72,852 21,011
Tic-Tac 509,652 120,526
Pima 682,505 358,451

Fig. 5 Average error rate (%) for the considered algorithms on
the UCI datasets

Fig. 6 The classifier size of PRISM and eDRI algorithms on the
datasets

Fig. 7 The classifier building time in ms for PRISM and eDRI
algorithms on the datasets

6. Conclusions
Rule Induction (RI) is a promising classification approach in data mining that attracted researchers due to
its simplicity. This article deals with major shortcomings associated with PRISM, which is considered one
of the known RI algorithms. Specifically, we investigated the problem of generating rules with limited data
coverage by PRISM and discarding good quality rules covering larger training data portions, hence
outputting massive classifiers. A new modified PRISM based algorithm that we call Enhanced Dynamic
Rule Induction (eDRI) has been proposed and built into the WEKA environment to deal with the
abovementioned deficiencies. Our algorithm minimises the search space for rules by cutting down items
with low data representation and stopping learning when any rule meets the rule’s strength threshold. These
improvements guarantee smaller sized classifiers that don’t overfit the training dataset and maintain their
predictive performance.

The classifiers derived by the proposed algorithm are of high benefit to managers particularly when taking
key business decisions since they can serve as a rich knowledge base inside a decision making tool. This is
due to the classifiers being easy to understand, having high predictive accuracy, and they are controllable as
well as robust (flexible to be amended without drastic change). Moreover, eDRI can be employed as a
prediction module embedded inside a decision support system in various domain applications that
necessitate both simplicity of the outcome and good accuracy, such as medical diagnoses systems. Since
general practitioners usually have busy clinics with tight allocated time per patient they favour decision
support systems with a concise set of knowledge similar to our classifiers.

Results using a real dataset related to security as well as general classification datasets from the UCI
repository have been conducted utilising a number of RI and decision tree algorithms. The results revealed
that the proposed algorithm is highly competitive with respect to error rate, search space, classifier size and
processing time when compared to PRISM, OneRule, PART and Conjunctive Rule algorithms. Moreover,
eDRI consistently produced fewer number of rules than PRISM on both the UCI and the security datasets,
which increases its applicability. Nevertheless, PART decision tree algorithm outperformed eDRI in
accuracy and on average has generated fewer numbers of rules for the majority of the datasets used. Hence,
pruning using Entropy can be seen as advantageous for eDRI as a post pruning procedure. In addition, the
current version of eDRI has no embedded discretisation method for continuous attributes.

In the near future, we would like to build eDRI as part of a decision support system for medical diagnoses
to further evaluate its effectiveness and suitability in practical applications. In addition, eDRI will be
embedded soon by researchers in Huddersfield University as an anti-phishing tool. This will raise
awareness of public employees about phishing because of eDRI's outcome simplicity that can be
understood by different users. Furthermore, eDRI can be utilised in web and mobile accessibility to
evaluate websites and mobile applications for visually impaired users based on discovering correlations
among features related to these user categories. We also intend in the near future to employ information
theory pruning in particular Entropy to increase the predictive power of eDRI besides further decreasing its
classifier size.

	
References	
[1] Abdelhamid N., and Thabtah F. (2014) Associative Classification Approaches: Review and Comparison. Journal

of Information and Knowledge Management (JIKM), 13, 1450027. Sept 2014. Worldscinet.
[2] Abdelhamid N., Ayesh A., Thabtah F. (2014) Phishing detection based associative classification data mining.

Expert Systems with Applications 41 (13) Pages 5948–5959, Oct 2014.
[3] Ayyat Susan, Lu J., Thabtah F. (2014) Class Strength Prediction Method for Associative Classification.

Proceedings of the IMMM 2014, The Fourth International Conference on Advances in Information Mining and
Management, pp. 5-10. Paris, France, July 2014. Best Paper Award.

[4] Bramer, M.A. (2000) Automatic induction of classification rules from examples using N-PRISM”, Research and
Development in Intelligent Systems XVI, Springer-Verlag, pp. 99–121, 2000.

[5] Bramer A. (2002) An information-theoretic approach to the pre-pruning of classification rules, in: B. N. M Musen,
R. Studer (Eds.), Intelligent Information Processing, Kluwer, 2002, pp. 201{212}.

[6] Cendrowska, J. (1987) PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine
Studies, Vol.27, No.4, 349-370.

[7] Cortes, C., and Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20 (3), 273 – 297.
[8] Elgibreen H. A., Aksoy M. S. (2013) Rules – Tl: A Simple And Improved Rules Algorithm For
 Incomplete And Large Data. Journal of Theoretical and Applied Information Technology, pp. 28-40.
[9] Frank, E., and, Witten, I. (1998) Generating accurate rule sets without global optimisation. Proceedings of the

Fifteenth International Conference on Machine Learning, (p. . 144–151). Madison, Wisconsin.
[10] Holte, R.C. (1993). Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Machine

Learning, 11, pp 63-90.
[11] Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of

California, School of Information and Computer Science.
[12] Liu, B., Hsu, W., and Ma, Y. (1998) Integrating classification and association rule mining. Proceedings of the

Knowledge Discovery and Data Mining Conference- KDD, 80-86. New York.

[13] Mohammad RM, Thabtah F, McCluskey L (2013) Predicting phishing websites based on self-structuring neural
network. Neural Computing and Applications, 1-16 (2013).

[14] Mohammad R. Thabtah F. McCluskey L., (2015) Phishing websites dataset. Available:
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites Accessed January 2016.

[15] Othman O. M. and Bryant C. H. (2015) Pruning Classification Rules with Instance Reduction Methods.
 International Journal of Machine Learning and Computing, Vol. 5, No. 3, June 2015.

[16] Pham D. T. and Soroka A. J. (2007) An Immune-network inspired rule generation algorithm (RULES-IS). In
Third Virtual International Conference on Innovative Production Machines and Systems, Whittles Dunbeath,
2007.

[17] Rameshkumar, K., Sambath, M. and Ravi, S. (2013) Relevant association rule mining from medical dataset
using new irrelevant rule elimination technique. Proceedings of ICICES , 300-304.

[18] Ramon J., EDRIessens K., and Croonenborghs T. (2007) Transfer Learning in Reinforcement Learning
Problems Through Partial Policy Recycling: Machine Learning. ECML 2007. vol. 4701, J. Kok, J. Koronacki, R.
Mantaras, S. Matwin, D. Mladenic, and A. Skowron, Eds., ed: Springer Berlin / Heidelberg, 2007, pp. 699-707.

[19] Stahl, F., Bramer, M.A. (2014) Random Prism: an alternative to Random Forests. Research and Development in
Intelligent Systems XXVIII, 2011, pp 5-18, Springer.

[20] Stahl F., Bramer M. (2012) Computationally efficient induction of classification ruleswith the PMCRI and J-

PMCRI frameworks, Knowledge-Based Systems 35, (2012) 49–63.

[21] Stahl F., and Bramer M. (2008) P-Prism: A Computationally Efficient Approach to Scaling up
Classification Rule Induction. Artificial Intelligence in Theory and Practice II, IFIP – The International
Federation for Information Processing Volume 276, 2008, pp 77-86.

[22] Thabtah F., Hammoud S (2014) Parallel Associative Classification Data Mining Frameworks Based Mapreduce.
To Appear in Journal of Parallel Processing Letter. March 2015. World Scientific.

[23] Thabtah, F., Cowling, P., and Peng, Y. (2004) MMAC: A new multi-class, multi-label associative classification
approach. Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM ’04), 217-224.

[24] Thabtah F., Hadi W., Abdelhamid N., Issa A. (2011) Prediction Phase in Associative Classification. Journal of
Knowledge Engineering and Software Engineering. Volume: 21, Issue: 6(2011) pp. 855-876. WorldScinet.

[25] Witten I. H. and Frank E. (2005). Data Mining: Practical Machine Learning Tools and Techniques.

	eDRI-EWSA-29-3
	eDRI-EWSA-29-3.2
	eDRI-EWSA-29-3.3

