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Abstract

If you think performance is expensive, try using a paralyzed system.
. . .

This thesis proposes a new methodology to extend the software performance engi-
neering process. Common performance measurement and tuning principles mainly
target to improve the software function itself. Hereby, the application source code
is studied and improved independently of the overall system performance behav-
ior. Moreover, the optimization of the software function has to be done without
an estimation of the expected optimization gain. This often leads to an under- or
over-optimization, and hence, does not utilize the system sufficiently.

The proposed performance improvement methodology and framework, called dy-
namic performance stubs, improves the before mentioned insufficiencies by evaluat-
ing the overall system performance improvement. This is achieved by simulating
the performance behavior of the original software functionality depending on an ad-
justable optimization level prior to the real optimization. So, it enables the software
performance analyst to determine the systems’ overall performance behavior consid-
ering possible outcomes of different improvement approaches. Moreover, by using
the dynamic performance stubs methodology, a cost-benefit analyses of different
optimizations regarding the performance behavior can be done.

The approach of the dynamic performance stubs is to replace the software bottle-
neck by a stub. This stub combines the simulation of the software functionality with
the possibility to adjust the performance behavior depending on one or more differ-
ent performance aspects of the replaced software function. A general methodology
for using dynamic performance stubs as well as several methodologies for simulating
different performance aspects are discussed. Finally, several case studies to show the
application and usability of the dynamic performance stubs approach are presented.
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Chapter 1

Introduction

This chapter presents a novel approach to support the
methodologies of software performance engineering with
the possibility to realize a cost-benefit analyses of a pro-
posed software performance improvement. Following the
motivation, the concept of dynamic performance stubs is
introduced. A general overview of the framework is pro-
vided and the application of the stubs to carry out a cost-
benefit analysis is presented. Furthermore, an outline of
this thesis is given.
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CHAPTER 1. INTRODUCTION

Motivation

“Optimization matters only when it matters. When it matters, it matters
a lot, but until you know that it matters, don’t waste a lot of time doing
it. Even if you know it matters, you need to know where it matters.” [87]

The methods of Software Performance Engineering (SPE) [97] are used to deter-
mine the software functions, which have to be optimized. The basic concept of the
methods used for the performance measurement and performance tuning process,
which are a subset of SPE, follows a strict line: analysis - test - improvement - veri-
fication (summarized from [81]). This procedure strongly depends on the experience
of the person realizing the performance optimization study and can roughly be used
for estimations of the achievable gain [81].

This often leads to an over- or under-optimization of the software module as the
maximum gain cannot be determined in advance.

In the first case, the software module is highly optimized without getting the
expected improvement as another bottleneck appears in the system [55, 84]. Here,
usually too much effort is spent to optimize the module.

In the other case, the realized optimization does not fully utilize the systems’
resources, and thus, performance improvement capabilities are wasted. Hence, an-
other function, which can be improved has to be determined and optimized. This
needs additional effort, which has to be spent.

Problem Statement

One problem by using the methodologies of SPE is that a cost-benefit analysis of
improvement possibilities can rarely be done. The expert has to know the com-
plete system at a very detailed level, which is hardly possible within large software
projects.

Another problem is that the optimization has to be done without really knowing
how much of the module has to be optimized [84].

Without knowing all bottlenecks in advance, the improvement effort may lead
to an unexpectedly small gain. So, the following questions arise: “How much per-
formance improvement gain can be expected by optimizing this software function?”
and “How much effort has to be spent for reaching this improvement gain?”
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These can be answered by a cost-benefit analyses, which is not available within
the common methods of performance measurement and performance tuning process.
To bypass these problems, a new SPE methodology has to be developed to realize a
cost-benefit analysis in advance of the realization of the optimization. This can be
achieved by simulating different optimization levels of the software function and by
evaluating the performance improvement achievable in the system.

Solution Approach

This section describes a novel approach to solution, called dynamic performance
stubs (DPS). They provide a framework and methodology to carry out a cost-benefit
analysis for a software optimization studies.

The objectives are to develop a well-found methodology to simulate different
performance optimization levels of software modules or functions, and, to evaluate
the outcome of a possible optimization in advance of a costly implementation of the
optimization.

Dynamic Performance Stubs

DPS combine the techniques of stubbing, used in software testing [6, 109], and the
concepts of performance measurements and tuning [35, 42, 55, 74] from SPE. This
combination is reflected in the dynamic performance stubs framework. Here, its two
major elements are the simulated software functionality (SSF) and the performance
simulation functions (PSF):

SSF As the DPS are used to simulate the performance behavior of a software
bottleneck within a real application, the functionality of the software module
has to be rebuilt with only a small overhead of time. This is achieved by
applying the SSF.

PSF The PSF are used to adjust the performance behavior of the DPS in order
to be able to simulate different optimization levels of a software module or
function.

By using those two elements, a DPS can be built, which replaces the software
functionality of the supposed bottleneck. This can be achieved by using a predefined
set of test cases as the functional behavior of the bottleneck has to be deterministic.
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System

Software Component
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Bottleneck
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Performance
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Figure 1.1: Normal and Stubbed Execution with Dynamic Performance Stubs

Figure 1.1 depicts both, the original execution of the system as well as the
execution where the bottleneck (component under study, CUS) has been replaced
by a dynamic performance stub.

The software performance test can be executed several times by changing the
performance behavior of the dynamic performance stub. The results of the tests
present the overall performance improvement gain depending on the adjusted per-
formance parameters of the dynamic performance stub. Moreover, they can be used
to do a cost-benefit analysis of different performance optimization strategies.

Additionally to the benefits of the dynamic performance stubs many drawbacks,
which a software performance improvement usually have, can be reduced, e.g., an
over- or under-optimization can be avoided if possible. Moreover, the following
non-exhaustive list provides vantages, which can be furthermore achieved:

• Identify hidden bottlenecks

• Evaluate the work needed for optimizing the CUS

• Ability to identify the performance bound

• Evaluate changeovers of performance bounds

• Evaluate the amount of work needed to reach a changeover of the performance
bounds
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This is only a short overview of several advantages, which can be gained by
using dynamic performance stubs. The elements of this list as well as a description
to achieve these benefits are evaluated more in detail in Section 4.

Thesis Outline

This thesis is structured as follows. The next two chapters (Chapter 2 & 3) present
a critical review of literature in the areas of performance engineering and, especially,
dynamic performance stubs.

In Chapter 4, we present the framework of the dynamic performance stubs. This
chapter serves as an introduction to the new developed methodology for software
performance engineering. Hence, an overview of the dynamic performance stubs is
presented and subsets are specified. General steps to use the dynamic performance
stubs framework in order to optimize software performance bottlenecks are also pre-
sented. An extension of these steps to evaluate further use cases and to increase the
usability of the dynamic performance stubs are given. Finally, the section concludes
with a summary.

The Chapters 5, 6 and 7 describe three different subsets, i.e., CPU stubs, main
memory stubs and data cache memory stubs, of the dynamic performance stubs in
detail. Each of these chapters lists the requirements of the performance simula-
tion functions and defines a methodology to apply these. Moreover, we provide an
implementation of the performance simulation functions as well as a possibility to
calibrate these functions to the system. To conclude each chapter, a case study is
presented and followed by a summary.

Chapter 8 discusses a framework to simulate the functional behavior of a software
algorithm. Thus, the requirements on the simulated software functionality are listed.
A methodology that describes the application of the simulated software functionality
is presented. Furthermore, a realization is depicted and followed by a case study as
well as a summary.

To support the approaches of the Chapters 5 - 8, Chapter 9 provides an evalu-
ation of the usability of the performance simulations functions. Hence, we shortly
introduce the test environment, which is used for validation. Moreover, this chapter
is split into the different subsets to evaluate each performance simulation function
separately.

In Chapter 10, the scientific results and possibilities to extend the framework of
dynamic performance stubs are presented.
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Chapter 2

Literature Review on Performance
Engineering

This chapter provides an overview of the different per-
formance engineering aspects. Especially, an overview of
the history, the different areas of performance engineer-
ing and performance engineering studies are presented.
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2.1 Introduction to Performance Engineering

Performance Engineering (PE) includes different aspects, e.g., performance require-
ment analysis, performance specification, capacity planning and -management, per-
formance modeling and performance evaluation1. A sustainable work of PE has
been done in software performance engineering (SPE).2 SPE is a systematic ap-
proach to evaluate and validate the performance behavior of software in order to
meet the performance requirements. Therefore, the methodologies of SPE are target-
ing many areas, such as performance predictions of upcoming software, performance
measurement and improvement studies. Another field of SPE is the performance
requirements analysis and specification. While a software system has many differ-
ent performance indicators, software performance is often referred to throughput or
latency. Performance regarding software engineering has been defined by IEEE[49]:

“performance. The degree to which a system or component accom-
plishes its designated functions within given constraints, such as speed,
accuracy, or memory usage.”

The work of a good performance engineer is often not recognized because if they
are doing their job well, there are no performance problems. So someone might
think: “Why do we need a performance engineer if we do not have performance
problems?”[106]

This section gives an overview of the history and the different aspects of perfor-
mance engineering as depicted in Figure 2.1. Additionally, it introduces performance
measurements studies and validation methodologies. It is concluded by describing
performance measurement tools.

2.2 History of Performance Engineering

Software performance is considered since the beginning of computing [104]. Around
1968 Donald E. Knuth worked in the area of efficient sorting and searching al-
gorithms as well as data structures [66, 67]. Whereas, many authors worked on
performance-oriented development approaches, references can be found in [103, 104],

1This list only provides some aspects of performance engineering and is far from being exhaus-
tive.

2Since SPE now covers almost every aspect of PE it is often set to be equal.
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Figure 2.1: Topics of Performance Engineering based on a Literature Review

around in the 1970s most software developers of non-reactive systems used the “fix-
it-later” approach for tuning their software. The hardware has developed rapidly so
that the “fix-it-later” approach was sufficient then. In the 1980s, the complexity of
software systems increased dramatically. Therefore, the demand for “fast” software
also increased drastically. [45], published in 1984, lists more than 200 references
for performance evaluation methodologies focusing on post-1970 developments and
trends. In 1981 the methodology of SPE has been introduced [101, 104] and updated
in [102, 105]. More recent articles [9, 103, 104] and books [35, 55, 74] about software
performance methodologies provide sustainable work in that area.

2.3 Areas of Software Performance Engineering

SPE includes all areas of software performance predictions, such as predictions about
the performance behavior of non-existing soft- and hardware as well as predictions
of upcoming possible workload scenarios. Another part of SPE is the performance
measurement and improvement studies. A more comprehensive list of SPE tech-
niques can be found in [104]. According to the following articles [35, 45, 58, 103]
SPE can be split into the different parts:

• Performance Measurements

• Performance Modeling
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– Simulation Performance Modeling

– Analytical Performance Modeling

A fourth area of SPE (“Petri Net Modeling”) is mentioned in [35]. Because, it
is more a technical realization to support a mixture of “simulation-” and “analytical
performance modeling” it is not included as an independent category in this thesis.

2.3.1 Performance Measurements

Performance measurements are used to evaluate and validate the performance be-
havior of existing systems or applications. This is a crucial task as performance
predictions of software often do not meet the performance specifications. Perfor-
mance measurements of existing systems or prototypes are often used to provide a
more detail view to support model specifications, to validate performance objectives
and to identify performance problems that require improvements. The task of a
performance engineer and several different evaluation methods and techniques are
described more in detail throughout the following subsections.

2.3.2 Performance Modeling

Whereas, performance measurements are done to validate the behavior of applica-
tions performance modeling will be used for non-existing systems, to support perfor-
mance measurements or when performance measurements would be too expensive.
According to the literature, e.g., [58] performance modeling can be split into sim-
ulation performance modeling and analytical performance modeling as described
above.

Simulation Performance Modeling

Simulators model existing or future hardware to evaluate different realization pos-
sibilities. The simulators are often applications running on existing hardware and
model the proposed behavior of this or another system. They are working instruc-
tion accurate and can provide deep insights into the functionality of the application
or hardware. In this case, the execution of the SUT takes normally much more time
as on a real system. Simulators are also often used to evaluate timing behaviors, too.
As many different models can be realized, these tools can simulate complete systems
or only one or more components. A drawback is that simulators often provide many
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details of the system and, therefore, imply too much accuracy. Insufficiencies occur
if the component under test is not accurately simulated, e.g., a least recently used
(LRU) replacement strategy is used instead of a pseudo least recently used (PLRU)
is used. Hence, having detailed results do not necessarily mean that the results are
appropriate.

Analytical Performance Modeling

This modeling technique is mainly used to evaluate the performance behavior of large
systems. These systems can only partly be analyzed using cycle accurate simulation
performance modeling tools. The analytical modeling is based on mathematical
descriptions and, therefore, these tools are often cost and time effective. As the
“real world” is too complex to fit into models, the tools are based on simplifying
assumptions. Hence, all results are only approximations to the “real world” behavior.
Nevertheless, carefully constructed analytical models can be used to more or less
accurately evaluate “average job throughput”, device utilization and response times.
Many valuable references to analytical performance modeling can be found in [45].

2.4 Performance Measurements Studies

The design of the performance measurement study is one of the key aspects for any
software optimization process. These studies are normally done in a very late stage
of the performance engineering process [58, 71, 87]. Lists of software improvement
possibilities can be found in [1, 104].

The performance optimization process should be integrated into the software
development life cycle [58, 71, 106]. In many software projects, e.g., in embedded
systems or telecommunication software, the development platform is often not the
target platform.

For the ease of use, the optimization team should provide performance mea-
surement environments to the development team. Therefore, they have to identify
suitable performance measurement tools and have to validate the usability of these
tools on the development platform. Having this, the development team can optimize
identified bottlenecks by themselves and measure the estimated improvement gain.
The final results have to be evaluated on the target platform, of course. Addition-
ally, performance tests on the final target are more expensive than evaluations on
the development platform, since the target hardware is often specialized. Therefore,
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providing a performance measurement environment to the development team can
reduce costs and speed up the whole optimization process.

2.4.1 Performance Target Specification

A performance target specification (PTS) will normally be written in the system
design phase and includes several different hard- and software configurations of
the system. It specifies performance indicators (performance metrics) as well as
the according workload scenarios and test conditions. Therefore, it includes the
performance targets of the system and can be used as reference for performance
improvement studies. Despite of the functional specification that describes several
use cases of the software, the performance target specification lists non-functional
requirements of the system.

The following paragraph from the introduction of the performance target spec-
ification of our industrial partner for their telecommunications system is a good
example of the content of a performance target specification:

“If not specified otherwise, end-to-end performance objectives are defined
in terms of Performance Indicators (PIs), e.g. latency and throughput
pertaining to a single user in an empty (unloaded) system under the
most favorable conditions, e.g. ideal radio conditions, so that they can be
tested in a System Verification lab or in a customer lab with commercially
available test equipment.” [76]

The information provided in a performance target specification document are
often on a detailed level, e.g., the time needed from message request until response.
Nevertheless, the targets have to be broken down further by the performance group
for identifying performance bottlenecks.

2.4.2 Traffic Model

Together with the performance target specification a traffic model is often evaluated
by the system design performance group. This model describes workload predictions
for the new system and is normally based on measurement of similar former systems
and extended with different workload predictions and possible use cases. This doc-
ument is often split into different traffic type perspectives describing particular use
cases, e.g., the traffic model of our industrial partner [77]:
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Traffic Needs The “traffic needs” in general divides the needed traffic appearances
according to their specific use cases, e.g., user initiated traffic or configuration
data.

Traffic Types The “traffic types” describes the aspect of network connections, e.g.,
multicast or point-to-point data flows.

Traffic Characteristics The “traffic characteristics” describes the amount of dif-
ferent “traffic types” as well as their appearances and use cases.

A summary for a chapter from the introduction of the traffic model can be used
as an example for the content of a traffic model in general:

“The possible “mixes” i.e. how to utilize the created Traffic Model pa-
rameters starting from basic user plane traffic load issues by choosing a
reference “call” as a simple base (reference call mix). The reference call
mix assumes static user plane load to the system based on one single sub-
scriber “type” using the most common service in the system. The related
Control Plane load issues for the chosen reference call can be gathered
via the related service mix parameters. When using different subscriber
types (utilizing subscriber mix), different types of services (via different
service mix models) and taking into account the impacts from the net-
work structures (connectivity mix) the traffic model parameter utilization
gets more sophisticated but gets also more complex.” [77]

This example is derived from the evolved NodeB component of the telecommu-
nication system LTE (see [65]). As it is a telecommunication system, many different
use cases regarding a “call” exist, e.g., voice call or data call. Therefore, the traffic
model describes the different call scenarios, e.g., reference call mix. These scenarios
are further classified and described.

As this example shows, the specification of a traffic model is a highly complex
task with many uncertainties, e.g., predictions for the upcoming traffic and use case
scenarios. Hence, the traffic model specifies different workload scenarios. The most
called procedures can be extracted and used for performance optimization studies.

2.4.3 Performance Test Environment

Most requirements for functional software test environments are also applicable to
performance test environments, e.g., being able to create deterministically and re-
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producible test results. In addition, to these requirements, performance test envi-
ronments should be able to almost fully utilize the system under test.

Another key requirement for performance tests is the possibility to simulate
use cases that are specified in the performance target specification as well as in the
traffic model. Performance test cases often differ from the functional test cases [106].
Sometimes test cases from the functional tests can be used to measure performance
targets specified in the performance documents but often the test cases have to be
adapted to fit the needs for a performance evaluation study.

2.4.4 Measurement Study

There are several types of performance testing, e.g., capacity-, stress- or long time
tests. Whereas, each of these tests has it is own specialization this section is more
generalized and provides an overview of different decisions, which has to be targeted
in a performance measurement study. This section discusses the following aspects:

• Performance Metrics

• Data Collection Techniques

• Tracing

• Performance Measurement Tools

• Design of Experiments (DOE)

Performance Metrics

Based on the performance target specification (see Section 2.4.1) and traffic model
(see Section 2.4.2) the performance metric has to be chosen. Typical performance
metrics are and defined according to IEEE [49]:

“response time. The elapsed time between the end of an inquiry or
command to an interactive computer system and the beginning of the
system’s response.”

“throughput. The amount of work that can be performed by a computer
system or component in a given period of time; for example, number of
jobs per day.”
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“utilization. In computer performance evaluation, a ratio representing
the amount of time a system or component is busy divided by the time it
is available.”

A more comprehensive list can be found in [48].

Data Collection Techniques

In order to verify the performance behavior of the system, the performance metrics
have to be evaluated. This can be done by either monitoring or by recording the
events.

Monitors are normally used to evaluate the system behavior during the runtime
(online). To verify the application behavior a recorder can be used to store the
performance metrics. These traces are often evaluated afterwards, which is also
referred to offline evaluation.

Depending on the performance metric, a system wide or a program monitor can
be used. Different events of the application can be recorded with either a system
event recorder or using an external program event recorder. As both mentioned
types of recorders only provide an external view another type of recorder, called
internal event recorder, is available to collect different performance data or metrics.
[103] lists several different performance metrics as well as the according monitors
and recorders.

Tracing

Tracing is a type of logging and can be used to evaluate the application behavior.
Usually, debugging information will be recorded by traces to get insights of the
program execution. Additionally, this method is often used to record information
about the performance behavior. The following subsection discusses different aspects
of tracing more in detail.

Trace Levels It is often necessary to add additional performance trace informa-
tion to the application as well as switching off unneeded debug trace information.
This can be realized by different trace levels. This is needed to improve the runtime
behavior of the application as every trace information contributes to the overall ex-
ecution time. Therefore, unneeded trace information are often removed, e.g., using
flags, during performance test.
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(Non-) Intrusive The measurements can be either intrusive or non-intrusive [9].
Intrusive here means that additional trace probes are inserted in the workload and
will explicitly be measured, e.g., sending messages with non-existing data content
to be able to uniquely identify the received message. This can easily be used for
measuring, e.g., round-trip times. Non-intrusive measurements do not add messages
to the workload. All information needed must be extracted from the workload. As
they are non-intrusive, they will not influence the overall workload of the system.

Active or Passive Sometimes traces cannot be received by the application itself.
This is often the case if the system has to be tested under high workloads, e.g.,
for measuring overload routines. Therefore, it is necessary to passively measure
the SUT. Passive measurements, despite of active, will be taken from outside of
the software or system, e.g., using a mirror port from network switches to gather
information about the network traffic. These measurements do not influence the
system or software and, therefore, often lead to results that are more accurate.
Nevertheless, passive measurements cannot provide deep insights of the system or
software under test because this type of information can only be recorded inside of
the application.

Performance Measurement Tools

Depending on the performance metrics and the test environment a suitable perfor-
mance measurement tool has to be chosen. More information about different tools
and recording techniques are discussed in Section 2.5.

Design of Experiments

There are normally different optimization possibilities that can be used to improve
the performance of a software and system. These optimizations often depend on
each other. As every improvement has some drawbacks [55, 84, 87, 97], it is useful
to evaluate the impact of each optimization. This can be done by defining a test
matrix, e.g., the different optimization possibilities and the according experiments.
Having this matrix the performance engineer has to decide, which of these possible
combinations shall be evaluated. This is called “design of experiments” (DOE) and
is described in [45, 134].

An overview classification of the DOE as discussed in [55] lists the following main
categories:
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Simple Designs In simple design experiments common configurations will be used
and only a single parameter at a time will be changed (one-factor-at-a-time).

Full Factorial Designs Fully factorial designs is the opposite of simple designs.
In this case, every possible combination of varying the parameters will be
evaluated. The best combination of parameters can be evaluated. Of course,
in this validation scheme the most effort has to be spent.

Fractional Factorial Designs Fractional factorial design is a combination of the
above described designs to reduce their drawbacks. Here, different factors will
be changed for evaluating the behavior. The choice of the factors, which will
be evaluated, is a difficult task. Choosing the wrong parameters can lead to
useless results.

In [55] several chapters are discussing the design of experiments.

2.5 Performance Measurement Tools

In this section, performance measurement tools are described more in detail. There
are many different available tools for many different performance analyzing possibil-
ities. They are described in software performance books, such as [35, 55, 74]. This
section concentrates mainly about to measuring executable applications, which is
also often referred to “dynamic analysis” (see [86]).

2.5.1 Mode of Operation

Performance measurement tools as described in Section 2.5.3 are distinguished on
the mode of operation: “tracing tools” and “sampling tools”. In order to collect the
different performance metrics they have to utilize the system. This can be done by
instrumenting (see [86]) either the source code, the binary or the system by inserting
probes.

A metric is called “directly” if it itself can be measured [74]. Here the instrumen-
tation is often done in the application. This technique can be used to gather detailed
internal application information. Another possibility to gather performance metrics
is to measure “indirectly”. In this case, another performance metric is measured
and conclusions to the performance metric under study will be drawn. This delivers
an external overview of the metric. Introducing probes in the application always
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affects the behavior of the execution. The measurement error depends strongly on
the probes itself. Probes can be inserted in the following parts of a system:

• Application Instrumentation

• System Instrumentation

• Hardware Counters

These items will be explained in more detail in the remaining section.

Application Instrumentation

The following list presents several different possibilities to instrument an application:

• Source Code Instrumentation

• Compiler Instrumentation

• Binary Instrumentation

• Dynamic Binary Instrumentation

Source Code Instrumentation This is a main technique for gathering perfor-
mance data and is normally done by the developers. The advantage of this method:
the needed information can be measured from inside of the application with nor-
mally small overhead. The main drawback of this method is that someone will not
be able to find the real bottleneck if the application is not correctly instrumented.
Additionally, deep insights of the application are essential to get the needed infor-
mation.

Compiler Instrumentation The instrumentation will be done while the source
code of the application is compiling. Most modern compilers provide a possibility to
interact with profiling tools, such as GPROF or Rational Quantify. These tools are
providing options for automatically inserting probes. Often the collected traces after
a performance measurement run can be fed in the compiler for a better optimization,
e.g., rearranging the instructions for fewer branch miss predictions in this special
case.
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Binary Instrumentation The source code is needed for applying source code or
compiler instrumentation methods. A binary instrumentation can also be done with-
out available source code. It analyzes the binary code and introduces the necessary
probes. Examples for such tools are TAU or EEL.

Dynamic Binary Instrumentation The main difference between “dynamic bi-
nary instrumentation” and “binary instrumentation” is the point in time when the
binary gets instrumented [86]. In “binary instrumentation” the binary is first instru-
mented and afterwards executed. In dynamic binary instrumentation the binary
is instrumented at run-time. This can be done with an external process or with a
process hooked into the binary. Examples for such tools are TAU, PIN or paradyn.

System Instrumentation

The probes for the performance measurements will be inserted in the operating
system or kernel. This can be achieved by extending the system by another mea-
surement application that additionally often instruments the system itself. The
kernel has often to be patched and rebuild for including the probes. This technique
is able to indirectly trace the application. Examples for such tools are: LTT, LTTng,
LKST or Systemtap.

Hardware Counters

The processor architecture often provides many hardware counters [50, 79], e.g.,
“instructions retired” or “L2 data cache miss”. They can be used to analyze different
performance behaviors. To gather the information additional applications, such as
OProfile or Perfctr, are running in the kernel. The counters only report an overview
of the complete system. In order to get reliable results many samples have to be
captured. Collecting and gathering the values from the counters does not cause much
overhead. Therefore, long-term application runs are possible and often necessary
due to the measurement error introduced by the sampling technique, which is also
described in Section 2.5.3.

Another possibility is to insert probes into a “virtual environment” or an em-
ulator. In this case, the application under study has to be executed within this
environment. This is similar to using a simulation tool to measure the application
under study.
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2.5.2 Characteristics

As every software application, performance measurement tools should comply with
many different characteristics. This section will shortly outline the main require-
ments dedicated to measurement tools. A more comprehensive list of the require-
ments of performance measurement tools as well as performance evaluation tech-
niques are described in [58]. Performance measurement tools should introduce as
little overhead as possible. They should try to minimize the measurement error and
should provide deep insights of the system or application under test. Additionally,
they should be highly configurable and easy to use. As there are many competing
requirements for performance measurement tools, a diversity of different types of
tools have emerged.

2.5.3 Classification

Whereas, most performance evaluation tools cannot be strictly assigned to a dedi-
cated category, the different ideas and methodologies of the measuring possibilities
have been classified in the literature [45, 58, 74, 82]. The commonly used breakdown
is as follows:

• Tracing Tools

• Sampling Tools

• Simulation Tools

There is another category of performance measurement tools called “benchmarks
tools”, e.g., SPEC CPU2006. They are exhaustively described in the literature
[22, 58]. Benchmarks are used to create a defined workload and to store the according
performance results. As the workload is defined the results of the benchmarks for
different software or systems can be compared. Benchmark tools can be used to
identify software bottlenecks. As these tools do not provide deeper information
about the software under test, they will not be described furthermore in this section.

Tracing Tools

Tracing means measuring the execution path of a running application. Normally, the
application is instrumented to get the necessary performance and runtime informa-
tion. This is done by the software developers but can also be done by performance
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applications (see Section 2.5.1) or by compilers. Additionally, the system can be
instrumented to get an overview of the running threads and application in a multi-
threaded environment, e.g., using LTT or LTTng.

This measurement method can be used to get deep information about the process
but the probes should be chosen carefully. As every trace information contributes
to the total run time of the application. Therefore, tracing can be very expensive
for long time runs with many different probes.

Sampling Tools

Sampling or profiling is the periodically capturing of the state of running applications
[45]. In contrast to the tracing tools, where the flow of an application can be
recorded, sampling tools normally only provide statistical behavior of the process
or application, e.g., determining the number of function calls. This performance
information is often provided by hardware performance counters [16, 140]. Tools,
such as Systemtap, OProfile, Perfctr or Dtrace can be used to gather these data.
Another possibility for sampling-based measurement is to automatically instrument
the application or to manually instrument the application, which can be done by
the developers. For more information see Section 2.5.1.

Sampling normally means that the system counts an amount of events and
records the values at fixed time intervals [74] (“time based”). Another possibility
is to capture an amount of events and as soon as the value reaches a threshold the
value will be recorded (“event based”). Both sampling modes, “time-” and “event-
based”, are supported by OProfile (see Section 4 of the OProfile manual). Addition-
ally, sampling techniques can use further triggers, e.g., precise event-based sampling
(PEBS) [16].

Simulation Tools

Simulation tools are simulating software or hardware where the application under
test can be executed. They provide often deep and accurate information in their
dedicated areas. Unfortunately, they are slow compared to the real execution of the
application on the target.

Callgrind3 is a good example for this category. It is able to simulate a complete
system, including different memory architectures and is able to trace and profile the
whole application. It provides an execution path as well as profiling data, e.g., L1

3Callgrind is an extension to valgrind. See http://valgrind.org
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cache instruction read misses and hits. If the source code is provided and debug
symbols are available in the application than kcachegrind4 is able to provide infor-
mation down to the assembler instructions. Due to the fact that callgrind simulates
the whole architecture it is not possible to get information of the amount of cycles
spent in the application. Since it only models the architecture most of the val-
ues are only based on approximations or assumptions, e.g., the L2 cache hardware
prefetcher is able to load all data. Another drawback is the time needed to measure
the application: callgrind needs 20 - 100 times longer then a normal execution5. For
more information see [53, 86] as well as their research paper section6.

Since use of virtualization of computer hard- and software is increasing in the
last years, many performance tools have been built on top of these techniques.
Therefore, we would like to add another category “virtual machine tools” to the list
above. These tools are similar to the ones described as simulation tools. However,
virtual machine tools do not really fit into this category since simulation tools are
often simulating a whole system in total (including the CPU), which is a very time
consuming task.

Summary

In general, different measurement tools provide more or less accurate and deep
insights of the software or system. The more information are recorded, the more
time is needed for recording as well as the more accurate the information are the
more time is needed. The time spent in a measurement tool changes the software
behavior. Therefore, the performance measurement tools and metrics have to be
chosen carefully.

4A visualizer for callgrind traces. http://kcachegrind.sourceforge.net/html/Home.html
5http://valgrind.org/info/tools.html
6http://valgrind.org/docs/pubs.html
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Chapter 3

Literature Review in the Area of
Dynamic Performance Stubs

This chapter evaluates current literature regarding dy-
namic performance stubs as well as the subsets CPU-
and memory stubs. Moreover, literature in the area of
the simulated software functionality is presented.
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3.1 Dynamic Performance Stubs

In [82, 83] the performance is modeled at instruction level as well as the influence
on memory and caching performance. The granularity makes the approach hardly
usable for dynamic performance stubs, which will be used to stub modules or func-
tions.

In [92] smart stubs are introduced. These stubs simulate the budget regarding
storage and timing behavior of systems. These systems do not exist while the
measurements are done. Also mainly a management view has been taken. The
dynamic performance stubs however aim to replace a known software bottleneck to
evaluate different optimization possibilities.

However, the dynamic performance stubs in our approach will be used for stub-
bing already implemented and measured software parts in order to find the bounds
of the performance improvement within that part. This procedure helps to identify
the real gain of the performance improvement without really improving it and ad-
ditionally shows the next bottleneck. So the cost-benefit analysis for improvement
activities can be achieved in a more realistic way, because a proper simulated result
is better than a simple estimation.

To the best of our knowledge, no research in the area of replacing software
bottlenecks by stubs that can simulate different software performance behaviors has
been done. Many performance engineers, whom we have met, have confirmed that
no such methodology or tools are available.

3.2 CPU Stubs

CPU stubs refer to simulating the performance behavior of a software module or
function regarding the CPU. Hence, the time behavior of a process has to be studied
and simulated. This can be done by simulating the dedicated amount of time while
the process is scheduled.

3.2.1 Related Work

In [130, 131] a problem with simulating a dedicated amount of time with do-nothing
loops is described. Despite the problems seen, there are big differences in the ap-
proaches. The procedure is targeting the area of bulk-synchronous parallel jobs,
which are realized as do-nothing loops. The focus is to optimally utilize each of
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the included processors. So the processes always try to run, ignoring the amount
of time needed for the operating system per processor. As soon as the operating
system has something to do, the userspace application will be scheduled out and the
total execution time will be delayed.

Our CPU performance simulation function, however, will be calibrated in an
otherwise idle system with enough time for the operating system. As experimentally
proved in [122], in our environment the execution time of a process can be simulated
with a do-nothing loop, predictably in contrast to [130, 131]. Additionally, because
of the fact that such a loop has a defined number of instructions these loops can be
used to simulate the time behavior of processes.

3.2.2 Basic Literature

Process States The CPU executes the instructions of the applications. The
scheduler exists to decide which process the CPU has to execute next (see [8, 36,
116]). It maintains several queues about the states of all processes: running, ready
or blocked. If no process is either in the running or ready state the idle process is
executed by the CPU.

From a process perspective, the process can be either executed by the CPU
or is suspended. CPU stubs are targeting to simulate the timing (CPU) behavior
of a bottleneck. Hence, CPU stubs have to be able to switch the state. As only
the scheduler decides whether a process is in the running or ready state. Thus,
it is not possible to enforce a process to be in the running state in non-real time
systems acting from user space side. Only the possibility to increase the chance to
be scheduled soon into the running state exists, e.g., using priorities.

Therefore, the CPU stubs have to simulate the remaining states “running” and
“ready/blocked”.

Types of Time Several different types of time have to be distinguished to describe
CPU behavior of a process. According to [64, 116], those are:

User Time This is the time spent in the process while it is executed in the userspace.

System Time This is the time spent in the process while it is executing sys-
temspace routines, e.g., allocating memory.

Real Time This is the time, which the process was active, i.e., from starting the
application until its termination.
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As usertime+ systemtime 6= realtime, there is another time period, which has
to be considered [64]. This time is called “wait time” and describes the time while
the process is blocked by any reason, e.g., waiting for I/O or because the CPU is
blocked by another process.

The before mentioned times present the times, which a process can have. From
a CPU utilizations perspective, two different time exist:

Idle Time This is the time while the “idle process” is scheduled.

Busy Time This is the time while a process is scheduled, which is not the “idle”
process.

These two time can be used to calculate the CPU utilization.

Measuring Time As described above, different types of time can be measured.
First of all, there is the total time spent in the system. Architectures normally
provide two devices for time keeping [75].

The first is the real time clock (RTC), which is system independent and keeps
track of the absolute time. It is normally used by the kernel to initialize the wall
clock time but can also be read by other applications [8].

The second is the time stamp counter (TSC) [2, 31]. It is updated with each
tick of the system and can be used to measure the total time passed in the system.
These are possibilities measure to the total time accurately. For a more granular
and portable wall clock time measurement the POSIX standard1 specifies several
functions such as the “gettimeofday()” (sys/time.h; time.h) or the “time()” (time.h).

Linux also provides the possibility to measure the time used by the dedicated pro-
cess. For this purpose the “clock()” (time.h) or the “times()” (sys/times.h) function
can be used. Also more detailed information can be gained by using the “getrusage()”
(sys/time.h; sys/resource.h).

In some cases, it cannot be possible to measure the needed time period, e.g.,
because of the resolution of the timer [74]. Especially, if the measured events are
smaller or at the same size as the resolution of the timer. According to [74], one
possibility to measure these time periods is to make many successive measurements
of the event within a single measurement. Here, a statistical estimation of the events
duration can be done.

1http://www.pasc.org/plato/
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According to the needs of the performance analysis one or more of the above
mentioned measurement functions fits more or less well. Therefore, the most suitable
function has to be chosen.

CPU Utilization Beside the time measurement, it is often useful to measure
the utilization of the CPU usage. There are several dedicated applications for a
system wide measurement, just to name two: “top” and “vmstat”. To measure the
CPU utilization from inside of a module or function the “proc”-filesystem can be
used. Here, the “stat”-file provides a global view, e.g., of the CPU utilization. To
measure only self-used information within the process, the “stat”-file which is located
in /proc/〈pid〉/stat can be used.

3.3 Main Memory Stubs

Main memory stubs shall be able to simulate the main memory access behavior of
software modules or functions. They can be used to replace a memory bottleneck in
order to easily change the performance behavior to evaluate different performance
optimization gains.
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Figure 3.1: Memory Access Times in Cycles

Figure 3.1 depicts the access times to different memory levels in terms of cy-
cles. The y-axis is scaled logarithmic. The values of an Intel Pentium 4 processor
architecture have been used in this diagram.

3.3.1 Related Work

Performance skeletons, as described in [108], are used to simulate the performance
behavior of applications. This has been achieved by capturing the execution be-
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havior and creating synthetic program skeletons. Hence, the skeletons are using an
instruction mix, which is similar to the instructions used by the application under
study. The main target is to simulate the performance influence of the application
in long running scenarios by short time execution of the skeletons. This can be used
to accurately estimate the performance in heterogeneous and shared computational
grids. In [115] the automatic constructions of these skeletons is shortly described.
The possibility to replicate the memory performance behavior is studied in [119].
The reader is referred to [107, 133, 137] for more information about performance
skeletons.

The approach of the dynamic performance stubs framework significantly differs
from the performance skeleton approach. The performance skeletons are used to
simulate the performance behavior of all performance bounds concurrently, e.g.,
cache and main memory, and only aim on the reduction of the running time of the
application. In our approach, we simulate each performance bound independently,
to be able to separately adjust each performance behavior to the needs of the per-
formance improvement study. This leads to a gain-oriented optimization. Moreover,
the dynamic performance stubs framework is able to simulate a function or module.
Whereas, the performance skeletons are always simulating the behavior of the whole
application. Therefore, the approach of the performance skeletons cannot be applied
to the dynamic performance stubs framework to simulate the memory behavior.

3.3.2 Basic Literature

This section is based on a literature review for memory handling in the programming
language C. Furthermore, it provides some basic understanding of the memory layout
of applications.

Memory Usage in Computer Systems An application typically consists of
five memory segments [99]: Code, Data, Block Started by Symbol (BSS), Heap and
Stack.

The code segment, also known as text (segment), is a portion of memory, which
stores the instructions executed by the application. The next two segments, i.e., data
and bss, stores variables, which are allocated during the compile time. The heap
segment stores variables, which are dynamically allocated during run-time of the
process. The stack memory is used to store temporarily used variables, e.g., within
function calls. Hence, the stack memory is more often allocated and freed than the
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heap memory. Additionally, the stack usually allocates only few bytes, whereas, the
amount of bytes allocated on the heap is higher. Moreover, the stack only de- and
allocates the data on top of the memory, whereas, the heap memory always tries
to allocate the data in an appropriate memory region. Hence, fragmentation of the
heap can happen [63, 99], which can lead to “unnecessary” memory allocations.

The shared libraries, which are used by the process, are typically stored between
the heap and the stack segment [99].

Normally, the segments are ordered as described, starting from the lower ad-
dresses to the higher, but, this can differ in various architectures. The order can be
seen in Linux-based operating systems (OS) using the process file system (procfs,
see manual page of the procfs), e.g., in /proc/PID/maps.

The memory layout, as described above, applies to the virtual address space,
also known as logical address space, of applications. The memory management unit
(MMU) translates the virtual addresses to real addresses [99]. This translation is
often assisted by the translation look-aside buffer (TLB) [116].

The main memory will be allocated by processes in pages, which are successive
memory chunks with a size of “pagesize”2 [99].

If a process allocates main memory, exceeding the available memory already
fetched, a page fault will be created by the OS [99]. Two different types of page
faults can happen: Minor- and major page fault.

A minor page fault, also known as soft page fault, happens if the newly allocated
page has to be requested from the main memory. If the memory has to be fetched
later from a higher level memory, e.g., hard disk drive (HDD), a major page fault,
also known as hard page fault, is triggered by the OS. Minor page faults are less
expensive in terms of the time than major page faults. The amount of page faults
of a process can be read through the “getrusage()” function3 or through the procfs,
e.g., in /proc/PID/stat.

Memory Handling in Applications This section discusses several assets and
drawbacks of the different memory allocation functions. More information about
the explained function calls can be found in the corresponding manual pages.

2The pagesize can be evaluated in POSIX-based OS’s using “sysconf(_SC_PAGESIZE)” from
unistd.h

3The function can be accessed through sys/resource.h in Linux-based OS.
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Initializing Memory Memory, which is allocated, will usually be filled with
data. The “memset()” function can be used to initialize the requested memory to
a predefined value. The time needed for initialization significantly depends on the
amount of memory.

Allocating Stack Memory Usually, the stack is not handled by the program-
mer in a direct way. It serves as a highly dynamically memory for storing temporal
used data. Nevertheless, the stack can be allocated, e.g., using the “alloca()” func-
tion. The implementation is very fast on most systems, as it is only adjusting the
stack pointer register. As described in Section 3.3.2, the stack cannot be fragmented.
As drawback, an allocation failure is not indicated and, therefore, it is often handled
as the “out-of-stack” space situation, e.g., with a segmentation fault. Moreover, it
is recommended to avoid the “alloca()” function with large unbounded allocations.

Allocating Heap Memory The heap memory is designed to provide a flexible
run-time storage to the programmer. Whenever heap memory has been allocated, it
has to be freed, e.g., using the “free()” function call, to avoid memory leaks. Further
problems using the heap memory can exist, e.g., dangling pointers or freeing the
same memory twice [84].

Common heap allocation functions are: “malloc()”, “realloc()” and “memalign()”.
“Malloc()”4 fetches main memory in multiples of system page sizes but uses only the
requested memory. The remaining heap memory can then be used later on. The
requested system pages do not have to be continuous in the main memory. Freeing
the allocated memory can lead to heap fragmentation as described in Section 3.3.2.
“Realloc()” is similar to “malloc()” but can be used to resize the memory as requested
by the programmer. Moreover, “realloc()” acts like malloc if a NULL-pointer is given
and can be used as “free()” if the “size” parameter is omitted. “Memalign()” basi-
cally uses the “malloc()” function and then aligns the obtained value. Moreover,
the memory returned by “malloc()” is usually aligned, anyway. Thus, the use of the
“memalign()” function is deprecated and only mentioned for the sake of complete-
ness.

Another possibility to allocate heap memory is to use the “calloc()” function.
“Calloc()” is designed to allocate memory for arrays. Here, the number of elements
as well as the size per element can be specified. Additionally, “calloc()” initializes it
is allocated elements to zero.

4Many different “malloc()” implementations exist, e.g., “dlmalloc()” or “ptmalloc()” (see [72]).
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The available heap memory is usually handled by an ordered list [63]. Hence, the
“malloc()” function call can be expensive if the heap is highly fragmented. Moreover,
the heap has to be reconfigured if memory is newly allocated or freed by the process.
Thus, using the heap memory is usually more expensive regarding the execution
time than using the stack memory. However, memory from the heap can be used
throughout the process run time and, usually, more heap memory can be allocated
than stack memory.

Another aspect of the heap memory is that “freed” heap memory is often not
directly returned to the system. Instead, it is stored in a malloc pool for further
usage [113, 135].

3.4 Data Cache Memory Stubs

Most designers of architectures try to avoid an access of the main memory because
of the time needed to load data from there to the CPU, e.g., about 240 cycles for
an Intel Pentium M processor [28]. Therefore, the developers of CPUs implement
several strategies of using caches to decrease the need to access the main memory and
to increase the speed of execution, e.g., instruction- and data-prefetching [98, 132]
or branch predictions.

3.4.1 Related Work

Cache behavior predictions for applications have been done in [33]. Here, the content
of the caches is determined using an abstract semantics of machine programs.

In [79] an approach for creating data cache hits and misses has been described.
The algorithm constantly access data and evaluates the amount of cache hits and
misses by evaluating the timing behavior of the application. It aims at measuring
the caching architecture of a system and provides information about the cache lev-
els, cache line size, associativity and access times. The tool, as described in [80]
determines information about data or unified caches as well as translation lookaside
buffer (TLB) caches.

The approach used in [79] differs from our approach in the way that it constantly
accesses data and the hit or miss rate is evaluated by timing measurements after-
wards. In contrast to that, we want to simulate a desired amount of cache hits and
misses, e.g., 1000 level two misses, 20 level two hits and 5000 level one hits, in a
deterministic way.

30 Peter Trapp



CHAPTER 3. LITERATURE REVIEW IN THE AREA OF DYNAMIC
PERFORMANCE STUBS

3.4.2 Basic Literature

The main areas of research have been summarized in Figure 3.2. This section intro-
duces these areas.

Figure 3.2: Literature Review on CPU Caches

Memory caches are buffers that are used to reduce the access times to the main
memory. Therefore, they store information for reuse. As the access time to the
caches are smaller (see Figure 3.1), the overall execution time of an application can
be reduced. The reuse ability of data for caching is based on two assumptions:
temporal- and spatial data locality.

Temporal Data Locality The first, temporal data locality is based on the idea
that data, which have recently been referenced, will be needed soon and there-
fore should be stored in the cache. Many of the cache replacement policies,
e.g., least recently used (LRU), are based on this assumption.

Spatial Data Locality The second is spatial data locality. The idea is that data
that are declared related to each other in the source code, and therefore will be
stored close to each other in the main memory, will be used at the same time in
the application. This assumption is satisfied by always replacing a dedicated
amount of bytes in the cache, which is called cache line, with successive data
blocks from the main memory.

As the sizes of caches are smaller than the size of the main memory only parts
of the memory can be stored. Therefore, many blocks of the main memory have to
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be stored to the same location in the cache. The main memory address of data or
instructions is normally used to determine which cache line the data or instruction
will be mapped on the cache. The identification of the cache line, which will be
replaced, e.g., because of capacity needs, is done by using “colored bits” [71, 98] and
is often realized using the modulo operation.

Cache Misses A cache miss occurs if data will be referenced which are not avail-
able and therefore has to be loaded. In [7] a classification of different cache misses
is described as the “Three Cs”: compulsory, conflict and capacity.

Compulsory Misses Compulsory misses, also often referred as “cold” misses, can
be seen if no data has been referenced to the specific cache line. Therefore,
they only occur at the very first access to the cache line. These misses normally
do not strongly influence the systems behavior [70], except in the initial phase.

Conflict Misses These misses occur if a still valid cache line will be replaced by
a cache fill (see [51]) despite there are empty or non-valid data in the cache.
These misses depend on the cache structure as discussed below.

Capacity Misses The last category capacity misses can be seen if a valid cache
line will be replaced because neither an empty nor a non-valid cache line can
be replaced.

Additionally, there is a fourth category of cache misses: coherency. These misses
can only occur in multi-processing environments as they happen when data in the
cache has been modified by another processing unit.

Cache Architecture The overall cache structure has been explained in [28, 39,
46, 132]. The cache structure highly affects the amount of different cache misses,
e.g., there are no conflict misses in fully associative caches. There are three different
types of the organization of a cache: direct mapped (DM), fully associated (FA) and
n-way set associative (SA).

Direct Mapped In direct mapped caches every data or instruction will be mapped
onto a dedicated cache line. The replacement algorithm normally uses the
modulo operator. This approach can easily be realized. The drawback is that
direct mapped caches can be “trashed” by constantly accessing data with a
stride that is determined by the modulo operation of the cache size.
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Fully Associative Despite of the direct mapped caches, in fully associative caches
every data or instruction can be stored in any cache line. In this architecture
there are no conflict misses as only misses occur if no as free tagged cache
lines are available in the cache. Therefore all misses are either compulsory- or
capacity misses. The main disadvantage of this cache architecture is the high
complexity to determine the cache line that will be replaced if a miss happens.
In the worst case every cache line has to be checked, which is an expensive
operation.

N-Way Set Associative A combination of the direct mapped and fully associative
cache is the n-way set associative cache architecture. In this caches “N” direct
mapped caches are used in parallel. Therefore, “N” different cache lines are
combined to a cache set. These cache sets can be seen as fully associative
caches with “N” different cache lines. The number of different cache sets is the
number of different cache lines in one of the direct mapped caches. A cache
line fill will overwrite a cache line of the cache set which is determined using
the modulo operator as explained in direct mapped caches. The cache line
that will be overwritten in the cache set is determined as in fully associative
caches and depends on the replacement policy as described below.

Sector Caches In sector caches each cache line is called sector [95]. These sectors
consist of two or more subsectors. Each subsector has its own “valid” and “dirty”
bits to determine whether the data stored in the subsector is valid or not. Thus, a
sector can be partly filled.

A sector cache is organized as described in the “Cache Architecture”-Section (see
above), e.g., as a n-way set associative cache. Hence, each data, which have to
be stored in a subsector, will be mapped to the cache as in any other other cache
architecture. To determine the cache set resp. cache line (i.e., sector), where the
data will be stored, a “tag” is used [95]. This tag is part of the memory’s physical
address. The data will be stored in a specific subsector of this sector. The subsector
is determined by direct mapping.

In sector caches usually the whole sector will be fetched from the main memory
or the upper cache level. However, the possibility exists to disable the sector fetching
[18]. If the sector fetching is disabled and a cache miss occurs two possible cases
have to be differentiated (see [52, 95]). First, if the data, which will be fetched,
have a different tag to the tag of the data stored in the sector the sector is cleaned.
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Now, the data are fetched and stored in the subsector, and, the tag is stored for this
sector. In the other case, i.e., the data, which will be fetched have the same tag as
the data in the sector, only the subsector has to be filled. The other subsectors of
this sector are not changed.

Sector caches were designed to reduce the trade-offs of direct mapped caches, e.g.,
little data locality. With the successor, n-way set associative caches, cache designer
temporarily stopped using the sector cache design. As the number of different sets
in the cache increased and, therefore, the overhead for this design also statically
increased the sector cache design has been revisited in [95]. Some modern central
processing units include caches, which are designed as n-way set associative but
incorporate the techniques of sector caches, e.g., the unified level three cache in
Intel Xeon processors [51].

sets
(DM)

sector

subsectors (DM)

4-ways (FA)

Figure 3.3: Example: 4-Way Set Associative Sector Cache

Figure 3.3 sketches the design of a “4-way set associative sector” cache. To eval-
uate the subsector where the referenced data will be stored to the caching algorithm
firstly identifies the cache set realized as in direct mapped caches. Having the cache
set, the replacement algorithm, as described below determines the sector which is
done as in fully associative caches. The final place in the sector will be identified
using the address (direct mapped).

A “4-way set associative sector” cache with two subsectors per sector is similar
to an 8-way set associative cache. The overhead for determining the subsector is less
than determining the cache line in a non-sector cache. The drawback of the sector
caches is that often more conflict misses happen.
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Cache Hierarchy In modern CPUs normally different caches are used for storing
information separately: either instructions or data or micro-ops.5 These caches are
defined as non-unified. Additionally, there are unified caches that store data as well
as instructions.

These different types of caches are often integrated into a cache hierarchy. It
consists of different caches, which are arranged into levels. The number of the level
depends on their logical distance to the CPU in terms of accessing times. The first
level cache is next to the CPU that means accessing this level takes less time than
accessing the level two cache (see [39]).

Each cache level can contain several caches. E.g., the first level cache can consist
of a data- as well as an instruction cache.

Cache Design In cache hierarchies several different issues arise with the data
organization in the caches. The problem here is the implementation to maintain
identical data stored in the different cache levels. Based on this problem, three
different cache designs have been build: inclusive, exclusive and non-inclusive caches
[54].

Inclusive Caches In inclusive caches the inclusion property dictates that every
data stored in a closer cache level has to exist in all other further cache levels.
In this case the coherence mechanism is simply as the coherence scheme only
has to probe the furthest cache level to invalid or update the cache line. If the
data is not found in that level the data cannot exists in any other level. The
drawback of this property is that the information has to be stored in all cache
levels. Therefore, it is wasteful of space and bandwidth [139]. Additionally,
as the information has to exist in all levels, the cache line size has to be the
same all over the hierarchy.

Exclusive Caches Exclusive caches are the opposite of inclusive caches. In this
design the information stored in a cache level are not in stored in any other
level. In this case more data can be stored in the cache as compared to the
inclusive cache design. As drawback, in this caching architecture every level
of the cache has to be probed by the coherence mechanism instead of only
probing the lowest level [54]. A performance evaluation of the exclusive cache
design has been done in [141]. These caches can often be found in AMD CPUs.

5Micro-ops are stored in a so called trace cache, e.g., used in many Intel Pentium 4®.
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Non-Inclusive Caches As a combination of the cache designs mentioned above,
non-inclusive caches exists. This cache design is sometimes also referred as
“mainly inclusive”. Here, the designers attempt to include the advantages
of exclusive and inclusive caches. Therefore, neither the exclusion nor the
inclusion property is maintained [54]. These caches can often be found in Intel
CPUs.

A comparison of inclusive and exclusive cache design regarding the worst case
execution time has been done in [59].

Replacement Policies The hardware architecture uses replacement policies to
determine the cache line that will be overwritten if a conflict exists. Different policies
are explained in [3, 93]. [51] describes the policy used in some Intel Architectures.
In direct mapped caches data are always stored to a specific cache line, there is no
special replacement policy used. Within fully associative caches any cache line from
the cache can be overwritten by any data from the main memory. Therefore, the
replacement policy strongly influences the caching behavior. Determining the next
cache line which will be overwritten causes a noticeable overhead to the execution
time. For n-way set associative caches the replacement policy determines which
cache line from the cache set has to be used.

The following replacement policies are discussed in this section (see [3, 93]):

First In First Out (FIFO) The replacement policy FIFO always overwrites the
cache line which longest stay in the cache. It can simply be seen as a queue of
a given length. An implementation of FIFO is often realized by a round-robin
counter which is incremented after new data is loaded into a set [93].

Least Recently Used ((P)LRU) The least recently used (LRU) policy is the
most popular implementation in computer caches [43]. It always overwrites
the cache line which has not been used for the longest time and is often realized
via a counter, which is incremented after the data is accessed [93].

The tree-based Pseudo-LRU (PLRU) as described in [93] approximates the
least recently used data. This is realized by using tree-bits to point to the
(approximated) oldest data stored in the cache set. The advantage of PLRU
regarding the LRU is that the PLRU uses fewer bits to identify the next
cache line. The drawback of this replacement algorithm is that it is only an
approximation. This replacement algorithm is used in many different CPUs,
e.g., in PowerPC 75x and Intel Pentium II, III and IV [93].
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Least Frequently Used (LFU) The least frequently used replacement algorithm
is similar to LRU. However, in LRU the oldest entry will be replaced in LFU
the entry which has been used fewest.

Most Recently Used (MRU) The opposite of the LFU is MRU. In this case, the
entry which has been used mostly will be replaced. The policy is based on the
assumption that data which have often been used in the past will not be used
anymore in the future. A nice explanation of the MRU replacement policy can
be found in [93]

Random Replacement Random replacement strategies, e.g., implemented via a
linear feedback shift register (LFSR) [3] choose the cache line which will be
replaced randomly [3].

In [138] different cache replacement policies have been revisited. Additionally,
different experimental studies have been done by using the least recently used policy
as example.

Replacement Policies for Different Cache Levels In [138] the feasibility of
global replacement policies is discussed. Therefore, the advantages and disadvan-
tages of local replacement policies as well as global policies have been evaluated and
supported by measurements.

Local Replacement In the local replacement scheme every cache keeps track of
it is cache lines within each cache set to determine which cache line has to
be replaced next. In this scheme every cache miss on a dedicated cache level
influences the replacement policy of the next higher cache as a cache hit or
miss occurs on the higher level. Therefore, a communication between different
cache levels is established if a cache miss happens.

Global Replacement In addition to the local replacement, global replacement
policies control the replacements of cache lines from a cache set in all hierar-
chies. There are two different types of global replacement policies: communica-
tion-based and centralized.

Communication-Based In a communication-based replacement policy, each
cache level has it is own replacement policy. However, information regard-
ing replacement will be exchanged.
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Centralized Centralized replacement policy, is realized by a single controller
which makes decisions for all cache hierarchies.

More information about global and local policies can be found in [138].

Metrics Several metrics to evaluate data locality and memory reference are dis-
cussed below.

Unit Strides Unit strides according to memory usage means, accessing data in
the memory in strides with the same distance in terms of bytes. In [136]
unit strides have been used to study the caching optimizations for scientific
programs. Whereas, it has been considered as very efficient to use “unit stride”
array accesses, some strides may cause cache trashing [136].

Stack Distance The stack distance, as proposed in [7], measures the distance in
time between two references of the same data location and quantifies tem-
poral locality. This reuse metric is applied to stack distance with cache line
granularity instead of data granularity.

Reference Distance Another metric is called reference distance. It has been pro-
posed as a metric for data locality and is the total number of access to the
same block of data [7, 89]. The reference distance has been split into “address
distance” and “block distance” in [89]. The “address distance” is defined with a
block size of one and is a metric for measuring temporal locality. If the block
size is greater than one, the “address distance” is called “block distance” and
is targeting on spatial locality.

Program Analysis In [33] program analysis by abstract interpretation of caching
behavior has been presented and applied to predict the cache behavior of applica-
tions for real time systems. There, the memory references have been split into the
categories “always hit”, “always miss” and “not classified”. These categories have
been used for two analyses: “must” and “may”. The “must” analysis determines if
a set of memory references is definitely in the cache if the program flow reaches a
given program point. The “may” analysis is used to determine if a memory block
may be in the cache and is finally used to guarantee the absence of the memory
block of the cache.
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Methods of Caching Normally, system memory is split into several regions. As
theoretical every region of the system memory can be cached in the processor [51],
these regions are tagged to be handled according to their usage. Therefore, different
strategies exist to handle modified data stored in a cache [39]. According to [51] a
main classification into cacheable and uncacheable can be done.

Cacheable In this category data from this region of the system memory can be
cached. To write back the modified data into the system memory different policies
exist: write-through and write back.

Write-Through (WT) The write-through policy updates the system memory
whenever data has been modified. Therefore, the system memory holds all
changes to the data. This causes overhead if the same data will be overwritten
frequently but not read from the system memory. In this case, a single update
of the system memory would be sufficient at the last data access.

Write Back (WB) To reduce the overhead of the write-through policy, the write
back accumulates writes to cache lines and forwards the updates to the system
memory when a write-back operation is performed. This reduces the bus
traffic but requires snoop operations (see [54]) to the system bus to ensure the
memory and cache coherency.

Uncacheable There are three different types to set data from the main mem-
ory to uncacheable:

Strong Uncacheable (UC) To prevent data from caching memory regions can
be set to strong uncacheable (UC). In this case, all references have to be
satisfied by the system memory. This behavior is useful for memory-mapped
I/O devices.

Uncacheable (UC-) The same behavior as for strong uncacheable (UC) applies to
uncacheable (UC-). However, these system memory regions can be explicitly
set to cacheable by changing several CPU register settings.

Write Combining (WC) In write combining the system memory is not cached
and the bus coherency protocol does not enforce coherency (see [44]). To
reduce system bus traffic, writes are combined in the write combining buffer
(WC buffer) and maybe delayed before the data will be written to the system
memory.
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Write Protected (WP) Write protected memory types are a combination of
cacheable and uncacheable memory. In this case, data can be cached for
read events. However, write events cannot be stored in the cache. In this case,
writes are propagated to the system bus.

The above mentioned memory types strongly depend on the system architecture
and may not be available in every system.

Types of Caches There are several different types of caches in a modern CPU.
The types are separated by the kind of data, which can be stored (see [15, 17, 61]).
The most important types are described in the following.

Unified Caches An unified cache is often used in the higher levels of the caching
architecture and stores instructions and data simultaneously. Intel CPUs are
using unified caches since 1993 [28]. These caches are typically read- and
writable [17].

Data Caches These caches are used to store data [28]. They are available in many
CPUs such as the Intel Pentium 4 [17] on the lower cache levels. These caches
are usually read- and writable, too [17].

Instruction/Trace Caches Instruction and trace caches are used to store the code
of a process. An instruction cache stores the instructions of the application
and a trace cache is used to store decoded instructions, called µops. They are
mainly used in the lower levels of the cache architecture [28]. These caches
are typically read-only, beside that write events can occur, e.g., by using self-
modifying code. Usually, either a trace or an instruction cache exist in the
CPU. More information about trace caches can be found in [15, 47, 54].

Translation Look-aside Buffer Memory addresses used in the binary of an appli-
cation are usually virtual, i.e., these addresses must be translated into physical
addresses for being able to access the information stored in the main mem-
ory. This translation is typically costly in terms of time. To avoid recursive
translation of a memory addresses a buffer, called translation look-aside buffer
(TLB), has been added to the cache architecture. These TLBs can exist to
store data (dTLB) or instruction (iTLB) memory addresses. More information
can be found in Section 3.3.2.
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Write/Store Buffers Write buffers store data, which have been modified and not
updated in the higher levels of the cache or main memory [17]. Write buffers,
which are used together with an out-of-order execution are often referred to
store buffers [120]. More information about write buffers can be found in [12].

Victim Cache/Buffer A victim cache (see [57]) stores data, which have been
evicted from the cache. The data are stocked in the cache in case they are
referenced again. Hence, conflict misses can easily be avoided without adding
more associativity to the cache. These caches are typically of small size and
fully associative. A victim cache is often referred as a victim buffer [59].

Load Buffer These caches are often used together with the out-of-order execution
logic of modern CPUs. They store information to perform the parallel instruc-
tion execution, e.g., the decoded instructions and address information. More
details about the out-of-order execution logic are described below.

Out-Of-Order Execution The out-of-order execution logic of a CPU enables
the CPU to reorder multiple instructions of the program’s code. There are several
dependencies on whether the instructions can be reordered or not (see [15, 29]).
E.g., an Intel Pentium 4 CPU can only reorder read instructions. Write instructions,
however, are always executed in the order they appear in the application [15]. To
improve the out-of-order capabilities of the CPU store and load buffers are often
used.

Compiler Optimization Many compiler optimization techniques are targeting
to improve the data locality and data spatiality [89]. Therefore, they try to move
data which will be referenced successively close to each other. Many optimization
techniques regarding memory are described in [71]:

Aligning Aligning strategies have been developed to increase data locality and to
possibility pack data, which are used together in the application [70, 98]. They
aim to store data instead of two different cache lines into a single cache line
and therefore reduce the capacity or conflict misses.

Padding In [94] inter-variable and intra-variable padding are described. These
are array transformations to avoid conflicting distance between uniformly-
generated references. It can be realized by linearizing array references and
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calculating the distance. To improve the caching behavior padding variables
will be added to the arrays to avoid trashing in direct mapped caches.

A similar padding strategy is described in [70]. Additionally, the opposite of
padding is described as packing. This optimization technique packs arrays into
the smallest possible place in order to increase data locality.

Another approach is called merging arrays. This is similar to packing but
targets to combine two (or more) different arrays of the same dimension with
the same indexes. The result will be a compound array to increase spatial
locality.

Loops In [7, 70] loop fusion is described as a technique to increase instruction level
parallelism and therefore optimize the distance of references. In this case, the
same data will be accessed more often and therefore will not be replaced by
other data.

Loop fission This is the opposite to loop fusion. In this case the program trans-
formation split portions of the loop body in different loops [70]. The same
optimization is described in [7] as “loop distribution”.

Loop Tiling As described in [7, 89], loop tiling tries to keep the amount of ref-
erenced data between the use and reuse smaller than the cache size. This
improves the possibility that the data can be found in the cache and therefore
do not have to be fetched from the main memory or the next higher cache
level [70].

Another possible improvement technique is called loop interchange [89]. It tar-
gets to interchange loops for fully permutable loops, e.g., in matrix multiplications.

3.5 Simulated Software Functionality

A key functionality of the dynamic performance stubs is to record and to recreate
functional behavior using the simulated software functionality. The recording re-
quires the serialization of internal data-structures into a format from which they
can be recovered at a later point. This functionality has been predominantly imple-
mented in distributed systems where objects and code are marshaled for exchange
between peers.
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3.5.1 Related Work

Most closely related to our serialization approach is the work in [117, 118] in which a
“MPI Serializer” has been introduced. The target of this project is the efficiently and
automated marshaling of C++ data structures. The tool generates automatically
marshaling and unmarshaling code for the message parsing interface (MPI), which
is often used as communication interface in high performance computing (HPC).
The “MPI Serializer” is is based on the C++ serialization possibility of the “GCC-
XML” project [37], which uses the gcc abstract semantic graph (ASG) scheme [69]
to determine the serialization specification.

To some extent, our approach is similar to [117, 118] as both projects needs to
serialize C++ data structures. But, it differs in many details. E.g., it has been
decided to store and restore the functional behavior of software modules, which
will be replaced by a stub. This can be used to remove a software bottleneck. In
contrast, the focus in [117, 118] is to provide marshaling code for the message parsing
interface.

However, both projects are based on the abstract semantic graph scheme pro-
vided by the “GCC-XML” project.

In [13], a lightweight fact extractor is presented. It utilizes XML tools, i.e.,
XPATH and XSLT, to extract static information from the C++ source code files.
The approach is to transfer the source code into “srcML”, which is a XML repre-
sentation of the file. The fact extractor is mainly used to parse and search the
source code. This technique is often used for reverse engineering, maintenance, test-
ing or even in general development of software systems. This approach is based on
“CPPX” [20], which is an open source C++ fact extractor. The fact base, which
is generated by “CPPX”, can be used as input for software development tools, such
as integrated development environments (IDE). It enhances these tools’ functional-
ities, for example by source code visualization, object recovery, restructuring and
refactoring.

As in [117, 118], the approach of [13] highly differs from our approach, as it is
not supposed to store and recreate the functional behavior of software modules. [13]
mainly delivers a XML presentation of the extracted facts of the source code.

3.5.2 Basic Literature

In order to access each member of C++ data structures or classes for the simulated
software functionality an internal representation of the data structure is necessary.
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This can be achieved by serializing the data structures or by using the “abstract
sematic graph”. Moreover, a technique to gain access to the members of the serialized
objects has to be found. This section discusses the three mentioned areas.

Serialization of Objects

Serialization is a concept, which can be used to convert a class into a binary stream
containing all members of the class including the members of subclasses. This can
be used to store and/or restore the state of the object during the runtime. Moreover,
the serialized objects can be simply stored for further analyses or used to be sent
over the network. This is often done by using communication stubs (see [14]), which
uses the (un-)marshaling concept (see [19]).

The basic mechanism is to serialize the objects into a flat binary representation
of the object or to read the flat representation and to recreate the object.

Many programming language support the concept of serialization within the lan-
guage definition, e.g., in Java classes can implement the “Serializable” interface for
getting access to the serialization of the objects [30]. The C++ programming lan-
guage does not support the serialization concept. Here, several serialization libraries
exist to support the developer, e.g., the serialization library [91] (see [24, 62]) of the
boost C++ libraries project [21].

Abstract Semantic Graph

The abstract semantic graph (ASG) represents the semantics of an expression in
programming languages. It extends the abstract syntax tree (AST) by including
additional information such as type information [90].

As this ASG presents the internal structure of the application, it can be used
to evaluate several dependencies of the data structures or classes. Hence, the ASG
can be used as input for serializing the data structures. This is done in [20], which
extends the “GCC” as described above.

Access to Members of Classes

A possibility to directly access private or protected members of C++ classes from
outside of the class is to use the “friend” mechanism, e.g., “friend functions” and/or
“friend classes” [27, 114]. In this case, the full prototypes of the external functions
or classes, which should be able to access the members have be declared as “friend”s
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within the source class. Here, the functions or classes, which are set as “friend”s are
not considered as members of the source class.

However, the “friend”ship mechanisms is usually deprecated in an object-oriented
programming software design as it potentially violates the data encapsulation
paradigm. E.g., it should be considered whether the functionality of the external
friend function can be directly included into the source class itself.

45 Peter Trapp



Chapter 4

Dynamic Performance Stubs

This chapter describes the dynamic performance stubs
framework. Additionally, it shortly provides the main
contributions, which will be described in this thesis, e.g.,
the performance simulation functions or the simulated
software functionality.
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4.1 Basic Design Decisions

The major decisions regarding the design and implementation of the dynamic per-
formance stub (DPS) are:

1. The programming language used in the project is C/C++. Therefore, the
DPS have to be written in C. This language has several advantages such as
the possibility of inline assembler code if a high optimization level is neces-
sary. Additionally C/C++ can be compiled and used as a binary executable
code for the native machine language of the CPU used. This is highly recom-
mended in [1] since the programming language influences the performance of
the complete system. Moreover, most of the C/C++ compilers provide differ-
ent optimization flags, e.g., [38]. However, the methodology of the dynamic
performance stub is independent to the implementation language and can also
be used with interpreted, just-in-time compilation or intermediate code.

2. The simulation functions should be configurable and adjustable to the target.
This should be done only once during the setup of the stubs.

3. The simulation functions of the performance behavior should be used as a
toolset. All functions should be accessible without further need of configura-
tion.

4.2 Concept

The concept of DPS combines the methods of software testing [6, 73, 109] and
performance improvements [55, 35, 74, 42]. There are only little differences between
stubbing for performance improvements and stubbing for testing reasons. Normally,
stubs are used for simulating remote systems or for non-existing software modules
and functions, as in software testing [41]. In this approach the CUS will be replaced
by DPS in order to simulate the performance behavior of this software unit as a
primary goal. This procedure relates to stubbing a single software unit and, hence, it
will be called “local”. The performance simulation functions (PSF) can also be used
to change the behavior of the complete system. Therefore, a software module has
to be created which interacts “global” in the sense of influencing the whole system
instead of only one software unit.
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Figure 4.1: Interactions of Dynamic Performance Stubs

This is presented in Figure 4.1. Here, the line with two arrowheads depicts the
replacement of the component under study (CUS) by the DPS. In this case, the DPS
is a local DPS. The dashed line shows an extension of the SUT by a global DPS.

4.3 Framework

A dynamic performance stub (DPS) consists of two major components, which are:
performance simulation functions (PSF) and the simulated software functionality
(SSF). The performance behavior of the stub can be dynamically adjusted to the
needs of the performance simulation study, e.g., after each performance test run.

The name “DPS ” generally means that a stub is used, where the performance
behavior can be changed. The stub that will be used is typically a realization of the
DPS. The name of the stub reflects the main component, which will be simulated
and adjusted during the performance measurements, e.g., a main memory stubs is
used to simulate the main memory behavior of the application by using the main
memory PSF. Whereas the execution time of the CUS is also simulated, the main
focus is on the main memory behavior. A not closer specified realization of a DPS
is referred as particular dynamic performance stub (PDPS).

The framework of the dynamic performance stub consists of the following parts,
which are presented in Figure 4.2:

• Simulated Software Functionality (SSF)
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Figure 4.2: Framework of the Dynamic Performance Stubs

• Performance Simulation Functions (PSF)

• Calibration Functions (CF)

The SSF is additionally implemented code in order to simulate the functional
behavior of the already exiting CUS. More information about a possible methodology
of stubbing for already existing software modules will be described in Section 4.5.

After creating the functional stub (using the SSF ) the performance behavior of
the CUS can be modeled using the PSF. They will provide the possibility to simulate
different isolated performance parameters such as the time spent in the component.
The functions can be combined in order to simulate the “real” performance behavior.
Please refer to Section 4.4 for an overview of the performance parameters, which can
be simulated by the PSF.

Additionally, the framework of the DPS contains the calibration functions (CF).
These are important for the initial setup of the PSF to the target, e.g., the time
needed for an “empty loop” will be determined in order to setup a realistic behavior.
The CF have to be executed once for each hardware system.

4.4 Performance Simulation Functions

A PSF simulates the non-functional behavior of a function regarding to one aspect
of performance. They are divided into several classes according to the performance
bounds to which a software can belong.

An overview of the several PSF realizations is depicted in Figure 4.3. The
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Figure 4.3: Classification of Performance Simulation Functions

dark-colored boxes presents the PSF, which will be handled within this thesis. The
light-colored boxes can be seen as future work.

The main classes are as follows:

• CPU

• Memory

• I/O

• Network

For a more detailed description on the main classes the reader is referred to [48].
A fifth category can be thought of is “user” [55], in our approach it will be

included for simplification in the I/O category of the PSF. A closer look in the
categories will be given in the following subsections.

4.4.1 CPU PSF

This PSF basically relates to the CPU states, which a process can have and, hence,
to the clock cycles used by the process. One part of the CPU PSF is the time spent
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in the stub, while it is scheduled. The other part is the time, while the process is
blocked. Here, the CPU can be used for further processes.

4.4.2 Memory PSF

Memory with respect to PSF refers to the volatile storage. More in detail the
different types of memory described in this sections are: “main memory” and “cache
memory”.

Main Memory PSF

Main memory PSF refers to the dynamically allocatable memory segments of a
process, i.e., “heap” and “stack”. Moreover, page faults, which are caused while the
execution of the software modules or functions will also be simulated within their
memory segments.

Cache Memory PSF

Cache memory PSF simulates the access behavior of the software module or function
regarding to the caches. The main categories of caches are:

• Data Cache Memory PSF

• Instruction Cache Memory PSF

• Translation Look-aside Buffer PSF

Within this thesis, the data cache memory PSF are examined. The other cache
types as well as further caches types, such as, “store/write cache” or “victim buffer”,
will not be handled.

4.4.3 I/O PSF

I/O in computer science describes the way to handle the input and output values.
Regarding to performance improvement of user applications I/O can be described as
the interface between the application and the kernel realized by specific systemcalls
[71, 75]. During the execution of these calls the process is blocked due to “I/O” and
will be scheduled out, which means, the CPU will be freed from the process until
the call has been finished and the process will be scheduled in again [71]. System-
calls cover all interactions between the kernel and the user application this includes
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also the memory and the network. However, these parts are already discussed in
other sections of the PSF and will not be handled here. Hence, only the secondary
memory, e.g., hard disks are taken into account. Further and more detailed studies
in this area of I/O PSF are necessary.

Those PSF will not be handled within this thesis.

4.4.4 Network PSF

The network PSF will handle possible performance parameters specific to the net-
work. Especially, the following network metrics will be considered to simulate the
network behavior for various load situations:

• One-Way Delay

• Round-Trip Time

• Delay Variation

• Packet Loss

• Packet Reordering

For more details of the network metrics the reader is referred the according
requests for comments (RFC) [4, 5, 23, 56, 68, 85, 88, 112].

Those PSF will not be handled within this thesis. A follow-up research project
to evaluate network PSF has already been started.

4.4.5 Calibration Functions

Some different values have to be set up in order to provide the suggested simulation
properties. This can be done using the CF. The idea behind these functions is
to execute the PSF with several different input values and to trace the according
output results. The calculation of the desired values will also be done inside of the
CF. Using the results will provide a proper setup for the usage of different PSF
in order to stub the CUS. The CF are providing additional functionality, such as
they will report if something unexpected was happening. In this scenario, they will
also give hints on how to improve the measurement for a proper calibration. As an
example: a context switch happened while the configuration of the CPU PSF. The
CF ’ trace includes a warning that a context switch was happening. Additionally, it
will give a hint like raising the priority of the DPS in order to get valid results.
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4.5 Simulated Software Functionality

“. . . the simplest way to manage the call is to build a stub, that is, a
procedure that has the same I/O parameters as the missing procedure,
but a highly simplified behavior. For example, the stub might produce its
expected results by reading them from a file or requesting them from a
human tester interactively; or it might even do nothing and simply print
some diagnostic message, should be acceptable to the caller. The stub
will then be linked with the module, just as if it were the real procedure.”
[41]

Commonly a stub in software engineering is used as a proxy and provides an
adequate replacement for the behavior of the to-be-implemented software modules
and functions. It is mainly used in software testing of distributed systems or in
modularized software [109].

Thus, the stubbed function uses the same I/O parameters to simulate the missing
procedure and provides only a basic functionality, e.g., it returns the results by
reading them from a hash table, does nothing or it may simply write trace messages.
From the systems’ point of view the stub will be included and work just as the real
procedure [41].

The idea behind the SSF and the functional stubs is nearly the same. The only
difference between stubbing for performance reasons and the generation of “test-
stubs”, as mentioned, is the part of software, which will be used. Stubbing for
performance reasons means to replace an already existing code, whereas, stubbing
for testing creates basic functionality of non-existing software [41, 109] or they are
used for remote systems.

A methodology of stubbing already existing and deterministic software functions
can be described as follows. First of all, the in- and output values of the CUS have to
be identified while tracing them. Therefore, proper tracepoints have to be inserted
in the source code and, then, the software has to be re-run with a proper and
deterministic test case scenario. Rewrite the CUS using the in- and output values
(e.g., using a hash table) and by replacing the time consuming functions where the
software normally walks through. Now the stub should be working properly.

53 Peter Trapp



CHAPTER 4. DYNAMIC PERFORMANCE STUBS

4.6 Definition of a General Methodology

As a fundamental prerequisite a reproducible automated test of the system has to be
available. The system’s use has to be restricted to the task of performance optimiza-
tion. Without such a test procedure, it is not possible to reproduce the performance
results and, thus, to validate the results or even more to isolate performance bot-
tlenecks. In addition, the calibration function has to be parametrized according the
used hardware platform as sketched in Section 4.4.5.
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Figure 4.4: Methodology for Using Dynamic Performance Stubs

The method for performance optimizations using DPS is depicted in Figure 4.6
and described by the following steps:

1. Identification of performance bottlenecks.
As a first step, some possible bottlenecks of the origin software have to be
identified. First a performance measurement of the whole SUT has to be real-
ized. The delivered performance data has to be interpreted and some possible
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bottlenecks have to be identified. This can be achieved, if all performance
data are available in a very detailed level. So a “drill-down” method on the
delivered performance data can be used. Please note that the success of this
step strongly depends on the experience and the in depth knowledge of the
software of the analyzing person. As a result of this step, a list with possi-
ble performance bottlenecks can be generated. For further information, it is
referred to [55, 74].

Now, a first cost-benefit analysis of optimizations should be done. Please note
that this ratio only might be estimated. The result of this step is a prioritized
list of bottleneck candidates.

2. Now a dynamic performance stub has to be generated.
The CUS has to be studied. This also includes a necessary level of abstraction,
especially, which functions have to be stubbed. A DPS can now be generated
using the following steps:

2.1 The functional behavior of the CUS has to be simulated. This will be
done by the realization of the SSF.

2.2 The performance behavior of the CUS has to be determined and simu-
lated. The simulation will be realized by the PSF.

The correct function of the SSF and the PSF have to be validated. So per-
formance measurements have to be done with the stubbed functionality. The
results should be in the same range as the original performance results. If this
is not the case, the PSF has to be modified. This might also happen if the
analysis for this bottleneck candidate is not sound and as a consequence it has
to be reconsidered.

As an additional check a performance measurement with only a SSF can be
done and the resulting data should be analyzed very carefully. In addition the
next bottleneck might be visible.

3. Several measurements changing the performance behavior of the stub should be
realized.
The performance data has to be analyzed carefully. This can be done as
described in Step 1. Additionally, several different charts can be drawn. They
will probably indicate different system behaviors such as a changeover from
CPU to memory bound or a changeover in the critical path in the SUT.
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4. Cost-benefit analysis.
A cost-benefit analysis using the possible gain can be applied and the effort
for improving the performance bottleneck can be estimated based on the eval-
uation data. As a further result, there might appear new bottlenecks, which
should be checked using the method in Step 1. If new bottlenecks appeared,
this might be also a hint to further similar bottlenecks elsewhere is the system,
e.g., deep copies can also happen at further system ports.

Based on this data the candidates for spending optimization efforts can be
chosen and the work on improvement can be started.

5. Verify optimization gain.
The optimized components should be included in the software and a new
performance measurement should be started.

The achieved data should be compared with simulated data. If there is a
huge discrepancy the method for finding bottlenecks or even PSF should be
corrected.

6. Verify the systems’ performance.
If the software has still not the desired performance, goto Step 1.

4.7 Extensions to the Methodology

In many cases the aforementioned method can be used. However, it can be seen
that performance analysis is a highly sophisticated and specialized task. In the
following section, some possible techniques or alternatives to the method described
before have been sketched. These can be seen as some ideas, which might help on
the overall task like a partially filled toolbox.

4.7.1 Mixture of PSF

Sometimes an isolated performance behavior is not sufficient for simulation. E.g.,
using only the CPU PSF might lead to false results, if the component uses in
addition to a possible heavy usage of the CPU also disk I/O very often. This is
the case especially in bigger CUS. A solution is to combine several different types
of PSF in order to yield a more accurate simulation result. However, the degree of
combination might be analyzed very careful. This is especially on bigger CUS no
easy task.
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4.7.2 Full and Partial Stubs

Another problem appears on bigger CUS, too. The components behavior cannot
be simulated in a realistic way by a simple stub, where a collection of input values
delivers an output value. Usually, it might be an arbitrary interleaved mixture of
calling subroutines, internal calculations and delivering results. This can be realized
by extending the stub with additional SSF, which is calling the real procedures and
discarding the results from it or storing them for further analysis, e.g., in a hash
table.

The same technique can be used for functions which could not be optimized and
therefore is no need to be simulated.

4.7.3 Idealized Measurements

The stubs can also be used to simulate almost ideal performance behavior of the
CUS. This is useful for a feasibility study or for verifying the specified performance
targets of third party software, e.g., middleware and can be realized by only using
the capabilities of the SSF without inserting other functions, such as PSF. This will
tear down the cycles to a minimum and, hence, the “other” software modules can use
almost every resources in total. Of course, the operating system will also contribute
it is cost to the total load.

4.7.4 Load and Stress Tests

Another possibility is the opposite to the idealized measurements. Here, the sys-
tem will be stressed by adding additional performance bottlenecks to evaluate the
system behavior under a high load. It can be realized by using a global dynamic
performance stub, e.g., an application, which is executing the CPU PSF combined
with a high priority. This will increase the CPU load and, thus, will stress the
system. Depending on the software, overload routines will be performed in such
situations. So the behavior of the application on the borderline can be examined
and new bottlenecks can be identified.

4.7.5 Hidden Bottlenecks Detection by Zero Bound CUS

Hidden bottlenecks are bottlenecks, which are existing but can only be seen after
removing the current one. They are also reducing the throughput but it does not
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count to the overall performance due to the stronger influence of the first bottleneck.
Specialists often “over optimize” the software module, which leads to the effect that
the hidden bottleneck becomes critical [84].

The DPS help in detecting hidden bottlenecks. Here, the CUS will be optimized
in a non realistic way by setting the performance values of the PSF to zero. So, a
new performance measurement will help to make the next bottlenecks visible.

4.7.6 System Bounds

If all local optimizations do not lead to the required results or are too expensive,
sometimes a global optimization might be chosen, for instance using a faster CPU
or a bigger memory. To check whether global restrictions are there DPS can help.
E.g., after evaluating several runs with different performance parameters a chart can
be drawn. This can point to a system restriction, e.g., the system starts swapping/-
paging due to a lack of memory.

This can also be used to estimate the performance of future systems, especially,
if a ramp-down of the system resources are planned.

4.7.7 Global vs. Local Stubs

As described in Section 4.2, there are two different occurrences of DPS : local- and
global DPS.

First, they can work locally which means to stub a software unit. This procedure
is handled along the thesis and will not be described more in detail in this section.

The second way of using the DPS is globally. Thus, a software application
(module) has to be written, which will affect the whole system in a desired way,
e.g., by generating CPU load.

As an example: a module will be created, which compares the current usage
of the CPU with a default value. If the current value is less than the default, the
module will use the CPU, e.g., with the CPU PSF and tries to adjust the usage by
generating load. Otherwise, it will not do anything. As a result global considerations
can be realized. It can be checked whether the throughput of the whole system is
still on a limit. E.g., if after a linear increase of the CPU load by a global stub
lead to a non-linear increase of the runtime of the process to be examined. This
might be an indication that the system throughput is too low to handle all requests.
Then, an increase of the CPU power might help. However, this might not be an
option in all projects, but also then, this examination result helps in gaining a
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better understanding of the systems behavior and in consequence of the possible
performance problem.

Another possibility for the usage of a global dynamic performance stub is to
increase the number of context switches. For this, a software module can be created,
which only wakes up and goes back to sleep again. If it will only sleep for a short
time and is executed with a high priority the system will do a context switch. This
module can be realized using the CPU PSF.

Moreover, global DPS can be used as a benchmark suite, which is highly cus-
tomizable to the behavior of the real application. Here, several different global DPS
can be created, e.g., several CPU stubs and memory stubs. These stubs are executed
on different systems and their performance measurement results are compared. This
compares the systems against each other for the dedicated workload, which is based
on the real application.

4.8 Advantages

As mentioned, the dynamic performance stub can be used for a cost-benefit analysis.
This will also lead to a balance between optimization effort and the achievable gain
in the system. Of course, a higher optimization of the software module will also lead
to a higher performance within the complete system, but, the effort for the additional
gain in this case might be to big. This approach can lead to a more gain-oriented
optimization. This point will end up in better maintainable and structured code.
General drawbacks of performance improvements, such as a poor maintainability and
badly structured code, are described in [1, 87]. These drawbacks can be reduced by
the presented approach.

Additionally, knowing the optimization effort can lead to results earlier, because
some possible improvements does not have to be done due to system dependencies
[84].

As described in Section 4.7.4, “load & stress” tests are possible. This can also
be used for testing functions, e.g., overload routines under “real” conditions because
the CPU utilization will be raised up by a global dynamic performance stub module.
As mentioned in Section 4.7.3, a similar methodology can also be used for idealized
measurements regarding the performance behavior of the CUS.

The dynamic performance stub can be used to identify hidden bottlenecks as
described in 4.7.5.
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4.9 Restrictions

The DPS have also some drawbacks, which will be described in this section. The first
to mention is the danger of wrong results of the initial performance measurements.
If this error happens all further results of the measurements using the stub can
also be wrong. This can lead to a lot of time wasted in measuring, building and
evaluating the performance. As mentioned in [55] all results should be handled with
care until they are validated.

Also with proper initial measurements and a proper stub setup, the results can
be misleading, e.g., because of the introduced overhead. Hence, as already stated,
all results should be handled with care.

Creating a dynamic performance stub means effort, which can require additional
costs. The gain of this method strongly depends on the system, its performance
behavior and the effort to be spent for optimizations.

Large projects often take a lot of additional effort for performance stubbing, each
iteration of stubbing one element requires a change of parameters and the repetition
of the build- and performance measurement process as well as the evaluation.

Within the software life cycle the interfaces and the messages of the software
can change. This means probably that a stub has to be adapted after each of this
changes.

There is a lot of additional effort as result of measurement operations. However,
using the described method should decrease the overall improvement effort especially
on large software systems.

4.10 Summary

Using DPS following advantages for performance improvements can be achieved:

• The results of possible performance optimizations can be estimated with an
increased confidence level, because a complete program execution with a sim-
ulated performance optimization can be achieved before the optimization has
been realized. As a consequence, a validated estimation of a performance im-
provement can be given before the effort of a concrete optimization has been
spent. This optimization effort can sometimes be several man months instead
of the effort for generating a performance stub which in most cases can be
measured in hours. Since the benefit of performance improvement can now be
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determined, a valid cost-benefit analysis for improvement operations can be
calculated, if the effort for each operation has been estimated. So different can-
didates for performance improvements can be prioritized and such the effort
of improvement can be spent on a section with a big return on investment.

• Using DPS also the necessary performance gain can be determined. Sometimes
an improvement of, e.g., the reduction of the execution time of a bottleneck
to 50% does lead to the same execution time for the whole application as a
reduction to 75%, because other components will be new bottlenecks. So by
DPS, the necessary ratio of improvement operations can be determined and
in consequence an overengineered performance improvement can be avoided.

• Also the “hill climbing phenomena” can be avoided. Usually, on mountains
hiking only the next peak can be seen in advance and later higher hilltops on
the way are hidden. This usually happens with performance bottlenecks too.
If you have reduced one, the next bottleneck appears [84]. Here DPS can be
used to see the upcoming bottlenecks in advance.

The simulation possibilities of the DPS are subdivided in several PSF. The
following sections cover the simulation behavior of the CPU, main memory and
data cache memory.
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CPU Stubs

The CPU performance simulation functions can be used
to model the time behavior of software modules or func-
tions. This chapter discusses the requirements, a pos-
sible realization as well as a methodology to use these.
Moreover, the calibration functions for the CPU perfor-
mance simulation functions are described.
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5.1 Requirements

The CPU stubs should be able to remodel the performance behavior of a CUS
regarding the time. Hence, the following two different states of a process shall be
modeled: “working” and “blocked”. The first presents the process while it is executed
by the CPU. The second is used to model the time periods while the process is
scheduled out.

Moreover, CPU stubs should be able to simulate the time periods with high-
precision for short- and long periods. Moreover, CPU stubs should be able to use a
dedicated amount of the CPU, e.g., to constantly use 5%. The algorithm is based on
an “open loop” in this case. Additionally, they should be able to regulate the CPU
utilization to a predefined value, i.e., the algorithm evaluates the CPU utilization
and adjust its own CPU utilization accordingly (“closed loop”). Of course, the CPU
utilization can only be increased.

The approach of the CPU PSF shall be portable to other architectures and pro-
gramming languages. Hence, the CPU PSF shall be executable on different plat-
forms by only modifying some values, which has been determined by the calibration
functions (CF).

5.2 Realization of the CPU Performance Simulation

Functions

CPU stubs are used to simulate the CPU usage behavior of software modules or
functions in order to simulate a CPU bound software bottleneck. A CPU can either
wait or can be active. If the CPU is in the wait state the “idle” process will be exe-
cuted. Otherwise, i.e., the CPU is active, another process in the system is executed.
From a process perspective, a process can be either executed by the CPU or can be
blocked. Hence, the states, which will be simulated by a CPU stub, can be defined.
Those are: “system influencing” and “system non-influencing”.

System Influencing: This state simulates a process, which is currently executed.
Hence, the process uses the CPU. From a CPU perspective, this can be seen as
“running” according to the process states of [116]. This part of the CPU PSF
is called “system influencing” as the CPU has to execute instructions. These
can be either from the CPU stub or from another process. Hence, the CPU
has to be busy.
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System Non-influencing: This state simulates a process, which execution is cur-
rently delayed by any reason, e.g., because the process waits for user input
or because is the CPU is not available. This states depicts the process states
“blocked” or “ready” (see [116]). This part of the CPU PSF is called “system
non-influencing” as the process does not influence the system. Here, the CPU
can be either idle or can execute another process.

An example implementation of a system influencing and system non-influencing
realization of the PSF simulating the CPU is given below.

Example for a System Influencing CPU PSF The system influencing stub-
bing of CPU cycles can be realized using “no operation” (NOP) so that only the
resource CPU will be used by the PSF ; but, other system components are not.
They have to be executed in a loop in order to reach the desired time consumption.
Additionally, the NOPs and also the loop have to be protected against compiler
optimizations.

Using this method has some advantages and restrictions. On the one hand, it is
easy to implement and calibrate. Moreover, it is mainly architecture independent
and only slightly modifies other parts of the system. Almost all needed time values
can be simulated by this implementation. They can range from some nano seconds
to several minutes or more (see Section 9.2.1).

On the other hand, this so called “busy loop”, can lead to undefined results if the
CPU highly uses the CPU frequency scaling possibility. In contrast to the “waiting”
time, the duration needed for processing a single cycle depends on the actual CPU
frequency. If the CPU uses the frequency scaling feature the ratio between “waiting”
and “working” will not be constant. Therefore, errors can be introduced in the test
results if the frequency of the CPU is changing. However, the time to execute
one cycles is not constant in any system, which utilizes the CPU frequency scaling
feature. Hence, the time needed to execute a cpu bound process varies even in
these systems. So, this behavior can be expected to be “normal” and only has to be
considered for the test results evaluation.

Implementation An example implementation can be seen in Listing 5.1. The
function “useCycles” takes a value standing for the processor cycles working for
“usec” as input. The “TIME” constant is defined within the DPS and has been
evaluated using the CF. Here each iteration will exactly consume 1µs while looping
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around the empty statement “;”. The same approach is taken inside of the Linux
kernel. Here, the “BogoMIPS” [8, 75] value will be evaluated while booting. The
result is stored in the “loops_per_jiffies” variable and used for small delays, e.g.,
within the linux kernel ndelay function.

1 void useCyc les ( long usec )
2 {
3 long i ;
4 for ( i = 0 ; i < usec ∗ TIME; i++)
5 {
6 ;
7 }
8 }

Listing 5.1: Example Implementation of a System Influencing CPU PSF

Example for a System Non-influencing CPU PSF The simulation of the
system non-influencing CPU PSF, which means that the real process is blocked or
waiting for an event, can be handled easily by letting the CPU stub sleep for the
desired time. Of course, it cannot be guarantied that the CPU stub is promptly
executed after the sleep period in non real-time systems. But, there is no difference
between the execution of a CPU stubs and any other process. Hence, this behavior is
regarded as normal and does not influence the usability of the system non-influencing
CPU PSF.

Implementation For instance in UNIX environments the usleep()-function
can be used. For details see “unistd.h”.

By using the system influencing and system non-influencing elements of the CPU
PSF a CPU stub can be created, which simulates the CPU behavior of a software
function or, even, of a whole process.

5.3 Calibration Functions

The CF are used to adjust the CPU PSF to a dedicated hardware architecture.
Several steps have to be taken for setting up the CPU PSF to the system. In
common, the setup consists of mainly two parts: “calibration” and “validation”.
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Calibration of System Influencing CPU PSF For the system influencing
CPU PSF, the number of loops for a predetermined duration has to be evaluated,
e.g., the value of the TIME constant in Listing 5.1. This can be done as shown in
Listing 5.2. The calibrateLoop()-function has to be called, varying the “number of
loops” value, until it returns the desired time value with the needed precision.

1 long long int ca l ib ra t eLoop ( long nLoops )
2 {
3 long i ;
4 long long int beforeTSC ;
5 beforeTSC=readTSC ( ) ;
6 for ( i = 0 ; i < nLoops ; i++)
7 {
8 ;
9 }

10 return ( readTSC ( ) − beforeTSC ) ;
11 }

Listing 5.2: Example Implementation of a System Influencing CPU CF

The readTSC()-function basically executes some assembler instructions to read
the value of the time stamp counter (TSC), which is a hardware register [2, 31].
This value is updated with each processor cycle. Of course, the overhead for the
readTSC()-function call has been determined and subtracted. A similar approach
has also been taken to calculate the “bogoMIPS” value1.

In order to ensure the quality of the result the execution of the function shall
not be interrupted. This can be achieved by the following preconditions:

• Executed with high priority

• Executed on an idle system

• Using a tickless kernel

• Adding a short “system recovery” time between each execution. So, other
processes can use the CPU without disturbing the CF.

Additionally, it has to be ensured that no interrupt took place, e.g., using the
getrusage()-function call.

1see Linux kernel source init/calibrate.c
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Validation of the Results After determining the “number of loops”, the result
has to be validated. The first step is to validate the proper working for the predefined
amount of time by executing the calibrateLoop()-function statistically sufficiently
often with “number of loops”. If the results are sound, the second evaluation can take
place. Here, the proper working of the system influencing CPU PSF for the time
range, which is necessary to simulate the timing behavior of the bottleneck, has to
be validated. Hence, the “number of loops” has to be recalculated using the rule of
proportion and the measurements have to be done again. To improve the accuracy
of the results, the steps as described above can be taken. The quality of the results
can be evaluated by applying the linear regression method to the measured values
and calculating a confidence interval.

Calibration of System Non-Influencing CPU PSF The system non-influ-
encing CPU PSF, as described in Section 5.2, are only using the system internal
waiting functions. Because of, these functions are already delivered by the operating
system, nothing has to be adjusted here.

5.4 Methodology

In this section, we present a methodology of using CPU stubs to evaluate the maxi-
mum improvement factor, which can be achieved by optimizing a CPU bound soft-
ware bottleneck. With the parallelization of processing tasks by modern architec-
tures and operating systems, concurrency issues and analysis of individual CPU
usage becomes increasingly important. This methodology can especially be used
within in multi-processing or multi-core systems settings to evaluate concurrency
issues.

1. Determination of the CPU bottleneck:
The SUT has to be defined and a suspected bottleneck (CUS) has to be iden-
tified, which is done by common software performance engineering (SPE)[104,
106], e.g., profiling or tracing. Now, several performance indicators have to be
determined:

• tCUS: Time spent in the bottleneck (CUS).

• tSUT : Time spent in the software module or function (SUT) from which
the CUS is part of.
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• tCUS
busy : Time spent in the CUS using the CPU. It includes the user-mode
time as well as the system-mode time (see [116]).

• tCUS
waiting: Time spent in the CUS waiting to be scheduled (see: process
state “Ready” in [116]).

• tCUS
blocked: Time spent in the CUS waiting for an event (see: process state
“Blocked” in [116]).

The measured values have to be deterministic within several performance test
runs.

2. Validate CPU bottleneck:
In this step, a simple validation of the chosen CUS will be done. Thus, the
system influencing CPU PSF is inserted in front of the CUS and the perfor-
mance measurements will be repeated increasing the time spent in the PSF
(tPSF ). The measured time of the SUT mainly follows one of the diagrams
given in Figure 5.1.

t
SUT
original

tSUT

tPSF

(a) CUS seems to be a bottleneck

t
SUT
original

tSUT

tPSF

tlimit

(b) CUS is no bottleneck

Figure 5.1: Validate Component Under Study as a Bottleneck

In Figure 5.1a the increase of the system influencing CPU PSF leads to an
arithmetically increasing amount of time spent in the SUT. Therefore, the
CUS seems to be a CPU bottleneck. Hence, the next step can processed.

In the other case, Figure 5.1b shows that an increase in the execution time of
the CUS does not increase the time spent in the SUT for tPSF < tlimit. This
points out that the CUS is no bottleneck for the system. Another potential
CPU bottleneck has to be identified (Step 1).

This step can be done to remove overhead as it excludes the CUS from being
mistaken as a CPU bottleneck easily. This step is optional.
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3. Study the bottleneck performance behavior:
The value tCUS

blocked, which has been determined in Step 1, will be used to evaluate
the CPU utilization of the CUS.

A value of tCUS
blocked = 0 means that there are no waiting periods triggered by

the CUS while executing. So, the process will not be interrupted by the CPU
except there are external events, e.g., scheduling. In this case, the methodology
can be used as provided.

A value of tCUS
blocked > 0 means that the process switches to the “Blocked” state.

Here, the trace files recorded in Step 1 have to be studied further, in order to
identify successive working and waiting periods of the process. The following
steps of this methodology have to be done for every working period starting
from the biggest to the smallest working period. The waiting period will be
simulated with the system non-influencing CPU PSF. The simulated waiting
time will normally be constant, if no further reduction caused by optimizations
of this time period can be expected.

4. Flat CPU Stub - Evaluate the optimization potential:
Now, a flat CPU stub will be used to determine the optimization potential.
A flat CPU stub is a particular dynamic performance stub (PDPS), which
only simulates the functional behavior of the CUS using the SSF. Hence, it
only introduces small overhead in the system and can be used to simulate the
ideal time behavior of the CUS. This can be used to analyze the maximum
performance gain of the SUT as it is not the same as tCUS = 0, especially
in multi-core or parallel processing environments. As the final result often
depends on several in parallel working threads or processes. Therefore, the
following values have to be measured:

• tSTUB
flat : Time spent in the flat CPU stub.

• tSUT
flat : Time spent in the SUT including the flat CPU stub.

An indicator of the possible optimization amount can be evaluated by calcu-
lating:

• tCUS
reduced = tCUS − tSTUB

flat : The time, which has been reduced in the CUS.

• tSUT
reduced = tSUT−tSUT

flat : This describes the total possible optimization gain.
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If the CUS is executed more than once in sequence, the maximum number of
iterations per CPU (iter) has to be evaluated. Hence, tCUS

reduced ∗ iter and tSUT
reduced

has to be compared. It is possible to use the factor iter because the same CUS
is executed, so each iteration takes the same amount of time. The values tCUS

and tSUT are taken from Step 1. Now, the calculated values can be compared
and the following cases can be evaluated:

• tCUS
reduced = tSUT

reduced: This means that, the SUT directly depends on the
CUS. Hence, there are no system dependencies, i.e., “hidden bottlenecks”.
Additionally, no “over optimization”, as described in [84], can be done.
The more time optimized in the CUS the better it is. In this case, the
next step of this methodology is Step 7, i.e, optimize as much as possible.
However, in case of an expected hardware bottleneck, Step 5 can be done.
This behavior is typically for batch or procedural processing in single core
environments.

• tCUS
reduced > tSUT

reduced: In this case, the possible optimization amount is less
than the time spent in the CUS. Thus, there are system dependencies,
which have to be studied further and we can move on to the next step.
This behavior can mainly be seen in multi-core and parallel processing
systems. As there might be parallel threads or processes, which addition-
ally delays the execution after the actual bottleneck has been reduced.
This is particularly the case if a change over in the critical path has
happened (see [11]).

The case tCUS
reduced < tSUT

reduced does not has to be considered. This would mean
that the speed up of the execution time in the SUT is more than has been
reduced in the CUS. Hence, the execution time of tSUT − tCUS would has been
decreased, but, the software within this part of the SUT has not been changed.

As it is only an indicator, the time tSUT
reduced delivers no information about

the amount of optimization, which has to be done in the CUS, especially
for tCUS

reduced > tSUT
reduced.

5. Idle CPU Stub - Evaluate system dependencies:
Here, the flat CPU stub will be extended using the system non-influencing
CPU PSF. This is called an idle CPU stub. The total simulated time is the
total processing time of the CUS (tCUS

busy ). Hence, the following equation holds
tCUS
busy = tSTUB

idle . Where, tSTUB
idle is the time spent in the idle CPU stub. Now,
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the performance measurements will be redone and the tSUT
idle value, which is

the total execution time of the SUT including the idle CPU stub, shall be
recorded.

Dependencies between an idle CPU stub and the system can be evaluated
using the values: tSUT

idle and tSUT . Thus, the total execution time of the original
SUT will be compared to the execution time of the SUT using the idle CPU
stub. The following cases can be separated:

• tSUT
idle = tSUT : This means that the total execution time of the SUT has
not changed due to the usage of the idle CPU stub. Whereas, the idle
CPU stub only uses the CPU at the very first beginning and than hands
the CPU over to the system. However, the total execution time of the
SUT has not been changed. Hence, it can be concluded that no other
process is blocked by the CPU. Therefore, adding CPUs to the system
does not provide a significant performance improvement. Nevertheless,
as of Step 2, the CUS is the bottleneck.

• tSUT
idle < tSUT : Here, the total execution time of the SUT decreases by
using an idle CPU stub. Therefore, further processes are at least par-
tially available in the “Ready” queue. In this case, these processes can
be executed earlier. Therefore, the total execution time decreases. An
optimization of the CUS as well as an additional CPU would decrease
the total execution time.

The case that tSUT
idle > tSUT does not have to be considered as it means that

reducing the amount of instructions would lead to a longer execution time.
This is not possible in typical CPU bound systems.

This step evaluates dependencies between running processes in the system and
the CUS. Moreover, information about the influence of adding CPUs to the
system can be achieved. However, the measurements do not provide any in-
formation whether a faster CPU will increase the total execution time. Albeit
expected that a faster CPU will increase the total execution time. As the pro-
cess is CPU bound, the amount of instructions determines the total execution
time. Using a faster CPU means that each cycles and, hence, an instruction,
is executed faster.

6. Busy CPU Stub - Cost estimation:
The flat CPU stub will be extended with the system influencing CPU PSF.
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Now, the performance measurements will be repeated and the time spent in
the system influencing CPU PSF (tPSF ) will be varied from zero to the total
execution time of the CUS (tCUS

busy ). Typically, the time spent in the PSF will be
increased by 10% of the total execution time for each iteration. This can also
be redone if a particalur time slice, e.g., between 20% and 30%, identified a
change over in the critical path as explained in this step. The following values
have to be measured:

• tSTUB
busy : Time spent in the busy CPU stub.

• tSUT
busy : Time spent in the SUT including the busy CPU stub.

Using these results, two different types of bottlenecks can be distinguished:

(a) Total bottleneck:
In this case, the measured values of the execution time from the SUT is
linearly increasing. Thus, an optimization of the CUS will always result
in an improvement of the execution speed and, thus, decrease the latency.
This result should have been already achieved in Step 4.

(b) Limited bottleneck:
If the processing of the SUT depends on other functions respectively on
their results, the graph might look similarly as given in Figure 5.2. The
graph is split in two parts. In the first part, tPSF ≤ tlimit, the time of
the SUT is constant at a minimum value (tSUT

min ). Within this area, the
chosen CUS is no bottleneck to the system as an increasing in the amount
of processing (tPSF ) does not lead to an increased execution time (tSUT ).
At tlimit the behavior of the CUS chances to a CPU bottleneck. As can
be seen in the figure, the time spent in the SUT increases along the time
spent in the system influencing CPU PSF (tPSF ). This evaluation shows
that an optimization of the bottleneck can only decrease the latency in
the SUT to a given value (tSUT

min ).

These information can be used to identify “hidden” bottlenecks, e.g., a “hid-
den” bottleneck appears at tlimit of Figure 5.2. This limit is basically the
maximum, which can be achieved by an optimization of the CUS. Hence, it
can be compared to a changeover in the critical path (see [11]). Additionally,
the information can be used for a cost-benefit analysis. Thus, a gain-oriented
improvement can be done.
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Figure 5.2: Limited Bottleneck

7. Optimization of the software:
Now, the software module or function has to be optimized. Hence, the results
from the cost-benefit analysis can be used for a software improvement related
to the optimum between cost and effort. Finally, the performance of the
software component has to be measured again. A new bottleneck has to be
identified (first step) if the results show that the performance targets are not
achieved yet.

The application of CPU stubs will be shown in the next section. Hence, the
provided realization and methodology are applied to a case study.

5.5 Case Study

This sections evaluates the application of the CPU stubs to a performance opti-
mization study on a step-by-step analyzes. First, the evaluation environment is
described. This is followed by the description of the system under test. The last
subsection describes the evaluation of the methodology.

5.5.1 Evaluation Environment

The application runs on a Linux operation system (Kernel 2.6.30.9). The evaluation
is done using the Linux Trace Toolkit next generation (LTTng) [78]. For timing
measurements, the TSC is used. The hardware is based on an Intel Centrino Core 2
Duo CPU. The calibration of the CPU PSF is realized as described in Section 5.3.
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5.5.2 Original Function

The application used for the proof of concept is split into three highly CPU bound
processing parts. The middle part calculates the results in two different threads and
the last part needs both results to complete the calculation.

5.5.3 CPU Stubs

The described methodology has been applied to the before mentioned application.
The measurements of each step have been done several times in order to evaluate
some statistical behavior.

1. Determination of the CPU bottleneck.
The SUT is defined as the whole application. The identified bottleneck is
supposed to be in the parallel processing part of the application. The mea-
surements have been repeated five times. Table 5.1 lists the average value for

seconds (avg) SCV
tSUT 7.21 0.0000231
tCUS 2.48 0.0002236
tCUS
busy 2.42 0.0000130
tCUS
waiting 0.06 0
tCUS
blocked 0 0

Table 5.1: Determination of the Performance Behavior

each parameter as well as the squared coefficient of variation (SCV) [111]. The
tCUS
waiting has been calculated. Hence, the SCV is zero.

In this step, the SUT and the CUS have been determined and some more
detailed analysis has been done. For a definition of the values see Section 5.4
Step 1.

2. Validate CPU bottleneck.
Here, the system influencing CPU PSF has been added to the CUS and the
timing behavior of the SUT has been studied. The evaluation of the result has
shown a similar behavior as presented in Figure 5.1a. Hence, the bottleneck
has been validated.

3. Study the bottleneck performance behavior.
The evaluation of tCUS

blocked has shown that the application is 100% CPU bound,
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i.e., the process did not stall. Hence, no special steps are necessary in the
following steps.

4. Flat CPU Stub - Evaluate the optimization potential.
In this step, the SSF has to be built without any PSF. Afterwards, the time
spent in the flat CPU stub (tSTUB

flat ) has to be measured as well as the time
spent in the system under test (tSUT

flat ). This measurement has been done five
times in order to get some statistical distribution validation.

seconds SCV
tSUT
flat 6.28 0.0000059
tSTUB
flat 0.000000034 0.0084648

Table 5.2: Flat CPU Stubs Timing Measurements

The results have been summarized in Table 5.2. As can be seen, the time
spent in the stub (tSTUB

flat ) is approximately zero. The total execution time of
the SUT (tSUT

flat ) is about 0.93 seconds, which has been defined as tSUT
reduced, less

than the SUT time measured in Step 1 (see Line 2 of Table 5.1). However, the
time spent in the CUS (tCUS

reduced) has been reduced by about 2.48 seconds (see
tCUS in Line 3 of Table 5.1). As tCUS

reduced > tSUT
reduced, this is an indicator that

there are further influences of the system.

5. Idle CPU Stub - Evaluate system dependencies.
The flat CPU stub is extended by the system non-influencing CPU PSF. This
step basically evaluates whether an additional CPU might improve the total
execution time. The measured average time of tSUT

idle is 7.15. The comparison of
this value with tSUT from Step 1 pointed out that an additional CPU would not
result in a significantly improved execution time of the SUT. This result can
be easily explained, as there are two CPUs for executing two parallel processes
and the rest of the system is idle.

6. Busy CPU Stub - Cost estimation.
This step determines the amount of CPU time spent in the CUS, which should
be reduced for an ideal optimization. Hence, the system influencing CPU PSF
(tPSF ) will be successively increased starting from zero to tCUS

busy . The values
tSTUB
busy and tSUT

busy have been measured.

Figure 5.3 evaluates the tSUT
busy and tSTUB

busy (y-axis) depending on the ratio
tPSF/t

CUS
busy (x-axis). Whereas, the value for tSTUB

busy is increasing arithmeti-
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Figure 5.3: Optimization Effort Estimation

cally, the value for tSUT
busy remains constant until 0.6 and than starts to increase

arithmetically. Here, a changeover of the bottleneck can be seen. In this
case, the CUS is only a bottleneck above 0.6 for the system. Hence, in or-
der to ideally optimize, the time spent in the CUS has only be reduced to
ideal_optimization times tCUS

busy . Now, a cost-benefit analysis can be done by
an effort estimation of the optimization.

7. Optimization of the software.
In this step, we highly “over optimized” the CUS to clearly identify the “hidden”
bottleneck. We were able to reduce the time spent in the CUS to 0.280 micro
seconds. However, the time spent in the SUT was still 6.29 seconds, which is
close to the expected value as achieved in Step 4. Now, the next bottleneck
should be optimized if necessary.

The presented methodology can be used to optimize parallel processing system.
We have shown that, a possible optimization gain can be evaluated and “hidden”
bottlenecks can easily be identified. This leads to a more gain-oriented optimization
of the software.

5.6 Summary

In this chapter, we outlined the CPU stubs, which are a subset of the DPS frame-
work. These stubs are used to simulate the CPU behavior of a software functions.
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Thus, some requirements has been defined and the CPU PSF has been described
as well as the CF are explained. A methodology to use CPU stubs within several
systems, e.g., for multi-core systems, has been developed and evaluated by using a
proof of concept.

The results clearly presents that by using CPU stubs it is possible to determine
the potential outcome of a performance improvement study without actually improv-
ing the software module or function. This can be used for a cost-benefit analyzes
and, hence, an over optimization can be avoided.

The next chapter describes the main memory stubs which are one realization of
the memory stubs.
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Main Memory Stubs

The main memory performance simulation functions
can be used to model the heap and stack behavior of soft-
ware modules or functions depending on the time when
the allocation will be done. This chapter discusses the
requirements, a possible realization as well as a method-
ology to use these. Moreover, the calibration functions
for the main memory performance simulation functions
are described.
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6.1 Requirements

To simulate the main memory behavior of the CUS accurately, the algorithm has to
meet several requirements:

1. Allocate heap or stack memory in chunks.
The allocation behavior of a software function usually allocates the memory
in chunks. This behavior should be simulated in the main memory stubs (mm
stubs), i.e., do not always (de-)allocate the total amount of memory.

2. Allocate or free a defined amount of memory.
This requirement particularly relates to the stack memory segment as it is not
possible to use a “free” function call to release the allocated memory. Here,
the function, which has allocated the stack memory has to be terminated.

3. Allocate or free memory at any given time.
It should be possible to change the allocated memory amount of heap and
stack independently at each given sampling value.

4. The allocated amount of memory can remain constant.
The amount of allocated heap and/or stack memory does not have to be
changed at a given time.

5. Use the allocated memory.
In order to create the necessary page faults, the allocated memory should be
used.

6. Create a page fault at their occurrences.
Recreate the page fault behavior of the software function as soon as a new
main memory page is allocated.

By meeting the requirements, it is possible to simulate any main memory allo-
cation behavior of software modules or functions. Additionally, the necessary page
faults are created at the time when they are occurring.
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6.2 Realization of the Main Memory Performance

Simulation Functions

In order to meet the requirements of the algorithm the single conditions have to
be regarded and proper solutions about how to fit them have to be found. The
solutions presented in this section use the basic memory management functions that
are provided from the GNU C Library.

(De-)allocate Heap Memory Heap memory is allocated by the dynamic use of
memory within the SUT. This is usually done by calling functions like malloc(). To
deallocate the heap memory, the free()-function is used. In the case of the simulation
algorithm, using malloc() and free() to simulate the heap memory behavior would
result in some problems. With the free()-function the total amount of heap memory
allocated by malloc() would be freed. So a decrease of heap memory would be
simulated by freeing the total amount of heap memory and allocating the requested
amount afterwards. This would finally result in the correct amount of heap memory
but it would not simulate the behavior in a correct way (see Requirements 1 &
4). The allocated amount of heap memory has to shrink but not to be freed and
allocated again. For that reason, the presented algorithm uses the realloc()-function
to allocate heap memory, which is able to change the size of the used heap memory
in the desired way.

1 char∗ mHeap=NULL;
2 mHeap=(char∗) r e a l l o c (mHeap , s i z e ) ;
3 i f (mHeap==NULL) {
4 d i e ( e r r o r ) ;
5 }

Listing 6.1: Heap Main Memory PSF

A possible realization is presented in Listing 6.1. Here, the memory is allocated,
reallocated and freed by using the realloc()-function call. The function will terminate
the process if the requested amount of memory cannot be allocated.

(De-)allocate Stack Memory Stack memory is usually allocated during function
calls when pushing the needed information, like the value of the base pointer, the
return address and the local variables, onto the stack. The stack memory is freed by
leaving the called function. To simulate this behavior a certain predefined amount
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of stack has to be allocated when calling the simulation function. By leaving this
function the allocated amount of stack will be freed. In order to rebuild several
function calls, the simulation function has to be called recursively. Freeing the stack
to a certain value, can only be done by leaving the recursion to a certain level. This
leads to the requirement that this special amount of stack has to be simulated by a
call of the simulation function.

By calling and leaving the simulation function in a recursive way, it’s possible
to simulate the rising and trailing edges of stack allocation. But, the call of the
simulation function allocates a constant amount of stack. So, a possibility to allocate
additional stack memory has to be found. For that the alloca()-function is used.
It allocates the desired amount of stack memory by usually just moving the stack
pointer and returning a pointer to the newly generated area of the stack memory.
Thus, the behavior of the stack can be rebuilt (see Requirements 2 & 4).

1 char∗ mStack=NULL;
2 mStack=(char∗) a l l o c a ( s i z e ) ;
3 // no error , i f no space i s a v a i l a b l e
4 // cannot be f r e ed by a func t i on c a l l

Listing 6.2: Stack Main Memory PSF

In Listing 6.2, a possible realization for a stack main memory PSF (stack mm
PSF) is presented. The amount of the stack is allocated by using the alloca()-
function. This lines have to be included into the function, which shall modify the
amount of stack memory. As of the alloca()-function, no error is indicated if the
alloca()-function fails to allocate the requested amount of memory. Moreover, the
function, which includes the alloca()-function has to be terminated to free the stack
memory.

Simulate Time Delays In order to not only simulate the amounts of the SUTs
heap and stack memory but also to simulate them at a correct time, the time delays
between the changes of memory have to be considered. To simulate these time delays
the usleep()-function, which is part of the unistd.h (libC) in Linux OSs, is used (see
Requirement 3).

Using the Allocated Memory When executing the SUT the allocated memory
is used. For that reason it is possible that page faults occur. The simulation algo-
rithm recreates the memory behavior of the SUT, and so, it also has to rebuilt the
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page faults that are produced within the original software. To invoke those page
faults, the simulation also has to use the allocated memory (see Requirements 5 &
6). The “distmemset()-function” is introduced to generate the desired page faults
with only small influences on the time behavior of the simulation.

1 void distmemset (char ∗memory , char i n i t , int a l l o c a t e S i z e , long
int page s i z e ) {

2 int i = 0 ;
3 for ( i = 0 ; i < a l l o c a t e S i z e ; i = i + page s i z e ) {
4 memory [ i ] = i n i t ;
5 }
6 i f ( a l l o c a t e S i z e > 0) {
7 memory [ a l l o c a t e S i z e − 1 ] = i n i t ;
8 }
9 }

Listing 6.3: System Influencing Allocation of Main Memory PSF

In Listing 6.3, the distmemset()-function is presented. It will access each newly
allocated page at least once to use the allocated memory. Hence, the requested
amount of page faults are created. As one byte of the allocated page is used the
execution time of the distmemset()-function is short. Similar behavior could have
been achieved by using the memset()-function; but, the execution time is far higher.

In the next subsection a possible realization of an input file for the mm stubs is
presented.

6.2.1 Simulation Data File

To reduce the overhead created when running the algorithm, the measuring points
used to simulate are written into a data structure within a header file that is used
to compile the algorithm.

Listing 6.4 shows an example header file that can be used to build the simulation
algorithm. For each measuring point, the data structure “memAlloc” contains the
time elapsed since the previous point. Additionally, the change of heap as well as
stack memory are contained. Every point is presented by one “memAlloc” struct.
Those structs are inserted into an array of “NUMDATA” length. So the algorithm
can easily switch to the next trace point and does not produce much overhead in
execution time.

82 Peter Trapp



CHAPTER 6. MAIN MEMORY STUBS

1 #define NUMDATA 4
2

3 struct memAlloc{
4 int time ;
5 int s t a ckA l l o c ;
6 int heapAlloc ;
7 } memUse [NUMDATA]={
8 [ 0 ] . time=129 , [ 0 ] . s t a ckA l l o c =300 , [ 0 ] . heapAlloc=0,
9 [ 1 ] . time=223 , [ 1 ] . s t a ckA l l o c =100 , [ 1 ] . heapAlloc =200 ,

10 [ 2 ] . time=384 , [ 2 ] . s t a ckA l l o c=−100, [ 2 ] . heapAlloc=−40,
11 [ 3 ] . time=112 , [ 3 ] . s t a ckA l l o c=−300, [ 3 ] . heapAlloc=−160
12 }

Listing 6.4: Design of the Measuring Points’ Data Structure

6.2.2 Algorithm

This section describes a realization of the mm stubs based on the requirements (see
Section 6.1) and mm PSF (see Section 6.2). The algorithm uses the simulation data
(SD) file, as described in Section 6.2.1, as input file for the simulation.

Figure 6.1 shows the design of the memory simulation algorithm. The recur-
sive function, needed to simulate the stack behavior (see Requirement 2), is called
“allocate()”. This function is called when the amount of stack is increasing.

Simulate Stack Allocation In the first part of the algorithm (Part I in Figure
6.1), the time will be delayed as requested by the data set. Then, the stack memory
is allocated by calling the alloca()-function and used with the distmemset()-function.

Next Trace Point In the second part (Part II), the algorithm decides whether
the stack is increasing or decreasing at the following trace point. It will again reach
Part I if the stack is increasing. If the stack is shrinking, the recursion has to be
left, which is realized in Part III.

The following stack value cannot be zero as this value would has been handled
in Part IV before reaching the Part II.

Simulate Stack Deallocation This is achieved in the third part (Part III). The
time delay is simulated and the stack memory is automatically freed when leaving
the allocate()-function.

After having left the allocate()-function, the algorithm is either back in the
previous function, which initially called the allocate()-function, or it is in Part II
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Figure 6.1: Memory Simulation Algorithm

and the while(...) condition proves once more if the amount of stack is increasing
at the next trace point. This construction is needed to simulate a sequence of rising
and trailing edges.

Simulate Constant Stack In situations where the stack remains constant (see
Requirement 4), only the heap and time have to be simulated. This is achieved in
both Parts IV.

Simulate Heap (De-)Allocation The heap memory can be de- as well as allo-
cated in the Parts I, III and IV. As it can increase and shrink at these points no
specifics have be to considered here (see Requirements 1, 3 & 4).

Use Allocated Memory In order to use the newly allocated memory and, hence,
to create the necessary page faults, the distmemset()-function (see Listing 6.3) is
additionally called whenever new memory is allocated, i.e., after the “(re-)allocate
heap”, “allocate stack” and “constant stack” functions (see Requirements 5 & 6).

The main memory behavior of software modules or functions can be simulated
by running this algorithm. All listed requirements from Section 6.1 are satisfied.
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The next section presents the calibration function for the mm stubs algorithm.

6.3 Calibration Functions

This section presents the evaluation of different overhead values, which are caused
by executing the mm stubs as in Section 6.2.2. After the calculation, the results can
be used to improve the main memory simulation algorithm. In the context of DPS,
they are referred as calibration functions (CF).

6.3.1 Measurement Tools

The test environment is based on a Linux operating system (see Section 6.6.1).
Hence, measurement tools, which can be used in most Linux systems, are described
here. They are used to gather the information to determine the various overhead
caused by the main memory simulation algorithm. In this section, the tools used
for the CF are presented shortly.

Allocated Heap Memory To measure the behavior of the heap memory the
“mallinfo” structure provided by the malloc.h header-file is used. This structure
delivers several aspects about heap memory allocation such as the memory area,
used and free amount of heap memory within the area. The mallinfo struct is read
by calling the mallinfo()-function that is also part of the malloc.h header-file.

Allocated Stack Memory The size of the allocated stack memory is measured
by reading the base and stack pointer of the running process. Their difference
represents the actual amount of stack allocated by the component under test. To
read their values with the least overhead, some inline assembler code have been used.

Time The measured values for allocated stack and heap memory have to be put
in a chronological sequence. For that reason, the time has also to be measured when
picking heap and stack values. Here, the TSC of the system is used.

6.3.2 Overhead Determination

This section presents a possibility to determine the three types of overhead, which
are generated by the simulation algorithm: “time”, “heap” and “stack”.
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Time Overhead

When simulating the memory behavior of the component under study the simulation
time has to be almost same as the original runtime. But, there are several reasons
why the execution time is delayed.

Reasons for Time Overhead There are mainly five reasons for the time overhead
produced by the algorithm:

• The execution time of the algorithm without any memory allocation

• The allocation of heap memory

• The use of the allocated heap memory

• The allocation of stack memory

• The use of the allocated stack memory

Running the algorithm consumes time, even if no memory is allocated. This basic
time overhead is produced by the algorithm. When allocating heap memory the run-
time of the algorithm will increase because of the time that is needed by the realloc()-
function. Additionally, the use of the allocated heap memory by the distmemset()-
function also takes some time. The same behavior can be regarded when the stack
memory is allocated. The alloca()-function and the use of distmemset()-function
produces additional time overhead.

Measurement To measure the total time overhead (timeoverhead) for the algo-
rithm several independent measurements have to be done in order to cover all above
mentioned cases. For each case, a CD file, to simulate the particular situation, is
used.

Basic Execution Time First of all, the evaluation of the basic execution time
(timebasic) of the algorithm when no memory is allocated is performed. This is done
by running the complete algorithm. To cover the complete algorithm a minimum
stack allocation value of 1 byte is used. As the heap should not be regarded within
the timebasic a value of 0 is applied. The time delay between two trace points is also
set to 0 to measure the time consumption of the algorithm.

Measuring the basic time overhead for the algorithm shows a constant offset
value for each run. This value is produced by running the algorithm’s code. Hence,
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it has to be considered as the minimum time resolution that can be simulated by the
algorithm. But, because of the other time overhead, e.g., produced by the allocation
and use of the memory, this resolution can hardly be achieved.

Time Overhead Caused by Heap Allocation The time overhead produced by
the allocation of the heap memory (timeheap) is caused by the allocation itself and
the use of the memory by the distmemset()-function. To evaluate this overhead,
both parts of the overhead has to be measured separately. These measurements use
an identical SD file to simulate heap allocation. The time delay is set to 0 and for
stack allocation 1 byte is used at every trace point. This is done to run through the
complete algorithm. The amount of allocated heap memory increases at each trace
point.

To determine the time used for allocating and using the memory (timeallocheap and
timeuseheap) the time before and after the function call is measured as described above.
Now, the “after” time is subtracted from the “before” time to evaluate the time delta.

Measuring the time overhead produced by the heap memory allocation highly
depends on the architecture and the implementation of the used allocation function
as described in [32]. For example, the change of the allocation options within the
system influences the number of page faults produced and the way allocated memory
is freed within the simulation.

Time Overhead Caused by Stack Allocation To evaluate the time overhead
that occurs when allocating stack memory (timestack) the same measurements as
shown within the heap allocation have to be done. There are two measurements,
one to determine the time used to allocate the memory (timeallocstack) and another to
measure the time to use the allocated memory (timeusestack). The delay of the stack
allocation is determined according to the heap allocation.

The only difference is the SD file that is used for the measurement. The time
delay is set to 0 also in this calibration function. But, there should be no heap
memory allocation. Hence, its value is set to 0, too. The amount of allocated stack
memory is increasing throughout the SD file.

With these two measurements the timing behavior of the stack memory allocation
can be determined. This again, strongly depends on hardware and implementation
of the system.
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Time Overhead in Total In the previous paragraphs, a possibility to determine
the various parts of the time overhead has been shown. These times have to be
measured separately as different settings for the simulated memory and times have
to be used. To get the total amount of time overhead, those parts have to be
combined.

timeoverhead(heap, stack) = timebasic+

timeheap(heap) + timestack(stack) (6.1)

timeheap(heap) = timeallocheap(heap) + timeuseheap(heap) (6.2)

timestack(stack) = timeallocstack(stack) + timeusestack(stack) (6.3)

This is presented in Equations 6.1 - 6.3. The “heap” and “stack” parameters denotes
the amount of bytes, which will be allocated/used.

Byte Overhead

The execution of the simulation algorithm uses a certain amount of memory. There-
fore, the overhead for allocated heap and stack memory have to be measured.

Heap Overhead To measure the heap memory overhead (heapoverhead), created
by the running algorithm, a specific SD file with increasing heap memory allocation
is used. The time delay is not relevant here and, thus, set to zero. The amount of
allocated stack memory is set to 1 byte in order to execute the complete algorithm.

The measurement results show that using the algorithm as described in Section
6 creates only a small overhead in allocated heap memory.

Stack Overhead As done for the heap memory, the overhead of the allocated
stack memory has to be determined, too.

The overhead regarding stack memory that occurs when executing the algorithm
is mainly caused by two reasons.

On the one hand, there are local variables used to initially set up the simulation.
They are located on the stack and, thus, produce a certain amount of allocated stack
memory. This is called (stackoffset).

On the other hand, every function call of the allocate()-function increases the
allocated stack memory, which is called (stackoverhead). This is an important aspect,
due to the recursive simulation algorithm, which produces several function calls
depending on the SD points.

88 Peter Trapp



CHAPTER 6. MAIN MEMORY STUBS

Measuring the stack memory overhead, both stackoffset and stackoverhead, can be
done by using a SD file that increases the amount of allocated stack continuously.
Time and heap values are not considered within this measurement. To estimate the
influence of the recursive function calls, the stack memory is allocated several times
in a row before freeing it again.

The different measurements show that the amount of additional stack memory
allocated by the algorithm (stackoverhead) is constant for every call of the allocate()-
function and, hence, for its recursive call as well.

Overhead Consideration within Simulation Data File Generation

There are several reasons that support and reject the utilization of the overhead
during the generation of the SD file as can be seen in the following non-exhaustive
list:

+ Calculation Time is Uncritical.
When the SD file is generated before the execution of the algorithm, the time
needed to calculate the overhead that have to be used is absolutely uncritical
as it does not influence the runtime of the algorithm.

+ Execution Time Not Influenced.
There is no need of extra execution time during the simulation of the memory
behavior of the system, when considering the overhead within SD file genera-
tion. Using the overhead within the algorithm, would influence the runtime of
the simulation as the amounts of time, heap and stack that have to be delayed
or allocated, would have to be calculated at first.

+ No Changes of Algorithm.
The simulation algorithm remains unchanged. There are no additional vari-
ables needed to calculate the overhead. So, the algorithm needs no additional
heap or stack memory as measured within the CF.

- Portability.
The simulated data file generated only matches to the specific hardware where
the CF have been performed. For other hardware specifications further SD
files have to be generated. If the consideration of the measured overhead
would be done within the algorithm, the same SD file could be used on several
platforms.
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- No Error Correction During Runtime.
There is no possibility for error correction when executing the algorithm. The
data used to simulate the memory behavior is not the original data. It is
already adjusted within the SD file. Thus, the measurement and evaluation
can hardly be done when running the algorithm.

- Compare Trace File and Original Behavior.
Due to the consideration of the overhead within the SD file generation, the
data of the SD file cannot be compared to the original data. Hence, the
SD file can only be validated by running the algorithm and measuring the
results. Regarding the overhead when running the algorithm, would ease the
comparison as the SD file would represent the original data.

Overhead Calculation when Executing the Algorithm

The advantages and disadvantages of using the overhead within the SD file gener-
ation are exactly swapped for their consideration within the execution of the algo-
rithm. Hence, they are not closer specified here.

Conclusion

Both approaches have advantages and disadvantages but the possible change in
time, stack and heap behavior when using the overhead during the execution of the
algorithm is responsible for the use of the overhead calculation within the SD file
generation. Nevertheless, it should be possible to turn off this overhead calculation
within the SD file generation and switch over to the algorithm’s approach if it is
required.

6.4 Simulation Data File Generation

In the previous sections, an algorithm to simulate the heap and stack behavior for
a given trace file has been presented. This section presents a possibility to generate
a SD file considering the CF.

6.4.1 Requirements

Due to the recursive algorithm, specific requirements for the SD file have to be
met. Hence, a closer view on the behavior of the stack memory has to be done and
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following cases have to be considered.

1. Simulating Rising Edges With every new call of a recursion and, hence, the
allocation of the requested amount of stack, both the base pointer as well as the
stack pointer are changed [60]. The base pointer will point to the start of the called
function and the stack pointer will point at the end of the allocated memory. When
leaving the function and, for this reason, decreasing the depth of the recursion the
base pointer as well as the stack pointer will be reset to their previous values. This
behavior leads to the fact that, reducing the amount of allocated stack memory by
leaving the allocation function will reduce its amount exactly by the value it has
been increased when calling this function. Hence, every trace point that causes an
increase of the allocated amount of stack has to have its corresponding SD point,
to free this certain amount of stack.

2. Simulating Trailing Edges When the stack shall be reduced to a certain
level, there had to be a SD point at this specific amount, previously. Only in this
case, the decrease of stack done by leaving the recursive called function can result
in the requested amount of stack memory.

3. Simulating Changing Values Another requirement for the SD file is that
the SD points must not contain the total amount of time, stack and heap but their
differences to the previous value.

6.4.2 Algorithm

Due to these requirements, an algorithm to generate a SD file has been developed.
The goal of this algorithm is to find the appropriate SD points for each sample
point.

An easy approach to calculate a valid SD file is to take the stack value from
each of those sampled points and to find all interception points in the measured
data (MD) that have the same amount of stack. By this approach, the requirements
of the algorithm are fulfilled, but, there might be a large number of additional SD
points being created without any need. Having too many SD points may result in
some performance and timing problems when executing the simulation algorithm
because the computation of each SD point takes a certain amount of time.

Because of the amount of SD points that came up with the first approach, a
decrease of the number of SD points has to be done. One possibility to achieve this
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goal is to change the algorithm, which identifies the data points. There is no need to
find all intersection points of the stack values in the MD but only one corresponding
point that depends on the stack behavior at the position of the measured point.
This is presented in Figure 6.2 and will be explained in the following text.
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(1)
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Figure 6.2: Calculating Appropriate Trace Points

Finding the Corresponding Trace Points The SD file generator distinguishes
the positions of the trace points on the graph. The MD points are displayed with
“diamond” in Figure 6.2. The interpolated points are represented with an “circle”.
The dashed line presents the realistic memory allocation behavior of the component
under study. This behavior is assumed as the allocation of memory is usually realized
in allocating chunks. The time needed to allocate memory is expected to be linear.
All calculated data points are called intermediate simulation data (ISD).

Rising Edge For trace points being on a rising edge in the graph, the algorithm
will search an appropriate intersection on the subsequent trailing edges. This is
presented in (1) in Figure 6.2.

Trailing Edge For trace points lying on a trailing edge, e.g., (2), the fitting
point has to be found on the previous rising edges.

Maxima For a local maximum, e.g., (3), there is no need to find any corre-
sponding points because of a rising edge followed by a trailing edge will call the
recursion and leave it right after the call. So the allocated stack will be freed again
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and the total amount of allocated stack will have the same size as prior to the
maximum.

Minima For a local minima, e.g. (4), two appropriate SD points in the graph
have to be found. There has to be one point on the previous rising edges so that
the reduction of memory to the local minima is possible; And, another point on one
the next following trailing edge. This point is reached after leaving the recursion,
which has been started after the corresponding minima.

Conclusion This approach highly decreases the number of trace points created in
comparison to the basic approach. Because of this, the amount of overhead produced
when executing the simulation algorithm can significantly be reduced.

The determined trace points are often located between two measured points.
The value of stack remains unchanged but the time stamp as well as the amount
of heap have to be interpolated. So, the calculated points will fit into the supposed
behavior as shown in Figure 6.2.

After determining all necessary ISD points, the SD file exist of trace points with
their elements: ISDstack, ISDheap and ISDtime.

6.4.3 Simulation Data Point Calculation

This section explains the application of the determined overhead, as described by
the CF, to generate the SD file. Moreover, it evaluates an algorithm to improve the
calculation of the SD points.

The general equation for calculating the SD points is presented in Equation 6.4.

SD = ISD − error − overhead() (6.4)

The following list describes the separate elements of the equation.

• SD: This is the value, which is used as input for the simulation algorithm. It
will be written into the SD file.

• ISD: This is the value, which should be simulated according to the calculated
SD.

• error: This is an additional value to consider different errors in the system.
These errors are described in the following subsections.
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• overhead(): This function considers the overhead as measured by the CF. The
calculation of the overhead is described in the next subsection.

To calculate the SD points, an error variable has to be subtracted from the
ISD. This error variable is used for static offset considerations and for the automatic
error correction (AEC). Additionally, the overhead, determined by the CF, have to
be subtracted from the ISD as these overhead are generated by the algorithm for
each simulated trace point value.

Applying the general Equation 6.4 to each simulated value leads to the following
equations, which are used to calculate the SD variables.

SDstack = ISDstack

− errorstack − overheadstack(ISDstack − errorstack) (6.5)

SDheap = ISDheap

− errorheap − overheadheap(ISDheap − errorheap) (6.6)

SDtime = ISDtime

− errortime − overheadtime(SDheap, SDstack) (6.7)

Each trace point is written to the SD file and consists of: SDstack, SDheap and
SDtime.

Consideration of the Results of the Calibration Functions

The amounts of allocated stack and heap as well as the time delay have to be
adjusted by the measured overhead from the CF. Hence, the CF ’ measured data
have to be evaluated. In particular, the stackoffset, stackoverhead(x), heapoverhead(x)
and timeoverhead(heap, stack) have to be considered.

The equation to calculate the SD value for the stack, i.e., Equation 6.5, is used
as an example. From Section 6.3, the following overhead values for the stack have
been determined by the CF :

94 Peter Trapp



CHAPTER 6. MAIN MEMORY STUBS

stackoverhead(size) =


64bytes size > 0

0bytes size = 0

−64bytes size < 0

(6.8)

stackoffset = 216bytes (6.9)

The CF ’ results (Equations 6.8 and 6.9) are used to generate the SD, as shown
in Equation 6.10. The errorstack variable is initially set to stackoffset, which is 216
bytes. The measured stackoverhead(size) function is used to consider the overhead,
which is introduced by the simulation algorithm.

SDstack = ISDstack − errorstack

− stackoverhead(ISDstack − errorstack) (6.10)

The results are written into the SD file. Running the measurements with this
file, which considers the CF as well as the errors, show clearly enhanced results.

Automatic Error Correction

An error is introduced in the simulation, e.g., if the ISD value is between zero and
the overhead value1. According to Equations 6.5 - 6.7, the SD value would change
its sign, e.g., beside of increasing the total value in the system, a decrease would be
initiated and, hence, the recursion would be left.

To avoid this error, the SD value is set to zero. This means, the trace point
is simulated at the minimum level that can be resolved, e.g., the value remains
constant for heap or stack values. The error introduced by setting the SD value to
zero is stored in the error variable and will be removed as soon as it is possible, e.g.,
an ISD value greater than the overhead() + error will be allocated for ISD values
greater than zero.

Figure 6.3 presents the introduced error and shortly depicts its removal. The
black graph, marked with “crosses”, presents the desired change in the value. The
red graph (“squares”) shows the behavior, which can be measured in the system by
running the simulation.

1The error value is considered as zero in this example.
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Figure 6.3: Error in Simulation

The error happens at the SD entry 2. Here, a value for ISD greater than zero
and lower than the overhead() + error2 is requested. As described above, in this
case the value for the SD is set to zero. Hence, less than the requested value is used
by the simulation. The value remains constant and the introduced error is stored in
the error variable.

In the next step, which is the SD entry 3, a higher value as overhead() + error

is requested. Hence, the ISD value, the overhead as well as the error introduced at
the SD entry 2 is considered to calculate the SD value. Here, the error is tempered.

Algorithm The following algorithm is used to determine and remove this error:
For each ISD a temporary simulation data (TSD), starting from the first ISD,

is calculated. If available, the error variable is initialized to the static offset, as
described above. Otherwise, the error variable is set to zero.

TSD = ISD − error − overhead() (6.11)

The TSD for each SD point can be calculated using Equation 6.11. Here, the
overhead and the error is subtracted from the ISD value. The TSD value is used
to decide whether ISD value can be simulated without introducing an error or not.
This is done by comparing the TSD with the ISD value.

Now, the following cases can be distinguished:
2The error value at the SD entry 1 is zero.
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1. (TSD ≥ 0 ∧ ISD > 0) ∨ (TSD ≤ 0 ∧ ISD < 0)

In this case, the TSD and ISD values are both greater or smaller than zero
at the same time. This means that an error, as described in the AEC, does
not occur after this sampling point. The SD value can be calculated using
Equation 6.12. Here, the overhead and error is subtracted from the ISD value.

SD = ISD − error − overhead() (6.12)

Another type of error remains for the heap and stack values. This is caused
by calculating the overhead by using ISD − error instead of using SD (see
Equations 6.5 & 6.6). But, the overhead depends on the value of the SD point
entry, which itself depends on the overhead. As the SD point is not available
for calculating the overhead value the result of ISD− error, which is close to
the SD value, is used. But, an error is introduced as SD 6= ISD − error.

error = overhead(SD)− overhead(ISD − error) (6.13)

This error can be calculated by subtracting the calculated overhead value
from the supposed overhead value by using Equation 6.13. Depending on the
overhead function, this error can also be zero, e.g., for overhead function as
presented in Equation 6.8.

The error does not occur for time values (SDtime) as the overhead time only
depends on the heapSD and stackSD values, which are available for the calcu-
lation (see Equation 6.7). Hence, the error variable is set to zero.

2. (TSD < 0 ∧ ISD ≥ 0) ∨ (TSD > 0 ∧ ISD ≤ 0)

This case is taken if a sign flaw, e.g., a stack decrease would happen instead of
an increase, would appear. Here, the value of |overhead() + error| is greater
than the |ISD|. This particularly happens if either an error from an older
execution exists and is not removed, yet; And/or a new error appears at this
simulation point as explained in this section. Hence, the SD value is set to
zero as depicted in Equation 6.14.

SD = 0 (6.14)

error = −ISD + error +minsim (6.15)
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The error is the negative value of the value, which should be simulated, i.e.,
ISD. The value is negative as our simulated value is smaller than the expected
value in case of an increase of the simulated value. Moreover, the remaining
error from the last SD point calculation has to be considered. Finally, a
variable to consider the minimal possible simulation resolution (minsim) is
introduced. This is explained in more detail below. Equation 6.15 can be used
to calculate the error.

In the algorithm, a variable to consider the minimal possible simulation resolution
(minsim) at the SD point entry is introduced. This value is the minimal overhead,
which will be used in any case even if the SD point is set to zero. As the algorithm
is able to simulate a constant stack and heap size, the minsim = 0 for heap and
stack. The minsim value is set to overheadtime(SDheap, SDstack) for time data points
(SDtime).

The above described algorithm can be used to calculate the SD points. There
are two more special cases, which has to be considered for “time” and “stack”.

Time The value for the time SD point (SDtime) is always greater than or equal
to zero as the time cannot be decreased. Hence, the evaluations for ISD < 0 in the
Cases 1 & 2 of the algorithm does not have to be considered.

Stack The algorithm to simulate the main memory behavior (see Section 6.2.2)
has to be recursive. Hence, the stack value cannot be decreased to a certain value
but has to be set to the according SD value on the raising edge (see Section 6.4.2).
This value is already available in the SD file and can be reused. Additionally, the
error, which may have happened at the “increasing” SD point has to be restored,
here. Thus, the algorithm as depicted in Section 6.4.3 is not used for decreasing
stack SD points.

Conclusion Considering the CF, the SD file generation as well as the AEC the SD
points can be calculated with an high accuracy. By using the adjustments, which are
the overhead improvement and the AEC, the simulation of the stack, heap and time
behavior has been improved, significantly. Especially, peaks in allocated memory
are simulated very accurate.
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6.5 Methodology

During the study of performance behavior of main memory bound systems, normally,
a simple indicator that the system under study has a main memory bottleneck is ini-
tially given. In general, two basic measurements can be used during the optimization
phase:

Page Faults Due to the fact that, an access of secondary memory is very time
consuming, this should be avoided. Such an access will be indicated by page
faults. Please note that, initially, every first memory access to a page will
cause a page fault, to load the data. However, repeated page faults reduce the
system’s performance by orders of magnitude. In extreme repetition, which
is called page thrashing, the system will not be operative anymore, because it
will be constantly busy by page loading. So the number of page faults can be
taken as a measurement whether a system is memory bound or not.

Timing Constraints If either page faults cannot be measured or the real execu-
tion time has been chosen as optimization criterion, time has to be taken as
measurement, which will be realized by the following definitions:

• tCUS: Time spent in the bottleneck (CUS).

• tSUT : Time spent in the software module or function (SUT), which the
CUS is part of.

Based on the optimization measurement, the following methodology can be used:

1. Determination of the bottleneck.
The SUT has to be defined and a suspected bottleneck (CUS) has to be iden-
tified, which is done by common SPE methods, e.g., profiling or tracing. Ac-
cording to the chosen measurement method, either the number of page faults
or time constraints have to be determined. The measured values have to be
statistically viable within several performance test runs.

2. Create Main Memory Stub.
The mm stub is now created. First, the functionality of the software module or
function has to be simulated using the simulated software functionality (SSF).
Now, the mm PSF will be inserted into the stub. They simulate the memory
usage of the CUS. In addition, the time spent in the CUS (tCUS), to guarantee
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the original timing behavior, is simulated within the mm stubs algorithm.
Then, repeated measurements should deliver the same values as the original
software.

3. Validate main memory bottleneck.
The next step is a modification of the memory usage parameter in the mm
PSF. First, the memory usage has to be increased, e.g., 5%, 10%, . . . , 100%.
If that leads to more successive page faults or a longer system time tSUT

stubbed,
then the CUS is at least a main memory bound bottleneck. Please note that,
the values for the initial page faults have to be subtracted as they will still
occur in the background at this stage.

4. Evaluate the optimization potential.
Now, different measurements with different optimization parameters have to
be realized. Hence, the parameters in the mm PSF can be varied. These vari-
ations are based on estimations of the performance analyst, e.g., estimations
in which parts of algorithm the memory consumption can be optimized. As an
example, the memory consumption can be changed by using specialized data
structures or by optimizing the data representation itself.

Additionally, the influence of different memory allocation behaviors can be
studied, e.g., by varying the allocation chunk size. For example, the complete
data can be statically allocated in the initialization phase or only a subset of
the data are allocated in the initialization phase and new data are allocated
on demand.

Moreover, the influence to the time behavior of the bottleneck for optimization
strategies based on using data caches can be evaluated. Here, the memory and
time consumption can be changed in order to simulate the caching effects.

The results of this steps are noted for the next step, where a cost estimation
of the performance improvement can be carried out.

5. Cost-benefit analysis.
In this step, a cost estimation based on the possible optimization gains should
be done. Hence, the amount of effort, which has to be spent for realizing
the proposed optimization has to be evaluated. By comparing the possible
outcome of the optimization with the necessary effort for this optimization, a
cost-benefit analysis can be done.
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6. Optimization of the software.
Now, the software module or function has to be optimized. Hence, the results
from the cost-benefit analysis can be used for a software improvement related
to the optimum between cost and effort.

Finally, the performance of the software component has to be measured again.
A new bottleneck has to be identified (first step), if the results show that the
performance targets are not achieved yet.

This section presented a methodology for using mm stubs to evaluate the possible
outcome of a main memory optimization. This can be achieved by a cost-benefit
analysis. The next section evaluates the mm stubs by a case study.

6.6 Case Study

This sections discusses the application of the several aspects of the mm stubs. First,
it evaluates the CF for the test environment. Moreover, it validates the SD file gen-
eration algorithm with its subcomponents: “simulation data point calculation”, “cal-
ibration functions considerations” and the “automatic error correction” algorithm.
To conclude this section, an overall mm stubs algorithm validation is provided.

6.6.1 Evaluation Environment

All measurements were performed on a FSC Amilo Si3655 Notebook with an Intel
Core(TM)2 Duo P8400 CPU (Intel 64 architecture), which runs with 2.26GHz. As
operating system Arch Linux is used. Its kernel version is 2.6.34. The binary has
been built using the gnu compiler collection (gcc) without any optimization flags.
To guarantee that, the option “-O0” has been used. Beside of running the proof of
concept, the system has been idle to avoid further influences on the execution time.

Measurement Tools To offer the possibility to evaluate the simulated behavior
of the memory allocation a very precise way to measure the stack and heap allocation
has to be used.

For this reason, the value of allocated stack memory is measured by inline assem-
bler calls to read the stack pointer (esp) and base pointer (ebp) registers. The value
of ebp is taken at the beginning of the simulation to get a base value for the stack
allocation. During the simulation the esp register has been read at every measuring

101 Peter Trapp



CHAPTER 6. MAIN MEMORY STUBS

point. So the offset between the starting ebp and the actual esp gives the actual
total amount of allocated stack memory.

To measure the value of allocated heap memory, the mallinfo structure of the
malloc.h header-file is read. This structure contains all the desired information
about the heap memory for this process.

The MD has to be associated with the time spent in the system. Because of this,
at every measuring point a time stamp is taken using an inline assembler to read
the TSC of the system.

6.6.2 Original Function

According to the needs of the several subsections of this case study, three different
SD files have been used for validation of the mm stubs.

Calibration Functions The simulation data file has been generated as described
in Section 6.3

Simulation Data File Generation To depict the results of the several algorithms
at the best, a small input data file has been used to present the application
flow of the generation as well as the error correction algorithms.

Main Memory Stubs Behavior A large SD file, which covers the various aspects
of the simulation of the main memory behavior has been used to study the
mm stubs. This file particularly evaluates the simulation algorithm with its
different simulation possibilities.

The used SD files are described in more detail in the subsections.

6.6.3 Main Memory Stubs

As described above, this subsection is split in to three subparts: CF, SD file gener-
ation and the simulation of the mm stubs execution behavior.

Calibration Function

To determine the time, heap and stack allocation offset, created by executing the
simulation, the CF as presented in Section 6.3 are used. The values for those offset
depends on the system’s implementation. Hence, the calibration has to be repeated
when changing any of the system’s parameters. As described in Section 6.3, different
SD files have to be used to measure the various offset values of the algorithm.
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Time Overhead The measurement of the basic time offset has shown to be
constant in our setup. It is determined to timebasic = 126775cycles3 with a SCV of
0.009, calculated for 100 test evaluations.

Within this proof of concept, the time consumed by allocating stack and heap
memory has been identified. The evaluation of the measurements that were de-
scribed in Section 6.3, leads to following results for the heap and stack allocation (y
describes the previously allocated total memory size in the memory segment and x

the newly allocated memory in bytes).
Equation 6.16 is used to calculate the number of page faults at a certain memory

allocation value.

pagefaults(x, y) =

⌊
(y%pagesize) + x

pagesize

⌋
(6.16)

The number of bytes, which did not cause a page fault, yet, is calculated by
y%pagesize. The result plus the newly allocated memory (x) is devided by the
pagesize to determine the amount of page faults for the new allocation. This result
is passed to the floor function as page faults can only be a natural number. Pagesize

denotes the system page size in bytes.

Time Influence of the Heap Simulation The heap memory will only be
reallocated. Hence, the memory value (x) is always greater or equal zero.

As can be seen in Equation 6.17, the time spent for allocating memory heavily
depends on whether a page fault is raised in the allocation function or not. Addi-
tionally, there is only one page fault in the allocation function even if more than one
page is allocated.

timeallocheap(x, y) =

3722cycles pagefaults(x, y) > 0

94cycles pagefaults(x, y) = 0
(6.17)

timeuseheap(x, y) = 69cycles ∗ (pagefaults(x, y) + 1)+

3252cycles ∗

pagefaults(x, y)− 1 pagefaults(x, y) > 1

0 pagefaults(x, y) = 0
(6.18)

In Equation 6.18, the time spent in the distmemset()-function is calculated. The
3I.e., approximately 59µ seconds.
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equation consists of two parts. First, the time spent iterating over the memory
block, i.e., 69cycles ∗ (pagefaults(x, y) + 1) and, second, the number of page faults
occurred in the function minus one as one page fault appeared within the allocation
function (see Equation 6.17).

Time Influence of the Stack Simulation For both times, i.e., timeallocstack(x)

and timeusestack(x), the algorithm does not take significant time to free the stack mem-
ory (x ≤ 0). Additionally, the “freed” memory will not be used, obviously. Hence,
both values are set to zero cycles. In the other case, the time needed to allocate and
use the new memory can be calculated by using Equations 6.19 and 6.20.

timeallocstack(x) = 48cycles (6.19)

timeusestack(x, y) = 61cycles+

3358cycles ∗ pagefaults(x, y) (6.20)

The time to allocate stack memory (Equation 6.19) is constant as only the base-
and stack pointer have to be adjusted.

The time spent in the distmemset()-function to initialize the stack memory
(Equation 6.20) is the same as in Equation 6.18. The only difference is that the
stack allocate function does not raise a page fault. Hence, all page faults are raised
in the distmemset()-function. Thus, the total page fault number of the newly allo-
cated memory is used in Equation 6.20.

All the described equations were found by determining the average time stamps
of several runs in our test setup and describe the time behavior of allocating and
using the heap and stack memory in sufficient accuracy.

When not allocating any heap and/or stack memory at a trace point, the re-
spective times are set to 0. In those cases, they do not have any influence on the
calculation of the total time overhead for each measuring point. The equation used
to determine the total time overhead timeoverhead(heap, stack) is described in Section
6.3.

Heap and Stack Overhead As stated in Section 6.3, the heap offset that is
introduced when executing the algorithm has to be determined. The measurements
showed that heapoverhead is constant at 32 bytes, if there is no heap memory allocated
within the simulation. If there is any heap memory allocated during the simulation,
the heap overhead rises to 40 bytes and also remains constant while the memory is
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allocated.
Measuring with the given calibration trace file results in a constant increase of

allocated stack per trace point. So, the call of the allocation function allocates a
constant amount of stack memory. Because of this measurement, the stack offset is
determined to stackoffset = 216 bytes as well as to

stackoverhead(x) =


64bytes x > 0

0bytes x = 0

−64bytes x < 0

.

As these bytes overhead are constant for each execution, there is no need for an
statistical interpretation.

The values for stack, heap and time overhead is used to produce a SD file. This
allows the simulation algorithm to perform a simulation that fit as exact as possible
to the desired behavior of memory allocation.

Simulation Data File Generation

The input data file for generating the SD file is presented in Figure 6.4 as “measured”.
Only a small amount of input data is used to depict the application flow of the
algorithm at the best.

In Figure 6.4, the “measured” trace points are depicted using a diamond. The
x-axis presents the time when the trace point has been taken and the y-axis presents
the amount of stack, which were allocated at that time. Here, a scientific trace file
has been chosen to cover the different situations as described in Section 6.4.2.

After passing the trace file to the simulated data generation algorithm, the ISD
are calculated. This is depicted with circles in Figure 6.4 and is called “interpolated”.
They are calculated based on the assumption about the supposed allocation behavior
in the system (blue graph).

As can be seen in the figure, the four different cases, denoted as (1) - (4) in the
graph, are accordingly to the assumptions of Section 6.4.2.

The ISD points are passed to the SD point calculation (see Section 6.4.3). This
is presented in Figure 6.5. The axis are according to Figure 6.4.

The blue graph (circles) presents the ISD and the red graph (diamonds) presents
the SD, which will be written into the SD file (see Section 6.2.1).
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Figure 6.4: Calculation of the Intermediate Simulation Data

As can be seen in the figure, the considerations of the CF are also taken into
account. The consideration of the stackoverhead(size) (Equation 6.8) and stackoffset

(Equation 6.9) is depicted with (1). The results of the stackoverhead(size) sums up
for each recursion depth. The application of the AEC algorithm (see Section 6.4.3)
to the ISD values is described in (2). Here, a magnification is exemplarily presented
for clarification. After calculating the stack value, the time value can be adjusted.
Similar as for the stack value, the delta of the time value increases over the time.
The time delta is depicted with (3).

As can be seen, the generation of the SD file is working properly. Moreover, the
CF as well as the AEC s are included in the algorithm.

Simulation of the Main Memory Stubs Behavior

The last step within this case study is the validation of the simulation behavior of
the mm stubs algorithm. Hence, the MD points will be to generate a SD file. The
result is passed to the simulation algorithm, which is then be executed and measured.
Afterwards, the MD points are compared to the results of the measurement.

Hence, the MD data are described as well as the comparison is done in the
following subsections.

Measured Data As input file for SD file generation algorithm, the following MD
data points will be used. To improve the simulation outcome, the results of the CF,
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Figure 6.5: Comparison of the Intermediate Simulation Data and Simulation Data

as described above, are used.
The MD are depicted in Figure 6.6. The x-axis denotes the time spent in the

software function and on the y-axis the amount of allocated stack memory is pre-
sented in kilo bytes. The MD has been chosen as all requirements and preconditions
can be validated. Hence, the MD file has successive de- and allocations (Part 1).
Moreover, alternating de- and allocations are included (Part 2). Additionally, data
points with constant values on raising and trailing edges (Part 3) as well as slowly
increasing stack values (Part 4) are available. Thus, the MD points can be used
to validate the CF, the SD file generation algorithm as well as the main memory
simulation behavior of mm stubs.

The figure presents the MD for the stack simulation, only. This is done as the
requirements for the heap simulation can be hold easily. Moreover, by removing the
heap MD from the figure a simplified and, hence, better visualization of the stack
MD could be presented.

The output is presented as a header file, see Section 6.2.1, containing the data
set used within the simulation algorithm.

Measurement After creating a valid header file, an executable of the simulation
algorithm can be built. This has been used to execute the simulation of the memory
memory allocation behavior.

Figure 6.7 shows the measured stack and heap memory allocation in comparison
to the desired behavior. The time in milliseconds is printed at the x-axis and the total
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Figure 6.6: Measured Main Memory Behavior

allocated amount of memory in kilobytes is shown at the y-axis. The figure shows
the original stack behavior (“Stack Measured Data”, blue line), the measured stack
allocation during the simulation (“Stack Simulated Data”, green dots), the original
heap allocation (“Heap Measured Data”, black line) and the measured heap behavior
(“Heap Simulated Data”, red diamonds) while simulating the memory allocation.

Simulating Execution Time When comparing the time supposed by the SD
file, which is 4.8 seconds, and the execution time measured in the evaluation, which
is 4.799300 seconds, it can be seen that the simulation produces only a small vari-
ation of time overhead. Here, an overhead of 0.7 ∗ 10−3% in total execution time is
produced. So, the total execution time is sufficiently simulated.

Simulating Heap Allocation The analyses of the heap’s allocation simulation,
as shown in Figure 6.7, depicts that it is very accurate. There is nearly no variation
to the desired behavior of heap allocation. It is possible to simulate situations where
the heap is rising and falling. Fast switches of allocating and freeing heap memory
are simulated exactly. The simulation algorithm works absolutely fine for simulating
heap memory allocation in our example.

Simulating Stack Allocation The results of the simulation of stack memory
allocation behavior also are satisfying. The allocation behavior can be reproduced
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Figure 6.7: Comparison of Original and Simulated Memory Behavior

exactly. Rising and trailing edges as well as constant amounts of stack are simulated
in a correct way. High peaks and fast changes of allocated stack are rebuilt as desired.
Even slow rises of the allocated amount of stack are simulated quite well.

The measurements were done by using the mm stubs algorithm (see Section
6.2.2). The SD file has been generated by using the SD file generation algorithm
(see Section 6.4.2). This algorithm considers the CF as well as the two different
AEC algorithms.

As has been shown, both, heap and stack memory allocation, are simulated with
high accuracy and almost without an overhead in execution time. Hence, mm stubs
can be used to simulate the main memory allocation behavior of software modules
or functions.

6.7 Summary

In this chapter, we outlined the mm stubs. These stubs are used to simulate the
main memory allocation behavior of software functions or modules. Particularly,
the heap and stack memory can be simulated by using mm stubs.
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Within this chapter, some requirements has been defined and the mm PSF has
been described as well as the calibration functionality is explained. Moreover an
algorithm to generate SD files, which are used as input into the simulation algorithm
has been presented. The generation of the SD files is supported by two different
“automatic error corrections” to improve the simulation results. Finally, a case study,
which evaluates the various approaches is included.

The results clearly presents that by using mm stubs it is possible to simulate the
main memory allocation behavior of software modules and functions. Thus, they
can be used in the DPS framework to optimize main memory bound systems.

The next chapter describes the data cache memory stubs which are one realiza-
tion of the memory stubs.
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Data Cache Memory Stubs

The data cache memory performance simulation func-
tions can be used to model the data cache behavior
of software modules or functions. This chapter dis-
cusses the requirements, a possible realization as well
as a methodology to use these. Moreover, the calibra-
tion functions for the data cache memory performance
simulation functions are described.
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7.1 Requirements

This section specifies the requirements for the data cache memory stubs (dcm stubs).
They should be able to simulate the data cache access behavior of a software com-
ponent, in a deterministic way. Moreover, the parameters of the simulation should
be adjustable by the performance engineer. Hence, the following requirements have
been determined:

1. Reproducibility.
The number of data cache events, which are produced should be deterministic
within a specified confidence interval for each test execution. Here, especially
the following data cache events should be considered as reproducible:

• Amount of level one hit accesses

• Amount of level one miss / level two hit accesses

• Amount of level two miss / memory hit accesses

These events should be generated deterministically for read and write data
cache accesses.

A stub, which does not produce an equal amount of cache references might
not be usable within the DPS framework.

2. Granularity.
The several data cache events should be simulated without significantly influ-
encing further cache events.

3. Scalability.
The amount of data cache events should be adjustable by parameters. In the
best case, amount of generated cache accesses should be easily calculated.

4. Portability.
The approach of the dcm stubs shall be usable in different hardware architec-
tures.

The requirements cannot be listed by their importance as the importance of the
different requirements depends on the developer, who is using the dcm stub. E.g.,
in some cases, the “granularity” requirement might not be important as long as all
events can be simulated as needed.
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7.2 Realization of the Data Cache Memory Perfor-

mance Simulation Functions

This section describes a method to produce adjustable amounts of data cache events.
The idea of building a memory stub for data cache misses is to access data, e.g., a
variable inside a program that is not stored in the data cache on the target level
and, hence, has to be read from higher levels or main memory. This will cause a
cache miss on the target level. A cache miss on a dedicated level will cause either
a cache hit on the next level if the data is available on that level or a cache miss if
the data is not available. This is only applicable to inclusive caches.

There are different caching architectures, which aim to avoid cache misses as far
as possible. In our test system, a n-way set associative cache is implemented. Every
location of the main memory can be loaded to n different locations in the cache [17].
The physical address inside the main memory is used to determine the cache set,
which stores the data. Hence, it is possible to access data from memory, which will
be stored into a dedicated cache set (see [7, 94]).

Each cache set consists of n different cache lines (assoc). To permanently create
conflict or capacity cache misses the minimum required amount of sequential data
(arraysize) can be calculated as described by Equation 7.1.

arraysize = size+
size

assoc
(7.1)

Any value of arraysize greater than the cache size (size) can be used to write
into each cache line (cacheline), so that the cache is completely filled. This applies
to most of the cache replacement policies as discussed below. An arraysize smaller
or equal to the cache size will only produce compulsory misses at the first access and
cache hits for all subsequent accesses in an otherwise isolated environment. In order
to reproducible overwrite a cache set, assoc+1 accesses to different data referencing
the same cache set have to be done. Therefore, the size of the array has to exceed
the size of the cache by the amount of cache size divided by the associativity bytes.
This can be achieved by adding size

assoc
bytes to the array. Hence, assoc+ 1 different

data references for any cache set are possible.
Arraysize is the optimum size for constantly overwriting cache lines. Any

smaller value does not lead to overwrite any cache line periodically. Values greater
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than arraysize can add additional trashing in other cache levels because the data
stub has to load the data sequentially into the higher levels as well. The arraysize

value provides further advantages such as:

• A smaller amount of memory will be used.

• Runtime improvement of the application, because only data, which has to be
referenced, has to be allocated or loaded into higher cache levels. Otherwise,
it would lead to a reduction of performance.

However, in some cases an array size greater than arraysizemight be the best choice
because of some side effects, e.g., to create different amounts of cache hits or misses
in different cache levels at the same time, to reduce the applications overhead, or
to improve the scalability of the amount of created cache events. This strongly
depends on the needs of simulating the cache behavior for dcm stubs and can easily
be realized.

If less or equal than n (n = assoc) different data elements, which are stored in
the same cache set, are accessed in sequence, no more cache misses other than the
first reference will occur. Hence, it is necessary to access at least n + 1 different
data elements in sequence, which are to be loaded into the same set of cache lines
in order to consistently get cache misses during the runtime of the dcm stub. The
approach is intended to work for read misses as well as for write misses.

This simulation can be used to create a desired amount of cache misses or hits in
the target cache level. To achieve this, three different aspects have to be considered:

1. A description of the system’s architecture has to be used to adjust the algo-
rithm to the system.

2. The to-be-created events have to be specified. This can be done in a simulation
data (SD) file.

3. An algorithm has to be determined to create the predefined cache events.

These three elements are described in the following to define the dcm PSF.

7.2.1 Architecture Description File

Each level of the caching architecture of the CPU for data, instruction or unified
caches can be described by several parameters. First, a general description, like the
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cache size (size) and the cache line size (cacheline) is needed. Second, the cache
architecture (see Section 3.4.2), e.g., n-way set associative cache, has to be consid-
ered. Thus, the associativity (assoc) can be used. Additionally, this specification of
the caching architecture has to be provided for each cache level.

1 #define LEVELS 2
2 enum cache {L1D=0, L2U} ;
3

4 struct cacheArch{
5 int c a ch e l i n e ;
6 int as soc ;
7 int s i z e ;
8 int s e t s ;
9 } cache [LEVELS]={

10 [ 0 ] . c a ch e l i n e =64, [ 0 ] . a s soc =8, [ 0 ] . s i z e =16384 , [ 0 ] . s e t s =32,
11 [ 1 ] . c a ch e l i n e =64, [ 1 ] . a s soc =8, [ 1 ] . s i z e =1048576 , [ 1 ] . s e t s =2048
12 } ;

Listing 7.1: Example Architecture Description File

An implementation of the architecture description file can be found in Listing
7.1. The three parameters, cacheline, assoc and size, are set to the characteristics
of each cache level. The different cache levels are defined in Line 1 & 2. First, the
number of different cache levels is specified. Second, the different cache levels are
provided. Additionally, the set’s parameter (sets) is introduced for convenience and
is used to describe the number of independent cache sets. This parameter can be
calculated by sets = size

assoc×cacheline
.

The caching architecture of the example can be interpreted as follows. There
are two different caches, a first level data (“L1D”) and a second level unified (“L2U”)
cache. Both have a cache line size of 64 bytes and a associativity of 8. Moreover,
each of the caches has a cache size and a number of different sets.

7.2.2 Simulation Data File

The configuration of the access behavior of the algorithm is described in the SD file.
This file specifies particularly the number of events (accesses) to the cache level
(cache) and the access type, i.e., read or write access (direction). Additionally, the
amount of different cache event types (CET) is specified (SAMPLES).

Further parameters, such as accessstride, setstride, sets, arraysize and
sleeptime, are used to configure the access behavior of the algorithm. These are
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described in the algorithm section.

1 #define SAMPLES 2
2 #define ARRAYSIZE_MAX ((1048576∗9) /8)
3

4 enum d i r e c t i o n {READ=0, WRITE} ;
5

6 struct datase t {
7 enum cache cache ;
8 int a c c e s s e s ;
9 enum d i r e c t i o n d i r e c t i o n ;

10 int a r r a y s i z e ;
11 int a c c e s s s t r i d e ;
12 int s e t s ;
13 int s e t s t r i d e ;
14 unsigned int s l e ep t ime ;
15 } sample [SAMPLES]={
16 [ 0 ] . cache=L1D, [ 0 ] . a c c e s s e s =10000 , [ 0 ] . d i r e c t i o n=READ,
17 [ 0 ] . a r r a y s i z e =18432 , [ 0 ] . a c c e s s s t r i d e =2048 ,
18 [ 0 ] . s e t s =32, [ 0 ] . s e t s t r i d e =1, [ 0 ] . s l e ep t ime =0,
19

20 [ 1 ] . cache=L2U, [ 1 ] . a c c e s s e s =10000 , [ 1 ] . d i r e c t i o n=WRITE,
21 [ 1 ] . a r r a y s i z e=ARRAYSIZE_MAX, [ 1 ] . a c c e s s s t r i d e =131072 ,
22 [ 1 ] . s e t s =2048 , [ 1 ] . s e t s t r i d e =1, [ 1 ] . s l e ep t ime =1000
23 } ;

Listing 7.2: Example Simulation Data File

In Listing 7.2 an example SD file is presented. Here, two different CET (see Line
1) are used. The first cache event type is specified in Lines 16 - 18. It is configured to
create 10000 the L1 data cache read events (Line 16). The other parameters, which
are arraysize, accessstride, sets and setstride, are configured to create “miss”1

events. Here, the whole L1 cache is used. The last parameter of the simulation is
sleeptime. In this example no delay between the first and second cache event type
is used.

More information about the parameters can be found in the algorithm description
(see below).

7.2.3 Algorithm

This section describes the algorithm of the dcm PSF. The algorithm is split in two
parts. The first part is used to process the different CET as specified in the SD file.

1This can only be seen by examining the different parameters.
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The second part creates the cache events for this particular cache event type.

1 #include" a r c h i t e c t u r e . h"
2 #include" s d f i l e . h"
3

4 char myar [ARRAYSIZE_MAX] ;
5

6 void distmemset (char ∗memory , char i n i t , int a l l o c a t e s i z e , long
int page s i z e ) ;

7 void c r ea t eAcce s s ( int x ) ;
8

9 int main ( int argc , char∗∗ argv ) {
10 int x=0;
11 long int page s i z e = sys con f (_SC_PAGESIZE) ;
12 distmemset (myar , ’ a ’ , ARRAYSIZE_MAX, page s i z e ) ;
13

14 for ( x=0; x<SAMPLES; x++){
15 c r ea t eAcce s s ( x ) ;
16 }
17 return 0 ;
18 }

Listing 7.3: Algorithm to Specifically Access Different Cache Sets (excerpt)

In Listing 7.3 an example of the first part of the algorithm is presented. As
described above, the algorithm constantly accesses different memory locations of
an array. This array is defined in Line 4. The distmemset()-function as presented
in Listing 6.3 is used to initialize the array (Line 12). The ARRAY SIZE_MAX

value is specified in Listing 7.2 Line 2 and set to the maximum arraysize value used
within the different CET.

In Line 15 of Listing 7.3 the createAccess()-function is called for each cache
event type (Lines 14-16). Listing 7.4 presents the implementation of this function.
It determines the memory location in the array (myar), which is accessed to create
the supposed cache event. To create a predefined amount of cache events the “for”
loop in Line 14 is used. Here, number of accesses for this cache event type is read
from the SD file. In Line 16 it is decided whether a read or write event should be
created. The according event is then created either in Line 17 for write or in Line
19 for read events. After the event has been created, the algorithm calculates the
next memory location (Lines 22-26).

To calculate the next memory location, the parameters sets, setstride and
accessstride of the SD file (Listing 7.2) are used. These values are described in
the following. Afterwards, the calculation of the next memory location is presented.
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1 void c r ea t eAcce s s ( int x ) {
2

3 int i =0;
4 char a=’ a ’ ;
5 int countse t =0;
6

7 const int a r r a y s i z e=sample [ x ] . a r r a y s i z e ;
8 const int s e t s=sample [ x ] . s e t s ;
9 const int d i r e c t i o n=sample [ x ] . d i r e c t i o n ;

10 const int next s e t=cache [ sample [ x ] . cache ] . c a ch e l i n e ∗ sample [ x ] .
s e t s t r i d e ;

11

12 int ac c e s s=ar ray s i z e −1;
13

14 for ( i=sample [ x ] . a c c e s s e s −1; i >=0; i−−){
15

16 i f ( d i r e c t i o n ) {
17 myar [ a c c e s s ]=a ;
18 } else {
19 a=myar [ a c c e s s ] ;
20 }
21

22 access−=sample [ x ] . a c c e s s s t r i d e ;
23 i f ( a c c e s s < 0) {
24 countse t++;
25 ac c e s s= ( a r r ay s i z e −1) − ( ( countse t % s e t s ) ∗ next s e t ) ;
26 }
27 }
28 us l e ep ( sample [ x ] . s l e ep t ime ) ;
29 }

Listing 7.4: Function to Specifically Access Different Cache Sets (excerpt)

sets This value describes the number of different sets of the cache, which will be
used to create the cache events.

setstride The setstride value defines the stride between two sets. A setstride value
of 1 means that the set next to the actual set is used. A value of 2 means that
there is one set in between.

accessstride The accessstride value is the amount of bytes written into the same
set. This is typically set to size/assoc but can also be set to whole-number
multiples of size/assoc. In this case, the distance between two accesses to the
same set is higher. This can be used to additionally create dTLB misses.
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For each cache event type, the algorithm traverse the array backwards (Line 14-
27) to prevent the application from prefetching functions of the CPU [79]. It starts
at the last element (Line 12). The distance between two accesses is accessstride

(Line 22). If the algorithm processed through the whole array, i.e., the next memory
location in the array would be smaller than zero (Line 23), the next memory location
in the array has to be calculated (Lines 24 & 25). Here, the algorithm starts at the
last memory location in the array but subtracts an offset (Line 25).

This offset is used to determine the next set, which will be overwritten and is
calculated by the next sets’ value, which shall be used (countset%sets) multiplied
by the distance between two sets (setstride) and the cache line size (cacheline).
This calculation is done in Line 10 and called nextset.

Finally, in Line 28 the execution between two CET can be delayed using the
sleeptime parameter as specified in the SD file (Listing 7.2). Here, the system non-
influencing CPU PSF is used to simulate the execution time of the bottleneck. The
system non-influencing CPU PSF was chosen to provide additional CPU time to
the system as it should simulate an optimization of the bottleneck. Hence, it can
be evaluated whether the system is CPU bound or not as the additional CPU time
can be used by other processes. The sleeptime is typically set to zero within the
execution of one simulation run, i.e., all cache events for the different cache levels and
accesses for one test run have been simulated. Between two test runs, the sleeptime

parameter is adjusted according to the needs of the performance analysis.
In the following an operation breakdown of the algorithm is exemplarily pre-

sented in Figure 7.1. This example is based on the following configuration. There
is only one data cache with a size of 16 bytes (size = 16), cache line size of two
bytes (cacheline = 2) and an associativity of two (assoc = 2). Hence, there are
four different sets in the cache. The SD entry is configured with the following main
parameters: ARRAY SIZE_MAX = arraysize = 24, accessstride = 8, sets = 2,
setstride = 2 and accesses = 6.

On the left hand, the myar array is presented. The gray boxes as well as the
arrows denote the access sequence of the algorithm. It starts at the last element of
the array and advances using the accessstride value to traverse the array (Accesses
1-3). Afterwards, it starts at arraysize− 1− offset and continuous (Accesses 4-6).

On the right hand, the access behavior of the algorithm in the cache is presented.
The gray boxes with the numbers depict the cache line, which will be overwritten by
accessing the x-element in the simulation. Hence, by the third and sixth access the
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Figure 7.1: Example Access Behavior of the Data Cache Memory PSF

cache lines, which have been used by the first and fourth access will be overwritten2.
Basically, by a misconfiguration conflicting situations can occur. E.g., if the test

run is configured to use all sets but shall use a setstride of two. In this case, the
sets parameter is more dominant as expected. In the example above, all sets are
used.

Using the described method for data cache misses on a certain cache level, it
produces cache hits in the upper level automatically as long as the amount of con-
stantly referenced data can be contained in the upper level. Otherwise the upper
level will also been overwritten. The upper level cache typically has more capacity
than the target level, so after the unavoidable first time misses for each accessed
data element, the dedicated data cache misses are automatically hits for the higher
level data cache.

It is not possible to get hits on higher cache levels without getting misses on
lower cache levels because data found in the upper cache level is brought into the
lower cache levels. This is the normal behavior for any inclusive cache architecture.

The approach described here can additionally be used to create level one (L1)
data cache hits, but the cache architecture has to be modified slightly. Every access

2This applies for a LRU replacement strategy (see Section 3.4.2).
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to an element of the array has to be inside a single cache line of the L1 cache
(arraysize = cacheline = size), and the number of sets (sets) and the associativity
(assoc) has to be set to one. Due to the access to different locations within the
same cache line, the data is not available in a register but has to be fetched. Hence,
it accesses the L1 cache where the data is already available because the cache line
has been fetched by the first access to the first byte. An example configuration for
a cache is presented as “L1DH” in Listing 7.5.

1 #define LEVELS 1
2 enum cache {L1DH=0};
3

4 struct cacheArch{
5 int c a ch e l i n e ;
6 int as soc ;
7 int s i z e ;
8 int s e t s ;
9 } cache [LEVELS]={

10 [ 0 ] . c a ch e l i n e =64, [ 0 ] . a s soc =1, [ 0 ] . s i z e =64, [ 0 ] . s e t s =1,
11 } ;

Listing 7.5: Example Architecture Description File to Create Level One Hits

Moreover, the approach can be used for sector caches (see Section 3.4.2) as well.
As the “tag” of the memory location for misses is always different to the “tag” stored
for the sector, the whole sector is set as invalid and the subsector is filled with new
data (see Section 3.4.2). In the case of “hits”, the tag will be the same and, thus, no
misses are created. Hence, the necessary cache hits and misses can be created using
the dcm PSF.

To summarize, the dcm PSF are able to simulate the data cache memory perfor-
mance behavior of a software component. This simulation can be done determinis-
tically and can be adjusted by several parameters. Particularly, it can simulate the
following cache access behaviors:

• Level one hits

• Level one misses / level two hits

• Level two misses / memory hits

A detailed validation of the approach has been done on the target hardware.
The results are discussed in Section 9.4.
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7.2.4 Discussion

This section discusses the amount of cache hits or misses occurring during the exe-
cution of the dcm PSF approach more in detail.

ICSR(a1, a2) := ∃n ∈ N0 : |a2 − a1| = n× size

assoc
(7.2)

We define A as a set of main memory addresses, e.g., a1, a2, of memory references.
Equation 7.2 can be used to determine if two memory accesses referencing the same
cache set (identical cache set references, ICSR). Two data elements will be stored
in the same cache set if their main memory addresses (a1, a2) differ by the amount
of size

assoc
bytes3. Here, size denotes the size and assoc the associativity of the cache.

Therefore, all multiples n ∈ N0 of the distance of two references will be stored to
the same cache set.

CSR(a) = |{a2 ∈ A|a 6= a2 ∧ ICSR(a, a2)}| (7.3)

We define the number of cache set references (CSR(a)) as the number of inde-
pendent memory accesses to the same cache set. In Equation 7.3 a formal definition
is given. CSR(a) is the number of elements of the set A with different addresses
(a, a2) satisfying the constraints of Equation 7.2.

To describe the possible range of cache events created by the dcm PSF approach
with arbitrary replacement policies4 different types of misses according to [7] have
to be considered: compulsory (MISScomp) and conflict/capacity misses (MISScon).
The cache will be treated as empty at the start of the application. Therefore,
compulsory misses will occur if the application has not used the cache line before.
Every first access of data will always create a cache miss. This happens during the
first iteration through unique memory locations in the array. If more than a single
cache set has been referenced the values given in the equations from this section have
to be multiplied by the number of used cache sets. A pass through the memory array
is called an iteration (iterations). The following cases have to be distinguished:

3For more information see also Equation 7.1.
4Except of the random replacement strategy as discussed in Section 7.2.5.
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• 1 ≤ CSR(a) ≤ assoc:

MISScomp = CSR(a) (7.4)

MISScon = 0 (7.5)

HITS = iterations× CSR(a)− CSR(a) (7.6)

• CSR(a) > assoc:

MISScomp = assoc (7.7)

MISScon = iterations× CSR(a)− assoc (7.8)

HITS = 0 (7.9)

For CSR(a) ≤ assoc the independent cache references in the first iteration of the
dcm PSF loop will produce compulsory cache misses (so Equation 7.4 holds). After
this iteration the data which will be referenced are stored inside the cache because
there are enough different cache lines (assoc) available in the same cache set. All
other occurring accesses, therefore, will result in a cache hit on the desired level (so
Equations 7.5 and 7.6 hold). This is only partly true for the L1 cache. Here the
independent cache set references can also be served from registers, depending on the
available registers in the CPU and on the amount of CSR(a). A slightly modified
dcm PSF approach is additionally described at the end of Section 7 for L1 cache
hits. In this case the amount of compulsory misses is 15 and the amount of hits is
the total amount of references minus the compulsory miss (cacheline * iterations -
1 ).

In the case of CSR(a) > assoc, more independent data references will be used
than can be stored in a cache set. Therefore, every access to the data element will
result in a cache miss (so Equation 7.9 holds). The number of compulsory misses is
assoc since every cache line in the set will be written (so Equation 7.7 holds). Hence
all other references will be conflict/capacity misses (so Equation 7.8 holds).

The amount of cache hits as described in this approach can be less than the
adjusted value in real environments. This is expected as other processes running on
the CPU will influence the amount of data in the cache. As this is an expected be-
havior it does not influence the usability of the dcm PSF approach for the memory
stubs. Moreover, the behavior can be used to spot memory problems of the applica-

5Assuming that the cache line is aligned.
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tion, because the memory accesses are measured and, hence, can be identified. The
evaluations done in this sections cover a single cache set. In order to get the total
amount of cache references the results from the equations have to be multiplied by
the number of referenced cache sets.

7.2.5 Replacement Policies

The deterministic behavior of the approach depends on the replacement policy of
the caching algorithm. The following replacement policies will be discussed (see
[3, 93]):

• First in first out (FIFO), least recently used (LRU), least frequently used
(LFU)

• Pseudo least recently used (PLRU)

• Random Replacement

The amount of cache hits or misses will only be discussed in the following subsections,
if they differ from the values described in Section 7.2.4.

FIFO, LRU, LFU

The replacement policy FIFO always overwrites the cache line, which has the longest
stay in the cache. Due to the nature of the algorithm, there will always be cache
misses when data elements, which are not in the cache are accessed when there
are no empty cache lines available. Hence, the algorithm in Listing 7.3 can be
used to deterministically create cache misses with every access because it references
more cache lines per cache set than can be stored in the cache set. An possible
implementation of a FIFO via a round-robin counter, which is incremented after
new data is loaded into a set [93], also does not affect the behavior of the approach.

The LRU always overwrites the cache line which has not been used for the longest
time. If every cache line is sequentially used every cache line will be accessed by the
amount of references. Therefore, there is no difference between the FIFO and the
LRU policy in Listing 7.3. The dcm PSF approach shows the same behavior for the
LRU as for the FIFO strategy and can easily be used for dcm stubs.

The same behavior, as described for LRU, can be applied to LFU because of
equidistant data access. There will be no cache line, which has more often been
referenced by the application.
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PLRU

The tree-based Pseudo-LRU (PLRU) as described in [93] approximates the least
recently used data. This is realized using tree-bits to point to the (approximated)
oldest data stored in the cache set. On sequential accesses to independent data
(CSR(a)) this approximation gives the same results as the LRU. After assoc se-
quential accesses, the used tree bits point to the cache line, which will be replaced
next exactly as the LRU does. Therefore, the dcm PSF approach can be used with
the PLRU.

Random Replacement

Random replacement strategies, e.g., implemented via a linear feedback shift register
(LFSR) [3] will influence the amount of produced cache misses. The bounds of the
amount of cache hits and misses, which can occur will be evaluated in this section.
Due to the fact that, a random replacement policy is in place, no exact value can
be given. Only a range of possible values can be calculated. Relations between the
associativity (assoc), the total amount of hits (HITS ) and misses (MISS ) are given.
Furthermore, the misses will be classified into compulsory misses (MISScomp) and
conflict/capacity misses (MISScon) if applicable. Thus, the total amount of misses
(MISS ) is equal to the sum of compulsory misses (MISScomp) and conflict/capacity
misses (MISScon).

For calculating the amount of cache events, this section is split into the first loop
(iterations = 1) and all successive loops (iterations > 1 ). The equations for loops
for iterations > 1 will be treated independently from the first loop. Additionally,
the evaluations will be done for a single cache set. Hence, the results have to be
multiplied by the number of referenced cache sets.

Iterations = 1 The data has not been accessed before, so no cache hits can occur
during the first iteration, therefore, all accesses are misses. This is expressed through
Equations 7.10 and 7.11.

HITS = 0 (7.10)

MISS = CSR(a) (7.11)

As described above, for the calculation of cache misses two kinds of misses can
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be distinguished: compulsory and conflict cache misses. To divide the misses and
hits into compulsory and conflict/capacity misses and to determine the lower and
upper bounds two different cases have to be evaluated regarding the amount of used
cache lines (CSR(a)) in a cache set:

1 ≤ CSR(a) ≤ assoc: The lower bound for the compulsory misses is one (see
Equation 7.12). This means, the referenced data will be stored into any cache line
and exactly this cache line will constantly be overwritten by other data references
to the same cache set. Therefore, the upper bound for conflict/capacity misses as
described in Equation 7.12 is CSR(a) minus one.

MISScomp ∈ [1;CSR(a)] (7.12)

MISScon ∈ [0;CSR(a)− 1] (7.13)

Because of CSR(a) is less or equal assoc each reference can be stored into a different
cache line. This defines the upper bound for compulsory misses (see Equation 7.12)
and explains the lower capacity/conflict miss bound (see Equation 7.13) as all misses
are compulsory.

CSR(a) > assoc: In this case the different referenced data do exceed the amount
of different cache lines inside of the set. Therefore, the maximum amount of com-
pulsory misses is the amount of different cache lines from one set which is assoc and
described in Equation 7.14.

MISScomp ∈ [1; assoc] (7.14)

MISScon ∈ [CSR(a)− assoc;CSR(a)− 1] (7.15)

The maximum amount of cache misses is CSR(a) if every access results in a miss.
Thus, the minimum amount for capacity/conflict misses is the total amount of misses
(CSR(a)) minus the maximum amount of compulsory misses (assoc) (see Equation
7.15). The minimum amount for compulsory misses and maximum of conflict/ca-
pacity misses has already be described in 1 ≤ CSR(a) ≤ assoc and is one and
CSR(a) minus one (see Equations 7.14 and 7.15).

Iterations > 1 This section evaluates the amount of cache misses for all iter-
ations > 1 of the inner loop as described in Listing 7.3. The iterations will be
evaluated without the effects of the first initial loop iteration, which has been de-
scribed above. For convenience, we abbreviate i = iterations. All occurring misses
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will be conflict/capacity misses, for simplicity they will be called misses. As already
described in Paragraph “Iterations = 1 ” this section will also be split into two cases:

1 ≤ CSR(a) ≤ assoc: Due to the random nature of this replacement policy
and the fact that there are more cache lines in one set available as data will be
referenced, all occurring cache events can be either hits6 or misses7 (see Equations
7.16 and 7.17) in each loop. The maximum amount of possible hits and misses is
the number of hits and misses per loop multiplied by the number of loop minus one,
because the first loop is evaluated separately. So Equations 7.16 and 7.17 hold.

MISS ∈ [0; (i− 1) ∗ CSR(a)] (7.16)

HITS ∈ [0; (i− 1) ∗ CSR(a)] (7.17)

This is a worst case for the dcm PSF approach because, there is almost no pos-
sibility to determine the amount of hits or misses in advance. Hence, the approach
cannot be used in this scenario.

CSR(a) > assoc: The maximum number of cache misses, which can occur for a
single iteration other than the first one is the amount of initial independent cache
references per cache set (CSR(a)) as explained for the first loop. This results have
to be multiplied by the number of iterations minus one as already explained. The
minimum amount of cache misses can be calculated by subtracting the maximum
amount of possible hits from the total amount of references ((iterations − 1) ∗
CSR(a)). This leads to Equation 7.2.5.

MISS ∈ [(i− 1) ∗ (CSR(a)− assoc); (i− 1) ∗ CSR(a)]

HITS ∈ [0; (i− 1) ∗ assoc] (7.18)

The maximum amount of cache hits will be achieved if every access will be a hit;
therefore, the maximum amount per loop is assoc. The minimum number of hits is
achieved when the maximum number of misses are generated during a loop iteration,
so if every access is a miss. When the maximum number of misses is equal to the
number of accesses, the minimum number of hits is equal zero. The lower and upper
bound for all iterations beside of the first is presented in Equation 7.18.

As can be seen from the equations in the best case the number of misses is equal
to the number of accesses. This is equal to the behavior when another deterministic

6All data references to different cache lines.
7All data references to the same cache line.
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replacement strategy, e.g., LRU is used.
To get the total number of possible hits or misses the minimum as well as the

maximum values of cache hits and misses, of the Sections iterations = 1 and itera-
tions > 1 has to be added and finally multiplied by the number of referenced cache
sets. This provides the total range of misses and hits which can occur using the dcm
PSF approach in caching architectures which uses the random replacement policy.

Conclusion

Whereas, the approach is working for most of the caching architectures, the replace-
ment policy strongly influences the usability of the approach. Due to the unpre-
dictability of the random strategy, the results, as evaluated in Section 7.2.5, depicts
a worst case scenario, where it is only possible to determine the lower and upper
bounds of the numbers of cache misses or hits.

In our working environment an Intel Pentium 4 processing unit will be used.
Therefore, the replacement strategy is a PLRU. This means that our approach is
valid in this environment.

7.3 Calibration Functions

The CF are used to adjust the various simulation possibilities to the system. Hence,
the system behavior while executing a predefined simulation configuration is studied.
Here, the results of the measurement will be compared to the supposed values. This
can be used to adjust the parameters of the dcm stub to achieve the desired data
cache access behavior.

The following steps have to be done in order to calibrate the dcm stubs to the
system:

1. Determine hardware.
The capabilities of the hardware architecture have to be determined regarding
the needs of the data cache memory stubs. This consists mainly of two points:
“caching architecture” and “measurement capabilities”.

(a) The caching architecture of the system has to be determined, e.g., by
using hardware specification documents. Particularly, the different cache
types and cache levels have to be determined as well as the cache replace-
ment policy. The machine description language, as specified in [82], can
be used for tracking the results of this study.
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(b) The second part of this step is to determine the measurement capabil-
ities, e.g., by using the hardware specification documents. Usually, the
amount of cache events caused by the application can be determined using
hardware counters (see Section 2.5.1). If the measurement capabilities of
the hardware are not sufficient, further evaluation techniques should be
considered, e.g., using simulation tools (see Section 2.5.3) or by a binary
analysis.

This step provides information whether the specified dcm PSF can be used
as the usability strongly depends on the replacement policy. Moreover, it
provides a sound overview of the used architecture as well as the measurement
possibilities.

2. Determine use case.
The several cache events, which shall be simulated by using the dcm stub, have
to be determined, e.g., the stub shall simulate different amounts write hits in
each cache level.

The caching architecture, which has been determined in Step 1a, can be used
for a breakdown of the several CET. From the example above, this would lead
to L1 write hits and level two (L2) write hits8.

The separated cache events will be examined independently by using “dedi-
cated dcm stubs”. Hence, the next step has to be redone for each identified
cache event.

3. Study simulation behavior.
In this step, the influence of each “dedicated dcm stub” to the system has to
be measured. It consists mainly of two different evaluations:

First, the influence of the stub to the desired cache event has to be evaluated.
And, second, the amount of cache events, which shall not be produced by the
stub has to be studied. E.g., to create L1 hits the required data has to be
transfered into the L1 of the cache. Hence, they have to be available in the
upper cache levels first for inclusive caches (see Section 3.4.2).

The measurements within this step have to be repeated for different input
parameters, e.g., the supposed amount of the cache events as well as different
cache line access patterns should be evaluated.

8These cache events are the same as L1 write misses.
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The result of this step are different graphs showing the amount of measured
cache events depending on the preset values of the dcm stubs. Hence, the pa-
rameters for the simulation of the cache event as well as the further influences
to other cache levels can be determined.

4. Calculate functions.
Here, calculation functions are determined to calculate the input parameters
for a dcm stub.

Hence, each all determined function for each “dedicated dcm stub” from the
step above have to be separated according the different cache events. Now,
the equations for each cache event have to be combined to calculate the input
parameters for the dcm stubs. As higher levels of the cache also influences the
lower levels, the calculation of the input parameters shall be done for higher
cache levels first.

The different “dedicated dcm stub” are combined to a single dcm stub using
the calculated parameters.

The provided steps within this section can be used to evaluate the usability of the
dcm PSF on the architecture. Based on the evaluation results, the dcm stubs can
furthermore be adjusted to the system in order to gain valuable simulation results.
This is commonly referred as CF within the DPS framework. The next sections
evaluates a methodology for using dcm stubs to optimize the performance of the
software module or function.

7.4 Methodology

This section describes a methodology to use the dcm stubs within the DPS frame-
work. It applies the DPS methodology of Section 4.6 to the dcm stubs. This
methodology can be used to optimize software modules of cache memory bound
systems.

1. Determine CUS:
As a first step of any optimization, the timing behavior of the system in total
has to be examined. Then, one component of the system (CUS) has to be
chosen, which seems to be a bottleneck [55, 121]. Several performance mea-
surements have to be done until the results seem to be deterministic within a
given confidence interval. The following values has to be deterministic:
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tCUS the time, which will be used in the CUS.

tSUT a performance indicator of the module or function. This value will be
measured to validate the systems performance in total. Often it is the
time used for the completion of a service.

L1CUS
readhit a counter where the number of L1 cache read hits caused by the CUS

has been measured.

L1CUS
writehit a counter where the number of L1 cache write hits caused by the

CUS has been measured.

L1CUS
readmiss a counter where the number of L1 cache read misses caused by the

CUS has been measured.

L1CUS
writemiss a counter where the number of L1 cache write misses caused by

the CUS has been measured.

L2CUS
readmiss a counter where the number of L2 cache read misses caused by the

CUS has been measured.

L2CUS
writemiss a counter where the number of L2 cache write misses caused by

the CUS has been measured.

Please note that, the way to determine the values of L1 and L2 parameters
strongly depends on the available tool set. As an example, the OProfile tool
set can be chosen. Additionally, further cache events, e.g., level three read
hits, can be used if applicable. This step has to be repeated a couple of times
in order to get some statistical distribution of the required values. If there is
only a small variation, we can go further.

2. Create DCM Stub:
After creation of the functional stub, which covers the functional behavior, a
performance stubs has to be created, according to Section 7.2.

So, the above listed values will be simulated by the component. Please note
that some values can only be approximated because of the construction of the
cache, e.g., the cache line size. As last step, the runtime behavior of the CUS
has to be simulated using the PSF of the CPU stubs (see Section 5).

3. Validate DCM Stub:
The measurement results have to be validated. The value of tSUT for the CUS
has to be equal to the tSUT of the dcm stub. Whenever, there is a significant
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difference, further analysis of the memory stub has to be done; e.g., it might
be possible that the CUS is too big and has to be decomposed.

4. Evaluate optimization potential:
Now, a first estimation of the CUSs optimization has to be validated. Nor-
mally, the developer of this component has rough estimations of the perfor-
mance improvements which will be used for further studies. If not, he will
simply reduce the value of cache usage by e.g., 10% and start a measurement.
Therefore, he simply reduces the number of L2 accesses and, furthermore, the
number of L1 accesses. The determined time will be called tSUT

improved. This
measurement is an approximation for the improved system behavior after op-
timization. It should be repeated with further reductions of the number of
access operations.

Based on the measurement results, an ideal target value for memory optimiza-
tion can be determined and a cost estimation of the improvement function
can be done. Now, a detailed cost-benefit analysis is possible to determine
the ideal optimization factor. This will lead to a solid basis for a performance
optimization.

5. Optimize software bottleneck:
Based on the measurement results of Step 4 the optimization of the SW mod-
ule can be started. The proper working can be validated by measuring tSUT

afterwards.

If the values are equal, then the optimization has had the desired effect and the
next optimization can be done (Step 6). If not than either the optimization
environment or the dcm stub does not behave correctly and has to be modified
(Step 2).

6. Verify systems’ performance:
After the optimization, determine whether the application will reach the de-
sired performance targets. If the applications has to be optimized further,
determine a new CUS and go to Step 1.

In some HW environments, the determination of some values of Step 1 is not
possible. In this case a different approach can be chosen by simply adding additional
memory needs. Instead of replacing the CUS by a dcm stub, the original code will
be kept. Only the dcm PSF will be included. With this setup, measurements can
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be achieved, where any additional need of memory can be checked. Whenever tSUT

afterwards increases, then the system is at least memory bound. So, increasing the
memory or optimization of memory needs will be required. However, with that
approach no cost-benefit analysis or a hidden bottleneck detection can be achieved,
which is the case if the before proposed method can be chosen.

7.5 Case Study

This section evaluates the proposed PSF for the dcm stubs. This is done by a case
study. Hence, the cache access behavior for the different cache event types is studied.
The next subsections describe the test environment and the original functionality.
This is followed by the evaluation of the dcm stub.

7.5.1 Evaluation Environment

The equipment of a telecommunication network has been used to validate the mea-
surements. It hosts a 2.8 GHz Intel Pentium 4 central processing unit with hyper-
threading disabled. The operating system is a standard Linux running on a 2.6.22
kernel. The system has separated data and trace (similar to an instruction cache)
caches on L1 and an unified cache at L2. The caching architecture of the processor
is described according to [82], the values have been derived from [15, 51] and verified
on the target:

1 MemoryArchitecture =
2 L1D [ 256 , 64 , 8 , ∗ , L2U, 2 ] ,
3 L2U [ 16384 , 64 , 8 , ∗ , Mem, 1 8 ] ;

Listing 7.6: Caching Architecture

In Listing 7.6 the architecture of the target is described. Each lines starts with
the name and type of the available caches, e.g., L1D means a L1 data cache and
L2U describes the unified L2 cache. Each level of the cache hierarchy is described
using the following items:

1. The amount of different available cache lines, i.e., sets× assoc.

2. Cache line size (cacheline).

3. Associativity of the cache (assoc).
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4. Bandwidth between the current and the lower level on a miss (bytes/cycles).
This value has not been used (*).

5. The next level in the memory hierarchy.

6. The cycles needed to access this caching level. The time is described for integer
operations.

The values described in this list match the parameters as defined in Listing 7.1.
All evaluations of this section have been done using either the configuration for
the L1 cache (see line “L1D” in Listing 7.6) or L2 cache (see line “L2U” in Listing
7.6). Only the additional required parameters, as described in Section 7.2, will be
described in the following section.

To determine the necessary values as described in Section 7.4 the hardware coun-
ters of the CPU have been used and accessed through OProfile9. Some values could
not be measured by OProfile. Callgrind10 measurements as well as binary analysis
were applied in this case.

We ran the tests with executables generated by the GCC compiler (GCC version
4.2.1). Optimization flags were not used to compile the stub to avoid optimizations
from the compiler.

7.5.2 Original Function

The application, which has been used for the case study, is based on matrix mul-
tiplication as described in [100]. Three two dimensional arrays have been used to
store two input matrices and one output matrix. The size of a row as well as for a
column was configured to a value of 1024 bytes. So, each matrix has a size of one
mega byte, which is close to the size of the second level cache on the used testing sys-
tem. The calculation inside of the algorithm has not been optimized, i.e., no array
transformations has been done. The determined values for different characteristic
parameters of the original CUS are given in Table 7.1.

As the used application is completely stubbed, the times tSUT and tCUS are equal.
Therefore, the tSUT time will not be mentioned separately. The Intel Pentium 4 CPU
does not provide a write miss counter for the L1 cache. Hence, these events cannot
be measured by OProfile. An binary analysis of the CUS has shown that the used

9OProfile - A System Profiler; http://oprofile.sourceforge.net/news/
10Callgrind is part of Valgrind. See:

http://valgrind.org/info/tools.html
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tCUS 28.28s
L1CUS

readhit 1,147,703,472
L1CUS

writehit 1,073,741,824
L1CUS

readmiss 2,073,486,00011

L1CUS
writemiss 0

L2CUS
readmiss 36,00012

L2CUS
writemiss 0

Table 7.1: Measured Memory Performance Behavior of the Original Function

algorithm performs a read access to all data followed by a write access to these
data. As read accesses bring data to the first level cache all write accesses result
in first level cache hits. Neither L1CUS

writemiss nor L2CUS
writemiss occur in the system.

Callgrind has been used to determine the L1 read and write hits as the architecture
does not provide appropriate hardware counters. The remaining values, L1CUS

readmiss

and L2CUS
readmiss, of Table 7.1 have been measured with OProfile. As it is a sampling

based profiling application, the measurements have been done ten times in order to
evaluate the statistical behavior of the occurred events using the SCV.

7.5.3 Data Cache Memory Stubs

According to the values of Table 7.1, the parameters for the stub have been adjusted.
As the matrix multiplication uses the three two-dimensional arrays with a size of
one mega byte the complete cache for L1 and L2 will be used. Therefore, the stub
will also be set to use the whole cache by setting its sets, setstride and accessstride

parameters to according values. The arraysize and ARRAY SIZE_MAX values
were chosen according to the evaluations presented in Section 9.4. These results
have also been used as calibration functions. The different parameters for the cache
event type simulation are described in Listing 7.7.

The L1 and L2 write events are not simulated as these events do not occur in
the original function (see Table 7.1). Moreover, the sleeptime parameters are set to
zero. This is because the execution time of the dcm stub is equal to the execution
time of the CUS. More information about the time behavior is presented below.

The caches were modeled as described in the architecture files (see Listing 7.1 &
7.5) to create the necessary cache events. The architecture file (see Listing 7.7) lists
the following caches: “L1D”, “L2U” and “L1DH”.

11The SCV is 0.00000353.
12The SCV is 0.00617284.
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1 // Arch i t e c tu r e F i l e
2 #define LEVELS 3
3 enum cache {L1DH=0, L1D, L2U} ;
4 struct cacheArch{
5 int c a ch e l i n e ; int as soc ; int s i z e ; int s e t s ;
6 } cache [LEVELS]={
7 [ 0 ] . c a ch e l i n e =64, [ 0 ] . a s soc =1, [ 0 ] . s i z e =64, [ 0 ] . s e t s =1,
8 [ 1 ] . c a ch e l i n e =64, [ 1 ] . a s soc =8, [ 1 ] . s i z e =16384 , [ 1 ] . s e t s =32,
9 [ 2 ] . c a ch e l i n e =64, [ 2 ] . a s soc =8, [ 2 ] . s i z e =1048576 , [ 2 ] . s e t s =2048

10 } ;
11

12

13 // Simulat ion Data F i l e
14 #define SAMPLES 4
15 #define ARRAYSIZE_MAX (67108864)
16 enum d i r e c t i o n {READ=0, WRITE} ;
17 struct datase t {
18 int cache ; int a c c e s s e s ;
19 int d i r e c t i o n ; int a r rayS i z e ;
20 int a c c e s s S t r i d e ; int s e t s ;
21 int s e t S t r i d e ; unsigned int s l e ep t ime ;
22 } sample [SAMPLES]={
23 // L2URM
24 [ 0 ] . cache=L2U, [ 0 ] . a c c e s s e s =36000 ,
25 [ 0 ] . d i r e c t i o n=READ, [ 0 ] . a r r ayS i z e=ARRAYSIZE_MAX,
26 [ 0 ] . a c c e s s S t r i d e =131072 , [ 0 ] . s e t s =2048 ,
27 [ 0 ] . s e t S t r i d e =1, [ 0 ] . s l e ep t ime =0,
28 // L1RM/L2RH
29 [ 1 ] . cache=L1D, [ 1 ] . a c c e s s e s =2073486000 ,
30 [ 1 ] . d i r e c t i o n=READ, [ 1 ] . a r r ayS i z e =32768 ,
31 [ 1 ] . a c c e s s S t r i d e =2048 , [ 1 ] . s e t s =32,
32 [ 1 ] . s e t S t r i d e =1, [ 1 ] . s l e ep t ime =0,
33 // L1WH
34 [ 2 ] . cache=L1DH, [ 2 ] . a c c e s s e s =1073741824 ,
35 [ 2 ] . d i r e c t i o n=WRITE, [ 2 ] . a r r ayS i z e =64,
36 [ 2 ] . a c c e s s S t r i d e =1, [ 2 ] . s e t s =1,
37 [ 2 ] . s e t S t r i d e =1, [ 2 ] . s l e ep t ime =0,
38 // L1RH
39 [ 3 ] . cache=L1DH, [ 3 ] . a c c e s s e s =1147703472 ,
40 [ 3 ] . d i r e c t i o n=READ, [ 3 ] . a r r ayS i z e =64,
41 [ 3 ] . a c c e s s S t r i d e =1, [ 3 ] . s e t s =1,
42 [ 3 ] . s e t S t r i d e =1, [ 3 ] . s l e ep t ime=0
43 } ;

Listing 7.7: Simulation Data File (Case Study)
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Validation The stub’s performance data has been measured in the same way as
within the original function. The results are provided in Table 7.2 and discussed
below.

tSTUB 28.75s
L1STUB

readhit 1,147,703,472
L1STUB

writehit 1,073,741,824
L1STUB

readmiss 2,060,992,20013

L1STUB
writemiss 0

L2STUB
readmiss 36,00014

L2STUB
writemiss 0

Table 7.2: Measured Memory Performance Behavior of the Data Cache Memory
Stub

The comparison of the values has been done in three stages. First, the oprofile
measurements are discussed for the L1 read misses / L2 read hits and L2 read and
write misses. Second, the results of the callgrind evaluation are presented. Finally,
the time behavior of the original function and the dcm stub is evaluated.

Oprofile Measurements Three different cache event types were measured
using Oprofile.

First, the evaluation is done for the L1 read misses / L2 read hits, which are
denoted as L1STUB

readmiss. The amount of cache references, which are created by the
original function for this cache event type is 2,073,486,000. The measurements
of the stub provided an average result15 of 2,060,992,200 cache events. This is
approximately 0.60% less than the events created in the original function.

Second, the L2 read miss events are studied. Here, the measurements of the
original function provided a result of 36,000 events. The average value measured in
the stub is 6 samples, which is also about 36,000 events.

Third, the L2 write miss events are evaluated. In both cases, the original function
and the execution of the dcm stub, 0 samples have been measured.

All results within this evaluation pointed out that the according cache event type
can be simulated with high accuracy.

13The SCV is 0.0000010.
14The SCV is 0.012.
15As described above, 10 test runs has been done.
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Callgrind Evaluation The L1 read and write hits were evaluated using call-
grind as described above. As callgrind simulates a CPU including the caching ar-
chitecture several insufficiencies are introduced in the measurements, e.g., no write
buffer is simulated. Because of these insufficiencies, the dcm PSF creates exactly the
specified amount of events in callgrind. Hence, it is not surprising that the events
measured in the original function does not differ from the results of the stub. Never-
theless, callgrind can be used to evaluate the cache memory behavior of applications.
Thus, the dcm PSF simulated the cache type events correctly.

Time Evaluation The time spent in the original function is 28.28 seconds
on average. The time spent in the stub is 28.75 seconds. Hence, the stub takes
slightly more time than the original function (+1.66%). This is not surprising as
the original function is almost complete memory bound. The stub instead has some
CPU “intensive” instructions. Moreover, the time spent in the memory handling
remains the same in both applications.

Conclusion As can be seen from the comparison of the measured values for
the original function (Table 7.1) and the dcm stub (Table 7.2), the characteristic
parameters are rebuild almost exact. Hence, the dcm stub is able to simulate the
cache access behavior of a software function or module with high accuracy.

7.6 Summary

This chapter outlined the data cache memory stubs. These stubs are used to simulate
the cache access behavior of software modules or functions. Especially, L1 and L2
hit and miss events for read and write accesses can be simulated.

Within this chapter, some requirements have been defined and the data cache
memory performance simulation functions have been described as well as the cali-
bration functions are explained. Finally, a case study, which evaluates the various
approaches is included.

As can be seen by the results, data cache memory stubs can be used to simulate
the cache access behavior of software functions. Thus, they can be used to optimize
data cache memory bound systems by using dynamic performance stubs.

The next chapter describes the simulated software functionality. It can be used
to simulate the software functionality of algorithm. Hence, the functional behavior
of the bottleneck can be rebuilt by using the simulated software functionality.
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Chapter 8

Simulated Software Functionality

The simulated software functionality allows the replace-
ment of an existing software module or function by a
stub, in order to do software performance improvement
studies. This chapter covers the major aspects of the
simulated software functionality. First, requirements are
defined. Moreover, a methodology for using the simu-
lated software functionality is presented. Afterwards, a
possible realization is described. Finally, a case study,
which applies the methodology to the realization of the
simulated software functionality concludes the section.
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8.1 Requirements

In order to be able to replace a bottleneck with a dynamic performance stub, it is
necessary to recreate the functionality of the software module or function. Hence,
the following requirements can be defined and subdivided into: requirements on the
system, which has to be satisfied by the system under test and requirements on the
simulated software functionality, i.e., how the simulated software functionality (SSF)
has to behave:

1. Basic Requirements on the system:

(a) Deterministic CUS behavior.
The software module or function has to have a deterministic functional
behavior. I.e., it has to produce the same results within each equiva-
lent execution, e.g., deterministic output values depending on the input
values. Another possibility is that the function can also return random
values, if this is the specified behavior within the system. The execution
time of the function has to be deterministic, too.

(b) Reproducible test execution.
The used test environment and scenarios have to deliver reproducible
results. This is a common requirement to any test environment.

(c) Automated test case execution.
It is preferable if the test cases can be executed automatically. This prop-
erty significantly reduces the effort for doing test executions repeatedly.
Additionally, reproducible test scenarios can also be used for performance
measurements.

2. Requirements on the SSF:

(a) Automatic generation of the serialization specification.
The serialization specification shall be generated automatically. This re-
moves additional effort for the user of the SSF and to decrease the amount
of possible errors, e.g., writing a wrong serialization specification. Hence,
a serialization functionality shall be provided as well as an almost auto-
matically serialization specification shall be generated. These can be used
to automatically store the C++ objects. A fully automatic generation of
the serialization specification is not feasible as explained in Section 8.3.1.
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(b) Record and restore C++ data structures.
It has to be possible to record and restore C++ data structures. Espe-
cially, it has to be possible to record and restore classes including non-
public members, structures and lists. Moreover, the SSF has to be able
to work with “NULL”-pointers, e.g., the “NULL”-pointers shall be stored
in the trace file and restored during the stubs execution.

(c) Simulate the functional behavior.
The SSF shall be able to restore the functionality of the component
under study. Moreover, it has to be able to restore all recorded C++
data structures into the memory of the system under test. Additionally,
it shall be able to create objects if they are not available in the system.

(d) Simulate the functional behavior with appropriate performance.
The SSF has to be able to restore the functionality in negligible time,
which is at least faster than the execution of the original software func-
tion. This is necessary to optimize the runtime overhead. Hence, the
performance parameters can be easily adjusted using the performance
simulation functions. This requirement mainly applies if the SSF is used
in the context of DPS performance measurements. In this case, the re-
quirement has to be fulfilled.

Especially, the requirements to the system (Requirements 1a and 1b) as well
as the Requirements 2b and 2c are important. Not reaching them renders the
SSF unusable. Requirement 2d is mainly important in the context of DPS as this
requirement enables the performance adjustments, which are necessary for the DPS
approaches. This requirement may not be that important if the SSF approach is
used in different scenarios. The Requirement 2a can only partly be fulfilled as stated
in Section 8.3.1. The Requirement 1c is only suggested as it can significantly remove
the overhead for applying the DPS framework in the performance evaluation study.

Moreover, there are some requirements to the C++ compiler [118]. The compiler
shall be deterministic, e.g., the compiler has to produce an identical memory layout
of two isomorphic classes. Whereas, this cannot be strictly guaranteed, it is very
unlikely that a non-deterministic C++ compiler is standard-compliant [118]. The
“g++” of the gnu compiler collection (GCC)1, which is used for the evaluation in
this paper, fulfills the requirements.

1see gcc.gnu.org
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8.2 Methodology

The DPS methodology, identifies potential performance bottlenecks that are re-
placed by stubs to facilitate gain-oriented performance improvements. The func-
tionality of the potential bottleneck (CUS) is recorded using the libSSF (see Section
8.3). The system’s behavior with respect to the CUS is analyzed by replaying traces
using the SSF with varying performance measures.

The overall process to replace the bottleneck by a dynamic performance stub
consists of the following steps:

1. Identify serialization objects:
The SSF is able to store and restore different states of the traced objects.
Thus, it can be used to simulate the results of several algorithms. In some
cases, it is necessary to use parts of the original functionality to improve the
simulation results. Here, the content of the object may be stored and restored
before and after executing the original software functions.

2. Create serialization description:
In this step, the serialization description of the identified objects has to be
created. This is simply done using the “GCC-XML” tool set [37].

3. Create serialization specification:
The serialization specification is created. It contains a description to de- and
serialize the objects which will be stubbed. The serialization objects (see Step
1) and their description (see Step 2) are processed by the ssfheadgen tool, which
is part of the libSSF library, to generate a C++ header file that contains the
serialization specification. This specification has been created automatically
for many basic data types, as explained in Section 8.3.1, but, can also be easily
extended by the developer to support object serialization. This header file will
be included into the CUS.

4. Record the state of the objects:
In this step, the component under study is adjusted to store the objects using
the libSSF. Furthermore, the test cases that utilizes the functionality, which
will be stubbed (see Step 1), have to be executed and the state of the objects
have to be recorded into a trace file.

5. Create functional software behavior:
The original functionality, which is a part of the CUS, is replaced by the SSF.
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Usually, the objects, which will be restored are loaded before the SUT and
CUS has been started. More details are described in Section 8.3.

6. Test the instrumented CUS:
As the stub has been created in Step 5 the functionality of the stub has to be
validated. The instrumented CUS is validated against the previously recorded
behavior of the CUS that contained the original functionality. Hence, the
measurements have to be redone and the results have to be validated. If the
validation passes, the stubs can be used to do the performance study with the
DPS framework.

This section has shown how a stub can be created using the SSF. The following
section presents a possible realization called libSSF.

8.3 Realization

The implementation of the SSF is done in a library called libSSF. The library can be
included into any C++ source code and provides the possibility to store the content
of C++ data structures into a binary trace file. Moreover, the libSSF can also be
used to read a from trace file to reconstruct the C++ data structures. Thus, the
functional behavior of the component under study is also recreated. For this reason,
the source code of the application will be parsed using the “GCC-XML” tool set [37],
which generates an XML description of a C++ program from GCC’s internal rep-
resentation. Based upon this serialization description, libSSF generates an internal
representation of the objects that will be stubbed. The following functionalities are
provided by the libSSF. These are the general steps:

1. Generate header file.
This file includes the serialization specification.

2. Record functional behavior.
This functionality will be used to store the results of the software functionality
of the CUS.

3. Restore functional behavior.
This functionality will be used to simulate the software functionality of the
CUS.

The listed items are described in more detail in the following.
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8.3.1 Generate Header File (Serialization Specification)

A tool provided by the libSSF, called “ssfheadgen”, parses the XML description
of the “GCC-XML” tool. It extracts the serialization information and generates a
C++-header file which includes the internal representation of the objects that will
be replaced by the SSF.

This header file can be included into the C++ source code of the CUS and
contains the de- and serialization specification of the objects. If others than the
basic data structures, e.g., basic data types or fixed size arrays, have to be de- and
serialized the developer has to adjust the header file to his needs. This has to be
done manually as it is not always possible to determine the size of data associated
with a pointer value.

Whenever possible, the header file already contains comments and suggestions to
assist the developer in serializing the object, e.g., for pointers or arrays2. Moreover,
the header file includes the original names, as used in the CUS source code, of the
replaced objects, so that, the developer can reuse these names for convenience.

1 template <> void Stubfactory : : s e r i a l i z eTyp e ( class array_c las s ∗
ss fSaveObj ) {

2 void ∗ prt = ssfSaveObj ;
3 struct s s fSave_array_class ∗ s s fOb j e c t = ( ss fSave_array_class ∗)

ptr ;
4 this−>s e r i a l i z eA r r a y ( s s fObjec t−>ac_i , numberOfElements ) ;
5 }

Listing 8.1: Example: Serialize a Fixed Sized Integer Array, which is inside of a
C++ Class

Listing 8.1 shows an example realization of the serialization of an array of integers
(“ac_i”). The array is a private member of a class (“struct array_class”). This
snipplet is used to deserialize as well as serialize the data values of the object.

The serializeType()-function from Line 1 will be called indirectly inside of the
CUS. The provided parameter specifies a C++ class which shall be serialized and
stored. In Line 2, a type cast of the object pointer to a void pointer is done. This
is necessary for being able to furthermore cast the pointer to a “struct”. In this
case, the private or protected members of the provided class (“ssfSaveObj”) can be
accessed and, hence, stored. This is done in Line 4, where, the private member,
which is a fixed size array in this example, will be copied into the trace file.

2In these cases a “stop criterion” has to be specified by the developer.
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This example shows that private and protected members can be serialized. Other
serialization functions are available to support the developer.

8.3.2 Record Functional Behavior (Binary Format)

The C++-header file, which has been generated by “ssfheadgen”, will be included
into the component under study. And, the software tests, which have been done to
identify the serialization objects, have to be repeated. Now, the information of the
objects will be stored in a trace file. This recording of the data structures is done
using the function saveStateOfParam(), which will be included into the CUS. This
function is provided by the libSSF. The declaration of the function can be seen in
Listing 8.2.

template <class TYPE> void saveStateOfParam ( const char ∗name ,
const char ∗ type , TYPE ∗dataVar ) ;

Listing 8.2: Stores a Data Structure (Class)

The following three parameters have to be passed to the saveStateOfParam()-
function call:

1. “const char *name”: This is the name used to store the object in the trace file,
e.g., “conn”.

2. “const char *type”: This refers to the type and name of the object to be stored,
e.g., “class Connection”.

3. “TYPE *dataVar”: This is a pointer to the data which will be stored, e.g., the
value of the conn variable.

The three given examples in the list above can be interpreted as, store the value
of the conn variable which has an object type “class Connection” into the trace
file with the name “conn”. The function uses the parameters and stores the data
structure as well as additional information into a binary trace file. The structure of
a trace file entry is given and described below:

• Test run
This is an internal reference counter starting from zero. The “test run” number
can be used to summarize different stored variables into a combined run, e.g.,
if the value of a variable has to be stored before and after some modification
within a single execution of the function.
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• Size of object name (byte)
The size of the object name is given in bytes including a “NULL”-termination
character.

• Name of the object
The name of the object which has been stored. It is usually the same name
as the name of the object within the original source code and can be used for
referencing the stored data.

• Size of the object type (byte)
The size of the object type name is given in bytes including a “NULL” termi-
nation character.

• Name of the object type
The name of the object type, e.g., “class Connection”, which means the data
entry refers to a C++ class named “Connection”. Here, object type refers to
any C++ data structure and can also be a basic data type such as an integer.

• Additional information
The “additional information” flag, which is a bit field, is used to determine
whether a fully initialized object has been stored or if a “NULL”-pointer has
been passed. This information is stored in the first bit. The remaining bits of
the bit field are unused. Hence, the first bit of “additional information” field
is set to “0” if an initialized data structure has been stored. In this case, the
following two additional data fields are stored in the trace file for this test run:

– Size of the stored data (byte)
This is the size of the serialized data in bytes.

– Stored data
The values of the data structure. The data have been serialized in advance
and are successively ordered in the trace file.

The information are stored in a binary format for performance reasons. A decoded
as well as semicolon separated example trace entry is given in Listing 8.3.

In this case, an object “conn” of the “class Connection” type has been stored.
The values of the serialized private members are: “1”, “2”, “1” and “302845744”.

The libSSF provides a possibility to generate a trace file decoder for a dedicated
trace file. This has been implemented to provide human-readable traces to the
developer.
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1 ; 5 ; conn ; 17 ; c l a s s Connection ; 0 ; 14 ; 1 ; 2 ; 1 ; 302845744 ;

Listing 8.3: Example: Decoded and Semicolon Separated Trace File Entry

8.3.3 Restore Functional Behavior (Deserialization)

The recorded values have to be recreated into the memory of the used C++ data
structure. Hence, it is necessary to overwrite the values already stored in the memory
of the object. To do this, three different cases has to be considered:

1. The object as well as trace data are available.
In this case, the existing attributes of the object has to be overwritten as the
object is already available in the system.

2. The object does not exist but data are available.
The objects have to be created recursively and initialized using the values of
the trace file. Moreover, the pointer to the object has to be returned to the
system. This is possible as the delivered memory pointer has to be “NULL”.
In this case, no memory is associated with the original object. As there is no
reference available, possible dangling pointers cannot occur.

3. The Object does not exist and no data are available.
This case happens if an initialized object is not necessary, e.g., if the return
value of a search algorithm does not find the item. I.e., the CUS returns a
“NULL” value. In this case, the object pointer passed to the loadStateOfParam()-
function of the libSSF (see Listing 8.4) has to be “NULL”. Here, no memory
will be allocated.

A fourth case, which can be thought of, is that an initialized object has been
passed to the libSSF but no data are associated within this test run. In this case, a
“NULL” pointer would have been returned by the libSSF, which will overwrite the
original pointer value of the object. This is not allowed as it would cause a memory
leak. Additionally, it is not possible to delete the associated object data as this could
lead to a double free error. Hence, the developer has to care about this particular
case, e.g., deleting the object and setting its pointer value to “NULL” before the
“restore” function is called.

The restore functionality of the libSSF is realized by the loadStateOfParam()-
function call. This function will be used to replace the software functionality of the
CUS. The declaration of the function is given in Listing 8.4.
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template <class TYPE> TYPE∗ loadStateOfParam ( s t r i n g dataVar , TYPE
∗dst ) ;

Listing 8.4: Restore Functionality of the libSSF

The parameters passed to the libSSF are as follows:

• “string dataVar”: This is the name of the object, which will be deserialized.
Here, the same name as specified as the first parameter of Listing 8.2 is used,
e.g., if “conn” is passed to the loadStateOfParam()-function, the with conn
associated data will be returned.

• “TYPE *dst”: This is a pointer to an object which will be overwritten by the
values read from the trace file. As of, it is implemented as a template any type
of the object can be deserialized and restored by the libSSF, e.g., the “class
Connection” with an instance name “conn” can be used.

In the case that an object has to be created within the libSSF, the pointer value
of the newly allocated memory will be returned to the component under study. Here,
the original value of the pointer will be overwritten so that the allocated memory
can be deleted inside of the original software.

The provided methodology and realization will be applied to a real world example
which is presented in the following section.

8.4 Case Study

The DPS framework has been used to optimize several algorithms of a long term
evolution (LTE [65]) telecommunication system.

This section describes the application of methodology and the newly developed
SSF for the performance improvement study. The main contribution of this case
study is to show that the software functionality of the CUS can be replaced by the
SSF. This includes the following steps:

• The serialization specification is generated.

• The software functionality of the CUS can be recorded.

• The software functionality of the CUS can be replaced by the SSF. In this
case, the SUT shall be fully functional for this particular test scenarios.
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Last but not least, the case study shall provide some performance measurements
to validate that the libSSF can be used in the context of the DPS framework that
will be used to evaluate software performance optimization potentials.

8.4.1 Evaluation Environment

The measurements have been done in a host test environment. The used platform
is a based on an Intel Xeon CPU, which is an IA-64 architecture.

The application has been built using the available build system of the company.
This uses the “g++” of “GCC” (Version 3.4.3) for host test environment evaluations.
The “-Os” compiler option has been used, which is basically a “-O2” but without
optimization flags that increases the code size.

As the presented measurements have been done in a host test environment, the
results can only be used for validation purposes of the SSF but not for performance
test results.

The requirements to the software and test environment, as specified in Section
8.1, for using DPS are fully met. These are, in particular, a deterministic com-
ponent under study as well as an automatic and reproducible test case execution
environment.

8.4.2 Application of the Methodology

The system under test has a “ConnectionContainer” class which stores several con-
nections of the type “class Connection”. The function “get(connID)” returns the
connection specified by the connection identification (“connID”) which is an object
of the “Connection” class. Moreover, it returns “NULL” if the connection does not
exist in the “ConnectionContainer”. The connection class has basically four private
members as can be seen in Listing 8.5.

Step 1 The “get(connID)” function has been identified as bottleneck and, hence,
the “Connection” class has been chosen for serialization.

Steps 2 & 3 In the next step, the members of the “Connection” class are serialized
using the “GCC-XML” tool set (Step 2). An example serialization output of the
ssfheadgen (Step 3) is shown in Listing 8.6.

Here, only the first member “m_connectionId” is presented. The “GCC-XML”

149 Peter Trapp



CHAPTER 8. SIMULATED SOFTWARE FUNCTIONALITY

1 class Connection
2 {
3 . . .
4 private :
5 TL3ConnectionId m_connectionId ;
6 u16 m_streamId ;
7 TUeContextId m_contextId ;
8 TAaSysComSicad m_uecAddress ;
9 . . .

10 }

Listing 8.5: Excerpt of the Class “Connection”

1 name=‘m_connect ionId ’ id=_4096 type=_1501
2 −> name=‘ TL3ConnectionId ’ id=_1501 type=_1532
3 −> name=‘ u32 ’ id=_1532 type=_73
4 −> name=‘ unsigned int ’ id=_73 type=

Listing 8.6: Example of Serialized Class Member

combined with the ssfheadgen tool identified the “m_connectionId” over four serial-
ization steps as an unsigned integer.

As of Step 3, the serialization specification is written into a C++ header file.
The first part of the file contains the serialized object, which is presented in Listing
8.7. As can be seen, the “Connection” class, which has been converted into a data
structure, consists of four “private” members, which are basically integers.

The second part, which is the serialization code, is also included into the file.
An extract is shown in Listing 8.8 for this case study.

1 struct ssfSave_Connection {
2 unsigned int m_connectionId ;
3 short unsigned int m_streamId ;
4 unsigned int m_contextId ;
5 unsigned int m_uecAddress ;
6 } ;

Listing 8.7: Serialized “Connection” Object

Here, the serializeType()-function in Line 1 is able to serialize a object of the
“Connection” class. It calls internally several different “serialize” functions (Lines 4 -
7), which overloads the function from Line 1. The “serialize” functions from Lines 4
- 7 call internally a serializeAtom()-function, which is able to store and restore basic
data types. The values of the variables are stored in their associated members of
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1 template <> void Stubfactory : : s e r i a l i z eTyp e ( class Connection ∗
ss fSaveObj ) {

2 void ∗ ptr = ssfSaveObj ;
3 struct ssfSave_Connection ∗ s s fOb j e c t = ( struct

ssfSave_Connection ∗) ptr ;
4 this−>se r i a l i z eTyp e (&ss fObjec t−>m_connectionId ) ;
5 this−>se r i a l i z eTyp e (&ss fObjec t−>m_streamId ) ;
6 this−>se r i a l i z eTyp e (&ss fObjec t−>m_contextId ) ;
7 this−>se r i a l i z eTyp e (&ss fObjec t−>m_uecAddress ) ;
8 }

Listing 8.8: Serialization Specification of the “Connection” Object

the data structure (see Listing 8.7). The “type casts” in Lines 2 and 3 are necessary
to access the private members of the “Connection” class (see Section 8.3.1).

Step 4 Now as the setup has been finished, the measurements have to be repeated
to store the software functionality of the component under study. The chosen test
case is a functional test case which evaluates different use case scenarios. We only
studied a small subset of the test case for the libSSF. In our context the test case
includes 40 times calling the stubbed functionality (“get(connID)”-function). The
test case includes the following use cases: “create new object”, “reuse existing object”
and “delete and create new object”. A decoded excerpt of the recorded trace file is
shown in Listing 8.9. Line 3 of the listing shows the recorded values of the private
members of the “Connection” class for the second test run.

1 t e s t run : 0 ; sizeObjectName : 5 ; objectName : conn ; s izeObjectType : 17 ;
objectType : c l a s s Connection ; f l a g : 1 ;

2 t e s t run : 1 ; sizeObjectName : 5 ; objectName : conn ; s izeObjectType : 17 ;
objectType : c l a s s Connection ; f l a g : 0 ;

3 s izeOfData : 14 ;
4 m_connect ionId : 1 ;
5 m_streamId : 2 ;
6 m_context Id : 1 ;
7 m_uecAddress : 302845744 ;

Listing 8.9: Excerpt of a Decoded Trace File

Steps 5 & 6 In the last two steps, the stub has to be created using the restore
functionality. Moreover, the proper working of the stub has to be validated.
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The functionality which will be replaced by the stub, is removed from the CUS
and replaced by the restore functionality of the libSSF in order to simulate the
original functionality. Now, the test case, as used in Step 4, is executed and the
results are validated. In the test environment the test case passed. In this case
study, the libSSF were able to simulate the functional behavior of the component
under study.

8.4.3 Performance Measurements

The concept of the SSF will be used within the DPS framework to simulate different
performance behaviors of a software bottleneck. Hence, the time to restore the
functional behavior of the component under study is critical.

A case study using the DPS for optimizing CPU bound systems has been pre-
sented in [125]. The focus was to optimize a CPU bottleneck. The case study in
this section uses the measurement results of [125], but, interprets the results from a
different point of view.

Here, the differences between the execution time of the component under study
and the execution time for the SSF have been evaluated. In the case study of [125],
a previous version of the libSSF has been used. However, the results of [125] can
still be used for this evaluation as only smaller changes have been done.

The same test environment and software functionality, as described in [125] has
been used. A description of the environment and software functionality can also be
found in Section 8.4.1. The chosen test case started with a single database entry
and ramped up to searching 400 database entries.

In Figure 8.1, the time behavior for searching an entry in the database (y-axis)
depending on the amount of database entries (x-axis) is presented. The lower line
(blue) shows the results for restoring the functional behavior of the search algo-
rithm by using the libSSF. The upper line (red) depicts the original behavior of the
component under study.

The new evaluation pointed out, the average time for restoring the functional
behavior of the “get(connID)” function is 11 µs3. The according SCV is 0.0135. This
factor indicates that, it takes approximately always 11 µs without significant varia-
tions to simulate the functionality independent of the amount of database entries.

In contrast, the original functionality to identify the connection identification
3The first message has been ignored to avoid side-effects that only occur for the first message

(“first message effect”).
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Figure 8.1: Compare the Times Between Original and Stubbed Software Function-
ality

number (“connID”) took a minimum of 22 µs if only a single entry was in the database
and about 675 µs if 400 entries has to be searched. The measured results show that
time increases with the database size.

As can be seen, the SSF was even in the worst case as twice as fast. Due to this,
the identification of the software optimization potential and the improvement of the
bottleneck’s time behavior were easy to be realized. Moreover, the methodology of
using CPU stubs has been applied to the system under test in [125], successfully.

8.5 Discussion

The SSF can be used to store and recreate the functional behavior of software
modules or functions of C++ applications. This is realized by the possibility to
store and restore the values of C++ data types, e.g., data structures or classes
including their private and protected members. Moreover, it is possible to use the
SSF with applications which uses many different programming techniques, such
as virtual or abstract classes, inheritance or polymorphism. The functionality is
realized by a library called libSSF which can be included into the C++ source of
the application.

Advantages Using the libSSF has several advantages for the developer. The main
topics are:
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• Store and restore the software functionality
The libSSF can be used to record and restore the states of traced objects.
Hence, it can be used to simulate software functionalities and algorithms, e.g.,
search-, sorting-, or calculation algorithms. Moreover, existing objects can be
modified to the needs of the developer.

• Mainly automatic header generation
The header, which is generated by the ssfheadgen tool, can be easily included
into the source code of the application under study. Here, only some small
modifications have to be done. Moreover, the ssfheadgen tool provides sug-
gestions to support the developer by this task. This enables the developer to
easily trace and evaluate the content of C++ data types.

• Reuse object names
Data types can be stored into and read from the trace file reusing the same
names as in the original source code. This significantly reduces the complexity
to use the libSSF inside of the component under study.

• Using data types multiple times
The same variables can be recorded multiple times, even within one single
execution of the component under study. Moreover, several different data
types can be combined into dedicated runs as well as many different runs can
be combined. This provides high flexibility for clustering different runs and
data types for a better abstract view on the stubbed components.

• Readable values of the objects
The libSSF provides the possibility to decode the binary trace files into human
readable trace files. Hence, the values of recorded data types can be used for
evaluating the outcome of algorithms and, hence, as additional debugging
possibility.

• Only small adjustments to the system
To simulate the software functionality, only smaller adjustments to the com-
ponent under study have to be done. For recording, only the library has to
be included as well as the necessary function calls have to be added. For
restoring, additionally, the original functionality has to be removed, e.g., by
commenting.
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Restrictions As often, there is a trade off between time and memory usage. If
the library is used to restore the functionality of the software it will read the whole
trace file into the memory while the initialization is done. Hence, it uses a lot of
memory during the execution. Moreover, if a data type has been often recorded,
each traced value is preloaded into the memory, e.g., if an integer has been stored
ten times the libSSF will allocate ten times the size of the integer. This behavior
has been chosen as the main focus has been on the execution time of the restore
functionality. It can be changed with some smaller modifications to the library to
only load the data when they are needed. This leads to a longer execution time, of
course.

Another important restriction of the realization of the SSF is that some core
features of the libSSF has been realized by kludges, e.g. a void pointer cast (see
Section 8.3.1). Here, it cannot be guarantied that the approach works for different
platforms or systems. Moreover, the usability of the libSSF might not be given in
general.

Nevertheless, the usability of the approach has been presented in a real environ-
ment to simulate the functional behaviors of several different software modules.

Summary As can be seen, the methodology of the SSF as well as their imple-
mentation, realized by the libSSF, can be used to record and restore the software
functionality. Moreover, the time measurements of the libSSF has shown that it can
be used in the context of the dynamic performance stubs framework in this case.

This is an important contribution to the gain-oriented performance improvement
framework dynamic performance stubs, as it allows to gauge the system-wide im-
pact of a potential improvement before investing in the actual optimization of the
algorithms that underly the functionality that has been simulated by the dynamic
performance stubs. This informs decision making as to what bottlenecks should be
prioritized and to what degree their optimization has a system wide impact.

The requirements on the system, which are 1a, 1b and 1c, as well as to the
simulated software functionality (2b, 2c and 2d) as stated in Section 8.1 have been
fully fulfilled with the libSSF. Finally, the Requirement 2a has been fully fulfilled in
this particular case study, but, this cannot be applied in a general way as explained in
Section 8.3.1. However, this does not lower the contribution as the libSSF supports
the possibility to manually adjust the serialization functions. And, hence, provides
a broad range for applying the simulated software functionality to software systems.

In the previous chapters the framework of the dynamic performance stubs as
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well as different performance simulation functions has been presented. Within this
chapter, the simulated software functionality has been evaluated. The performance
simulation functions and the simulated software functionality can be combined to
build dynamic performance stubs. The next chapter concludes the dynamic per-
formance stubs approach as well as the performance simulation functions and the
simulated software functionality. Moreover, it provides suggestions for future work
to extend the overall approach of dynamic performance stubs.
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Chapter 9

Validation of the Performance
Simulation Functions

This chapter describes some measurements to vali-
date the functional behavior of the performance simula-
tion functions and the simulated software functionality.
Therefore, it shortly describes the test environments as
well as the test execution.
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9.1 Test Environment

As a validation environment, the following equipment has been used to validate the
measurements. It hosts a 2.8 GHz Intel Pentium 4 central processing unit with
hyperthreading disabled. The operating system is a standard Linux running on a
2.6.22 kernel. The kernel was built tickless with the high resolution timers enabled.
We ran the tests with executables generated by the GCC of version 4.2.1. In order
to avoid unwanted optimizations by the compiler, optimization flags were not used
for compiling the stub.

9.2 CPU Performance Simulation Functions

All measurements are done on an otherwise idle system, where only core processes
are running. We also disabled the CPU frequency scaling feature in all our test runs.
We have chosen the GNU compiler collection (GCC)1 as compiler for our dynamic
stubs.

We used a deterministic load if we needed to test our DPS in a situation where
the system was not idle. This ensures the reproducibility of the results. Typical
workloads are either a process, which uses a dedicated amount of the CPU or the
process itself running multiple times. Despite that all examples presented in this
paper are realized as global stubs, the results are also applicable to stubs in general.

9.2.1 Simulation of the Time

This section shows that the time can be simulated with high precision. Therefore,
the methodology for calibrating the CPU PSF as described in Section 5.3 has been
used. Our goals were to validate:

1. The simulation of different time intervals within a big range.

2. The accuracy of the simulated time interval.

3. The usability in different software development environments.

First of all, the “number of loops” has been determined for one second. This is
the base for all measurements, which has been done. The main loop for each run can

1http://gcc.gnu.org
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be seen in Listing 9.1, where “workInit” was initially set to the “number of loops”
needed to simulate the highest simulated time value.

1 fo r ( i = 0 ; i < samp les ; i++)

2 {

3 work = wo r k I n i t ∗ i ;

4 beforeTSC=readTSC ( ) ;

5 fo r ( j = 0 ; j < work ; j++)

6 ;

7 deltaTSC [ i ] = readTSC ( ) − beforeTSC ;

8 u s l e e p (1000) ;

9 }

Listing 9.1: Simulation of a Duration

The graph in Figure 9.1 shows linear increasing of the “number of loops”, which
was initially set to simulate one second. The y-axis plots the needed time used inside
of the application as TSC value. On the x-axis the actual number of samples can
be seen. In Figure 9.1 each sample took 1ms.
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Figure 9.1: Simulation of Time Ranges

In order to prove the accuracy of the results, the overhead for measuring was
subtracted from the measured TSC value. Additionally, the measured TSC value has
been divided by the sample number and the value for zero loop iterations has been
ignored. This results have been used to analyze the minimum, mean and maximum
values and to calculate the SCV. The results of the evaluation of the values from
Figure 9.1 are summarized in the second row of Table 9.1. Additionally, the table
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shows further evaluation done as described above. Here the time ranges from 0 to
1µs and from 1 to 10 seconds.

range [s] # loops samples min mean max SCV

[0;1] µ [0;398] 100 26.1 34.15 82.83 0.10794
[0;1] [0;462356181] 1000 2777453 2779004 2793478 0.000000055
[0;10] [0;4294963200] 1000 26861410 26879512 27023427 0.000000169

Table 9.1: Trustworthiness of the Time Simulation

Since we have shown that our approach of simulating time can be used to create
CPU Stubs, we wanted to ensure that it can also used in different software develop-
ment settings. Therefore, we firstly changed the compiler and secondly the operating
system and architecture2.

In Table 9.2 the results of this evaluation are shown. The first row is taken from
Table 9.1. This line will be compared to measurements, where the binary has been
built with the Intel C++ compiler (ICC)3. The results are almost the same and do
not show any surprising values.

The values of the second test, which are presented in the last row of Table
9.2, cannot directly be compared to the other values. Here, an Intel Pentium M
with 1.6GHz and Microsoft Windows XP Professional4 has been used. The results
show some slightly worse behavior, which can easily be explained by the change of
the operating system. The used operating system has been running more “core”-
processes and has not been optimized for this special task. Where else, the Linux
Kernel has been explicitly built and optimized, no changes were applied to the kernel
of Microsoft Windows XP Professional. Nevertheless, the values are still fine and
our methodology can also be applied in this environment.

range [s] # loops samples min mean max SCV setup

[0;1] [0;462356181] 1000 2777453 2779004 2793478 0.000000055 Linux & GCC
[0;1] [0;462819751] 1000 2777064 2778785 2793469 0.000000032 Linux & ICC
[0;1] [0;225197530] 1000 1286750 1578846 1583827 0.0000518 Windows & GCC5

Table 9.2: Portability of the Simulation of Time

Conclusion We have experimentally proved that the time and, hence, the usage
of the processor can be simulated by system influencing CPU PSF. Here, the values

2An Intel® IA-32 CPU has been used.
3Intel® and executed in the same environment. The ICC can be found at www.intel.com/cd/

software/products/asmo-na/eng/compilers/284264.htm
4Microsoft® Windows XP Professional®
5Intel® Pentium M (IA-32 Architecture)
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for simulating time spans from several nano seconds to a couple of seconds and
possibly more. Also the accuracy of the simulated time is sophisticated enough to
use the system influencing CPU PSF for simulating the CPU behavior of processes.
Additionally, a different software development setup do not highly influence our
approach as proved above.

9.2.2 Open Loop

“Open Loop” in this context means that the stub should consume a dedicated amount
of CPU usage for a definable time slice, e.g., 50% for the next 5 minutes. This can
be used to simulate the performance behavior of a CPU bound bottleneck in order
to replace it properly as part of the DPS framework. The open loop can be realised
by a period with many sleeping and working faces by turns. So, no feedback loop is
in place.
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Figure 9.2: Global Open Loop CPU Stub Using a Dedicated Amount of Time

Figure 9.2 shows 20 single runs starting from 5% CPU utilisation with a 5%
increase per step. The y-axis shows the idle value of the CPU and the x-axis pro-
vides the seconds since the test run was started. Each run took approximately 64
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seconds where the first 4-5 seconds were used to setup the working and waiting
periods including the calibration of the CPU PSF to the system. The graphs have
been measured in the system using a standard performance measurement tool. The
tracing interval was set to one second, which explains the two starting points of the
simulation.

As can be seen in the Figure 9.2, the stub uses a dedicated amount of the CPU.
Due to the open loop, it will not control the system utilization and, hence, it will
not adjust it is values. The peaks, which can be seen in the graphs, can be explained
by the work, which has to be done by the system.

This behavior can be used for a local CPU Stub to simulate a process, which
periodically works and than waits for an event. Another possibility is to use it as
a global stub to increase the CPU utilization or to transfer a system from non- to
CPU bound.

The time used for the open loop was calibrated to 1 second. This means that,
there were always “huge” blocks of “waiting” and “working”, e.g., for 50% there is
0.5s working and 0.5s waiting.

This behavior mostly appears in a range around the middle percentages and is
only hardly true for real applications.

For smaller percentages the behavior of “1 second” calibrated stubs can be taken
for simulating “special” kind of applications, e.g., I/O bound, where the process
shortly works and then waits for further input. For higher percentages the stub can
simulate, e.g., number crunching applications. Here, large “working periods” are
shortly interrupted by small “waiting periods”.

We have also evaluated several approaches to scale down the “big blocks”. There-
fore, we have redone the measurements with smaller blocks of “waiting” and “work-
ing”.

Scaling The size of the finest granularity depends on the smallest time, which can
be simulated. As shown in Section 9.2.1, the smallest “working” time is bound close
to the length of a couple of cycles. Despite the fine granularity of the “working”
time, the smallest reliable “waiting” time for userspace applications is 1µ second.
Thus, the “waiting” period is the bottleneck for scaling down big blocks into smaller
blocks. Our approach is to take the 1µs as the total waiting time for each loop. This
means the 1µs simulates the 100%-x%, where x means “supposed working percent”.
Therefore, the time needed for the “x working percent” has to be added to the 1µs.
This approach works really well if the percentage is small. If the “working percent”
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increases the additional time will take the lion’s share of the total time, e.g., for 98%
working the total time is close to 100 * the smallest possible (here 1µs).

Therefore, we also thought about another approach. This is the least common
denominator which evaluates the smallest common denominator of 100% and the
desired x% value. For the example above, the total time to simulate 98% comes
down to 50 * the smallest possible time. Additionally, we also allowed some inac-
curacy to the simulated x percentage value. Instead of only allowing exactly x%,
we extended the value to some user given interval, e.g., to simulate 67% the value
has to be between [66.5;67.5]. For that reason, our algorithm matches the smallest
possible denominator to create a percentage, which is in that range. For example,
our algorithm returns for the input of 67% a numerator of 2 and a denominator of
3. Compared to the least common denominator, the algorithm brings the total time
down from 100 * smallest time to 3 * the smallest time.

For the simulation of different kinds of processes also multiples of the least com-
mon denominator can be used.

9.2.3 Closed Loop

The “closed loop” tries to adjust the CPU utilization to an user specified percentage
by using a feedback loop. We experimentally implemented a time series analysis
algorithm. It is based on a simple moving average with evaluation of the last five
values of the original CPU load. The sample rate is set to 4Hz.

We used three different workload types for proving the concept. The first exe-
cution was done in an otherwise idle system and the second with a constant CPU
utilization where the original utilization was below the supposed percentage. The
results are similar as the results of the “open loop”. This is nothing special and,
hence, not further discussed.

The third evaluation was done with a variable CPU utilization. The original
load signal (origload) is presented in Figure 9.3. The figure shows on the x-axis the
iteration of the evaluation step, the y-axis shows the utilization of the CPU. The
system load signal ranges from almost idle with some small peaks to shortly fully
utilization and then varies around the to-be-adjusted value, which was in this case
50%. The figure also presents the controlled process variable, which is the second
graph in the figure and called adjusted.

The real utilization was measured in the system and can be seen in Figure 9.4.
The axes of this figure are the same as the figure above except of the sample rate,
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Figure 9.3: System Signal and Control Signal for the Closed Loop Algorithm
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which was set to 1 second. The load in the system varies as supposed but the average
is 52.40%, which is quite close to the predefined 50%.

Conclusion We have proved that the CPU utilization can be adjusted to a defined
value as long as the original utilization of the CPU is lower than the supposed value.

This evaluation should only present the functional capability. A more theoreti-
cally and sophisticated methodology will be done as next steps. It will probably be
based on the host load prediction system as described in [25, 26] and the Box-Jenkins
methodology [40].

The closed loop can be used to adjust the utilization of the CPU to a defined
value. This can be helpful for performance tests if the system should be tested
under high load. Additionally, it can be used to deterministically create overload
to validate the proper working and performance of overload routines under “real
conditions” or to constantly influence other processes in the system.

9.3 Main Memory Performance Simulation Func-

tions

The usability of the approach was validated twofold. First, an execution driven
evaluation has been done. Thus, the execution time is validated using the TSC.
Additionally, the amount of minor page faults is evaluated using the getrusage()-
function. Moreover, a binary analysis has been done, where necessary.

The second stage of evaluation is simulation based. Hence, the valgrind tool
suite, especially callgrind and massif, has been used. Callgrind is a callgraph and
cache simulation tool. The results can be evaluated using KCachegrind. Massif6

evaluates the stack and heap memory allocation behavior of processes by evaluating
the allocation functions. More information on older versions of massif can be found
in [96].

The single test runs are executed under the same test conditions. Each test
has been executed several times in order to get statistically viable results. Hence,
the minimum (min), average (mean), maximum (max) and squared coefficient of
variation (SCV) has been used to validate the test results.

6Valgrind (massif) has been used in version 3.5.0.
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Concept

This section evaluates different allocation and initialization possibilities as described
in Section 3.3.2. Moreover, a new developed algorithm to use the allocated pages
is described and evaluated. The validation- as well as the tracing environment, as
described above, is used.

Next, a discussion of the behavior of the following functions is done: alloca(),
malloc(), realloc(), memset() and distmemset(). The functions calloc() and mema-
lign() are not discussed further. Because, calloc() basically combines malloc() and
memset(), which are studied separately.

The test cases have been executed five times but only the evaluation of the third
execution is displayed, unless otherwise mentioned. This has been done to simplify
the reporting as all five tests show similar results.

Allocation Functions

An allocation function validates and ensures that the process will get enough memory
as requested, if available. Hence, the heap allocation functions searches the already
available heap memory for the amount of free space. If not enough space is available,
it requests new memory from the system. This behavior is necessary as any heap
memory can be freed during runtime, which leads to heap fragmentation. The stack
memory allocation function basically only adjusts the stack pointer register.

Figure 9.5 compares the three mentioned allocation functions. The x-axis lists
the number of the iteration done for allocating the 512 bytes of memory. The y-axis
shows the time needed to execute the according function in terms of CPU cycles.

As can be seen in Table 9.3, an already prefetched alloca()-function call takes
only 24 cycles on average. The first value of the test execution has been ignored
because of the “first message effect”. The heap allocation needs 218 cycles for a
malloc() respectively 279 cycles for a realloc()-function call. The time spent in the
heap allocation shows a minimum value, as it differs in other scenarios, e.g., for a
fragmented heap.

min mean max SCV
Alloca #3 24 24 27 0.00053
Malloc #3 210 218 259 0.00103
Realloc #3 259 279 903 0.14116

Table 9.3: Time Spent in an Allocation Function Call
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Figure 9.5: Time Spent in an Allocation Function Call

Additionally, the measurements have shown that no page faults are triggered
by the allocation function, e.g., we measured only one minor page fault instead of
the requested 20 pages with the alloca() function call. This is especially true for
requesting many pages at a single time. The pages are only fetched as soon as
the data will be used. Hence, a memory set function together with the allocation
function is used to create page faults.

Memory Set Functions

As described above, allocation functions cannot solely be used to create higher
amounts of page faults in the system. Thus, the memset()-function is used to ini-
tialize the memory. Hence, to create the desired number of page faults. As with
memset() each memory position will be overwritten, we expected the time needed
in the function to be directly linear to the amount of memory used. Moreover,
changing the value of the initialization variable should not make any difference to
the initialization time as the value should be available in one of the CPU registers.
Besides of the timing evaluation, this estimation has been confirmed by an analysis
of the binary.

The time spent in the memset()-function has been measured starting from ini-
tializing zero bytes to six pages. The pages have already been fetched and allocated
in the process before measuring. Figure 9.6 displays the time needed to initialize
one byte in cycles per byte on the y-axis. The x-axis shows the amount of allocated
bytes. The blue graph (diamond) illustrates the time spent in memset() using al-
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Figure 9.6: Different Memory Set Functions

ways the same initialization value “0” (memset static) and the red graph (squares)
for changing the value using the actual allocation amount (memset var).

min mean max SCV
Mem. St. #3 0.389 0.434 0.828 0.02289
Mem. Var. #3 0.385 0.441 0.704 0.01168
Distmem. #3 0.014 0.038 0.208 0.48015

Table 9.4: Evaluates Different Memory Set Functions

Starting from approximately one page (4096 byte) the amount of cycles for set-
ting a byte is almost constant. The average value is 0.434 cycles per byte for “memset
static” and 0.441 for “memset variable”, as can be seen in Table 9.4 Lines 2 and 3.
Their respective SCVs are 0.02289 and 0.01168. The third test run results are dis-
played. The first three values of the tests have been ignored in Table 9.4 because of
the initial overhead for small values.

It takes many cycles to set the memory using the memset()-function, e.g., ∼10000
cycles for 6 pages with “memset static”. As we only need to write into each page once
to create the necessary page fault, we used an algorithm, which is similar to memset()
but a distance between the initialized bytes can be specified. The algorithm is called
distmemset(). The distance is set to pagesize in the test runs, so a time efficient
generation of page faults has been achieved. The results are displayed in Figure 9.6
and Table 9.4.

The time used for initializing one byte in this test environment takes 0.038 cycles
on average, which reduces the number of cycles to ∼680 for six pages. We are aware
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that our algorithm is much slower than memset() if it is used with a distance of one
byte. But, this does not matter as we only want to set one byte per page.

Another advantage of distmemset() compared to memset(), with our test condi-
tions, is that, we only want to simulate the heap and stack behavior with the mm
stubs. The rest of the system should not be significantly influenced by the stubs, e.g.,
the mm stubs should not create many cache events. As memset() sets every memory
position a lot of cache events, e.g., level one cache misses, can be seen. The same
execution setup has been used to measure the total amount of cache write misses.
Callgrind shows 61339 for “memset static” compared to 1143 for distmemset().

Time to Serve a Page Fault

The following test has been executed using the malloc() and distmemset()-functions.
The time measured includes both function calls. Here, the time needed to allocate
and load multiple pages to a process has been evaluated. The process starts using
zero to 9900 pages with an increment size of 100 pages.

min mean max SCV
8068 8628 8757 0.00023

Table 9.5: Time Needed to Allocate and Load a Page

As can be seen in Table 9.5, the average time to load and set a single page is
8628 cycles. In this case, the malloc() and distmemset()-functions have only small
influences. The SCV reflects that the average value has only small variations. The
first value, which is “allocate zero pages”, is not shown and evaluated in Table 9.5.

As described in Section 3.3.2, memory that has been freed is not directly returned
to the system but stored in a malloc pool. Hence, the process can reuse the memory
if needed without requesting a new page from the system. The behavior of the
malloc pool has been experimentally evaluated.

Malloc Pool

Figure 9.7 shows on the x-axis the number of each test run. The allocated size
starts from zero to 114 pages with an increment size of six pages (20 test runs).
The number of pages is listed on the y-axis. The blue graph (diamonds) shows the
amount of allocation memory in pages. The red line (circles) displays the number of
minor page faults created by the process. As can be seen between test run two and
twelve, much fewer minor page faults happen as pages are being requested. In this
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Figure 9.7: Supposed and Measured Page Faults

case, the pages from previous test runs are still available for the execution. Above
60 pages, which is ∼250000 bytes, the memory will be returned to the system.
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Figure 9.8: Time Influence of the Malloc Pool

The influence of the malloc pool can also be nicely displayed by the time needed
to allocate and load a single page. This is shown in Figure 9.8, which has been taken
from the test execution as described above. Here, only the time spent to answer the
request is depicted on the x-axis.
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Conclusion In this subsection different heap and stack allocation scenarios have
been evaluated. As shown, each page has to be used at least once to really allocate
the page to the process. Moreover, the time for different functions has been deter-
mined and the usability to simulate the memory behavior of applications has been
shown. Hence, the functions provided can be used to create mm stubs.

9.4 Data Cache Memory Performance Simulation

Functions

This section validates the dcm PSF. It is split in two different subsections. First, the
access behavior of the algorithm itself is executed. Here, the algorithm is validated
to show that it is working as described in Chapter 7. The second validation evaluates
whether the algorithm can be used to deterministically create a particular amounts
of cache set references (CSR).

9.4.1 Validate Access Behavior

Within this section, the different parameters of the algorithm are evaluated. Hence,
the access behavior to create the supposed CSR is studied. To validate the access
behavior, the algorithm has been annotated to show the accessed memory location
in the array. For evaluation reasons, the following configurations have been used.

The cache for testing is configured as a 2-way set associative cache with a two
byte cache line size and four sets. This leads to a cache size of 16 bytes. In Table
9.6 the cache configuration is depicted.

Cache Line Assoc Sets Size

2 2 4 16

Table 9.6: Cache Configuration for Validating the Access Behavior

In Table 9.7 the basic configuration for the different test cases can be seen. Each
row presents an excerpt of the parameters, which were written to the “datafile.h”.

The cache parameter was configured to use the cache as described in Table
9.6. The accesses and the arraysize_max parameters were set to 24. As in this
validation neither the access direction nor the sleeptime parameter is evaluated.
Their values have been set to read resp. to zero.

171 Peter Trapp



CHAPTER 9. VALIDATION OF THE PERFORMANCE SIMULATION
FUNCTIONS

Test Case Accessstride Sets Setstride

1 8 1 1
2 8 2 1
3 8 2 2
4 8 4 1
5 16 1 1

Table 9.7: Basic Configuration for the Validation of the Access Behavior

These configurations were chosen to validate the different configuration possibil-
ities of the dcm PSF. Basically, the algorithm uses a single set of the cache in the
first test case. Furthermore, the algorithm uses two different sets with different set
strides (Test Cases 2 & 3). In Test Case 4 each set of the cache is used. Finally,
Test Case 5 is similar to Test Case 1 but, here, the accessstride parameter has been
varied to validate the usability of this parameter.

0 1 8 9 16 17

2 3 10 11 18 18

4 5 12 13 20 21

6 7 14 15 22 23

12 12

5) Accessstride=16, Sets=1, Setstride=1

4) Accessstride=8, Sets=4, Setstride=1

3 3

33

3 3

3 3

3) Accessstride=8, Sets=2, Setstride=2

6 6

6 6

1) Accessstride=8, Sets=1, Setstride=1

1212

2) Accessstride=8, Sets=2, Setstride=1

66

66

Figure 9.9: Validate Access Behavior of the Data Cache Memory PSF

In Figure 9.9 the access behavior of the algorithm is depicted. Each field presents
a single byte in the array including the memory location. The fields surrounded by
the bold lines present cache lines. The outer bold line presents the cache itself. As
can be seen, the cache is 2-way set associative with four sets and two bytes per cache
line. The total size of the cache is 16 bytes.

An access to a memory location “outside” of the cache is mapped to a cache
line. An example is presented in Field 23. Typically, the cache line is determined
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by the memory location modulo the cache size, e.g., 23%16=7. Because of the fully
associative cache architecture within a single cache set (see Section 3.4.2), it cannot
be guaranteed to be stored in this particular cache line. So, the data will be either
stored in position 7 or 15 depending on the replacement policy.

The different test cases access different locations in the cache. These locations
as well as the amount of their number of accesses are presented by the gray-shaded
boxes including a number. The distribution of the accesses is based on a determin-
istic replacement policy, e.g., LRU (see Section 7.2.5). Different colors have been
used for the different test cases as described above.

As an example, Test Case 4 uses four different sets. Here, each cache line is used
three times. The locations as well as the number of accesses have been determined
by the output of the annotated algorithm. As can be seen, the different test case
configurations access different locations in the cache. Particularly, by comparing
Test Case 2 & 3 the influence of the setstride parameter can be seen. In the first
test case, the Sets 2 & 3 are used. In the second, 1 & 3 are used.

The difference between Test Cases 1 & 5 cannot be presented in the figure as the
same cache lines are used by the algorithm. An analysis of the output has shown
that Test Case 1 uses the array’s memory locations 23, 15 & 7 eight times each. Test
Case 5, however, uses the locations 23 & 7 twelve times each. Hence, the algorithm
is working as expected for different accessstride parameters.

Conclusion This section evaluated the memory accesses behavior of the dcm PSF.
Hence, the different parameters, i.e., accessstride, sets and setstride have been used
for validation. Moreover, this section provides an overview on the influences of the
different parameters to the access behavior. It has been shown that the algorithm
works as expected. Thus, it can be used to create CSR.

9.4.2 Validate Cache Set References

In this section, the usability of the algorithm to deterministically create CSR is
discussed. In the following, an overview of the caching architecture of the test
environment is provided. Afterwards, the validation of the CSR is done for the
various cache levels and cache access types.
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Test Environment

The test environment of Section 9.1 has been used. This section shortly presents
the caching architecture. More details about the mentioned characteristics can be
found in Section 3.4.2.

The CPU has two different cache levels (L1 & L2). These levels are combined
as non-inclusive and use a write-through policy. Each cache level is realized as
an 8-way set associative cache with a cache line size of 64 bytes. The pseudo least
recently used (PLRU, see Section 3.4.2) replacement policy is applied. A write buffer
is associated with the L1 cache to avoid the occurrence of write misses in the L2
cache. A victim buffer is not available in the CPU; but, the out-of-order execution
capabilities are included.

In the following, the particular characteristics of the two caches are depicted:

• The L1 cache is split into a data cache and a trace cache, which is an instruction
cache storing micro operations (µops). The size of the level one data cache is
16 kB.

• The L2 cache is an unified sector cache to store data and instructions. Each
cache line (sector) is split into two subsectors. The L2 cache has a size of 1MB.

The CPU provides several hardware counters to trace cache events. All available
counters for measuring cache events are listed in the following:

• L2 read hit events.

• L2 read miss events.

• L2 writeback lookup misses.

Other cache events such as level one hits can not be recorded due to the lack of
additional counters.

Register and Level One Hit

Within this subsection, a comparison between register and L1 cache hits is evaluated.
As there are no hardware counters for the registers and L1 cache, time measurements
have been used. The dcm PSF algorithm as described in Section 7.2 was applied to
create the register accesses and L1 cache hits.

The configuration of the test cases are provided in Table 9.8. The evaluation
has been done for read and write accesses. Each test case has been executed five
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Array Size Access Stride Sets Set Stride

Register 1 0 1 0
L1 Cache Hit 64 1 1 0

Table 9.8: Configuration for Registers and L1 Cache Hits

times in order to get an estimation of the reproducibility of the CSR. The number
of accesses for each events range from 100000 to 1000000 with a step size of 10000.
The times were measured before the Lines 14 and 28 in Listing 7.4 using the TSC.

Level 1 Read Hit
Level 1 Write Hit
Register Read Hit
Register Write Hit
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Figure 9.10: Time Behavior of Register and L1 Cache Hits

The results of the evaluation are presented in Figure 9.10. The number of accesses
is shown an the x-axis and the time is presented in cycles on the y-axis. As can be
seen, the time of creating the CSR is linearly growing with the number of accesses.
Hence, a specified amount of CSR can be deterministically simulated with the dcm
PSF for register and L1 data cache hit read and write events.

Register (SCV) Level One (SCV)

Read Hit 13.9 (0.00026) 15.7 (0.00008)
Write Hit 16.1 (0.00005) 18.4 (0.00013)

Table 9.9: Time Evaluation of the Registers and L1 Cache Hits

The average values and SCV for creating one register or L1 data cache event
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is presented in Table 9.9. The values have been calculated using the results from
Figure 9.10.

As can be seen in the table, the time for one iteration for the register read access
is approximately 13.9 cycles. If the algorithm is configured to create a L1 data
cache read hit, the time is about 15.7 cycles on average. Hence, the difference is 1.8
cycles, which is close to the time to access the L1 data cache for a read hit event
(see Listing 7.6). The same can be seen for the write events. Here, the time for a
register write hit is approximately 16.1 cycles. Hence, a register write access takes
about 2.2 cycles longer than a read access. Moreover, the time difference between
a L1 data cache write hit and a register write access is approximately 2.3 cycles,
which is little more than the L1 cache access time. By comparing the read and write
values, it can be seen that a write value always takes about 2.5 cycles longer than a
read access.

The SCV values have been calculated based on the average for all different mea-
surements per CSR type. The time spent to execute one event is equal for all
different amounts of accesses within small variations.

To summarize, the dcm PSF can be used to create L1 data cache hits for read
and write events. Moreover, it is possible to specify the number of CSR. Thus, an
amount of CSR can be deterministically created for the level one data cache hit
events, and, the number of accesses can be specified.

Level One Miss / Level Two Hit

This section evaluates the L1 data cache miss / L2 unified cache hit read and write
events7. The read events have been evaluated using oprofile and time measurements.
The write event evaluation has been done using time measurements as the appropri-
ate hardware counters are not available. These counters are not available because of
the caching architecture. Here, a write buffer is associated with the L1 data cache.
The write-through policy of the L1 data cache updates the write buffer if a L1 data
cache write miss occurs. The write buffer is then used to sync the data with the L2
cache.

Cache Access Stride Set Stride

Read / Write L1D 2048 1

Table 9.10: Configuration for L1 Misses / L2 Hits for Read and Write Access
7This is referred as “L1 data cache misses” in the following.
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The configurations of the test cases are presented in Table 9.10. The maximum
array size is set to the array size. The array size and number of sets were varied
as presented in the figures and tables below. Each test case has been executed 25
times for the access’ numbers 100000, 200000 and 300000.

Read Accesses (Oprofile Measurements)

Array Size, Sets

18432, 1
18432, 2
18432, 4
18432, 8
18432, 16
18432, 32
32768, 1
32768, 2
32768, 4
32768, 8
32768, 16
32768, 32
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Figure 9.11: Samples of L1 Read Misses / L2 Read Hits for Different Array Sizes
and Set Values

In Figure 9.11 the number of samples taken with oprofile is presented on the
y-axis. On the x-axis the number of accesses is shown. The sets and the array
size values have been varied as presented in the figure. Due to the sampling based
measurement variations especially for small sample numbers can occur. The results,
presented in the figure, show a deterministic behavior. The lower graphs presented
in blue provide the number of oprofile samples for different set values for an array
size of 18432 bytes, which is calculated on the assumption of the optimal array size
as in Equation 7.1. The green graphs (higher graphs) present the oprofile samples
of an array size 32kB, which is the doubled cache size.

As can be seen by the blue graphs, the dcm PSF does not create the necessary
CSR for the optimum array size as described in Equation 7.1. But, for higher array
sizes (green graphs) the dcm PSF can be used to create the necessary amount of
CSR. Hence, two conclusion can be drawn from the figure. First, by comparing the
blue and green graphs, it can be seen that the success rate to generate the cache
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events depends on the array size. Second, for small array sizes the success rate
depends additionally on the number of sets. This can be seen by studying the blue
graphs. Additionally, results for higher array size values have also been evaluated
but not presented as they are as expected (green graphs).

Oprofile was configured to create one sample after 6000 L1 cache read miss events.
In the following, an evaluation of the measured and supposed CSR is done. This
evaluation is based on the average values for the different access numbers over all
sets. The array size was set to 2 times cache size (32768 bytes).

Accesses Samples (avg) Total Events (avg) Success Rate (avg)

100000 16.83 101000 1.01
200000 33.00 198000 0.99
300000 9.57 299000 1.00

Table 9.11: Evaluation of Accesses and Samples

In Table 9.11 the success rate for generating L1 data cache read misses is shown.
The first column presents the number of accesses. In the second column the average
number of samples per access is presented. The third column depicts the number of
events calculated by the number of samples (Column 2) multiplied by the oprofile
sample event value (6000). Finally, the average of the success rate (Column 4) is
evaluated by dividing the value “total events” (Column 3) by the number of accesses
(Column 1). As can be seen in Column 4, the average success rate is approximately
1. This means that a predefined value of CSR can be deterministically created in
the system for different sets values.

Read Accesses (Time Measurements)

In Figure 9.12 the time behavior for the L1 data cache read miss events is pre-
sented. The same configurations as described above have been used. The time
(cycles) spent to execute the CSR is shown on the y-axis and the number of ac-
cesses is on the x-axis.

As can be seen, the time linearly increases with the number of accesses. Moreover,
the results show that the algorithm has a deterministic cache access behavior. This
is also applicable for different numbers of sets. Hence, the algorithm works as
supposed for L1 data cache read misses / L2 cache read hits.
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Figure 9.12: Time Behavior of L1 Read Misses / L2 Read Hits

Write Accesses (Time Measurements)
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Figure 9.13: Time Behavior of L1 Write Misses

Figure 9.13 presents the time behavior for L1 data cache write misses. The x-
axis shows the number of accesses and the y-axis provides the time in cycles. The
test case configuration as described above has been used and the sets value has been
varied according to the figure. Each presented result is the average of 25 independent
test runs.

As can be seen in the graphs, the time linearly increases with the number of
accesses. There are only some small variations, which do not influence the overall
result significantly. Hence, the algorithm works as supposed for L1 data cache write
misses.
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Comparison of Read and Write Accesses (Time Measurements)

In Table 9.12 the average time for one iteration of the dcm PSF is presented
for the previously shown read and write measurements. The evaluation has been
done for different set values and an array size of 32786 bytes. The results show a
deterministic access time for the set value configuration.

1 2 4 8 16 32

Read 25.3 25.5 25.4 25.8 25.7 26.0
Write 25.3 28.6 26.9 26.4 25.6 25.9

Table 9.12: Time Comparision for Different Set Values

An evaluation of the time for read and write L1 data cache misses is provided in
Table 9.13. Here, the values of Table 9.12 have been used to calculate the average
access time. In the second row, the SCV values for this evaluation is provided to
see the influences of the set value to the overall execution time.

Read Write

Cycles 25.6 26.4
SCV 0.00010 0.00201

Table 9.13: Time Evaluation for Read and Write L1 Data Cache Misses

An iteration through the loop to create an L1 data cache read miss takes on
average 25.6 cycles. A register read hit takes approximately 13.9 cycles (see Table
9.9). The difference between those two accesses is about 11.7 cycles. This value is a
little less as the L2 access time, which is 18 cycles (see Listing 7.6). The variation in
time can be explained by the used array size. The algorithm takes the if condition
in Line 23 of Listing 7.4 more seldom when looping through bigger arrays. The
difference between a read and a write access is around 1 cycle.

To summarize, this subsection evaluated the L1 data cache miss / L2 cache hit
read and write events. The results have shown that a predefined amount of CSR can
be deterministically created. The evaluation is mainly based on time measurements
as the appropriate hardware counters are not fully available on the system because
of the cache architecture. The results are satisfying and also match other evaluations
as well as the specification of the CPU.
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Level Two Read Miss

In this section the generation of L2 cache read miss events is evaluated. Only the
read misses are studied because a write buffer is used to avoid L2 write misses in
the test environment. As described in Section 4.4 the dcm PSF are only designed
to recreate the cache access behavior of processes for data and unified caches.

The test case configuration for the evaluation presented in this section is sum-
marized in Table 9.14. Parameters, which are not presented in the table have been
varied and are depicted in the figures and tables used for the evaluation. The array
size and maximum array size are equal. The axis in the figures are the same as
described in the sections above. The test cases have been executed 25 times to get a
statistical distribution. The values presented are the average values of the test runs.
Additionally, a SCV has been presented to show the deterministic behavior of the
algorithm.

Cache Access Stride Set Stride

L2U 2048 1

Table 9.14: Configuration for L2 Read Misses

Read Accesses (Oprofile Measurements)
As shown in the subsection above, the success rate for the cache event generation
varies on the parameters sets and arraysize. In the following, these two parameters
are studied independently for the generation of L2 cache read misses.

Influence of the Sets Parameter

In Figure 9.14 the influence of the sets parameter to the simulation results is
depicted. The array size has been set to 16777216 bytes, which is 16 times the
L2 cache size. For smaller values of array size only few oprofile samples can be
measured. Beside the deterministic measurement of these samples, the main focus
of the dcm PSF is to generate an adjustable amount of cache events with only few
side effects for the other cache events.

As can be seen in the figure, the number of measured oprofile samples depends
on the sets parameter. Whereas, even in the best case, which is sets = 2048, the
success rate for generating L2 read misses with an array size of 16777216 bytes is not
equal to one. However, this array size value has been chosen as the influence of the
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Array Size = 16777216
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Figure 9.14: Influence of the Sets Parameter (excerpt)

sets parameter to the simulation results can nicely be presented. The figure only
presents few different set values for clarification. The parameter has been varied
from 1 to 2048 by doubling its value. The other results are as expected and, hence,
are not further presented.

Influence of the Arraysize Parameter

Sets = 256

Arraysize:

 4194304
 8388608
16777216
33554432
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am
p
le

s

0

10

20

30

40

50

Number of Accesses in 106
0.1 0.15 0.2 0.25 0.3

Figure 9.15: Influence of the Arraysize Parameter (excerpt)

Figure 9.15 presents the influence of the arraysize parameter. The sets param-
eter has been set to 256. The array size value has been varied from 2 to 128 times
by doubling the array size. Additionally, a factor of 1.125 has been used as this
presents the minimal array size as evaluated in Equation 7.1. In the figure only
an excerpt of the different array sizes is depicted to increase the readability of the
graph. The other results of the measurements, which are not presented, do show
expected behaviors.
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As can be seen, the success rate for the generation of L2 read misses strongly
depends on the array size. Additionally, the minimal array size is 67108864 bytes
to create the specified amount of cache events for a sets = 256 value. From further
evaluations, the same array size can be used for a sets value equals one.

Deterministic Generation of L2 Read Miss Events

Starting from an array size of 67108864 bytes, the L2 read miss events can
be deterministically created for any sets value. Hence, this is considered as the
minimum array size.

Array Size = 67108864
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Figure 9.16: Samples of the L2 Read Misses for different Set Values

This is presented in Figure 9.16. Here, for any sets value the success rate for
creating L2 read misses is approximately equals one. The measurement results for
the blue and green graphs are the same.

Overhead of L1 Read Miss Events

Here, the number of generated L1 read miss events is studied. This can be
considered as the overhead, which is generated in the L1 cache for creating L2 read
misses.

In Figure 9.17 the L1 read miss oprofile counter has been used to measure the
number of L1 read miss events for a generation of the L2 read miss events. The same
configuration as described in Table 9.14 has been used. Usually, if a L2 read miss is
caused a L1 read miss happened as well because the data has to be transfered into
the lower levels, too8.

8This is applicable in any inclusive cache architecture (see Section 3.4.2).
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Array Size = 67108864
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Figure 9.17: Generation of L1 Read Miss Events for Creating L2 Read Miss Events

As can be seen in the figure, a constant overhead of L1 read misses is created when
generating L2 read misses. However, the overhead is deterministic for the different
sets values as well as for the number of accesses. From further measurements, it
can be seen that the overhead depends on the array size used for the generation of
L2 read misses. For smaller array sizes the overhead is reduced. The correlation
between the overhead and the array size is evaluated within the CF. Especially for
simulations using the whole cache, this overhead can be reduced as the array size
can be reduced. In this case, the sets parameter is set to its maximum.

Read Accesses (Time Measurements)
In this subsection the time influence of generating L2 read misses is evaluated. The
evaluation is presented using a figure and backed up with a small validation of the
statistical distribution of the measurement results.
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Figure 9.18: Time Behavior of L2 Read Cache Miss Events
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In Figure 9.18 the time behavior is presented. Here, an array size of 67108864
bytes has been used and the sets parameter was varied from 1 to 2048 by doubling
its value.

In the figure, it can be seen that the time increases linearly with number of
accesses. This behavior is deterministically for the different sets values. Again,
only an excerpt of the results are presented for convenience.

Accesses Time Average SCV

100000 154.47 0.00191
200000 152.76 0.00189
300000 151.58 0.00188

Table 9.15: Time Evaluation for L2 Cache Read Miss Events

In Table 9.15 the number of accesses is presented in the first column. In the
second column the average time for one access is shown and the SCV for calculating
the average value is depicted in the third column.

As can be seen, the time spent for producing a L2 read miss, which is a main
memory access, is approximately 152 cycles with small variations only. Hence, the
time behavior is deterministically for the different number of accesses. Additionally,
the results are consistent with the access time of the main memory in the system.
Here, an access takes around 150 cycles. The access times of the main memory have
been studied and are presented in Figure 3.1).

Conclusion To summarize, this section presents that a specified amount of cache
events can be created in a predefined cache level by using the dcm PSF as described
in Chapter 7.

The evaluation has been done twofold. First, a time evaluation has been done.
Second, oprofile measurements were performed if possible. Additionally, the results
of the time measurements were compared to the systems parameters.

It has been shown that a specified amount of cache events can be created. This
can be done for read as well as for write events. Moreover, it is possible to create
misses and hits as predefined. The results show a deterministic and reproducible
behavior. Because of the linear characteristic of the graphs the parameters for the
simulation can easily be evaluated and adjusted to the needs of the DPS study using
dcm stubs.
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9.5 Simulated Software Functionality

For validating the libSSF, the test environment as described in this chapter is used.
The test cases were defined according to the requirements as specified in Sections
8.1 and 8.3.3.

9.5.1 Structure of the Test Application

The test application includes a deterministic algorithm to modify the members of
an object by using the interface of the object class. The object, which is stubbed is
presented in Figure 9.19.

1

-basictypes

typeClass
- typeS : short
- typeI : int
- typeL : long
- typeUI : unsigned int
- typeF : float
- typeD : double
- typeC : char
- typeB : bool
- typeArr[10] : char

1

baseClass
+ basePublic : int
# baseProtect : int
- basePriv : int

derivedClass
- i : int

Diagramm: Klassendiagramm Seite 1Figure 9.19: Structure of the Simulated Object

The type of the object, which is modified within the test case, is called “class
derivedClass” and includes a private integer variable itself. Moreover, this object
inherits the members of the “class baseClass”. These three members are integers
with a visibility of the types “public”, “protected” and “private”. Additionally, the
“derivedClass” object instances a variable of the type “class typeClass”. This includes
members for basic data types. All of these members are declared as private.

Using this structure for the test object has several advantages. It can be deter-
mined whether the members of different visibility types can be stubbed. Moreover,
it can be validated whether the basic data types can be used as well as a arrays. Ad-
ditionally, the inheritance of objects is included in the test case. Last but not least,
it can be evaluated whether objects can be recursively created within the libSSF in
the case if a constructor call is stubbed (see Section 8.3.3).
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9.5.2 Test Cases and Test Case Evaluation

The first step of the test case evaluation is to execute the original algorithm and
to trace the values of the members of the objects. In the second step, the original
algorithm is executed and the values are stored into a log file using the “record”
functionality of the libSSF. This log file will then be examined and the results are
compared with the results of the first step. As last step, the original algorithm is
removed from the test execution and the values of the objects will be restored from
the trace file using the libSSF. As before, the values of the objects are examined and
compared to the the original test case execution.

These evaluations are done for the four different restore scenarios as described
in Section 8.3.3:

1. Object is initialized as well as data are stored in the trace file. This behavior
is the most common case as the CUS is usually changing the values of the
objects.

2. The object is not initialized and no data are stored in the trace file. This case
can also be common, e.g., if a search function does not find the entry and only
returns a “NULL” reference.

3. The object is not initialized but data are stored in the trace file. This behavior
can be interpreted as the constructor of the object is called within the CUS.

4. An initialized object is available but no data are stored in the trace file. This
behavior cannot be handled in the libSSF. Here, the execution of the applica-
tion is terminated.

The above described test case scenarios as well as the test case structure covers a
broad variety of use cases for the application of the libSSF. Especially, the different
visibilities of members of the object are evaluated. Additionally, the different basic
types as well as inheritance of classes is included.

Conclusion The evaluation has shown that the libSSF is capable to simulate the
functional behavior of an algorithm for a deterministic test case scenario. Here, the
CUS can be replaced by a stub, which restores the previously recorded behavior of
the software functionality. All test and use case scenarios as described in this section
has been passed.
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Chapter 10

Conclusion and Future Work

This chapter summarizes the findings of the presented
approach. It highlights the contribution and critically
reviews the approach of the dynamic performance stubs’
framework. Additionally, future work is established,
which also addresses some of the critical review items.
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10.1 Conclusion

This thesis presents a novel approach for a software performance engineering frame-
work and methodology, called dynamic performance stubs. The main contribution
is that they enhance the methods of performance tuning and measurement by pro-
viding a cost-benefit analysis of different optimization approaches for a software
bottleneck within a particular system. Hence, the final optimization of the bot-
tleneck can be realized well-founded and gain-oriented. This can be achieved by
replacing the software bottleneck with a dynamic performance stub that simulates
the functional as well as the performance behavior of the bottleneck. Here, the
performance behavior of the stub can be adjusted to study several different opti-
mization levels. Such, the optimization’s influence on the overall system can be
measured before doing the optimization.

In addition to the cost-benefit analysis of an optimization, many further advan-
tages (see Section 4.8) and extended evaluations (see Section 4.7) can be achieved
by using dynamic performance stubs. These are summarized in the following non-
exhaustive list:

• Advantages:

“Hidden” bottleneck detection: This can be achieved as the bottleneck
can be replaced by a particular dynamic performance stub, which is ad-
justed to consume almost no system’s resources. So, the “hidden” bottle-
neck becomes the new bottleneck and can be identified easily.

Balance between optimization effort and achievable gain: As a cost-
benefit analysis can be achieved, it is possible to optimize the bottleneck
with a balance between effort and gain.

• Extended evaluation:

Idealized measurements: In this case, the particular dynamic performance
stub is adjusted to use almost no system’s resources. Hence, a bottleneck,
which has been optimized in an ideal way can be simulated.

Load and stress tests: This is the opposite to the “idealized measurements”.
Here, the particular dynamic performance stub is adjusted to strongly
consume the system’s resource. Hence, the load in the system can be
significantly increased. This configuration can also be used to simulate
stress tests.
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System bounds evaluation: Here, an answer to the questions: “When does
a system performance bounds changeover happen?” and “How much ca-
pabilities are remaining in this system’s resource?” can be achieved. This
can be done by varying the performance behavior of the particular dy-
namic performance stub at the system’s performance bound. E.g., a
changeover from a CPU bound system to a memory bound system can
be realized by significantly increasing the memory utilization in the sys-
tem.

Early optimization results: The gain of a possible optimization can be de-
termined in advance. This determination of the gain leads to early opti-
mization results.

These aspects can also be used to avoid the drawbacks of an over- or under-
optimization. More advantages and extended evaluation methods can be found in
Sections 4.7 and 4.8. Additionally, the items of the list above are described in more
detail in these sections.

Contribution

In the following, the framework and the contributions of the dynamic performance
stubs ’ approach are described. Dynamic performance stubs are used to replace
a software bottleneck by a performance stub. The performance behavior of this
stub can be dynamically adjusted to the needs of the performance improvement
study; and thus, different performance optimization levels of the bottleneck can be
simulated in the system. Here, the performance measurements, which identified the
software bottleneck, are repeated to study the performance behavior of the system
by using a dynamic performance stub.

The main contributions within the dynamic performance stubs (Chapter 4) are:

• Definition of the framework.

• Definition of a general methodology to apply the dynamic performance stubs.

• Definition of extended use cases to support the performance measurement and
performance tuning process.

In order to replace the bottleneck, the dynamic performance stub has to simulate
the functional behavior of the bottleneck for the predefined performance test cases.
Moreover, the performance behavior has to be adjustable.
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The framework of the dynamic performance stubs is subdivided into the perfor-
mance simulation functions, which can be used to adjust the performance behavior
regarding a dedicated system resource; and, the simulated software functionality.
Those two elements are combined to built a particular dynamic performance stub,
which simulates the performance behavior of a dedicated system resource. The
following subsections list the contributions in the particular areas.

Performance Simulation Functions

The performance simulation functions are defined to simulate the performance be-
havior of the bottleneck regarding a separated aspect of the system resources. A
classification of the different performance simulation functions can be found in Sec-
tion 4.4. Within this thesis the possibility to simulate the performance behaviors
for the system resources “CPU” (see Chapter 5), “main memory” (see Chapter 6)
and “data cache memory” (see Chapter 7) have been evaluated.

CPU Performance Simulation Functions The CPU performance simulation
function are used to simulate the performance behavior regarding the time
consumption of a software algorithm. So, they can be used to simulate the
CPU behavior of a process. The simulation is able to consume a dedicated
amount of CPU time as well as to delay the execution of the process. Those
two elements can be used to utilize the CPU with a constant load or to adjust
the CPU utilization to a predefined value. Moreover, the CPU performance
simulation functions can be used to simulate small or large time slices.

Main Memory Performance Simulation Functions By using main memory
performance simulation functions, the allocation behavior of process’ main
memory can be simulated. So, it is possible to allocate and free different
amounts of stack and heap memory at a given time during the simulation.
Moreover, the memory is allocated in chunks, i.e., the process can extend or
decrease its memory consumption without the necessity of freeing the mem-
ory space and allocating the new amount. Additionally, it is also possible to
change only one aspect, e.g., heap memory, of the main memory allocation.
Finally, the main memory is used create the necessary amounts of page faults
are created, too.

Data Cache Memory Performance Simulation Functions The data cache
memory performance simulation function can be used to simulate the data
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cache access behavior. Especially, they are able to simulate read and write ac-
cesses. These accesses can be realized as hits and misses on the specified cache
level. Moreover, the data cache memory performance simulation functions can
be adjusted to create an amount of cache accesses.

To support and improve the simulation results, calibration functions have been
developed (see Sections 5.3, 6.3 and 7.3). These calibration functions adjusting the
performance simulation functions to the target. Usually, the calibration functions
have to be executed once for each system. The results can be stored and reused if
further performance evaluations using dynamic performance stubs are necessary.

Simulated Software Functionality

To simulate the functional behavior of the bottleneck, the simulated software func-
tionality (see Chapter 8) has been introduced. The methodology is split into two
main steps: “record” and “restore” the functional behavior of the bottleneck.

In a first step, the functional behavior of the bottleneck for the predefined per-
formance test cases configuration is recorded. This recording is realized by storing
the input and output values of the software functionality or algorithm.

As the functional behavior of the bottleneck has to be deterministic for the same
test cases, the recorded behavior can be used to simulate the algorithm. Hence, the
stored results are restored into the application memory in a second step.

Finally, the application as well as the test environment can be used to validate
the functional behavior of the simulated software functionality.

The approach is described in the methodology subsection. A possible realization
of the simulated software functionality is presented in Section 8.3. Here, a library,
called libSSF, shows the application of the simulated software functionality to the
software. A case study as well as a discussion concludes the approach of the simulated
software functionality.

Particular Dynamic Performance Stubs

By combining the performance simulation functions with the simulated software
functionality, dynamic performance stubs can be built to simulate a dedicated system
resource, e.g., CPU. This combination leads to a particular dynamic performance
stub.

Within each of the “stubs” chapters (Chapters 5, 6 and 7), the requirements for
the performance simulation functions and a methodology are provided. Moreover,

192 Peter Trapp



CHAPTER 10. CONCLUSION AND FUTURE WORK

the applications of the particular dynamic performance stubs are presented by a case
study.

It has been shown that dynamic performance stubs can be used to evaluate the
systems performance behavior of different performance optimization approaches.
Moreover, by dynamically adjusting the performance parameters a cost-benefit anal-
ysis can be realized. Thus, the performance optimization of a bottleneck can be done
based on well-founded measurements instead of pure estimations.

Critical Remarks

We are aware that it is not always possible to realize the optimization with the
optimal value. So, over- and under-optimizations can still take place. But, this
does not lower our approach as a well-founded cost-benefit analysis as well as accu-
rate estimations of the possible gain always support and improve the performance
optimization process.

Maybe the effort to apply our methodology outweighs the amount of effort needed
for the realization of the software bottleneck itself. However, by using dynamic per-
formance stubs many additional advantages, e.g., deeper system knowledge, can be
achieved. So, the results of the dynamic performance stubs study can additionally
be used to determine further optimization potentials. Moreover, “hidden” bottle-
necks can be detected, which provides a clear indication for further optimizations
potentials.

A performance optimization study with the approach of the dynamic perfor-
mance stubs is usually done late in the software development cycle as it is based on
the available application as well as the test environment. A result could be that it
is not possible to optimize the performance bottleneck to the level requested by the
performance target specification; i.e., a necessary redesign of the software is indi-
cated. Beside of being an advantage of the dynamic performance stubs’ approach,
this information should have been available much earlier in the development process.

As for most performance tuning approaches, the results of an inaccurate dynamic
performance stubs optimization study can be misleading and wrong conclusions can
be drawn. This is particularly important if the results indicate that a software
redesign is necessary to achieve the requirements of the performance target specifi-
cation. Here, much unnecessary effort can be spent.

Our realizations of the presented performance simulation functions and simu-
lated software functionality highly depend on a particular system as well as on the
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programming language C++. However, the realization should be easily adjustable
to further system architectures as well as programming languages. Moreover, our
approaches and methodologies can easily be extended to various different systems.

10.2 Future Work

The dynamic performance stubs approach affects many different fields of work. Due
to that the amount of work cannot be fully achieved in the scope of a single PhD-
Thesis. Even in the areas addressed within this thesis several different extensions
and improvements can be realized.

This section is split into three main areas. First, future work in areas, being
addressed in this thesis is presented. The second part lists future research directions
for the performance simulation functions. Finally, future work to extend the dynamic
performance stubs approach to further types of software systems is discussed.

Extensions to the Discussed Areas

In this section, future work targeting to improve the dynamic performance stubs
framework and methodology as discussed in this thesis is evaluated.

Data Cache Memory Performance Simulation Functions

Our described approach to simulate the data cache memory access behavior is based
on the assumption that constantly accessing different memory locations of an array
will cause cache hits or misses within the desired cache level.

As the cache prefetching algorithms in modern CPU are partly capable to pre-
determine the next data elements, which will be accessed, the introduced algorithm
needs large arrays to be able to work sufficiently. This, of course, leads to an un-
necessary high memory utilization in the system.

Moreover, the “out-of-order execution” of modern CPUs is able to fetch more
than one datum at the same time. This results in more cache hits as expected by
the pure analysis of the data cache performance simulation functions.

An investigation towards an improved data cache memory performance simula-
tion functions is considered as future work.
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Simulated Software Functionality

The simulated software functionality is realized by a prototype called libSSF. This
library is based on a proof of concept to validate the main functional behavior of
the approach. There are two major improvement areas.

First, the library mainly allows to store and restore the values of the C++
basic data structures, e.g., basic data types, arrays, structs and classes. Hence, the
library can be heavily extended by providing a solution to stub more sophisticated
data structures. Especially, the types “list”, “vector” or “stack” from the standard
template library (STL) should be supported.

Second, the influences of the libSSF to the time and memory behavior have
to be evaluated and improved. By now, the library loads all data, which will be
restored, in the start up phase. This behavior should be adjustable. So, the number
of preloaded data entries can be specified. All other data will be loaded in chunks
on demand.

The library libSSF used within this thesis targets more at a proof of concept than
a well-designed software component. Hence, a redesign of the library was started at
the end of the writing period of this thesis. Further investigations have shown that
the older version (which is presented in this thesis) is not capable to correctly store
and restore classes derived from virtual classes. The reason is that these classes
have a hidden member called virtual table pointer (vpointer), which is a pointer to
the virtual method table (vtable), to support the dynamic dispatch method. Our
investigations have shown that it is also possible to stub these classes. But, this is
only supported in our new version of the libSSF ; but not, in the version described
in this thesis.

Extensions of the Methodology

The methodologies of the main memory - and data cache memory stubs (Sections
6.5 and 7.4) mainly provide the basic steps. These can be extended and have to
be validated in industrial case studies. Additionally, some steps to support the
performance analyst on changing the performance behavior of the stub best have to
be evaluated.
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Further Performance Simulation Functions

In Figure 4.3 the different performance simulation functions are depicted. The
light gray sections are considered as future work. The following list presents the
unresolved types of performance simulation functions :

• Memory performance simulation functions

– Instruction cache

– TLB cache

• I/O performance simulation functions

• Network performance simulation functions

In the following paragraphs, some first suggestions in the area of memory perfor-
mance simulation functions are provided. An overview of the performance behaviors,
which will be simulated in the remaining performance simulation functions can be
found in Section 4.4.

Instruction Cache Memory Performance Simulation Functions

The instruction cache memory stubs will simulate the amount of instruction cache
miss events. Hence, an algorithm, which prevents the instruction cache prefetcher
from loading the next instruction has to be evaluated. Instruction cache misses
can be achieved by “self-modifying code” (SMC) (see [10]). In this case, the code
that will be executed next is constantly overwritten by the performance simulation
functions. Hence, the prefetcher is not able to load the next instruction in advance.
More information about instruction prefetchers can be found in [34, 110].

TLB Cache Memory Performance Simulation Functions

In [79] a similar approach as the newly introduced data cache memory performance
simulation functions is used to determine the size of the TLB cache. In this case,
the time behavior to load the data is studied to evaluate whether a TLB hit or miss
occurred in the system. Hence, the approach creates TLB hits and misses. So, the
presented data cache memory performance simulation functions (Section 7.2) can be
adjusted to create TLB hits and misses by changing the accessstride value. A more
sophisticated analysis as well as a thorough evaluation of the TLB cache memory
performance functions is considered as future work.
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Extension to Different Architectures

The approaches of the dynamic performance stubs framework and methodology will
be extended to provide the stubs to a broader field of application.

Our CPU performance simulation functions are already in line with multi-core
systems; but, still suppose the bottleneck to be single-threaded. Moreover, the
optimization of the bottleneck is supposed to be single-threaded, too. An extension
to support the software performance engineer with evaluations for a multi-threaded
optimization of the bottleneck should be evaluated.

Moreover, the dynamic performance stubs will be extended to embedded sys-
tems. The main difference between our approach and the application of dynamic
performance stubs in embedded systems is basically the lack of sufficient perfor-
mance measurement tools. Here, the methodologies and the simulated software
functionality have to be adjusted to meet the requirements of a embedded systems.

Another category of systems in which dynamic performance stubs will be used
in future are virtual systems, e.g., systems running in a virtual machine (VM).
Here, several questions arise. Most important to mention is that many performance
analysis tools measure obscure results as the kernel of the system does not have direct
influence on the hardware. More closer, the provided amount of system resources,
e.g., CPU cycles, for the system under study is adjusted by the VM. This leads to
a non-deterministic performance behavior within the virtual system.

Finally, our approach of creating and using dynamic performance stubs is based
on the simulation of the performance behavior of a single software resource. More
investigations in composing different particular dynamic performance stubs have
to be done. Additionally, an aggregation, which interleaves different performance
simulation functions within a single stub, can be evaluated.
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Tools Overview

Callgrind Valgrind Tool
valgrind.org/info/tools.html

Dtrace OpenSolaris Community - DTrace
opensolaris.org/os/community/dtrace

EEL Executable Editing Library
pages.cs.wisc.edu/~larus/eel.html

GNU gprof The GNU Profiler
gnu.org/software/binutils/manual/gprof-2.9.1/

htmlmono/gprof.html
LKST Linux Kernel State Tracer

lkst.sourceforge.net

LTT Linux Trace Toolkit
www.opersys.com/LTT

LTTng Linux Trace Toolkit Next Generation
ltt.polymtl.ca

Massif Massif - A Heap Profiler
valgrind.org/info/tools.html

OProfile OProfile - A System Profiler for Linux
oprofile.sourceforge.net

paradyn Paradyn Parallel Performance Tools
www.paradyn.org

Perfctr Perfctr - Linux Performance Counters Driver
perfctr.sourceforge.net

PerfSuite PerfSuite - Collection of Performance Analysis Software
perfsuite.sourceforge.net

PIN Pin - A Binary Instrumentation Tool
www.pintool.org

Rational Quantify IBM Rational Quantify
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lkst.sourceforge.net
www.opersys.com/LTT
ltt.polymtl.ca
valgrind.org/info/tools.html
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www.ibm.com/software/awdtools/quantify/support

SPEC CPU2006 Standard Performance Evaluation Corporation
www.spec.org/cpu2006

Systemtap Systemtap
sourceware.org/systemtap/

TAU Tuning and Analysis Utilities
www.cs.uoregon.edu/research/tau

Valgrind Instrumentation Framework - Valgrind
valgrind.org
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Abbreviations

CF Calibration Functions
CSR Cache Set References
CUS Component Under Study
DPS Dynamic Performance Stubs
ICSR Identical Cache Set References
ISD Intermediate Simulation Data
MD Measured Data
PDPS Particular Dynamic Performance Stubs
PSF Performance Simulation Functions
RTC Real Time Clock
SCV Squared Coefficient of Variation
SD Simulation Data
SUT System Under Test
SPE Software Performance Engineering
SSF Simulated Software Functionality
TSC Time Stamp Counter
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