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Abstract 

Ahmad Khundakar September 2004 

The Effect of Antidepressant Treatment on Brain-Derived 

Neurotrophic Factor Expression in the Rat Hippocampus 

Enhanced BDNF expression has been implicated in the mechanisms of 

action of antidepressant treatment. Previous findings have shown 

that chronic antidepressant drug treatment produces a 'bi-phasic 

effect' on total BDNF gene expression, i.e. down-regulation at 4h 

and up-regulation at 24h. The earlier effect is common to acute 

administration, while the latter is unique to chronic treatment. 

To clarify the involvement of differential BDNF transcripts in 

the bi-phasic effect, this thesis aims to investigate this effect 

by examining the effect of a range antidepressant drugs on 

individual BDNF exon transcripts. For comparison, the effect of 

electroconvulsive shock application on BDNF exon transcripts was 

also studied. In addition, the thesis investigated the mechanisms 

behind the reduction in BDNF expression at 4h. It was 

hypothesised that GABA plays an inhibitory role on BDNF mRNA, 

thus various GABA enhancing drugs were examined. Finally, to 

investigate if BDNF mRNA changes correlated with changes the 

corresponding protein, BDNF protein expression was studied after . 
chronic antidepressant treatment. The main findings were as 

follows: 

• Acute antidepressant drug treatment inhibited total BDNF 

expression and exon IV, but not exon I mRNA in the dentate 

gyrus (DG) at 4h. 

• Acute GABAB, but not GAB~ receptor stimulation inhibited 

total BDNF mRNA in the DG at 4h 

• Chronic antidepressant treatment increased total BDNF and 

ex on I, but not exon IV mRNA in the DG at 24h 
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• Acute ECS increased total BDNF, exon I and exon IV rnRNA; 

chronic ECS increased total BDNF and exon If but not exon 

IV mRNA 

• Chronic ECS increased BDNF immunoreactivity in the parietal 

cortex and mossy fibre zone, CA3 and CAl of hippocampus. 

This thesis has thus shown a differential effect of acute and 

chronic antidepressant treatment on total BDNF rnRNA, an effect 

mediated by differential use of the variable exons that 

comprise the gene. 
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Chapter One 

General Introduction 
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Ahmad Adam Khundakar Chapter One 

1.1. Scope of the thesis 

Depression is among the most prevalent forms of mental 

illness and a major cause of morbidity worldwide. Despite 

limited understanding into the pathophysiology of the 

disorder many treatments with varying degrees of 

effectiveness are available. 

The serendipitous discovery of two classes of 

antidepressant drugs: tricyclics and monoamine oxidase 

inhibitors indicated the facilitation of 5-HT and/or 

noradrenaline neurotransmission in the mechanism of action 

of antidepressant drugs and this has led to the development 

of numerous second-generation antidepressants designed 

specifically to augment 5-HT (SSRIs) or noradrenaline 

(NARIs). However, despite rapid augmentation in 

extracellular 5-HT and/or noradrenaline levels by 

antidepressant drug application, several weeks of chronic 

treatment are required in order for full therapeutic 

efficacy to occur. This has led to ongoing research 

focusing on events beyond the monoamine receptor. Various 

5-HT and noradrenaline receptor subtypes are known to 

selectively regulate several intracellular pathways which 

activate numerous target genes, prolonged activation of 
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which may be instrumental in eventual therapeutic efficacy. 

One such downstream target gene implicated is the 

neurotrophin brain-derived neurotrophic factor (BDNF). 

Chronic antidepressant drug treatment has been shown to 

increase BDNF mRNA expression in the (Nibuya et aI, 1995) 

and human (Chen et aI, 2001) brain. In addition, direct 

infusion of BDNF protein has been shown to produce 

significant antidepressant effects in animal models of 

depression (Siuciak et aI, 1997). Contrary to this, acute 

(single) antidepressant administration has been shown to 

inhibit BDNF mRNA acutely (Coppell et aI, 2003). An 

explanation to this phenomenon may lie in the existence of 

multiple BDNF transcripts, which may respond differentially 

following short- and long-term antidepressant drug 

administration, and thus contribute to an overall change in 

the full BDNF gene. 

BDNF gene transcripts are comprised of either of four 

variable 5' exons (exons I to IV) each induced with 

individual promoters by alternative splicing of the total 

gene sequence, and an invariable 3' exon (exon V), which 

codes for the corresponding BDNF protein (Timmusk et aI, 

1993). These transcripts are expressed differentially 
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across brain areas and are regulated by different 

manipulations. As the BDNF gene is variably manipulated by 

acute and chronic antidepressant drug treatment and BDNF 

facilitation is associated with the mechanism of action of 

antidepressants, investigating the effect on the variable 

BDNF exon transcripts could further elaborate on the role 

of BDNF in antidepressant drug treatment. This may be 

particularly useful in understanding the reasons and 

mechanisms behind the acute inhibition in BDNF mRNA after 

acute antidepressant administration. Thus, by using 

oligonucleotide probes specific to total BDNF mRNA, as well 

as two variable exon-specific probes, a series of in-situ 

hybridisation (ISH) experiments were conducted. This was to 

assess the effect of acute administration of numerous 

antidepressant drugs on two variable BDNF exon transcripts 

(exons I and IV), as well as total BDNF mRNA (exon V). The 

drugs were chosen for their varying effect on 5-HT or 

noradrenaline reuptake sites or metabolism in order to 

determine whether 5-HT or noradrenaline facilitation played 

a prominent role in the acute inhibitory response. For 

comparison, the effect of acute administration of two drugs 

with little effect on 5-HT transmission: the mixed 

noradrenaline/dopamine reuptake inhibitor methylphenidate 

and the selective dopamine reuptake inhibitor GBR 12909 on 
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BDNF exon transcripts was also investigated. The results 

from this series of experiments are presented in Chapter 3. 

It was further hypothesised that the acute inhibitory 

effect of antidepressants on hippocampal BDNF mRNA occur as 

a result of the activation of stimulatory 5-HT receptors 

localised on GABAergic interneurones in the hippocampus. In 

order to test this series of ISH experiments, the effect of 

agonists selective to GAB~ or GABAB receptor complexes on 

BDNF mRNA was assessed. In addition, the effect of 

selective GABA receptor antagonists administered prior to 

antidepressant drugs was assessed to clarify GABAB receptor 

involvement in the acute inhibition of BDNF mRNA in the 

hippocampus (See Chapter 4). 

The up-regulatory BDNF response to chronic antidepressant 

treatment was then investigated. By employing 

oligonucleotide probes specific to two variable exons 

(exons I and IV), as well as total BDNF mRNA (exon V), a 

series of ISH experiments were performed to assess the 

effect of chronic antidepressant administration in the 

hippocampus (See Chapter 5). 
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Electroconvulsive therapy (ECT) is one of the most 

effective antidepressant treatments for severe or resistant 

forms of depression. Repeated administration of 

electroconvulsive shock (ECS) in rats has been shown to 

elicit profound increases in BDNF mRNA in the hippocampus. 

A series of ISH experiments were conducted to assess the 

effect of acute and chronic ECS on two variable exon 

transcripts as well as total BDNF mRNA (See Chapter 6). 

Though many studies have examined the effect of 

antidepressant treatment on BDNF mRNA, few have studied the 

corresponding protein product. The effect on BDNF protein 

is vital as the protein represents the functional correlate 

of BDNF signalling. Thus, Chapter 7 studied the effect of 

ECS and monoamine oxidase inhibitor antidepressant 

tranylcypromine on BDNF protein levels in the hippocampus 

using immunocytochemistry techniques. 

The aim of this work is to examine the effect of 

antidepressant drug treatment and ECS on the BDNF gene and 

its protein product within the hippocampus of the adult 

rat, with the overall objective of improving understanding 

of the mechanisms of action of antidepressant treatment. 
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1.2. Depression 

Depression is a common, debilitating, at times life­

threatening psychiatric illness. The term encompasses many 

symptoms and varies in severity. Many people will at some 

point experience a transient state of depressed mood 

(anhedonia), especially in times of adversity. This feeling 

usually passes with new experiences and emotions and will 

not require any form of psychiatric intervention. However, 

if the depressed mood is prolonged and begins to greatly 

impede a person's ability to lead a normal life, 

intervention may be necessary. The core symptom of 

depression is anhedonia. An individual may also experience 

'subsidiary symptoms', such as feelings of worthlessness or 

guilt, suicidal tendencies, disturbed bodily functions such 

as weight loss, psychomotor retardation and reduced 

cognitive function, fatigue, loss of sexual appetite and 

disturbed diurnal patterns (Arbabzadeh-Bouchez et aI, 

2002). In addition the persons appearance may deteriorate, 

dressing and grooming for example may be neglected. 

Generally, diagnosis of depression will occur in a person 

experiencing one core symptom as well as four subsidiary 

symptoms every day over a two-week period impairing social 
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and occupational functioning in the absence of psychotropic 

drugs or bereavement (DSM-r~, 1994). 

1.3. Antidepressant Treatment 

1.3.1. Antidepressant drug treatment 

Antidepressant treatment by pharmacological means began in 

the 1950s with the serendipitous discovery of two main 

classes of antidepressant drugs: tricylic antidepressants 

(TCAs) and monoamine oxidase inhibitors (MAOls). TCA 

antidepressants were derived from phenothaizides, which 

were originally intended for use as antihistamines and 

sedatives (Zeller et aI, 1952), whereas the MAor isoniazid 

was initially intended for the treatment of tuberculosis 

(Loomer et aI, 1957. Both drugs showed antidepressant 

qualities and both had the ability to enhance or prolong 

the actions of the monoamines 5-hydroxytrytamine (5-HT; 

serotonin) and noradrenaline (NA). The recognition of 

depression as a biochemical disorder led to the monoamine 

theory of depression, which hypothesised that depression 

was due to a deficiency of brain monoaminergic activity and 

thus may be treated by pharmacological means accordingly 

(Schildkraut, 1965). 
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Among the monoamines, 5-HT has been suggested to be the 

primary target of antidepressant drugs. Thus, the last 20 

years has seen the introduction of a class of 

antidepressant aimed directly at selectively enhancing the 

transmission of 5-HT. Selective serotonin reuptake 

inhibitors (SSRIs) achieve this by potently inhibiting 5-HT 

uptake. These drugs were widely accepted as safer and 

better tolerated, though no more efficacious than TCAs and 

MAOIs (Anderson et aI, 2000), thereby questioning the role 

of 5-HT as the primary target for antidepressant drugs. 

1.3.1.1. Monoamine oxidase inhibitors 

Monoamine oxidase (MAO) was first described by Hare (1928). 

The enzyme deaminates monoamine neurotransmitters and 

exogenous amines to form aldehydes, which are then 

converted to acids or alcohols (Yu, 1994). Deamination 

terminates the action of the neurotransmitter, as well as 

detoxifying the exogenous amines. MAO exists as two 

isoenzymes: MAO-A and MAO-B. Under physiological conditions 

MAO-A is primarily found in the brain, gut and liver (but 

not platelets), and deaminates NA and 5-HT (Sandler and 

Youdim, 1972). Whereas MAO-B predominates in the brain and 
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platelets , and deaminates dopamine (Murphy et ai , 1987) . 

MAOIs are often classed by their relative selectivity for 

sub-forms of MAO (type A, type B or mixed ; Mann et aI , 

1984 : Yamada and Yasuhara , 2004) . 

The acute effects of MAOIs are to decrease the degradation 

of monoamines stored in pre- synaptic neurones , thus causing 

increased availability of monoamines at the synapse 

(Schildkraut , 1965 ; Klein and Davis , 1970) . 

Tranylcypromine Phenelzine Isocarboxazid 

Figure 1.1. Chemical structures of the monoamine oxidase 
inhibitors tranylcypromine , phenelzine and isocarboxazid 

1 . 3 . 1 . 2 . Tricyclic antidepressants 

Unlike MAOIs , TCAs have no effect on monoamine metabolism . 

Their primary mode of action is via the inhibition of pre -

synaptic reuptake of monoamines by the blockade of neuronal 

transporters (Sigg , 1959 ; Axelrod , 1962) . TCAs act with 

varying degrees of potency and selectivity towards NA and 
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5-HT , for example clomipramine is the most 5-HT selective 

and desipramine the most noradrenaline selective , with 

amitriptyline being relatively non-selective (Tatsumi et 

al , 1997 ; Frazer , 1997 ; See Figure 1 . 2) . 

Amitriptyline Imipramine Nortriptyline Desipramine 

Figure 1.2. Chemical structures of tricyclic 
antidepressants , amitriptyline and imipramine and their 
respective metabolites nortriptyline and desipramine 

1 . 3 . 1 . 3 . Selective serotonin reuptake inhibitors 

Reuptake inhibitors can be divided into categories based on 

their relative potency to block serotonergic or 

noradrenergic reuptake sites . Selective serotonin reuptake 

inhibitors (SSRls) are potent to the 5- HT reuptake pump 

(See Figure 1 . 3). 
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5 - HT SELECTIVITY --------+--------NA SELECTIVITf 

10000 1000 100 10 10 100 1000 10000 

Figure 1.3. Selectivity ratios for a series of uptake 
inhibitors measured in - vitro . To the left 5- HT selective 
drugs are shown by the ICso NA uptake/ICso 5- HT uptake ratio , 
whereas to the right NA selective drugs are shown by the 
1Cso 5-HT uptake/ICso NA uptake ratio . The higher the value , 
the more selective for 5-HT respective NA uptake . (Adapted 
from Hytel , 1994). 

SSRIs were the first class of antidepressant to confirm the 

inhibition of neurotransmitter uptake as an important 

therapeutic principle (Vaswani et aI , 2003) . Reuptake is 

the major inactivating mechanism for monoamines after their 

release into the synaptic cleft (Lane et al , 1995 ) . The 

mode of action of SSRIs therefore is to prolong monoamine 

activation by blocking 5- HT reuptake . Negative allosteric 

modulation of the 5- HT transporter (SERT) results in 

increased concentration of 5- HT in the extracellular space 

(Fuller and Wong , 1987 ). Inhibitory pre - synaptic auto-

receptors are activated in response , thus decreasing the 

turnover of 5- HT . However when given chronically , the 

persistent increase in synaptic concentration has been 
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shown to desensitise 5-HT1A auto- receptors after various 

SSRI treatment , thereby reducing auto-inhibition of 5-HT 

release (Chaput et ai , 1986 ; Blier et ai , 1987 ; Rutter et 

ai , 1994 ; Invernizzi et ai , 1996) . 

Fluoxetine Paroxetine 
F 

NC 

F 
Citalopram 

Figure 1.4. Chemical structures of SSRI antidepressants 
fluoxetine , paroxetine and citalopram 

1 . 3 . 1 . 4 . Serotonin/noradrenergic reuptake inhibitors 

Following the emergence of SSRls , the past few years has 

seen a renewed interest in the development of dual action 

antidepressants designed specifically to block both 5-HT 

and NA reuptake . Serotonin/Noradrenaline reuptake 
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inhibitors (SNRIs) have shown successful levels of efficacy 

and tolerability (Thase et al, 2001; Smith et al, 2002). 

The pharmacology of SNRIs depends on their relative 

affinities for 5-HT and NA reuptake blockade. 

1.3.1.5. Selective noradrenergic reuptake inhibitors 

The lack of distinction between the efficacy of SSRIs and 

TCAs has led to a re-examination of the role of NA in 

depression and an evaluation of the clinical use of 

selective NA reuptake inhibition in its treatment (Brunello 

et aI, 2002). A new generation of drugs offering specific 

NA reuptake inhibition have been developed which aim to 

offer equivalent efficacy as TCAs affecting NA reuptake 

(e.g. desipramine), whilst offering an improved side-effect 

profile. Selective NA reuptake inhibitors (NARIs) include 

the tetracyclic compound maprotiline and reboxetine. 

Maprotiline has been shown to exhibit an antidepressant 

action. It strongly inhibits the uptake of NA in the brain 

and peripheral tissues, though it is notable in its lack of 

inhibition of serotonergic uptake. Maprotiline has also 

been shown to produce effects at histaminergic and 

cholinergic receptors (Ruhdorfer and Potter, 1987). 
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Reboxetine selectively inhibits NA uptake without 

inhibition of 5-HT , DA or MAO isoforms (Kent , 2000 ). 

9 
C

°'r(CH, 
N.) H LOC2H 5 

~ U 
Maprotiline Reboxetine 

Figure 1.5. Chemical structures of NARI antidepressants 
maprotiline and reboxetine . 

1.3.2. Electroconvulsive therapy 

The antidepressant properties of convulsive therapy were 

first demonstrated by the application of a seizure- inducing 

dose of camphor , which produced a rapid improvement in 

depressive symptoms in a number of patients (Meduna, 1935 ; 

1936) . Subsequently , chronic electroconvulsive therapy 

(ECT) has been shown to be one the most effective treatment 

of severe depression and bipolar disorder (Greenberg et al , 

1988 ; Fink , 1990 ; Mann , 1998) . Despite its major 

limitations such as high relapse rate and possible profound 

effects on memory (Weeks et al , 1980) , it is still a 

popular option for drug resistant patients. However , the 
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mechanisms that underlie the therapeutic actions of chronic 

ECT remain unclear (Fink, 1990). The application of the 

animal model of ECT, referred to as electroconvulsive shock 

(ECS), has been shown to elicit widespread effect of 

numerous neurotransmitters and signalling components within 

the brain (Nomikos et aI, 1991; Ozawa and Rasenick, 1991). 

1.4. The pathophysiology of depression 

1.4.1. Involvement of stress and the HPA axis in depression 

Chronic exposure to stress and the body's stress response 

has long been implicated for a role in the pathophysiology 

of depression (Board et aI, 1956). The prominent mechanism 

by which the brain counteracts stressors is the activation 

of the hypothalamic-pituitary-adrenal (HPA) axis (McEwen, 

2000; Nestler et aI, 2002), which receives and integrates 

inputs indicative of stress (Dunn and Berridge, 1990; 

Chrousos and Gold, 1992). Corticotrophin releasing factor 

(CRF) is released from neurones in the paraventricular 

nucleus (PVN) of the hypothalamus, which acts on anterior 

pituitary CRF receptors. This consequently stimulates the 

release of adrenocorticotrophin (ACTH), which causes the 

secretion of glucocorticoids (cortisol in humans; 
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corticosterone in rodents) from the adrenal cortex (Dinan, 

2001). Glucocorticoids have a profound effect on 

metabolism, such as increasing the availability of glucose 

(Holsboer, 2001), as well as behavioural effects via direct 

actions in other brain areas (Nestler et al, 2002). The 

hippocampus projects forward to the PVN of the 

hypothalamus, where it plays an inhibitory role on HPA 

activity (Herman et al, 1989; McEwen and Brinton, 1987; 

Smelik, 1987). Glucocorticoids regulate hippocampal and PVN 

neurones and therefore exert feedback effects on the HPA 

axis activity (Nestler et al, 2002). Glucocorticoids also 

act as inhibitory transcription factors, by 

antagonistically occupying a promoter site that could 

otherwise be bound by a positive regulator (Drouin et al, 

1989) • 

Hypercortisolaemia is often a key feature of depression 

(Gibbons and McHugh, 1962; Carpenter and Bunney, 1971;). 

This manifests as enhanced serum cortisol, non suppression 

of dexamethasone and adrenal gland hyperplasia (Rubin et 

al, 1995) and a blunted ACTH response to CRF challenge 

(Gold et al, 1986; Holsboer et al, 1986). Cushing's 

syndrome patients (who exhibit abnormal cortisol levels) 

have a higher prevalence of depression, however depressive 
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symptoms can often be reversed following reductions in 

cortisol levels (Holsboer, 2003). Centrally administered 

CRF also produces behavioural effects in rats, which 

closely resemble many key features of depression, including 

increased arousal and vigilance, decreased appetite, 

decreased sexual behaviour and increased heart rate 

(Arborelius et al, 1999; Holsboer, 2001). post-mortem 

studies on depressed patients have revealed increased CRF 

cerebrospinal fluid (CSF) levels in depressed patients 

(Nemeroff et aI, 1984; Banki et al, 1992). Whereas 

decreased CRF binding sites were found in suicide victims 

(Nemeroff et al, 1988; Arato et al, 1989). In addition, 

hippocampal atrophy has been shown to occur in the presence 

of high levels of corticosterone (Magarinos and McEwen, 

1995) • 

Despite the large quantity of data supporting a role for 

the HPA axis in depression, it is not clear whether HPA 

dysfunction is the primary cause of depression or a 

consequence of underlying abnormalities exerting influence 

on the axis. Novel drugs aimed at rectifying HPA system 

dysfunction include steroid synthesis inhibitors, CRF 

antagonists and glucocorticoid inhibitors (McQuade and 
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Young, 2000). Initial trials indicate varying degrees of 

success (Manji et aI, 2003). 

1.4.2. Involvement of monoamines in depression 

1.4.2.1. Noradrenaline 

The initial finding that led many to believe that NA played 

a significant role in the pathophysiology of depression 

carne from the effect of the reserpine, which rapidly 

depletes amines in the CNS and periphery and subsequently 

induced depressive symptoms (Fries, 1954). A compound with 

similar amine-depleting actions: tetrabenzine had a similar 

effect and this effect was reversed when treatment was 

discontinued (Bartonicek et aI, 1964). Furthermore, 

supplementation with the catecholamine pre-cursor L-DOPA 

reversed the psychological effect of reserpine 

(Schildkraut, 1965). The main NA metabolite 3-methoxy-4-

hydroxyphenylglycol (MHPG) has been used as an index of 

brain NA turnover in depressed patients. Initial studies 

showed a decrease in MHPG levels in the urine of depressed 

patients (Maas et aI, 1972). Subsequently however, 

increases as well as decreases in urinary MHPG have been 

reported in patients, with a lack of correlation occurring 
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between patients and studies (Potter et al, 1984; Roy et 

al, 1986; Potter and Manji, 1993). Correlations between 

increases in urinary MHPG and anxiety have been more 

frequent (Sevy et al, 1989). Hyper-secretion of NA in 

plasma and CSF have been reported in patients suffering 

unipolar depression and anxiety states (Wyatt et al, 1971; 

Roy et al, 1988; Sevy et al, 1989). 

1.4.2.2. 5-hydroxytryptamine (Serotonin) 

The main 5-HT metabolite 5-HlAA has been widely used as an 

index of 5-HT turnover. Numerous findings have implicated 

decreases in 5-HlAA in the plasma and CSF of depressed 

patients, as well as 'violence-impulsivity' behaviour and 

in suicide victims (Dencker et al, 1966; Mendels et al, 

1972; Van Pragg and de Hann, 1979; Asberg et al, 1976; 

Faustmann et al, 1991; Mann et al, 1996; Mann and Malone, 

1997). However, the degree of the reduction in CSF 5-HlAA 

level does not generally correlate with the severity of the 

depression (Martensen et al, 1989; Mann, 1999). 

Plasma prolactin has been used as an indicator of central 

5-HT function in response to 5-HT releasing agents in 

numerous studies. Generally, a blunted plasma prolactin 
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response has been found after fenfluramine (a 5-HT 

releasing agent) administration in depressed patients, 

compared with controls (Mitchell and Smythe, 1990; Maes et 

al, 1989; 1991; Lichtenberg et al, 1992). Inhibition of TPH 

by parachlorophenylalanine (pCPA), which causes a reduction 

in 5-HT synthesis and subsequent turnover, has been shown 

to produce a relapse in depressive symptoms in patients 

receiving TCP treatment (Shopsin et al, 1976). Likewise, 

depletion by dietary means using an amino acid mixture 

drink lacking the 5-HT precursor TRP has been shown to 

cause a relapse in depressive symptoms in drug-free 

patients with a history of depression (Delgado et al, 

1994). 

1.4.3. The monoamine hypothesis 

The discovery of MAOI and TCA classes of antidepressants in 

the early 1950s suggested a fundamental role for the 

monoamines (and possibly DA) in the pathology of 

depression. This led to the relatively simple and concise 

theory of the aetiopathology of depression: the "monoamine 

hypothesis", which implicated a deficiency of monoamine 

neurotransmission in depressed individuals (Schildkraut, 

1965; Bunney and Davis, 1965). Thus, it was postulated 
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that drugs facilitating activity could correct the 

perceived deficiency in brain monoamines. 

In the years since the monoamine hypothesis was proposed it 

has become obvious that the theory is insufficient in 

itself due to the failure to explain numerous findings. For 

instance, drugs that also rapidly increase brain 

monoaminergic (and DA) activity such as cocaine and 

amphetamine are not effective as antidepressants. Also, 

patients receiving the same antidepressant regimen do not 

always respond equally. The theory can also not explain why 

the agent tianeptine, which enhances 5-HT uptake is an 

effective antidepressant (Loo et aI, 1999; Pineyro and 

B1ier, 1999). However, administration of a typical 

antidepressant causes an increase in synaptic monoamines 

and monoamine facilitation very rapidly, however there is a 

2-3 week lag period before measurable therapeutic onset 

(Oswald et aI, 1972; Heninger and Charney, 1987). Despite 

its obvious drawbacks the monoamine hypothesis still 

provides a benchmark behind which rationales are formed in 

the development of new generations of antidepressants. 
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1.4.3.1. The antidepressant therapeutic latency period 

A major drawback in the monoamine hypothesis of depression 

is its inability to explain the apparent gap between the 

widespread acute biochemical changes and the onset of 

psychological therapeutic change (Oswald et aI, 1972; 

Heninger and Charney, 1987). Antidepressants must be taken 

over a prolonged period of time in order to gain 

therapeutic response, thus exposing the patient to 

deleterious side effects for a longer period of time, 

without any apparent mood-enhancing effect. Interestingly, 

ECT also requires chronic administration (6-12 treatments) 

for antidepressant efficacy to occur (Pearlman, 1991). 

1.5. Intracellular signaling transduction pathways 

The apparent latency period between the acute 

antidepressant action (i.e. the blockade of uptake or 

metabolism of synaptic levels of 5-HT or NA) and the onset 

of therapeutic effects has led to research focusing on 

possible monoamine receptor-linked intracellular signal 

transduction pathways. A prominent hypothesis predicts that 

the therapeutic delay is a result of the period required 
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for targeted changes to occur in gene expression initiated 

by 5-HT and/or NA-receptor mediated activation (Nestler et 

aI, 1989; Duman et aI, 1994, 1997; Manji et aI, 1995). The 

various 5-HT and NA receptor subtypes are known to 

selectively couple and regulate several intracellular 

transduction pathways. The long-term activation of such 

receptor coupled second messenger cascades could lead to 

adaptations via specific target genes that result in 

therapeutic efficacy. 

1.S.1. G-proteins 

All NA and 5-HT receptors are linked to coupling guanyl 

nucleotide-regulated (G)-proteins. G-protein coupled 

(metabotropic) receptors trigger intracellular pathways 

that control enzyme activity usually via phosphorylation, 

or dephosphorylation of serine or threonine residues 

(Gerber, 2002). Four main categories of G-protein have been 

identified: Gs , Gi' Gq and G12 (Gilman, 1989; Gould and 

Manji, 2002). Gs stimulate the enzyme AC and regulate Ca2+ 

and K+ channels. Gsproteins dissociate after transmitter­

receptor interaction and in turn activate effector systems 

e.g. AC, PLC, phospholipase A, ion channels (Gilman, 1987; 

Birnbaumer, 1990). Gi stimulation results in inhibition of 
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AC, whereas Gq interact with PLC (Gilman, 1989). The 

function of GI2 remains unknown, however GI2 activation has 

been linked with the release of the transcriptional 

activator ~-catenin (Meigs et aI, 2002). 

1.5.2. cAMP signaling pathway 

The cAMP signaling cascade represents a common target for 

several classes of antidepressant (Ozawa and Rasenick, 

1991; Nestler et aI, 1989; Tinelli et aI, 1989; Thome et 

aI, 2000). Blunted cAMP signalling through decreases in 

stimulated AC has been recorded in patients with major 

depressive disorder (Stewart et aI, 2001). 

Activation of numerous receptor subtypes including ~-AR, 5-

HT 4 , 5-HTs, 5-HT6 and 5-HT7, lead to the stimulation of AC by 

the Gs-protein, which results in cAMP generation. Increased 

levels of cAMP result in the activation of cAMP-dependent 

protein kinase (PKA). PKA regulates cellular function by 

phosphorylation of many types of regulatory proteins 

including receptors, ion channels, enzymes and 

transcription factors (Duman, 1998). Amongst the substrates 

affected is the transcription factor cyclic AMP response 

element binding protein (CREB). 
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1.5.3. Phosphoinositide signaling pathway 

Another well-characterised G-protein-linked signaling 

pathway involves the breakdown of the cell membrane 

component: phosphoinositide 4,5-biphosphate (PIP2; Majerus, 

1992). The phosphoinositide pathway (PI) is coupled to 

noradrenergic ai' 5-HT2 as well as muscarinic Ml, M3 and M5 

receptors via the Gq subunit (Raulli et al, 1989; Gould and 

Manji, 2002). Following the binding of a ligand to its 

extracellular receptor, GTP binding induces hydrolysis of 

PIP2 to form diacylglycerol (DAG) and inositol-1, 4, 5-

triphosphate (IP3). DAG activates phosphorylation enzyme 

protein kinase (PKC) and increases the affinity for the 

enzyme to Ca2
+ (Nishizuka, 1992). Once activated, PKC 

phosphorylates specific proteins including CREB, which are 

critical in cellular and physiological functions e.g. 

transcription and long-term potentiation (LTP; Berridge, 

1993; Jakobs et aI, 1986). The second product of PIP2 

breakdown, IP3 binds to the IP3 receptor which facilitates 

the release of calcium reservoirs in the endoplasmic 

reticulum (Gould and Manji, 2002). The released calcium 

interacts with various proteins including calmodulin 

receptors (CaM). Calmodulin activates ion channels, 
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signalling molecules and transcription factors (Ishidu et 

al, 1978; Soderling et aI, 2000). 

Several studies have implicated PI signalling abnormalities 

in patients with mood disorders and suicide victims (Jope 

et aI, 1996; Pacheco et aI, 1996; Karege et aI, 1996). For 

example, 5-HT and thrombin-stimulated formation of 1P3 has 

been found to be increased in the platelets of depressed 

patients (Mikuni et aI, 1991; Karege et al, 1996). It has 

also been reported that PKC binding sites and PLC 

expression are down-regulated in the pre-frontal cortex of 

teenage suicide victims (Pandey et aI, 1997). 

1.5.4. cAMP response element binding protein 

As mentioned earlier, a common target for both the cAMP 

(via ~-NA, 5-HT4, 5-HTs 5-HT6 5-HT7 receptor activation; 

Duman, 1997; Saxena, 1995; Pandey et al, 1995) and PI (via 

al-NA, 5-HT2A' 5-HT2B and 5-HT2c receptor activation; Mori et 

aI, 1991; Berg and Clarke; 2001; Kurrasch-Orbaugh, 2003) 

cascades is the transcription factor Ca2+/cAMP response 

element binding protein (CREB). CREB therefore regulates 

gene response due to stimulation of the cAMP and PI 
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cascades (Mayer and Habener , 1993 ; Ghosh and Greenberg , 

1999) . 

CREB is a member of the ATF1 , leucine zipper family of 

transcription factors (Lee and Masson , 1993) . 

Phosphorylation of CREB occurs at serine- 133 and serine 119 

sites , which leads to the dimerisation and dramatically 

increases the functional and transcriptional potential of 

CREB . 

Circadian 
entrainment 

Synaptic 
plasticity 

Stressors 

INPUTS 

Growth 
factors 

.,./ Growth and survival 

Neuroprotection 

OUTPUTS 

Figure 1.6. Diagram showing various stimuli and conditions 
implicated in influencing CREB gene expression (INPUTS) and 
postulated physiological and pathological consequences of 
CREB activation (OUTPUTS ; Adapted from Lonze and Ginty , 
2002) . 
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1.5.4.1. Evidence for enhanced CREB signaling in 

antidepressant function 

Nibuya et al (1996) demonstrated that chronic, but not 

acute administration of several diverse types of 

antidepressant drugs (fluoxetine, TCP, desipramine and 

sertraline), as well as ECS caused an increase in 

expression of CREB protein and mRNA in the rat hippocampus. 

The phosphorylation and transcriptional activity of CREB is 

also up-regulated by chronic, but not acute administration 

of a diverse range of antidepressants (Duman et aI, 1997, 

1999; Thome et aI, 2000). An over-expression of CREB has 

been shown to have an antidepressant effect in rats 

performing a behavioural model of learned helplessness 

(Chen et aI, 2001a). Clinical post-mortem studies have 

revealed a decrease in total CREB in the temporal cortex of 

patients with a history of major depression not treated 

with antidepressants at the time of the experiments 

(Dowlatshahi et aI, 1998). Therefore, it has been 

postulated that the inability to regulate the expression 

and function of CREB and henceforth induce adaptive gene 

expression may contribute to the aetiopathology of 

depression (Vaidya and Duman, 2001). Thus, recent research 

has focussed on CREB and its target genes in response to 
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antidepressant challenge. One such heavily implicated gene 

is that of Brain-Derived Neurotrophic Factor (BDNF) 

(Condorelli et aI, 1994; Nibuya et aI, 1995; Siuciak et aI, 

1996; Duman, 1998; Duman et aI, 1999). 

1.6. Brain-Derived Neurotrophic Factor 

BDNF is part of the family of neurotrophins. These proteins 

are structurally and functionally related and also include 

nerve growth factor (NGF; Levi-Montalcini and Angeletti, 

1968; Thoenen and Barde, 1980), neurotrophin 3 (NT-3; 

Maisonpierre et aI, 1990; Rosenthal et aI, 1990); 

neurotrophin 4/5 (NT 4/5; Ip et aI, 1992; Halbrook et al, 

1991; Widmer and Hefti, 1994) and neurotrophin 6 (NT-6; 

Gotz et aI, 1994). 

Neurotrophins have long been known as endogenous signalling 

molecules, which provide extracellular control over the 

development and maintenance of neurones. This control 

occurs due to the selective inhibition of apoptosis through 

the binding of neurotrophins to the cell surface receptors 

on specific populations of neurones in adulthood (Davies, 

1994). Recent findings however expanded the profile of 

neurotrophin function, suggesting roles in synaptic 
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transmission and neuronal plasticity (Lohof et aI, 1993; 

Stoop and Poo, 1996: Liou and Fu, 1997: Mcallister et aI, 

1996). In essence, neurotrophins are now being heralded as 

a new class of neuromodulators that mediate activity­

dependent modifications of neuronal connectivity and 

synaptic efficacy. 

1.6.1. The structure of BONF 

BDNF, like all members of the neurotrophin gene family is 

synthesised as a pre-cursor and is processed at classical 

dibasic cleavage sites into a biologically active 

neurotrophin which contains approximately 50% conserved 

domains (Jungbluth et aI, 1994). The structure comprises of 

seven ~-strands, which contribute to three anti-parallel 

pairs of twisted ~-strands (Robinson, 1995). These strands 

are locked by a 'cysteine knot' of three disulfides 

(McDonald and Hendrickson, 1993). 

1.6.2. BONF receptors 

BDNF function is mainly mediated through interaction with 

the tropomyosin-related kinase B (trkB) receptor. trkB is a 

member of the tyrosine kinase receptor family, which also 

31 



Ahmad Adam Khundakar Chapter One 

includes trkA, which binds to NGF and trkC, whose ligand is 

NT-3. BDNF may also exert some actions through the p75 

neurotrophin receptor (Rodriguez-Tebar et aI, 1990; 1992), 

though this receptor may not play a direct role in 

neurotrophic function. 

1.6.2.1 trkB receptors 

Structure 

trkB receptors occur as splice variants of the trkB gene. 

trkB receptors comprise of two cysteine-rich domains 

separated by a leucine-rich domain, two extracellular 

immunoglobulin (IgG) domains and two intracellular tyrosine 

kinase domains (Lamballe et aI, 1991; Klein et aI, 1991; 

Tsoulfas et aI, 1993). All trkB isoforms share a common 

extracellular domain and are thought to be produced as 

alternative splice variants encoded by the same gene (Fryer 

et aI, 1996). There is one apparent full-length trkB 

receptor possessing a (full) trkB domain and two identified 

variants of truncated, physiologically inactive trkB 

receptor lacking the intracellular kinase domain (Middlemas 

et aI, 1991). 
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Distribution 

trkB receptor mRNA is expressed in high levels in the brain 

cortex, striatum and hippocampus and a high degree of co­

localisation has been reported between trkB and BDNF mRNA 

(Merlio et aI, 1993; Salin et aI, 1995). Morphologically, 

catalytic trkB appears to be expressed primarily in 

neurones, however truncated trkB is expressed in both 

neurones and glia. 

Signalling 

As BDNF binds to the trkB receptors, the receptor dimerises 

(Marsh et al, 1993) leading to the autophosphorylation of 

specific tyrosine residues within the intracellular domains 

(Kaplan et al, 1991, Lamballe et aI, 1991; Soppet et aI, 

1991). The phosphorylated tyrosine residues act as protein 

interaction sites for the src homologous and collagen-like 

(shc) adaptor protein (Stephens et al, 1994). The shc 

adaptor protein links the activated trk receptor to two 

distinct intracellular pathways (Chao, 2003; See Figure 

1.7). One pathway, which promotes neuronal survival, 

involves the activation of phosphatidylinositol 3-kinase 

(PI3K) and its putative effector the serine and threonine 

kinase AKT (Burgering and Coffer, 1995; Franke et al, 

1995). trk phosphorylation of the shc adaptor also leads to 
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the activation of GRB2/S0S causing ras activation. 

Activation of Ras leads to a chain of phosphorylation 

reactions including that of raf, mek, erk and mitogen 

activated protein kinase (MAPK; Segal and Greenberg, 1996; 

Grewal et aI, 1999; Ballif and Blenis, 2001). This in turn 

leads to the activation of transcription factors such as 

CREB, which may ultimately influence cell survival, neurite 

outgrowth and synaptic plasticity (Lonze and Ginty, 2002; 

Chao, 2003). 

In addition to src adaptor linked pathways, PLC may bind to 

phosphorylated TrkB residues. The activated PLC cleaves 

phosphatidylinositol 4, 5-biphospate to generate Inositol-

1, 4, 5-triphosphate (IP3; which induces Ca2+) and 

diacylglycerol (DAG; which activates PKC). 

1.6.2.2. p75N~ Receptors 

p75 receptors bind with all neurotrophins with a similar 

affinity (Rodriguez-Tebar et aI, 1990; 1992; Squinto et aI, 

1990). However, several investigators have suggested that 

the receptor may not play a direct role in neurotrophic 

actions of cells (Taniuchi et aI, 1986; Barbacid, 1993; 

Bothwell, 1995). Alternative functions such as buffering 
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the concentration of available extracellular neurotrophin, 

which would maintain a high concentration of neurotrophin 

near the site of release have been suggested (Taniuchi et 

aI, 1986). This would allow neurotrophin bound to p75 on 

one cell to be presented to trk receptor on another cell 

(Barbacid, 1993), or facilitating trk signalling by acting 

as an accessory subunit to trk receptors (Bothwell, 1995). 

One established function of p75 receptors is to promote 

cell death. p75 receptor activation causes increases in 

pro-apoptotic jun-N terminal kinase (JNK; Roux and Barker, 

2002). This may be useful for refining incorrect neuronal 

innervation during development, thus eliminating unwanted 

connections (Majdan and Miller, 1999). 
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Figure 1. 7. BDNF receptor signaling . (Adapted from Chao, 
2 003) . 

1 . 6 . 2 . 3 . Functional consequences of BDNF signaling 

During development in vertebrates BDNF is vital for 

survival , maintenance and growth of neurones in the central 

nervous system (Barde et aI , 1982 ; Leibrock et aI , 1989) . 

BDNF has been demonstrated to promote survival for 

serotonergic (Altar et aI , 1994) , dopaminergic (Knusel et 

aI , 1991 ; Altar et aI , 1994) , cholinergic (Nonner et aI , 

1996) and GABAergic (Altar et aI , 1994 ; Ventimiglia et aI , 

1995) neurones . 
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Role in LTP and synaptic plasticity 

In addition to the normal development of the nervous 

system, it has been widely reported that neurotrophins 

(including BDNF) are capable of modulating transmission at 

central synapses by pre- and post-synaptic mechanisms 

(Mcallister et aI, 1999) in the adult CNS. LTP can be 

separated into distinct phases: the early phase (E-LTP) and 

the late phase (L-LTP). E-ETP is short lasting (1-3 hours) 

and independent of protein synthesis mechanisms, whereas L­

LTP requires induction of cAMP and protein synthesis 

mechanisms (Frey et ai, 1988; Nguyen et aI, 1994). Evidence 

exists that BDNF is capable of influencing both phases. 

BDNF has the ability to act rapidly at pre- and post­

synaptic receptors to modulate LTP (Xu et aI, 2000; 

Kovalchuk et aI, 2002). Indeed, with respect to synaptic 

function, BDNF is capable of depolarising neurones as 

rapidly as glutamate via the trkB receptor (Kafitz et aI, 

1999). Acutely, BDNF is capable of enhancing glutamate 

synaptic transmission (Lohof et aI, 1993; Lessmann et aI, 

1994) and phosphorylating subunits of NMDA receptors in the 

hippocampus (Suen et aI, 1997). In addition to acute 

effects, more stable synaptic changes occur that may 

involve altered gene expression and protein synthesis (Kang 

and Schuman, 1996; Finkbeiner et aI, 1997), which may 
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subsequently modulate the strength of synaptic 

transmission. Prolonged treatments with neurotrophins have 

been demonstrated to promote LTP and maturation of synaptic 

sites (Wang et aI, 1995; Thakker-Varia et aI, 2001). This 

observation is reinforced in mice with targeted deletion of 

the BDNF gene, which display impaired synaptic plasticity 

(Korte et aI, 1995). 

Role in axonal sprouting 

BDNF has been shown to have trophic effects on 5-HT 

neurones (Mamounas et aI, 1995) and the gene for the trkB 

receptor has been identified on 5-HT neurones (Madhav et 

aI, 2001). Local BDNF infusion is capable of producing 

sprouting in mature, uninjured 5-HT axons as well as those 

damaged by p-chloroamphetamine (PeA) pre-treatment 

(Mamounas et aI, 1995; 2000). Indirect BDNF induction via 

repeated ECS induction (Nibuya et ali 1995; Zetterstr6m et 

aI, 1998) has also been demonstrated to greatly enhance 5-

HT axonal sprouting in rats with lesioned hippocampi 

(Madhav et aI, 2000). 
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1.6.2.4. Evidence linking BDNF with depression 

Evidence implicating BDNF with both aetiopathology and the 

treatment of depression has been slowly accumulating from 

numerous lines of investigation. 

Antidepressant effect of BDNF infusion 

A seminal study showed direct infusion of the BDNF protein 

into the rat midbrain produced an antidepressant effect in 

two models of depression in rats: the forced swim test and 

the learned helplessness model (Siuciak et aI, 1997). The 

site of injection in the midbrain was in the proximity of 

the periaqueductal grey matter, DRN and MRN, thus allowing 

BDNF exposure to the highest number of 5-HT cell bodies in 

the brain, suggesting a possible augmentation of 5-HT 

activity. Indeed, central administration of BDNF has been 

shown to exert widespread changes in 5-HT activity (Altar 

et aI, 1994; Maumounas et aI, 1995; Pellymounter et aI, 

1995; Siuciak et aI, 1994; 1998). Infusion of BDNF into the 

dentate gyrus (DG) region of the hippocampus also exerted 

antidepressant affects in forced swim and learned 

helplessness models (Shirayama et aI, 2002). 
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Neurotrophic effects of BDNF 

BDNF has been demonstrated to have widespread trophic 

effects on existing 5-HT (Maumounas et aI, 1995; 2000) and 

noradrenergic (Sklair-Tavron et aI, 1995) neurones 

following neurotoxic lesions. Enhanced neurogenesis has 

also been shown in numerous areas of the rat brain 

following over-expression (Benraiss et aI, 2001) and 

infusion (Pencea et aI, 2001) of BDNF. 

Effect of stress on BDNF levels 

BDNF is thought to play a role in cellular and behavioural 

responses to stress. Chronic stress models in rats have 

been shown to lower BDNF mRNA in the hippocampus. 

Immobilisation and inescapable exposure to noxious stimuli 

diminish hippocampal BDNF mRNA (Smith et aI, 1995; Ueyama 

et aI, 1997), as does elevation of exogenous corticosterone 

levels (Schaaf et aI, 1998), an effect which is blocked by 

subsequent antidepressant treatment (Nibuya et aI, 1995). 

The apparent atrophy of hippocampal neurones in animals 

exposed to experimental stressors has been hypothesised to 

be a result of decreased BDNF expression (Duman et aI, 

1997; 1999). 
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Effect of antidepressants on BDNF levels 

Numerous studies have indicated that chronic, but not acute 

administration of various antidepressant drugs increase 

BDNF gene expression in the hippocampus and cortex in rats 

(Nibuya et ai, 1995: Zetterstr6m et ai, 1998: Russo­

Neustadt, 1999; 2000; Coppell et ai, 2003), over a time 

period similar to that experienced when administering 

antidepressants clinically. In addition, electroconvulsive 

seizure (ECS), the animal model of ECT, strongly increases 

BDNF mRNA in the cortex and the areas of the hippocampus 

(Nibuya et ai, 1995; Zetterstr6m et ai, 1998b). 

Voluntary physical exercise (wheel running) has also been 

shown to produce a rapid increase in BDNF mRNA in the 

hippocampus and cortex of the rat (Neeper et ai, 1996; 

Russo-Neustadt et ai, 2000), as well as augmenting 

monoaminergic function (Dunn et ai, 1996; Dishman et ai, 

2000). Physical exercise in humans has been shown to 

enhance mood and psychological coping mechanisms (Emery et 

ai, 1992; Hill et ai, 1993), as well as cognitive 

functioning (Blomquist et ai, 1987). In rats exercise has 

been shown to counteract the decreased BDNF effect of 

forced swim tests (Russo-Neustadt et ai, 2001) 
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1.6.3. BONF transcripts 

The structure of the rat BDNF gene was elucidated by 

Timmusk's group (Timmusk et a1, 1993). A rat genomic 

library was screened using sequences from three different 

regions of BDNF cDNAs. Following hybridisation of rat 

genomic sequences to rat brain mRNA and reverse 

transcription-assisted polymerase chain reaction (peR), the 

presence of five exons within the rat BDNF gene was 

discovered (Timmusk et aI, 1993). The rat BDNF gene 

includes four short 5' exons (exons I-IV) that are each 

associated with a separate promoter, and one 3' exon (exon 

V) that encodes for the mature BDNF protein (Timmusk et aI, 

1993; Nakayama et a1, 1994). As any exon can be 

po1yadeny1ated in two positions, four different promoters 

give rise to eight predominant transcripts, each of these 

transcripts will contain one of the four variable 5' exons, 

in addition to an exon V segment (Lauterborn at al, 1996; 

Timmusk et a1, 1993; See Figure 1.8). 
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Figure 1.8. The organisation of the BDNF gene . (A) The BDNF 
gene spans over 40KB and contains five exons (I - V) . Each of 
the four exons contains a unique promoter and one or more 
transcription initiation site . (B) Each BDNF message can be 
transcribed from any of exons I to IV (exon III in this 
example) . (e) A precursor form of BDNF protein (prepro­
BDNF) is encoded within exon V and undergoes cleavage to 
yield mature BDNF protein (Adapted from Finkbeiner , 2000) . 

The transcripts are expressed differentially across 

different brain areas (Timmusk et ai , 1993 ; Bishop et ai , 

1994) and regulated differentially from a variety of 

manipulations (Nakayama et ai , 1994 ; Kokaia et ai , 1995) . 

In the hippocampus ischemia has been shown to selectively 

increase expression of the transcript form containing exon 

III , while kainate injections increase all of the 

transcript forms (Falkenberg et ai , 1993 ; Metsis et ai , 

1994 ; Timmusk et aI , 1995) . The apparent presence of 

multiple transcript forms of BDNF, translating to one 

identical protein is unique amongst neurotrophins and is 
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potentially a means of multiple levels of regulation 

(Russo-Neustadt et al, 2000). 

Protein synthesis inhibition on activity-dependent 

expression of BDNF transcripts revealed that exon I and II 

required intervening protein synthesis mechanisms to alter 

levels (Lauterborn et al, 1996). In contrast, exons III and 

IV are fairly inductable in the presence of protein 

synthesis blockers (Lauterborn et al, 1996), suggesting 

that these transcripts are immediate early gene (IEG)-like 

in function. 

1.7. The hippocampus 

The hippocampus is one of the most commonly examined areas 

of the brain in relation to the effect of depression and 

antidepressant actions. It also has been shown to contain 

the greatest expression of BDNF mRNA and protein in the 

CNS. 
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1.7.1. Evidence linking the hippocampus with depression 

MRI studies 

Using high-resolution magnetic resonance imaging (MRI), 

significant bilateral hippocampal atrophy has been reported 

in patients with a history of recurrent, major depression 

against matched controls (Sheline et al, 1996; 1999; 

Bremner et al, 2000). Shah et al (1998) also reported 

hippocampal atrophy in patients with chronic depression, 

but found no atrophy in patients with "remitted" depression 

over controls, the clinical characteristics of remitted 

depression were however not described, making comparison 

difficult. Two further studies (Swayze et al 1992; Axelson 

et al 1993) found no hippocapmpal atrophy in depressive 

patients, however a less sensitive MRI methodology was used 

that was unable to differentiate between the hippocampus 

and amygdala (Sheline, 2000). 

Animal models of stress 

Animals subjected to recurrent episodes of stress have been 

shown to possess damaged hippocampal neurones. Chronic 

restraint stress produced significant atrophy of dendrites 

of CA3 neurones (Watanabe et al, 1992). Multiple stressors 

(shaking in addition to restraint) produced dendritic 

45 



Ahmad Adam Khundakar Chapter One 

atrophy and a robust increase in corticosterone (Magarinos 

and McEwen, 1995). After repeated stressor episodes, ultra-

structural changes in mossy fibre projections have been 

demonstrated (Magarinos and McEwen, 1995). These changes 

however are reversible and may be prevented by 

antidepressant (tianeptine) treatment (Watanabe et al, 

1992; Czeh et a1, 2001). Lesioning of the hippocampus has 

been shown to eliminate the behavioural deficits induced by 

the learned helplessness model of animal depression (Elmes 

et al, 1975). 

1.7.2. Anatomy 

The mammalian hippocampal formation comprises of two main 

multi-layered components: the hippocampal gyrus and dentate 
i 

gyrus (DG; area dentata) . i 

The synaptic connections within the hippocampal formation 

are described as the 'trisynaptic circuit' (Andersen et al, 

1966; Witter et al, 1989). The first connection is formed 

by fibres of the perforant pathway, layers II and III of 

the entorhinal cortex project into the DG to terminate on 

granule cell dendrites in the molecular cell layer (Hjorth-

Simonsen, 1972; Steward, 1976). The second connection 
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arises from the granule cell layer , which sends axons 

(mossy fibres) to form synapses with the CA3 pyramidal 

cells of the hippocampal gyrus . The axons of the pyramidal 

cells form the main output for the hippocampus (Hinoi et 

ai , 2002) . However pyramidal cells also project 

collaterals , which make contact with pyramidal cells in the 

CAl (Andersen et ai , 1971 ; Ishizuka et ai , 1990) , thus 

completing the loop (See Figure 1 . 12). 

Perforant Path Fiber 
from Entorhinal Cortex 

Figure 1.9. Simplified schematic diagram showing the 
pathways comprising the ' tri - synaptic loop ' (adapted from 
Levitan and Kaczmarek , 1997) 

All the neurones comprising the tri - synaptic loop 

architecture are glutamatergic . These principle cells 

represent 90% of hippocampal neurones (Vizi and Kiss , 

1998) . The remaining 10% non- principal cells are 

interneurones and are thought to use gamma aminobutyric 

acid (GABA) as a neurotransmitter (Gaiarsa et ai , 2001) . 
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They form well-organised neural networks, which control and 

regulate the operation of principal cells (Freund and 

Buzsaki, 1996). 

1.8. Aims of the Present Study 

• To assess the effect of acute administration of 

various antidepressant drugs on total (exon V) BDNF 

mRNA, as well as a representative form of a protein 

synthesis dependent exon transcript form (exon I) and 

a variable 'lEG-like' exon transcript form (exon IV) 

in the rat hippocampus (See Chapter 3). 

• To further examine the apparent acute inhibitory 

effect of antidepressant drugs on BDNF mRNA by the 

application of various GABAergic receptor compounds in 

the rat hippocampus (See Chapter 4). 

• To assess the effect of chronic administration of 

various antidepressant drugs on total (exon V) BDNF 

mRNA, as well as a representative form of a protein 

synthesis dependent exon transcript form (exon I) and 

a variable 'lEG-like' exon transcript form (exon IV) 

in the rat hippocampus (See Chapter 5). 
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• To assess the effect of acute and chronic ECS 

application on total (exon V) BDNF mRNA, as well as a 

representative form of a protein synthesis dependent 

exon transcript form (exon I) and a variable 'IEG­

like' exon transcript form (exon IV) in the rat 

hippocampus (See Chapter 6). 

• To examine the effect of chronic administration of an 

antidepressant drug and chronic ECS application on 

BDNF protein expression within the rat hippocampus 

(See Chapter 7). 
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Chapter Two 

Materials and Methods 
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2.1. Animals 

All animal procedures were performed according to 

guidelines set by the Ethics and Animal Welfare Committee, 

De Montfort University, in accordance with the Animals 

(Scientific Procedures) Act, 1986. Animals were kept in 12h 

light: 12h dark conditions, with food and water available 

ad liberatum. Male Sprague-Dawley rats (Charles River, UK) 

were purchased 10 days before drug administration to 

minimise environmental impact and housed four per cage. 

Animals weighed between 225g and 250g upon drug 

administration. Injections were administered 

interperitoneally (i.p) in the lower left or right quadrant 

of the abdomen, with the needle angled at 45° to the skin. 

Electroconvulsive shock (ECS) was administered under 

halothane-induced anaesthesia via earclips placed 

bilaterally (See Section 2.1.1.2). 

Animals were killed according to Schedule 1 of the Animals 

(Scientific Procedures) Act, 1986 by rapid dislocation of 

the neck. Every effort was made to ensure a quick and 

humane sacrifice. 
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2.2. Experimental protocol 

2.2.1. Drug administration 

2.2.1.1. Acute administration 

Groups of six animals were injected i.p once with the 

relevant compound and observed every 30min for 4h for any 

behavioural changes, prior to sacrifice. Drug doses are 

listed in Sections 3.2 and 4.2. 

2.2.1.2. Chronic administration 

Groups of six animals were injected i.p once daily with the 

relevant compound for 21d and observed periodically for 

behavioural changes and illness. Animals were sacrificed 

24h after the last injection. Drug doses are listed in 

Section 5.2. 

2.2.2. ECS administration 

ECS was administered under halothane-induced anaesthesia. 

ECS induction was elicited using a small animal 

electroplexy unit (Theratronics Ltd, Guernsey). Induction 
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was set at 150V, 50 Hz for 1 second via earclip electrodes, 

resulting in tonic-clonic seizures lasting 15 to 20 

seconds. Sham ECS involved the induction of halothane 

anaesthesia and the placement of earclips for a comparable 

length of time, without seizure induction. 

2.2.2.1. Acute ECS administration 

Animals were exposed to either a single ECS or sham 

treatment, before being sacrificed at 4h. 

2.2.2.2. Chronic ECS administration 

Animals were exposed to repeated ECS or sham treatment (5 

treatments over a 10d period, i.e. one ECS every 48h). They 

were then sacrificed 24h after the last application. 

2.3. In-situ hybridisation 

2.3.1. Tissue pre-treatment 

Brains were rapidly removed post-mortem, frozen in cooled 

isopentane and stored at -80°C until further use. Coronal 

sections (10~) were cut using a cryostat (Bright, UK) set 

to -20°C, and thaw-mounted onto gelatinised microscope 
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slides (3 per slide) . Sections were then post - fixed in 4% 

paraformaldehyde (PFA) in phosphate - buffered saline (PBS , 

pH 7.4) for 5 min , then rinsed twice in PBS . Sections were 

then acetylated by 0 . 25% acetic anhydride in 

triethanolamine buffer (O . lM triethanolamine in 0 . 9% 

saline , pH 8) for 10 minutes , then dehydrated through a 

series of graded ethanol solutions (70 , 80 , 95 and 100%) , 

delipidated in chloroform for 10 min and further dehydrated 

with 100% and 95% ethanol . Sections were air-dried and 

stored at - 20 °C, prior to use in labelling procedures. 

2.3.2. Oligonucleotide probe labelling 

2 . 3 . 2 . 1 . Oligonucleotide probes 

Oligonucleotide DNA probes complimentary to BDNF mRNA , BDNF 

exon I mRNA, BDNF exon II, BDNF exon III and BDNF exon IV 

mRNA were obtained (Eurogentec DNA Service Ltd . 

Southampton , UK) . No significant homology between any probe 

and other previously identified gene sequences was found 

using a basic BLAST search , present on the National 

Institute for Health website 

(www . ncbi . nlm . nih . gov/blast/blast . cgi ). Probe sequences 

were as follows: 
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BDNF - GGT CTC GTA GAA ATA TTG CTT CAG TTG GCC TTT TGA 

(Sequence code F75377; Eurogentec, UK. G C content 41.7%). 

BDNF (SENSE STRAND) - CCA GAG CAT CTT TAT AAC GAA GTC AAC 

CCG AAA ACT (Sequence code F75378i Eurogentec, UK. G C 

content 41.7%) 

BDNF (Exon I) - ACC CAA AGC AAT ATC GCA AGC TTC AAC TCT CAT 

CCA CTT (Sequence code F56636, Eurogentec, UK. G C content 

45%) . 

BDNF (Exon II; PROBE A) - ATG AAG TAC TAC CAC CTC GGA CAA 

ATC CGC TGG (Sequence code G28478, Eurogentec, UK. G C 

content 52%) 

BDNF (Exon II; PROBE B) - AGT AAC AGA CCT CAC TAA AGC CAT 

ATG CTT CCC AGC AGA (Sequence code F56637, Eurogentec, UK. 

G C content 50%) 

BDNF (Exon III) - TAA TAC TCG CAC GCC TTC AGT GAG AAG CTC 

CAT (Sequence code G282479, Eurogentec, UK G C content 48%) 

BDNF (Exon IV) - TTC CTT TAG GAA TGT CTC AAG TAC CAT TCC 

eCA eCT eCA T (Sequence code F67353, Eurogentec, UK. G C 

content 45%) 
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2.3.2.2. Labelling 

Oligonucleotide probes were radiolabelled at the 3' end 

with [a-[35S] thio]-dATP (specific activity 1250 Ci/mmol; 

NEN life sciences, Stevenage, UK) using terminal 

deoxynucleotidyl transferase (TdT, Promega, UK). A reaction 

mixture was made containing 6pmol oligonucleotide, 30-60 

units TdT, 60 pmol [35S]-dATP in sterile water, 100 mmol 

potassium cacodylate, 1mM CoC12 and 100nM dithiothreitol 

(OTT) in diethyl pyrocarbonate (OEPC; 1%) treated purified 

water (final volume 35~1). After incubation at 37°C for 30 

minutes, the reaction was stopped by adding 400~1 of Reagent 

A solution (0.1M Tris hydrochloride, 10mmol trietyhlamine 

(TEA), 1mmol ethylenediaminetetraacetic acid (EOTA, pH 

7.7). The reaction mixture was passed through a spin column 

containing Sephadex G-50 in order to separate the labelled 

probe from unincorporated nucleotide. Two more applications 

of 500~1 Reagent A were passed through the column, resulting 

in three end solutions. The specific activity of each 

solution was determined using a scintillation counter 

(Beckman L55000ce, USA). A labelling procedure was deemed 

successful if the majority of the activity was present in 

the second tube and 50% of the radioactivity had been 

successfully incorporated. 
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2.3.2.3. Hybridisation 

The microscope slides containing the previously thaw­

mounted sections (See Section 2.1.2) were removed from the 

freezer, before being thawed and placed on RNA-ase free 

filter paper soaked in 4x standard saline citrate (SSC) 

(equivalent to 600mmol sodium chloride, 60mmol sodium 

citrate) in bioassay dishes. Labelled probe (2xl0 6 

cpmol/slide) which comprised of 50% deionised formamide, 

20% 20 x SSC (4 x SSC), 5% sodium phosphate buffer 

(0.5mol), 1% sodium pyrophosphate buffer (O.lmol), 10% v/v 

SOx Denhardt's solution (0.2% Ficoll, 0.2% 

polyvinylpyrrolidone and 0.2% bovine serum albumin in 

sterile water), 10mg/ml herring sperm DNA, Smg/ml 

polyadenelic acid, 120mg/ml heparin and 1'0% dextran sulfate 

powder and SOmM dithiothreitol (DTT) was applied to thawed 

sections (3 per slide). After application of the reaction 

mixture the sections were cover-slipped, the bioassay boxes 

covered and incubated in humid chambers at the relevant 

calculated temperature for incubation of the probe (See 

Section 2.1.6). 
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2.3.3. Washinq of sections 

Cover slips were washed off in room temperature 1 X sse. 

Sections were then washed in 1 x SSC at a pre-calculated 

washing temperature for a specific probe (See Section 

2.1.6) for 3x20min, then at room temperature for 2 x 60min. 

To remove excess salt present, the sections were rinsed in 

sterile water and air-dried at room temperature. The slides 

were then placed into X-ray cassettes with a 14C micro-scale 

standard (Amersham, UK) and exposed to Bio-Max film© 

(Kodak) in darkness for 7d at room temperature. 

2.3.3.1. Hybridisation and washing temperature calculations 

Hybridisation depends on the ability of the DNA to re­

anneal to a complementary strand, just below its melting 

point. The melting temperature (Tml of DNA-RNA hybrids (in 

this series of experiments the oligonucleotide DNA probe­

target mRNA hybrids) is influenced by many factors, which 

in turn contribute to the stringency of hybridisation. The 

stringency of hybridisation determines the degree to which 

mismatched hybrids are permitted to form. The factors which 

affect stringency and therefore (Tm) include: (i) the 

guanine and cytosine percentage content the base 
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composition, (ii) the length of the probe, (iii) the 

concentration of monovalent cations (the Na+ concentration) 

and (iv) the concentration of formamide present in buffer. 

The (Tm) was calculated using the following formula 

(Meinkoth and Wahl, 1984). 

(Tm) = 81.5°C + 16.6 log ([monovelent cations]) + 0.41 (%G-C 

content of probe) - 0.61 (% formamide) - (675/probe length) 

All incubation and washing procedures were carried out at 

15°C below the Tm. 

(iJ A, Total BDNF (exon V) oligo probe 

HYBRIDISATION 
G C content 41.7%, Number of bases 36 
Tm= 16.61og (4xO.165) +0.41(41.7) +81.5 -0 -675 -0.65 x50 

36 

= -2.99 +17.1 +81.5 -18.75 -32.5 
= 44.36 
= Ti = Tm -15 = 29.3°C 

WASHING 
Tm= 16.61og (0.165) +0.41(41.7) +81.5 -0 - 675 

36 
-12.99 +17.1 +81.5 -18.75 
= 66.86 
Tw = 66.9 -15= Sl.9°C 

(ii) BDNF exon I oligo probe 

HYBRIDISATION 
G C content 45%, Number of bases 40 
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Tm= 16.61og (4xO.165) +0.41(45) +81.5 -0 -675 -0.65 x50 
40 

= -2.99 +18.5 +81.5 -16.88 -32.5 
= 47.63 
= Ti = Tm -15 = 32. 6°C 

WASHING 
Tm= 16.61og (0.165) +0.41(45) +81.5 -0 - 675 

40 
-12.99 +21.32 +81.5 -16.88 
= 72.95 

Tw= 72.95 -15= S7.9°C 

(iii) BDNF exon II oligo probe (PROBE A) 

HYBRIDISATION 
G C content 52%, Number of bases 33 
Tm= 16.61og (4xO.165) +0.41(52) +81.5 -0 -675 -0.65 x50 

33 

= -2.99 +21.3 +81.5 -20.45 -32.5 
= 46.86 
= Ti= Tm-15 = 31.8°C 

WASHING 
Tm= 16.61og (0.165) +0.41(52) +81.5 -0 - 675 

33 
-12.99 +21.32 +81.5 -20.45 
= 69.36 
Tw = 69.4 -15 = S4.4°C 

(PROBE B) 

HYBRIDISATION 
G C content 50%, Number of bases 36 
Tm = 16.6 (4xO.165) +0.41(50) +81.5 -0 -675 -0.65 x50 

36 

= -2.99 +20.5 +81.5 -18.75 -32.5 
= 45.24 
Ti= Tm- 15 = 30.2°C 

WASHING 
Tm= 16.61og (0.165) +0.41(50) =81.5 -0 -675 
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-12.99 +20.5 +81.5 - 18.75 
= 70.26 
Tm = 70.26 -15 = 55.3°e 

(iv) BDNF exon III oligo probe 

HYBRIDISATION 
G C content 48%, number of bases 33 

36 

Tm = 16.61og (0.165x4) +0.41(48) +81.5 -0 -675 -0.65 x50 
33 

= -2.99 +19.68 +81.5 -20.45 -32.5 
= 45.3 

WASHING 
Tm= 16.61og (0.165) +0.41(48) +81.5 -0 - 675 

33 
-12.99 +19.68 +81.5 -20.45 
= 67.76 
Tw = 67.76 -15 = 53°e 

(V) BDNF exon IV oligo probe 

HYBRIDISATION 
G C content 45%, Number of bases 40 
Tm = 16.61og (4xO.165) +0.41(45) +81.5 -0 -675 -0.65 x50 

40 
-2.99 +18.4 +81.5 -16.9 -32.5 

= 47.51 
= Ti= Tm -15 = 32.5°e 

WASHING 
T m = 16. 610g ( 0 • 165 ) + 0 • 41 ( 45 ) + 81. 5 - 0 - 675 

40 
-12.99 +18.4 +81.5 -16.8 
= 70.11 
Tw = 69.4 -15= 55.l o e 
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2.3.4. Autoradiogram Analysis 

2.3.4.1 Film development 

Following exposure to the tissue slices, the Bio-max film 

was developed by immersion in developer for 1 min 30 s, 

rinsed in tap water, then immersed in a fixing solution for 

5 min, followed by a further rinse in tap water. The Kodak 

GBX developer and fixer were obtained from Sigma-Aldrich 

Co. UK. 

2.3.4.2. Film analysis 

Densitometric analysis of the radioemissions was conducted 

using the NIH Image (version 1.61) program on a Macintosh~ 

G4 computer. Autoradiogram images were captured via an 

Epson~ Stylus Photo scanner set to 1200 x 1200 pixel 

optical resolution. The optical densities of specific brain 

regions were quantified and converted to nCi/g tissue 

weight using a standard curve generated by autoradiographic 

[
14C] microscale standards (Amersham Biotech Ltd. UK). A 9 x 

9 pixel sampling area was chosen and placed over the 

corresponding area to be analysed. 100 readings were taken 

for each region assessed in each slice (three slices per 

animal) and a mean value was calculated to give a single 
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mean for each particular area in an animal (See Figure 

2 .1) . 

2 . 3.4 . 3 . Statistical analysis 

Statistical analyses of the effects of drug/ECS 

intervention were made using either Student ' s t-test for 

two sets of data (vehicle control vs. drug-treated) , or 

one-way/two-way analysis of variance (ANOVA) for multiple 

sets of data, with Bonferoni ' s multiple comparison post-hoc 

test , using GraphPad Prism Version 3 . 00 (GraphPad Software 

Inc ., Califronia , USA) . Significance was determined at 

p<0 . 05, all data is presented as mean ± standard error of 

mean ( S . E . M. ) . 

... .•..• , •• CAl 

/= ..... ~ ~<5Al 
, 

0 0000 ~G 
CA3 • ....... ......... ,. 

Figure 2 . 1 . Schematic diagram of coronal section through 
the rat hippocampus showing approximate location of 
principal cell layers where optical densities were studied 
(adapted from Gibbs , 1998) 
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2.3.5. Control sections 

Two methods of controls were employed to check for 

specificity of the anti-sense probes used in this study. 

For the total (exon V) BDNF, a cDNA sense sequence was 

obtained, corresponding to the parallel anti-sense 

sequence. The sense control was used to detect a background 

signal indicating the level of non-specific interactions. 

Minimal background signal was present for any control 

experiment, confirming the specificity of the 

oligonucleotide probe used. In addition, sections were 

hybridised with radiolabelled anti-sense probes 

corresponding to the total BDNF sequence used, as well as 

BDNF exon I and BDNF exon IV probe used, in the presence of 

over lOO-fold excess of cold unlabelled nucleotide. 

Expression in key areas was eliminated using this 

technique. 

64 



Ahmad Adam Khundakar Chapter Two 

ANTISENSE 100 X EXCESS 

BDNF 

Exon I 

B 

Exon IV .. 
C 

Figure 2.2. Control sections. In-situ hybridisation images 
demonstrating BDNF labelling with A, BDNF antisense probe ; 
B, BDNF exon I antisense probe ; C, BDNF exon IV antisense 
probe D, lOO - fold excess BDNF i E, lOO - fold excess exon I 
probe ; F, lOO- fold excess exon I probe . 

D 

E 

F 
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2.4. Immunocytochemistry 

2.4.1. Perfusion procedure 

Animals were deeply anaesthetised with sodium 

pentobarbitone (200mg/kg, i.p) and transcranially perfused 

with 150ml of ice-cooled phosphate buffer saline (PBS, pH 

7.4) using a perfusion pump set at a rate of 55ml/min. This 

was proceeded by 450ml of ice-cooled O.lM phosphate buffer, 

containing 4% PFA and 0.1% glutaraldehyde (pH 7.4) at a 

rate of 55ml/min. Brains were then removed from the skull 

and post-fixed in 2% PFA for 1.5h, before being 

cryoprotected by submerging in 10% dimethyl sulfoxide 

overnight. Following cryoprotection, brains were flash­

frozen in cooled isopentane. A series of coronal sections 

(30~ thick) through the frontal cortex, striatum and 

hippocampus were then cut on a cryostat. Free-floating 

sections were collected in cold PBS in 24-well plates. 
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2.4.2. Immunostaininq 

Pre-incubation 

Sections were placed in sterile well plates covered in a 

pre-incubation of PBS and 0.25% Triton X-lOO for l5mins 

then washed twice in PBS and placed in a pre-blocking agent 

of PBS, 0.25% Triton X-lOa and 5% bovine serum albumin for 

lh. 

Primary incubation 

Sections were washed twice in PBS then transferred by a 

glass tool into sterile well plates containing primary 

antibody (pAb) solution consisting of 10~g/ml chicken anti­

hBDNF IgY pAb and 0.25% Triton X-lOa in PBS for 24h at room 

temperature. 

Secondary incubation 

The sections were washed three times in PBS and transferred 

to well plates containing a secondary antibody solution 

consisting of 5~g/ml rabbit biotinylated anti-chicken IgY 

IgG in PBS for 2h at room temperature. 

Avidin-biotin-horseradish peroxidase complex and 

diaminobenzine reactions 
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Sections were then covered in Vector elite avidin-biotin­

horseradish peroxidase complex (ABC) reagent~ for 2h at 

room temperature, before being washed twice in PBS and 

washed once in 50nM TRIS (hydroxymethyl) aminomethane 

(TRIS) buffer (pH 7.7). Each section was then incubated in 

3,3'-diaminobenzidine (DAB, 0.5mg/ml) in 50mM Tris saline 

buffer, containing 0.009% hydrogen peroxide. In addition 

2xdrops of nickel stain were added to the mixture. After 5 

mins the reaction was terminated by removing the sections 

from the solution. The sections were the rinsed three times 

in 50mM TRIS buffer, then stored in PBS, before being 

mounted on gelatinised microscope slides. 

Mounting sections 

Individual sections were placed on gelatinised slides and 

delipidated though immersion in graded 2min ethanol washes 

(50%, 70%, 90%, 100% in distilled water), then 100% xylene 

for 8mins. Sections were then mounted using DPX Histoclear 

mount ant and cover-slipped, lightly applying pressure to 

ensure against bubbles. 
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Photomicrography 

Sections were examined using a Leitz-Diaplan 

photomicroscope and images were captured with a digital 

camera using Openlab software (Improvision, UK). 

Image and data analysis 

Relative abundance was measured in selected areas using a 

computerised analysis system (MCID-4, Imaging Research, St 

'Catherine's, Ontario, Canada) and expressed as an optical 

density unit, which was corrected for background (non­

specific) signal by subtracting white matter (corpus 

callosum) from the raw figures. The immunoreactivity of 

BDNF protein was measured in four areas, the CAl, CA3 and 

DG of the hippocampus, and the parietal cortex. Differences 

between saline/sham and treatment groups were assessed 

using Student's t-test. 
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Parietal 
Cortex 

MFZ 

A3 

Figure 2.3. Anatomical locations of regions studied in the 
irnrnuncytochemistry experiments (Adapted from Paxinos and 
Watson , 1997 ; Plate 33) . 
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2. 4 .3. Control s e ctions 

Controls were performed on sections in each corresponding 

group by following the same procedure except for incubating 

in Triton X-lOO instead of primary antibody . All other 

stages were performed identically to experimental sections . 

Figure 2.4. ICC experiment coronal hippocampal control 
section image (A) , compared with section with BDNF primary 
antibody present (B) . The anatomical location is 
highlighted on a schematic diagram above (Adapted from 
Paxinos and Watson , 1997 ; Plate 34) . 
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2.5. Chemicals and drugs 

2.5.1. Chemicals 

The chemicals used (with supplier) used in ISH and ICC 

experiments are tabulated below. 

Table 2.1. Chemical sources for ISH and ICC experiments. 

Supplier 

Promega UK; Southampton) 

Sigma UK; Poole, Dorset). 

Chemical 

Potassium cacodylate, cobalt 

chloride, herring sperm DNA, 

primary antibody, secondary 

antibody 

Phosphate buffer saline 

tablets, triethanolamine, 

acetic anhydride, 

diethylpyrocarbonate, 

dithiothreitol, Sephadex G­

sa, triethylamine, Trizma 

hydrochloride, deionised 

formamide, formamide, sodium 

citrate, Denhart's solution, 

polyadenylic acid, heparin, 

dextran sulphate, bovine 

serum albumin, TRIS buffer 
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Fisher Scientific UK; Glacial acetic acid, 

Loughborough, Leicestershire paraformaldehyde, chloroform, 

sodium chloride, xylene 

BDH Laboratory Supplies; Powdered gelatin, chromium 

Poole, Dorset potassium sulphate, 

Vector Laboratories Inc. 

Burlingame, California, USA 

ethylenediaminetetraacetic 

acid disodium salt, sodium 

phosphate, sodium 

orthophosphate, sodium 

pyrophosphate, glass slides, 

cover slips 

ABC kit, DAB substrate kit 
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2.5.2. Drugs 

The drugs used (with supplier) used in ISH and ICC 

experiments are tabulated below. 

Table 2.2. Drug sources for ISH and ICC experiments. 

Supplier 

Tocris Cookson Ltd; Bristol, 

UK 

Sigma; Poole, Dorset, UK 

Lundbeck Pharmaceticals; 

Hartlepool, UK 

Glaxo Smith-Kline 

Lilly 

Drug 

CGP 46381, CGP 55845, GBR 

12909, maprotiline, 

tranylcypromine, THIP, 

flunitrazepam, 

methylphenidate 

Baclofen, desipramine 

Citalopram 

Paroxetine 

Fluoxetine 
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Chapter Three 

The Effect of Acute Antidepressant Drug 

Administration on BDNF mRNA and BDNF exon 

mRNA in the Rat Hippocampus 
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3.1. Introduction 

The present chapter relates to the effect of acute 

administration of various classes of antidepressant drugs on 

the expression of total BDNF mRNA (exon V), as well as 

variable transcript forms which are generated from the gene 

(containing exons I-IV), in the adult rat hippocampus. A 

series of in-situ hybridisation experiments were performed 

examining the effect of a single injection of six different 

antidepressant drugs on BDNF mRNA, as well as the transcript 

forms containing BDNF exon I and exon IV mRNA. Attempts were 

made to measure exon II and exon III mRNA, however basal 

levels were deemed insufficient to ensure reliable 

measurements. 

The hippocampus was chosen as the region of focus for the 

series of experiments. Initial experiments indicated the 

highest level of basal expression of BDNF mRNA was present 

in this region in comparison with other areas measured, 

where low levels of basal expression were found (See Section 

3.3.1). In addition, as explained in Section 1.7.3, 

alterations in hippocampal function have long been 

implicated in the pathophysiology of depression. 

Furthermore, a high degree of neuronal plasticity is known 
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to take place in the hippocampus and BDNF has been shown to 

influence synaptic function and induce neuronal sprouting in 

this region (See Section 1.6.2.3). 

The antidepressants used comprised of the SSRIs fluoxetine, 

paroxetine and citalopram; and the selective NARIs 

desipramine and maprotiline. The antidepressants were chosen 

because of their varying affinities and potency for the 

serotonin and noradrenaline reuptake sites (Hytel, 1994). 

The non-selective MAO! tranylcypromine (TCP) was also 

tested. 

In addition for comparison, the effect of the non-selective 

noradrenaline (NA) / dopamine (DA) reuptake blocker 

methylphenidate and the selective DA transporter blocker GBR 

12909 were assessed. Methylphenidate is a psycho-stimulant 

that binds with a similar affinity to the DA and NA 

transporters that produces an increase in extracellular 

brain concentrations of both DA and NA in rodents (Gatley et 

aI, 1996; Kuczenski and Segal, 1997). GBR 12909 has been 

shown to show bind with a high affinity to the DA 

transporter (Rothman et aI, 2003), and has been shown to 

bind with a substantially less (over 100 times) affinity to 

the 5-HT transporter (Andersen, 1989). It has also been 
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shown to have no effect on NA metabolism or LC firing rate 

(Nissbrandt et al , 1991) . 

F 

F 

Methylphenidate GBR 12909 

Figure 3.1. The structure of methylphenidate and GBR 12909 

3.1.1. The effect of acute administration of antidepressant 

drugs on BDNF mRNA 

As explained earlier (See Section 1 . 6 . 2 . 4), several groups 

have shown an enhancement in BDNF mRNA after chronic 

administration of antidepressant drugs (Nibuya et al , 1995 ; 

Russo - Neustadt et al , 2000 ; Coppell et al , 2003) . However , 

considerable variations exist in the magnitude of the 

increase between these studies . It has been suggested that 

such anomalies may be due to the time period after the last 

injection . Coppell et al (2003 ) found that administration of 
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antidepressant drugs produced a "bi-phasic effect" on BDNF 

mRNA within the rat hippocampus. Thus, a single injection of 

antidepressant (paroxetine, fluoxetine, sertraline) 

inhibited BDNF mRNA levels in the CAl, CA3 and DG regions 

after 4h. This effect however was transient, as after 24h 

levels had returned to baseline. Chronic administration (2 

daily injections for 14d) also inhibited BDNF mRNA at 4h, 

however levels were up-regulated after 24h. The initial 

down-regulatory response was attributed to the enhancement 

of local extracellular 5-HT levels, as a iesult of acute 5-

HT reuptake blockade (Coppell et aI, 2003). Zetterstrom et 

al (1999) demonstrated that acute elevation of brain 5-HT 

levels either by administration of the 5-HT release agent p­

chloroamphetamine (pCA), the SSRI paroxetine, or a 

combination of the 5-HT precursor I-tryptophan and the non­

selective MAOI TCP, significantly reduced BDNF mRNA in the 

DG at 4h. In contrast, rapid depletion of 5-HT levels with 

multiple injections of the tryptophan hydroxylase-selective 

inhibitor p-chlorophenylalanine (pCPA) significantly 

increased BDNF mRNA in the DG (Zetterstr6m et aI, 1999). The 

results suggest that acute enhancements in S-HT levels have 

a transient inhibitory effect on BDNF mRNA expression in the 

hippocampus. The role of 5-HT receptors in the acute 

regulation of BDNF mRNA was demonstrated by Vaidya et al 
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(1997). Acute administration of the 5-HT2 receptor agonist 

DOl reduced BDNF mRNA in the DG at 4h. This effect was 

attenuated by the 5-HT2A receptor antagonist MDL 100907, but 

not by the 5-HT2C antagonist SB 206553, indicating a central 

role for the 5-HT2Areceptor in the inhibitory BDNF mRNA 

response (Vaidya et al, 1997). 

It is not clear however whether the acute down-regulatory 

response is due specifically to acute manipulations in 5-HT, 

or occurs due to generalised changes in monoamine 

concentrations. For this reason the present study examined 

various antidepressant compounds with varying affinities to 

5-HT and NA reuptake sites, as well as the non-selective 

MAOI TCP. Additionally, the role of acute DA manipulation 

was studied with the selective DA transporter blocker GBR 

12909 and the non-selective NAIDA reuptake blocker 

methylphenidate. 

The BDNF gene has been suggested as a possible target in 

antidepressant treatment (Condorelli et aI, 1994; Nibuya et 

aI, 1995; Siuciak et aI, 1996; Duman, 1998; Duman et al, 

1999), thus further examination of the initial down­

regulatory response (at 4h) is vital in order to elucidate 

the mechanism of action of antidepressant action on BDNF. 
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The unique complexity of the BDNF gene among neurotrophins 

allows the opportunity to study the effect of 

antidepressants, when given acutely, on specific exon­

containing transcripts. During the course of this series of 

experiments, a similar study was published demonstrating 

evidence of differential BDNF mRNA exon expression (exons I­

IV), following the acute administration of antidepressants 

(Dias et aI, 2003). However, a full appraisal of the effects 

in the previous study was hampered by the lack of inclusion 

of data for the full BDNF gene (exon V), which codes for 

BDNF protein. In the present study we have simultaneously 

included total BDNF mRNA data (exon V), as well as a 

representative form of protein-dependent exon mRNA (exon I) 

and a non-protein synthesis-dependent 'lEG-like' exon mRNA 

(exon IV; Lauterborn et aI, 1996; Russo-Neustadt et aI, 

2001; See Section 1.6.3). 

The aim of this chapter therefore is to examine the effect 

of acute (single injection) of numerous antidepressant 

compounds, as well as methylphenidate and GBR 12909 on BDNF 

mRNA, as well as exon I and exon IV mRNA expression in the 

hippocampus at 4h. 
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3.2. Methods 

Male Sprague-Dawley rats (225-250g) were injected intra­

peritoneally (i.p) once with either: saline (lml/kg), or 

fluoxetine (10mg/kg), paroxetine (5mg/kg), citalopram 

(10mg/kg), desipramine (lOmg/kg), maprotiline (4mg/kg), TCP 

(Smg/kg), methylphenidate (4mg/kg) or GBR 12909 (10mg/kg) in 

0.9% saline, before being sacrificed 4h later. Brains were 

isolated, then flash-frozen in cooled isopentane and then 

stored at -70°C until further use. In-situ hybridisation and 

densitometric analysis procedures are described in Chapter 

2. 
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3.3. Results 

3.3.1. Basal distribution of total BDNF mRNA and individual 

BDNF exon mRNA in the rat brain 

3.3.1.1. Basal total BDNF mRNA expression 

Coronal sections through frontal cortex, striatum and 

hippocampal areas were assessed for total (exon V) BDNF mRNA 

distribution. Signals were detected in the cingulate (Figure 

3.2, A and B) and piriform (Figure 3.2, B and C) cortices, 

however they were generally low and difficult to quantify by 

densitometry. A signal was also detected in the parietal 

cortex (Figure 3.2, C), this signal was very weak and there 

were no differences in expression through the different 

layers of this region. 

Basal levels were found to exist in a measurable quantity 

the hippocampal region only (Figure 3.2, C and D). Within 

the hippocampus, the highest levels were present in the CA3 

and DG regions, with lower levels present in the CAl 

(Figures 3.2, C and D). 
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Figure 3 . 2 , D displays total BDNF mRNA expression in a 

saggital section through the adult rat brain . Higher levels 

of expression are seen the granular cell layer of the 

cerebellum, as well as the hippocampus . 

/ 
Parietal corte~ 

Piriform Cortex 

Cingulate gyrus 

I 
A 

~:::~ 
Cerebellum -7 

C 

Dentate gyrus 

B 

D 

Figure 3.2. Basal total BDNF mRNA expression . A, coronal 
section through the frontal cortex region ; B, coronal 
section through the striatum region ; C, coronal section 
through the hippocampus region ; D, saggital section through 
the rat brain . 

Piriform 
Cortex 
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3.3.1.2. Basal individual BDNF exon transcript mRNA 

expression 

The oligonucleotide probes used corresponding to mRNAs 

encoding for each individual exon yielded varying levels of 

expression among exons I, II, III and IV. However, any 

significant expression of each exon was confined to the 

hippocampus from the areas measured. Exon I mRNA was 

distributed fairly evenly throughout the hippocampus, with 

CAl, CA3 and DG areas all showing relatively abundant 

signals (Figure 3.3, A). In contrast, basal exon IV mRNA 

expression appeared far higher in the DG than CA3 or CAl, 

which displayed similar levels of expression (Figure 3.3, 

D). The basal expression of exons II (Figure 3.3, B) and III 

(Figure 3.3, C) appeared to be very weak. No significant 

exon II signal was detected from any stimuli given from two 

probes used, which contained different sequences. A slight 

basal signal was detected in exon III mRNA in the 

hippocampus and a significant response was detected after 

strong stimuli (acute ECS), suggesting that the probe used 

was able to hybridise with exon III. However, as the basal 

level was so weak, the accuracy of analysis could be 

questioned. It was therefore decided that the series of 

experiments in this and proceeding chapters would focus on 
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the differential effects on exon I and IV mRNAs , in addition 

to total BDNF mRNA (exon V) . 

, 

B 

C D 

Figure 3.3. Basal expression of BDNF exon transcript mRNA : 
A, exon I ; B, exon II (PROBE B) ; C, exon III ; D, exon IV . 
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3.3.2. Effects of acute admnistration of antidepressant 

drugs on total BDNF mRNA and individual BDNF exon mRNA 

3.3.2.1. Effect on total BDNF mRNA expression 

See Tables 3.1 for numerical values. See Figures 3.4 to 3.11 

for graphs. See Figures 3.12 to 3.19 for autoradiographs. 

A single injection of fluoxetine at 10mg/kg caused a 

significant down-regulation of total BDNF mRNA in the DG (-

27.5%; p<0.05 Table 3.1; Figures 3.4 and 3.12). Likewise, 

paroxetine at 5mg/kg elicited a significant inhibition in 

mRNA levels in the DG (-20.6%, p<0.05; Table 3.1; Figures 

3.5 and 3.13), as well as the CA3 (-18.6%; p<O.05). 

Citalopram administration inhibited DG levels significantly 

(-37.8%, p<0.01; Table 3.1; Figures 3.6 and 3.14). Among the 

noradrenargic-selective antidepressants tested, desipramine 

(-39.6%, p<0.05; Table 3.1 Figures 3.7 and 3.15) and 

maprotiline (-33.4%, p<O.Ol; Table 3.1. Figures 3.8 and 

3.16) significantly inhibited DG BDNF mRNA levels. The MAOr 

TCP (5mg/kg) caused the largest inhibition in BDNF levels in 

the DG among antidepressant drugs tested (-42.6%, p<O.001; 

Table 3.1, Figures 3.9 and 3.17). 
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Acute administration of either the non-selective NAIDA 

transporter blocker methylphenidate (-33.4%, p<0.05; Table 

3.1; Figures 3.10 and 3.18) or the DA transporter blocker 

GBR 12909 (-39.9%, p<O.OOl; Table 3.1; Figures 3.11 and 

3.19) significantly inhibited BDNF mRNA expression in the DG 

region. 

3.3.2.2. Effect on BDNF exon I mRNA expression 

See Table 3.2 for numerical values. See Figures 3.4 to 3.11 

for graphs. See Figures 3.12 to 3.19 for autoradiographs. 

The acute injection of any antidepressant tested had no 

significant effect on BDNF exon I mRNA in any region of the 

hippocampus at 4h. However, there was a small, but not 

significant fall in exon I mRNA in CAl, CA3 and DG subfields 

after desipramine and fluoxetine administration. In 

addition, modest, non-significant reductions were seen after 

Tep administration in the CAl and DG and in the CA3 subfield 

after citalopram administration. 
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3.3.2.3. Effect on BDNF ex on IV mRNA expression 

See Table 3.2 for numerical values. See Figures 3.4 to 3.11 

for graphs. See Figures 3.12 to 3.19 for autoradiographs. 

In accordance with BDNF mRNA, acute injection of all 

antidepressants tested produced an inhibitory effect on BDNF 

exon IV mRNA in the DG. Fluoxetine elicited a significant 

36.5% (p<O.Ol) inhibition in the DG (Table 3.3; Figures 3.4 

and 3.12). Paroxetine administration caused a significant 

24.7% (p<0.05) reduction in the DG (Table 3.3; Figures 3.5 

and 3.13). Acute citalopram caused significant inhibition in 

both DG (34.4%; p<0.05) and CA3 (-35.1% p<0.05; Table 3.3; 

Figures 3.6 and 3.14). Desipramine administration produced a 

significant inhibitory effect in the DG (-32.1%, p<0.05); 

Table 3.3; Figures 3.7 and 3.15). Maprotiline also produced 

a significant reduction within the DG (-37.9%, p<0.05) and 

CA3 (-34.7%; p<0.05; Table 3.3 Figures 3.8 and 3.16). Acute 

TCP administration also resulted in a significant reduction 

in exon IV mRNA expression in the DG (-30.2%, p<0.05; Table 

3.3; Figures 3.9 and 3.17). Additionally, the DA~/NA­

selective reuptake inhibitor methylphenidate also produced a 

significant inhibitory effect in the DG (-37.7%; p<0.05) and 

CA3 (-34.7%; p<0.05; Table 3.3; Figures 3.10 and 3.18). The 
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DA-selective compound GBR 12909 resulted in the largest 

inhibition in DG levels (-50.0%; p<O.Ol; Table 3.3; Figures 

3.11 and 3.19). CA3 levels were also significantly reduced 

by 34.1% (p<0.05). CAl levels were not significantly 

affected by acute treatment of any compound tested at 4h. 

The data presented in the proceeding tables (chapters 3-6) 

is presented in indexed form. This enabled figures from 

different experiments to be standardised for comparison 

(Zetterstr6m et aI, 1999; Coppell et aI, 2003). 
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Xable 3.1. Effect of acute drug treatment on BDNF mRNA 
expression in the rat hippocampus 4h after injection. Data 
presented as percentage of control ***p<O.OOl, **p<O.Ol, 
*p<O.05 compared to control (ANOVA with Bonferroni's post­
hoc test) 

CAl CA3 DG 

Vehicle n=6 lOO±5.3 IOO±4.8 lOO±Il.3 
Fluoxetine n=6 82.3±18.1 82.7±7.8 72.5±6.0* 

Saline n=6 lOO±2.3 IOO±1.9 IOO±7.1 
J?aroxetine n=6 IOO±4.9 81.4±3.4* 79.4±5.6* 

Saline n=5 lOO±IO.l IOO±13.2 lOO±11.2 
Citalopram n=5 90.0±8.9 75.6±3.0* 62.2±6.3u 

Vehicle n=6 IOO±5.3 lOO±4.8 lOO±1l.3 
Desipramine n=6 76.0±23.4 78.7±7.8 60.4±12.8* 

Saline n=5 lOO±lO.l lOO±13.2 IOO±1l.2 
Maprotiline n=S 96.8±12.5 86.0±8.8 66.6±8.4*· 

Saline n=6 IOO±2.3 lOO±1.9 lOO±7.l 
Tranylcypromine n=S 94.0±3.3 79.1±3.3* 57.4±4.0··* 

Saline n=6 lOO±6.0 lOO±7.1 lOO±5.3 
Methylphenidate n=S lO9.3±8.1 85.2±3.8 66.6±1O.0· 

Saline n=5 lOO±lO.l lOO±13.2 lOO±1l.2 
GBR 12909 n=S 94.1±9.3 81.4±9.3 60.1±9.1··· 
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Table 3.2. Effect of acute drug treatment on BDNF exon I 
mRNA expression in the rat hippocampus 4h after injection. 
Data presented as percentage of control ***p<O.OOl, 
**p<O.Ol, *p<O.05 compared to control (ANOVA with 
Bonferroni's post-hoc test) 

CAl CA3 DG 

Vehicle n=6 lOO±6.1 lOO±7.0 lOO±12.9 
Fluoxetine n=6 87.6±18.1 85.3±4.7 84.4±7.3 

Saline n=6 IOO±5.4 IOO±5.8 IOO±3.9 
Paroxetine n=6 lOO±7.0 lO5±2.0 101.1±3.1 

Saline n=4 IOO±8.9 IOO±13.2 IOO±13.0 
Citalopram n=4 98.4±8.3 84.8±19.0 99.1±9.9 

Vehicle n=6 IOO±6.1 IOO±7.0 IOO±12.9 
Desipramine n=6 84.3±13.4 84.3±13.3 84.4±7.3 

Saline n=4 IOO±8.9 IOO±13.2 lOO±13.0 
Maprotiline n=4 1I2.9±11.0 80.0±7.0 86.1±4.4 

Saline n=6 lOO±4.4 lOO±2.8 lOO±O.9 
Tranylcypromine n=6 90.6±2.8 I01.l±3.7 87.0±3.7 

Saline n=4 IOO±8.9 IOO±13.2 lOO±13.0 
Methylphenidate n=4 1Il.1±11.1 88.3±10.9 112.3±6.0 

Saline n=4 IOO±8.9 lOO±13.2 lOO±13.0 
GBR 12909 n=4 103.6±11.0 lO9±9.6 l03.5± 19.9 
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Table 3.3. Effect of acute drug treatment on BDNF exon IV 
mRNA expression in the rat hippocampus 4h after injection. 
Data presented as percentage of control ***p<O.OOl, 
**p<O.Ol, *p<O.05 compared to control (ANOVA with 
Bonferroni's post-hoc test) 

CAl CA3 DG 

Vehicle n=6 lOO±16.7 100±10.7 100±16.4 
Fluoxetine n=6 89.4±8.5 87.8±7.3 63.5±6.5** 

Saline n=6 lOO±2.8 lOO±1.7 lOO±3.2 
Paroxetine n=6 91.9±4.l 85.4±3.4 75.3±3.1· 

Saline n=5 lOO±5.8 lOO±8.8 lOO±6.3 
Citalopram n=5 72.1:!:20.6 64.9:!:16.1· 65.6±18.2· 

Vehicle n=6 lOO±16.7 lOO±1O.7 1 OO±l 6.4 
Desipramine n=6 85.3±6.5 76.9±8.1 67.9±5.8· 

Saline n=5 lOO±5.8 lOO±8.8 lOO±6.3 
Maprotiline n=4 71.5±7.8 65.3±11.3· 62.1±15.4· 

Saline n=6 lOO±2.8 lOO±1.7 100±3.2 
Tranylcypromine n=6 85.4±2.8 83.8±3.9 69.8±5.0** 

Saline n=4 lOO±8.9 lOO±13.2 lOO±13.0 
Methylphenidate n=4 71.5±9.3 65.3±8.1· 62.3±6.8· 

Saline n=4 lOO±5.8 lOO±9.4 lOO±6.5 
GBR 12909 n=4 86.1:!:9.3 65.9±9.6· 50.0± 19.9** 
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exon I and BDNF exon IV mRNA expression in the rat hippocampus, 4h after injection. Data 

presented as percentage of control ***p<O . OOl , **p<O . Ol , *p<0 . 05 compared to control 
(ANOVA with Bonferroni ' s post - hoc test) 

94 



rl 
0 
S--l 120 
+J 
c 
0 
u 100 
S--l 
Q) 

~ 80 0 

c 
0 60 -rl 
rJ) 

rJ) 

Q) 
40 S--l 

~ 
~ 
Q) 

20 
~ z 
0::; 
S 0 

0\0 I ~~~~ I ~~~~ I ~~ I ~~~~ I ~~~~ I ~'-' 

BDNF Exon 1 Exon 4 

DSal i ne 

Paroxetine 

Figure 3.5. Effect of acute paroxetine (5mg/kg i.p) treatment on total BDNF mRNA, BDNF 
exon I and BDNF exon IV mRNA expression in the rat hippocampus 4h after injection . Data 

presented as percentage of control ***p<O . OOl , **p<O . Ol , *p<O . 05 compared to control 
(ANOVA with Bonferroni ' s post - hoc test) 

95 



rl 
o 120 
H 
+.J 
I=! 

8 100 

H 
Q) 

~ 
o 
I=! 
o 

. ,-j 

CIl 
CIl 
Q) 
H 
0. 
~ 
Q) 

~ 
:z; 
~ 
S 

80 

60 

40 

20 

o 'Ie-sa, a;:r: 

dP 

CAl i CA3 1 DG 

BDNF 

CAl i CA3 1 DG 

Exon 1 

CAl i CA3 1 DG 

Exon 4 

[J Saline 
Citalopram 

Figure 3.6. Effect of acute citalopram (lOmg/kg i.p) treatment on total BDNF mRNA, BDNF 
exon I mRNA and BDNF exon IV mRNA expression in the rat hippocampus, 4h after inj e ction . 

Data presented as percentage of control ***p<O . OOl , **p<O . Ol , *p<O . 05 compared to control 
(ANOVA with Bonferroni ' s post - hoc test) 

96 



<3 140 
lo-l 

.j..J 

§ 120 
o 

~ 100 
:> 
o 

~ 
o 

-rl 
(f) 
(f) 
(1) 

lo-l 
n. x 
(1) 

~ 
0::: 
8 

80 

60 

40 

20 

dP 
o +'~L-~~~-L~----~~4--L~~~~ __ +-~-+~ __ ~~4-__ ~ 

CAl i CA3 I DG CAl i CA3 I DG CAl I CA3 I DG 

BDNF Exon 1 Exon 4 

D Saline 

D Desipramine 

Figure 3.7 . Effect of acute desipramine (lOmg/kg i.p) treatment on total BDNF mRNA, exon 
I mRNA and exon IV mRNA expression in the rat hippocampus, 4h after injection. Data 
pre sented as percentage of control **p<O . OOl , **p<O . Ol , *p<O . 05 compared to control 

(ANOVA with Bonferr oni ' s post - hoc test) 

97 



r-l 140 
0 
H 
+J 
~ 120 
0 
0 

H 100 
OJ 
:> 
0 

~ 
80 J 1** C Saline 

0 
-.-I C Maprotiline 
Cf} 

60 Cf} 

OJ 
H 
~ 40 X 
OJ 

F::t: 20 

~ 
0\0 0 

CAl I CA3 I DG CAl I CA3 I DG CAl I CA3 I DG 

BDNF Exon 1 Exon 4 

Figure 3 . 8. Effect of acute maprotiline (lOmg/kg i.p) treatment on total BDNF mRNA, BDNF 
exon I and BDNF exon IV mRNA expression in the rat hippocampus, 4h after injection. Data 

prese nted as percentage of control **p<O . OOl , **p<O . Ol , *p<0 . 05 compared to control 
(ANOVA with Bonferroni ' s post - hoc test) 

98 



.-j 120 
0 
lo-l 
.w 
I:: 100 0 
0 

lo-l 
(1) 

80 ~ 
0 

I:: 
0 60 • ..-l 
[JJ 
[JJ 
(1) 

lo-l 40 0. 
X 
(1) 

~ 20 z p:; 
~ 

0\0 0 
I CAl I CA3 

BDNF Exon 1 Exon 4 

[]Saline 

TCP 

Figure 3.9. Effect of acute tranylcypromine (5mg/kg i.p) treatment on total BDNF mRNA, 
exon I mRNA and exon IV mRNA expression in the rat hippocampus, 4h after injection. Data 
presented as percentage of control **p<O . OOl , p<O . Ol , *p<0.05 compared to c ontro l (ANOVA 

with Bonferroni ' s post - ho c test) 

99 



rl 140 
0 
lo-l 

.jJ 

120 c 
0 
0 

lo-l 100 
OJ 
!> 
0 

c 80 
0 

-rl 
(f) 60 (f) 

OJ 
lo-l 
P, 

40 :x: 
OJ 

~ z 20 
0:: 
8 

riP 0 
I 

CAl I CA3 I DG I CAli CA31 DG 

BDNF Exon 1 

CAli CA3 I DG 

Exon 4 

C Saline 
Meth 

Figure 3.10. Effect of acute methylphenidate (4mg/kg i.p) treatment on total BDNF mRNA, 
exon I mRNA and exon IV mRNA expression in the rat hippocampus, 4h after injection. Data 
presented as percentage of control **p<O . OOl , p<O . Ol , *p<O . OS compared to control (ANOVA 

with Bonferroni ' s post - hoc test) 

100 



140 

.---i 
0 120 
H 

.j...J 

s::: 
0 
u 100 
H 
(l) 

~ 
0 

80 
s::: 
0 

-ri 
CI) 
(f) 60 
(l) 

H 
0.. 
:x: 
(l) 

40 
r<X:! z 
~ 

20 
Of> 

0 
I 

CAl I CA3 I DG I CAl I CA3 I DG 

BDNF Exon 1 

** 

CAl I CA3 I DG 

Exon 4 

C Saline 

GBR 

Figure 3 . 11. Effect o f acute GBR 12909 (10mg/kg i .p) treatment on tota1 BDNF mRNA, BDNF 
exon I mRNA and BDNF exon IV mRNA expression in the rat hippocampus, 4h after injection. 
Data presented as percentage of control ***p<O . OOl , **p<O . Ol , *p<O . 05 compared to control 

(ANOVA with Bonferroni ' s post - hoc test 

101 



Ahmad Adam Khundakar Chapter Three 

B 

E 

Figure 3.12. In-situ hybridisation images showing the effect 
of acute fluoxetine (10mg/kg i . p) treatment on AlB total 

BDNF ; C/D exon I ; ElF exon IV mRNA in the rat hippocampal 
region at 4h . Control groups are situated left . 
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Figure 3.13. In-situ hybridisation images showing the effect 
of acute paroxetine (5mg/kg i . p) treatment on AlB total 

BDNF; C/D exon I ; ElF exon IV mRNA in the rat hippocampal 
region at 4h . Control groups are situated left . 
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Figure 3.14. In-situ hybridisation images showing the effect 
of acute citalopram (10mg/kg i . p) treatment on AlB total 

BDNF i c/D exon I i ElF exon IV mRNA in the rat hippocampal 
region at 4h . Control groups are situated left . 
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F 

Figure 3.15. In-situ hybridisation images showing the effect 
of acute desipramine (lOmg/kg i . p) treatment on A/B total 
BDNF; C/D exon I ; E/F exon IV mRNA in the rat hippocampal 
region at 4h . Control groups are situated left. 
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Figure 3.16. In situ hybridisation images showing the effect 
of acute maprotiline (10mg/kg i . p) treatment on A/B total 

BDNF; C/D BDNF exon I mRNA and E/F exon IV mRNA in the rat 
hippocampal region at 4h . Control groups are situated left . 
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Figure 3.17. In-situ hybridisation images showing the effect 
of acute tranylcypromine (5mg/kg i . p) treatment on AlB total 
BDNF; C/D exon I and ElF exon IV mRNA in the rat hippocampal 
region at 4h . Control groups are situated left . 
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Figure 3.18. In-situ hybridisation images showing the effect 
of acute methylphenidate (4mg/kg i . p) treatment on AlB total 

BDNFi C/D exon I mRNA and ElF exon IV mRNA in the rat 
hippocampal region at 4h . Control groups are situated left . 
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Figure 3.19. In-situ hybridisation images showing the effect 
of acute GBR 12909 (10mg/kg i . p) treatment on A/B total 

BDNF i C/D exon I mRNA and E/F exon IV rnRNA in the rat 
hippocampal region at 4h . Control groups are situated left . 
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3.4. Discussion 

3.4.1. Summary of results 

In this series of studies, reliable and measurable basal 

BDNF mRNA expression was confined to the hippocampus. Within 

the hippocampus, the DG and CA3 showed high levels of BDNF 

mRNA expression in comparison to the CAl area. Likewise, 

among the variable exon-containing transcripts, exon I and 

exon IV were also present in measurable levels in the 

hippocampus only. Basal exon IV mRNA expression appeared to 

be highest in the DG, whilst exon I mRNA displayed a more 

uniform distribution among the regions of the hippocampus. 

No significant basal expression was detected among exon II 

or exon III mRNA in any area of the brain measured. 

This chapter aimed to examine the effect of a number of 

antidepressant drugs, when given acutely, on total BDNF 

mRNA, as well as mRNAs corresponding to the variable BDNF 

exons I and IV expression in the rat hippocampus at 4h. The 

antidepressant drugs used comprised of the SSRls fluoxetine, 

paroxetine and sertraline; the noradrenergic TeA 

desipramine; the noradrenergic tetracyclic compound 

maprotiline and the non-selective MAOI tranylcypromine. In 
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addition for comparison, two compounds with varying 

affinities for dopamine reuptake blockade, the non-selective 

NAIDA reuptake blocker methylphenidate and the selective DA 

transporter blocker GBR 12909 were assessed. All compounds 

assessed resulted in a significant inhibition in total BDNF 

mRNA levels in the DG region of the hippocampus, paroxetine 

and TCP also down-regulated BDNF mRNA levels in the CA3. 

Additionally, all compounds assessed significantly inhibited 

BDNF exon IV mRNA in the DG acute citalopram, maprotiline, 

methylphenidate and GBR 12909 also down-regulated CA3 

levels. However, all compounds assessed had no significant 

effect on exon I mRNA expression in any area of the 

hippocampus. 

3.4.2. Basal distribution of total BDNF mRNA 

The present study showed that basal levels were found to 

exist in a measurable quantity in the hippocampal region 

only. Within the hippocampus, the highest levels were 

present in the CA3 and DG regions, with lower levels present 

in the CAl. Signals were detected in the piriform and 

cingulate cortices, however they were generally low and 

immeasurable. A signal was also detected in the parietal 

cortex, this signal was very weak and there were no 
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difference in expression through the different layers of 

this region. No labelling was present in the striatum. The 

lack of mRNA expression against background levels in areas 

other than the hippocampus may have led to inaccurate 

analysis, thus the study focussed on hippocampal areas. 

Previous studies have also demonstrated the highest basal 

incidence of total BDNF mRNA in hippocampal areas (Ernfors 

et aI, 1990; Hofer et aI, 1990; Phillips et aI, 1990; 

Schmidt-Kastner et aI, 1996). Additionally, in common with 

this study, differential BDNF mRNA expression has been found 

within the hippocampus. High levels were recorded in the CA3 

band as well as the DG, with low to moderate levels in the 

CAl (Hofer et aI, 1990; Phillips et aI, 1990; Timmusk et aI, 

1993; Schmidt-Kastner et aI, 1996). However, in contrast to 

our study, significant, measurable levels have also been 

found in cerebral and piriform cortices in other in-situ 

hybridisation studies (Hofer et aI, 1990; Timmusk et aI, 

1993). 

A possible reason for the differences in density between the 

current and previous studies may have been due to the type 

of radioactive probes used in the in-situ hybridisation 

experiments. The present study used S35-labelled 
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oligonucleotides, while other studies (Tirnmusk et aI, 1993; 

Schmidt-Kastner et aI, 1996) have used p32 riboprobes, as 

opposed to DNA probes used in the present study. Riboprobes 

are generally more selective and therefore more sensitive, 

and possess the ability to detect very low levels of basal 

mRNA (Braissant and Wahli, 1998). 

In accordance with previous studies a significant level of 

basal exon I transcript expression was detected in the 

hippocampus (Bishop et aI, 1994; Berchtold et aI, 1999; 

Russo-Neustadt et aI, 2000). However, whilst the present 

study found relatively little difference between the various 

hippocampal sub-regions a previous study (Russo-Neustadt et 

aI, 2000) reported a somewhat lower density in the CAl 

compared to the CA3 or DG. Generally, basal exon IV mRNA 

expression appeared to be less abundant than basal exon I 

mRNA and was mainly restricted to the DG region of the 

hippocampus. Exon IV has been shown to be present in the 

brain, with high levels present in the hippocampus (Tirnmusk 

et al, 1993; Bishop et aI, 1994). Previous studies have 

found a similar pattern of expression of exon IV mRNA to 

this study within the hippocampus, with expression being 

predominant in the DG granular cell layer (Tirnmusk et aI, 

1993; Bishop et aI, 1994). 
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In contrast to some previous studies (Timmusk et ai, 1993; 

Lauterborn et ai, 1998; Russo-Neustadt et ai, 2000), the 

oligonucleotide probes used in our experiments failed to 

detect significant basal exon II or exon III mRNA signal in 

any area of the brain. No signal was detected in any 

experiment using two different probes with sequences 

corresponding to exon II mRNA. In contrast to exon II mRNA, 

a strong exon III mRNA signal was detected in hippocampal 

areas after strong stimuli (acute ECS), indicating that the 

exon III probe could hybridise. However, the basal 

expression was deemed too weak against background levels to 

ensure accuracy. The reasons behind the lack of basal exon 

II and exon III signal are unclear, however earlier studies 

mainly used more sensitive riboprobes in favour of DNA 

probes used here. Therefore a weaker signal, such as that 

found with exon III mRNA in the present study, may have been 

more easily detected in earlier studies. 

3.4.3. The effect of acute administration of antidepressant 

drugs on BDNF mRNA in the hippocampus at 4h 

The individual acute administration of a variety of 

antidepressant drugs, as well as two centrally-acting 
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stimulants: the selective DA transporter GBR 12909 and the 

non-selective NAIDA reuptake blocker methylphenidate, all 

elicited a significant inhibition of BDNF mRNA in the DG 

area of the hippocampus at 4h. In addition, acute paroxetine 

or TCP treatment also caused a significant inhibition in 

BDNF mRNA levels in the CA3 region. No significant changes 

were seen in the CAl, after acute administration of any of 

the compounds tested. 

A previous study using similar ISH techniques, doses and 

experimental procedure (Coppell et al, 2003), found similar 

reductions in BDNF mRNA from acute SSRI (fluoxetine at 

10mg/kg, paroxetine at 5mg/kg and sertraline at 10mg/kg) and 

MAOI (TCP; 5mg/kg) treatment in the DG at 4h. However, in 

contrast to the present study, no changes in BDNF mRNA were 

seen after acute administration of the selective NARI 

desipramine (Coppell et al, 2003). As acute desipramine 

elicited a significant response in BDNF mRNA in the present 

study, a further NA-selective compound was tested. Acute 

maprotiline administration also resulted in a reduction in 

BDNF mRNA at 4h in the DG region. The results in the present 

study therefore appear to contradict the assertion that 

acute inhibitory response is predominantly a 5-HT-mediated 
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mechanism (Coppell et al, 2003) and imply an equivocal role 

for NA. 

Acute administration of the MAOI TCP resulted in the acute 

down-regulation of BDNF mRNA in the DG and CA3 in both 

studies (the largest reduction in DG levels of any 

antidepressant tested in our study). TCP is non-selective 

among MAO isoenzymes, therefore it has effects on type B 

MAO, which deaminates DA (Murphy et al, 1987). TCP has been 

demonstrated to cause a significant decrease in DA 

metabolism (Dyck et ai, 1993; Martin et ai, 1995). This 

suggested a possible role for DA-related mechanisms in the 

acute inhibition in BDNF mRNA. Thus, two centrally-acting DA 

stimulants, the mixed DA/NA reuptake blocker methylphenidate 

and the selective DA transporter blocker GBR 12909, were 

administered acutely. A single treatment with either drug 

resulted in the inhibition of BDNF mRNA levels of a similar 

magnitude to the antidepressants tested in the DG at 4h. 

This implicates a role for DA in the acute regulation of 

BDNF mRNA expression in the DG region of the hippocampus. In 

addition, as both methylphenidate and GBR 12909 have a 

negligible effect on serotonergic transmission, suggesting 

that the acute inhibitory BDNF response may occur 

independently of 5-HT. 
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Studies relating to the effect of acute DA receptor blockade 

on BDNF mRNA have revealed interesting findings. Acute 

administration of the unselective DAantagonist haloperidol 

has been shown to lead to a reduction in hippocampal BDNF 

mRNA (Lipska et aI, 2001; Meredith et aI, 2004). Dz 

receptors are linked to cAMP via Giproteins and are 

inhibitory on consequential cAMP-mediated signalling. 

Therefore, if located on DA neurones, they will cause a 

reduction in DA release (Missale et aI, 1998; Meredith et 

aI, 2004). Thus blockade of hippocampal D2 autoreceptors by 

haloperidol may result in a similar effect on extracellular 

DA concentration as a blockade on the DA transporter by GBR 

12909 and methylphenidate. 

Overall, the results in the present study indicate that 

acute inhibition in BDNF mRNA in the DG is a non-selective 

phenomenon that may be induced by general facilitation of 

monoamine NA, 5-HT or possibly DA transmission. 

3.4.4. The effect of acute administration of antidepressant 

drugs on BDNF exon transcript mRNA in the hippocampus at 4h 

Acute administration of various types of antidepressant 

drug, as well as the NAIDA reuptake blocker methylphenidate 
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and the selective DA transporter blocker GBR 12909 had a 

variable effect on mRNA for specific BDNF exon transcripts 

at 4h. In accordance with the effect on total (exon V) BDNF 

mRNA, exon IV mRNA was inhibited after all antidepressants 

tested acutely, as well as methylphenidate and GBR 12909. 

Additionally, acute methylphenidate or GBR 12909, or 

citalopram or maprotiline, also significantly reduced CA3 

exon IV mRNA levels at 4h. 

AS mentioned earlier, exons III and IV have been shown to 

share properties with lEGs (Lauterborn et aI, 1996; 1998). 

This implies that acute alterations in expression may occur 

in exon IV mRNA without intervening protein synthesis­

dependent mechanisms. It is thus feasible that changes could 

occur in the expression within the short space of time post­

injection (4h) in this series of experiments. In contrast, 

the acute administration of the various antidepressants, as 

well as methylphenidate and GBR 12909, had no effect on exon 

I mRNA at 4h in any area of the hippocampus. Changes in exon 

I and II transcription have been demonstrated to protein 

synthesis-dependent (Lauterborn et aI, 1996; 1998) and 

display a delayed induction process (Kokaia et aI, 1994). 

This implies that the time period post-injection may have 
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been insufficient for significant changes in exon I mRNA to 

Occur. 

Net BDNF expression in the brain depends on the cumulative 

activities of its multiple alternative exon-containing 

transcripts (Timmusk et aI, 1993; Nakayama et aI, 1994; 

Bishop et aI, 1997). Therefore, the inhibition in exon IV­

containing transcripts may account in part for the net 

inhibition in BDNF mRNA in the DG. However, the influence of 

exon IV mRNA inhibition in the CA3 area appears more 

complex. Whilst total BDNF mRNA was significantly inhibited 

in the CA3 after acute paroxetine and TCP, exon IV mRNA was 

significantly inhibited in the CA3 by citalopram, 

maprotiline as well as methylphenidate and GBR 12909 at 4h. 

However, there was a general inhibitory trend on both total 

BDNF and exon IV transcripts in the CA3 and DG. The mixed 

pharmacological nature of the compounds which inhibited exon 

IV as well as total BDNF transcription, suggests that the 

inhibitory response in the CA3 and DG areas is not solely 

specific to either 5-HT or NA manipulations, but a more 

general response, possibly also involving DA. 

A recently published BDNF exon study (Dias et aI, 2003), has 

found fairly conflicting findings to the results presented 
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here. A reduction in exon IV mRNA was recorded in the CAl 

area after acute fluoxetine treatment, however acute 

desipramine and TCP treatment did not influence exon IV 

mRNA, no drug affected CA3 or DG mRNA expression. Variation 

in drug doses between the experiments could have accounted 

for this lack of effect. The post-injection time period (2h) 

was also half the length of that in our experiment. It may 

be possible that the time period in this experiment is too 

short for the threshold for a change in exon IV mRNA 

expression to occur. A further finding in the Dias et al 

(2003) study appears to contradict earlier reports 

(Lauterborn et aI, 1996; 1998). Dias et al (2003), found 

that exon II mRNA was inhibited after acute desipramine and 

TCP. Changes in exon II mRNA have been shown to be protein 

synthesis-dependent. This would imply that a prolonged 

period of time would be required for proceeding activation 

of further responsive genes (Clayton, 2000). As our study 

failed to find any significant basal signal using exon II 

mRNA-specific probes this inhibitory effect cannot be 

confirmed, though the lack of effect on exon I mRNA from 

acute treatment of the various compounds tested appears to 

support earlier findings (Lauterborn et aI, 1996; 1998). 
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A further recently published study RT-PCR study (Altieri et 

al, 2004) however appears to support the inhibitory effect 

seen on exon IV mRNA in the hippocampus after acute 

antidepressant treatment as seen in the present study. The 

group found similar significant reductions in overall 

hippocampal exon IV, but not exon I, II or III mRNA after 

acute fluoxetine (Smg/kg) administration at Sh. 

In conclusion, it was found in the present study that the 

acute administration of the antidepressants fluoxetine, 

paroxetine, citalopram, desipramine, maprotiline or TCP, or 

the mixed NAIDA reuptake blocker methylphenidate or the 

selective DA transporter blocker GBR 12909, all resulted in 

the significant inhibition in total BDNF mRNA in the DG area 

of the hippocampus. The inhibitory effect on total BDNF mRNA 

in the DG appeared to be due in part to the inhibition of 

BDNF exon IV mRNA, which was significantly down-regulated 4h 

in the same area after acute fluoxetine, paroxetine, 

citalopram, desipramine, maprotiline or TCP administration. 

In addition, acute paroxetine or acute TCP significantly 

reduced CA3 total BDNF mRNA levels. Exon IV mRNA expression 

was significantly inhibited in the CA3 by acute citalopram, 

methylphenidate or GBR 12909. In contrast, no change was 

seen in exon I mRNA after acute administration of the 

121 



Ahmad Adam Khundakar Chapter Three 

various antidepressants tested in any area of the 

hippocampus at 4h. 

The next chapter aims to elucidate the mechanisms behind the 

apparent acute inhibition in BDNF mRNA in the adult rat 

hippocampus. 
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Chapter Four 

Involvement of GABA Receptor Activation in the 

Acute Down-Regulation of BDNF mRNA 

Expression in the Rat Hippocampus 
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4.1. Introduction 

Chapter three outlined the acute effects of several 

antidepressant compounds on the BDNF gene in the rat 

hippocampus. It was discovered that acute administration of 

several classes of antidepressants, as well as the 

selective DA transporter blocker GBR 12909 or the NAIDA 

reuptake blocker methylphenidate, inhibited BDNF mRNA in 

the DG (as well as in the CA3 after paroxetine or TCP 

treatment) at 4h. This net reduction in the expression for 

the whole gene appeared to be due in part to selective 

inhibition in variable exon IV-containing transcript 

expression. The reasons behind the acute inhibition in 

total BDNF mRNA and corresponding individual exon mRNA 

expression in the hippocampus remain erroneous. 

It has been suggested that the initial transient inhibitory 

effect on BDNF mRNA as a result of acute antidepressant 

administration may be due to the presence of GABA 

interneurone architecture in the polymorphic layers of the 

hippocampus (Vaidya et al, 1997; Zetterstr~m et al, 1999; 

Vaidya and Duman, 2001). Electrophysiological studies have 

revealed the presence of excitatory 5-HT receptors (i.e. 5-

HT2, 5-HT4, 5-HT6, 5-HT7), in high levels on hippocampal 
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interneurones (Freund et al , 1990 ; Piguet and Galvan , 

1994) . The acute activation of these receptors is thought 

to facilitate spontaneous GABA release and increase 

inhibitory control over the hippocampal cells (Piguet and 

Galvan , 1994) . GABA has been shown to inhibit BDNF mRNA 

levels (Zafra et al , 1991 ; Marmigere et aI , 2003) . Thus , an 

increase in GABA release as a result of activation of 5-HT 

receptors present on interneurones may underlie the acute 

inhibitory effect of antidepressant drugs on BDNF mRNA . 

t IPSPs 

! BDNF 

GABAergic 
interneuron ~ 

5-HT/NAIDA 

Figure 4.1. Possible mechanism of monoamine - mediated 
inhibition of BDNF MRNA in the DG region of the 
hippocampus . Activation of excitatory monoamine receptors 
increases the firing rate of local GABAergic inteneurones 
and thereby increases IPSPs in the granule cells . Thus 
increased inhibitory control over BDNF mRNA (Adapted from 
Vaidya et al , 1997) . 
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treatment , such as with alcohol (Mhatre and Ticku , 1993 ; 

Grobin et ai , 1998) or benzodiazepines (Holt et ai , 1996 ; 

Impagnatiello et ai , 1996) . The receptor is ligand-gated 

with a heteropentameric structure and integral anion 

channel . THIP is a potent GABAA activator and binds tightly 

to the GABAA receptor (Krogsgaard- Larsen et al , 1977 ; 1979) 

It is capable of activating (with differing potencies) a 

broad range of GABAA receptor subunit configurations (Ebert 

et ai , 1994) . 

HN 

OH 

THIP 

Flunitrazepam 

Figure 4.2. Structures of selected GABAA- related compounds : 
the GABAA agonist THIP and the benzodiazepine agonist 
flunitrazepam 

The GABAA receptor also contains a benzodiazepine- binding 

site , which when activated increases the affinity for GABA 

to bind with the GABAA receptor (Korpi et ai , 2002) . 

Flunitrazepam is a full benzodiazepine agonist , which 
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induces its effects by increasing the opening frequency of 

the integral GABAA Cl- receptor channel (Korpi et al , 2002 ; 

Davies and Alkana , 2003) 

Antagonists-
Inverse Agonists + ~ ___ ~~ 
OBI Peptides + 

Convulsivants 1. - J rJ.~~~~ 
Picrotoxin , )< 
rsps 

t 
.. --- GABA Agonists + 

Muscimol 

~ GABA Antagon ists 1 
Bicuculline , 

~;}'V<x;,vy...c...- Barorturates + 
.... -'_IIlI<;o.-+-tt-Ifflt~ Neuroactive Steroids + 

~~~~~-AlcohOls + 
Anesthetics + 

Figure 4.3. Schematic illustration of the GABAA receptor 
structure containing two a and ~ subunits and a single y 
subunit to form an intrinsic Cl - ion channel . Putative 
ligands and drugs are known to interact at one of the major 
sites associated with the GABAA receptor and to either 
positively or negatively modulate GABA- gated Cl - ion 
conductance are also illustrated (Adapted from Cooper et 
al , 1996) 
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4 . 1 . 1 . 2 . GABAB receptors 

The GABAB receptor is distributed widely throughout the 

rodent and human CNS , including the hippocampus (Bowery et 

ai , 1987 ; Chu et ai , 1990) . In contrast to GABAA, GABAB 

receptors are not ligand- gated channels but instead are 

negatively linked to a variety of cellular effectors via Gi 

proteins , including AC , Ca 2+ and K+ ; Kaupmann et ai , 1998 ; 

Bowery , 2002) . Baclofen is a potent GABAB receptor agonist 

and has been shown to possess widespread inhibitory effects 

on transmitter release including NA, 5- HT , glutamate and 

GABA (Bowery and Hudson , 1979 ; Ong and Kerr , 2000) . 

OH 

Cl 

Figure 4.4. Structure of the GABAB receptor agonist baclofen 
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The two antagonist compounds used in this study , CGP 55845 

and CGP 46381 , are both potent to the GABAB receptor . CGP 

46381 is highly brain penetrant and has been demonstrated 

to block late inhibitory postsynaptic potentials (IPSPs) in 

vivo and enhance cAMP production (Lingenhoeh1 and 01pe , 

1993) . CGP 55845 is less penetrant than CGP 46381 , but has 

been demonstrated to be a potent antagonist of hippocampal 

GABAB receptors in the hippocampus (Davies et aI , 1993) . 

o 
11('1 

H2N~P~ 
I 
01 

CGP 46381 

HN~P\~ 
OH f/OK V 

Me 

CI 

CGP 55845 

Figure 4.5. Structure of the GABAB receptor antagonists CGP 
46381 and CGP 55845 

4.1.2. Hippocampal GABA architecture 

GABA interneurones form a core component to the cortico-

limbic circuitry and have been identified using Golgi 

staining and more recently through cytochemical and 

electrophysiological techniques (Freund and Buzsaki , 1996) . 

These cells provide both inhibitory and dis - inhibitory 
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modulation of cortical and hippocampal circuits and 

discriminate sensory information within cortico-limbic 

areas (Benes and Beretta, 2001). 

4.1.2.1. FUnction of hippocampal GABAergic neurones 

Hippocampal electrophysiological studies have revealed that 

the action of GABA is typically inhibitory (Krnjevic, 1981; 

Ben-Ari, 1981) and involved in feedback or feedforward 

inhibition (Benes and Beretta, 2001). Feedback inhibition 

occurs when an excitatory input activates the pyramidal 

neurone, which then facilitates inhibitory neurones 

(Andersen et aI, 1964). In the feedforward system, 

pyramidal neurones of the CA3 project to other pyramidal 

cells in the CAl. These excitatory neurones then feed into 

the inhibitory neurones of the CAl causing a reduction in 

the excitability of pyramidal neurones in the CAl (Buzsaki, 

1984) . 

The present chapter focuses on the effect of acute 

administration of three compounds with varying GABA 

receptor agonistic actions on hippocampal BDNF mRNA, as 

well as BDNF exon I and exon IV mRNA at 4h. Additionally, 

in order to confirm the role of the GABAB receptor 
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activation in the inhibitory BDNF response after acute 

antidepressant drug treatment, two GABAs receptor 

antagonists were tested, given before acute paroxetine 

treatment. 
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4.2. Methods 

4.2.1. Administration of acute GABA receptor agonists 

Male Sprague-Dawley rats (225-250g) were injected (i.p) 

once with either saline (lml/kg), the GABAA receptor agonist 

THIP (10mg/kg), the benzodiazepine flunitrazepam (lOmg/kg) 

or the GABAB receptor agonist baclofen (10mg/kg) in 0.9% 

saline and observed for behavioural changes for 4h before 

being sacrificed. Brains were isolated before being placed 

in cooled isopentane and stored at -70°C until further use. 

BDNF and various BDNF exon mRNA expression was measured by 

densitometric analysis as described in Chapter 2. 

4.2.2. GABAB antagonist pre-treatment 

Male Sprague-Dawley rats (225-250g) were injected (i.p) 

once with either saline (1ml/kg), CGP 55845 (10mg/kg) or 

CGP 46381 (10mg/kg) in 0.9% saline and observed for 

behavioural changes for 30 mins, before being injected 

(i.p) with either saline (1ml/kg), baclofen (lOmg/kg) or 

paroxetine (5mg/kg). Animals were observed for a further 4h 

before being sacrificed. Brains were isolated before being 

frozen in cooled isopentane and stored at -70°C until 
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further use. BDNF and various BDNF exon mRNAs were measured 

by densitometric analysis as described in Chapter 2. 
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4.3. Results 

4.3.1. The effect of acute administration of GABA receptor 

compounds on BDNF mRNA and BDNF exon mRNA expression 

4.3.1.1. Effect on total BDNF mRNA 

The GABAA receptor agonist THIP failed to produce any 

significant effect on BDNF mRNA in any area of the 

hippocampus at 4h. Although CA3 levels were inhibited 

slightly, mRNA increased in the CAl and the DG (Table 4.1; 

Figures 4.6, 4.9). The full benzodiazepine receptor agonist 

flunitrazepam failed to significantly alter BDNF mRNA, 

though levels were inhibited slightly in the CAl, CA3 and 

DG (Table 4.1; Figures 4.7, 4.10). The GABAB receptor 

agonist baclofen significantly inhibited BDNF mRNA in the 

CA3 (-20.9%; p<0.05) and DG (-42.6%; p<O.OOl), though not 

in the CAl (Table 4.1; Figures 4.8, 4.11). 

4.3.1.2. Effect on BDNF exon I mRNA expression 

None of the GABA-ergic agonist compounds used had any 

significant effect on BDNF exon I mRNA in any area of the 

hippocampus (Table 4.2; Figures 4.6 to 4.11). 
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4.3.1.3. Effect on BDNF exon IV mRNA expression 

The three compounds tested had varying effects on BDNF exon 

IV mRNA in the rat hippocampus. THIP (Table 4.3; Figures 

4.6, 4.9) and flunitrazepam (Table 4.3; Figures 4.7, 4.10) 

had no significant effect on exon IV mRNA in any area of 

the hippocampus. Baclofen however significantly inhibited 

levels in the DG (-40.1%; p<O.OOl), but not the CA3 or CAl 

(Table 4.3; Figures 4.8, 4.11). 

4.3.2. The effect of GABAB antagonist pre-treatment on 

baclofen/paroxetine-mediated down-regulation of BDNF mRNA 

4.3.2.1. Effect of acute baclofen and paroxetine 

administration 

When administered without either CGP compound (30 minutes 

after saline), baclofen produced a significant down­

regulation in BDNF mRNA levels in the DG (-48.8%; p<O.OOl) 

and the CA3 (-35.4%; p<O.Ol) regions of the hippocampus, no 

significant effect was seen in the CAl (Table 4.4; Figures 

4.12 and 4.13). Acute paroxetine administration also 

significantly inhibited DG (-25.4%; p<O.05) and CA3 (-
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27.8%; p<0.05) regions, no significant effect was seen in 

the CAl (Table 4.4; Figures 4.12 and 4.13). 

4.3.2.2. Effect of CGP 55845 

CGP 55845 alone (30 minutes after saline) produced a small, 

non-significant reduction in BDNF mRNA in all areas of the 

hippocampus. Pre-administration with CGP 55845 

significantly attenuated the effect of acute baclofen 

treatment in the DG region (CGP 55845/baclofen vs. 

saline/baclofen, 30.7%; p<0.05). CA3 levels were also 

attenuated, though not significantly. However, 55845 failed 

to attenuate the effect of acute paroxetine treatment in 

the CA3 and DG (Table 4.4; Figures 4.12 and 4.13). 

4.3.2.3. Effect of CGP 46381 

CGP 46381 alone (30 minutes after saline) significantly 

increased BDNF mRNA in the DG (35.8%; p<0.05), a smaller 

non-significant increase was also seen in the CAl. In 

addition CGP 48381 pre-treatment caused a significant 

attenuation from baclofen administration (CGP 

46381/baclofen vs. saline/baclofen, 31.3%; p<0.05) in the 

DG, with a smaller non-significant attenuation in the CA3. 
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The acute paroxetine-mediated inhibition of BDNF mRNA was 

also significantly attenuated by pre-treatment with CGP 

46381 in the DG (sa1ine/paroxetine VS. CGP 

46381/paroxetine, 25.6%; p<0.05) and CA3 (31.0%; p<0.05; 

Table 4.4; Figures 4.12 and 4.14). 
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Table 4.1. Effect of GABA-erqic compounds on BDNF mRNA 
expression in the rat hippocampus 4h after injection. Data 
presented as percentage of control ***p<O.OOl, **p<O.Ol, 
*p<O.05 compared to control (ANOVA with Bonferroni's post­
hoc test) 

CAl CA3 DG 

Saline n=6 lOO±5.3 lOO±6.2 lOO±9.1 
Flunitrazepam n=5 86.2±8.0 89.2±6.3 92.5±4.3 

Saline n=5 lOO±7.8 lOO±7.8 lOO±8.8 
TRIP n=5 112.2±8.4 84.4±.15.5 lO6.7±9.8 

Saline n=6 lOO±1.8 lOO±.2.4 lOO±4.6 
Baclofen n=6 94.0±3.4 79.1±.3.3* 57.4±4.0*** 
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Table 4.2. Effect of GABA-ergic compounds on BDNF exon I 
mRNA expression in the rat hippocampus 4h after injection. 
Data presented as percentage of control ***p<0.001, 
**p<0.01, *p<0.05 compared to control (ANOVA with 
Bonferroni's post-hoc test) 

CAl CA3 DG 

Vehicle n=6 lOO±8.8 lOO±7.6 lOO±ll.O 
Flunitrazepam n=5 93.2±8.7 84.0±4.6 81.5±4.8 

Saline n=5 lOO±4.6 lOO±5.1 lOO±5.3 
TRIP n=5 97.3±10.6 lO1.2±13.0 93.4±6.1 

Saline n=6 lOO±9.8 lOO±ll.4 lOO±6.8 
Baclofen n=6 101.5±4.7 88.3±16.4 90.4±12.7 

Table 4.3. Effect of GABA-ergic compounds on BDNF exon IV 
mRNA expression in the rat hippocampus 4h after injection. 
Data presented as percentage of control ***p<0.001, 
**p<0.01, *p<0.05 compared to control (ANOVA with 
Bonferroni's post-hoc test) 

CAl CA3 DG 

Vehicle n=6 lOO±5.3 lOO±6.2 lOO±9.1 
Flunitrazepam n=5 86.2±8.0 89.2±6.3 92.5±4.3 

Saline n=5 lOO±7.8 lOO±7.8 IOO±8.8 
TRIP n=5 1 12.2±8.4 84.4±15.5 I06.7±9.8 

Saline n=6 IOO±3.3 lOO±4.0 lOO±2.9 
Baclofen n=6 96.0±7.7 80.0±6.3 59.1±3.0** 
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Figure 4.6. Effect of acute THIP treatment on total BDNF mRNA, BDNF exon I and BDNF exon 
IV mRNA expression in the rat hippocampus 4h after injection. Data presented as 

percentage of control ***p<O . OOl , **p<O . Ol , *p<O . 05 compared to control (ANOVA with 
Bonferroni ' s post - hoc test) 
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Figure 4.8. Effect of acute baclofen treatment on total BDNF mRNA, BDNF exon I and BDNF 
exon IV mRNA expression in the rat hippocampus 4h after injection. Data presented as 
percentage of control ***p<O . OOl , **p<O . Ol , *p<O . 05 compared to control (ANOVA with 

Bonferroni ' s post - hoc test) 
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• - . 
E r 

Figure 4.9. I n situ hybridisation images showing the effect 
of acute THIP (10mg / kg) treatment on AlB total BDNF mRNA, 
C/ D BDNF exon I mRNA, ElF BDNF ex on IV in the rat 
hippocampal region at 4h . Control groups are situated left . 
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E 

.. 
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Figure 4.10. In-situ hybridisation images showing the 
effect of acute flunitrazepam (10mg/kg) treatment on AlB 
total BDNF mRNA, C/D BDNF exon I mRNA, ElF BDNF e xon IV in 
the rat hippocampal region at 4h . Control groups are 
situated left . 
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• 
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Figure 4.11. In-situ hybridisation images showing the 
effect of acute baclofen (10mg/kg) treatment on Al B total 
BDNF mRNA, C/D BDNF exon I mRNA, ElF BDNF exon IV in the 
rat hippocampal region at 4h . Control groups are situated 
left . 
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Table 4.4. Effect of acute paroxetine and baclofen 
administration on total BDNF mRNA expression after CGP 
55845 or CGP 46381 pre-treatment in the rat hippocampus 4h 
after last injection. Data presented as percentage of 
control ***p<O.OOl, **p<O.Ol, *p<O.05 compared to control 
(Bonferroni's post-hoc test) 

Saline/ 
Saline n=10 

Saline/ 
Baclofen n=10 

Saline/ 
Paroxetine n=10 

CGP 55845 
Saline n=5 

CGP 55845/ 
Baclofen n=5 

CGP 55845/ 
Paroxetine n=5 

CGP 46381/ 
Saline n=5 

CGP 46381/ 
Baclofen n=5 

CGP 46381/ 
Paroxetine n=5 

CAl 

lOO±1O.8 

81.7±9.6 

91.9±7.6 

80.3±11.8 

85.9±14.1 

84.6±14.4 

118.9±11.8 

109.5±12.1 

123.9±13.7 

CA3 DG 

lOO±9.1 lOO±11.8 

64.6±8.5** 51.2±14.4*** 

72.2±6.4* 74.6±12.0* 

85.0±4.6 80.5±9.4 

85.7±11.1 89.l±15.l 

79.9±7.6 73.8±11.4* 

99.9::!:1 1.4 135.4±12.9* 

86.4±2.5 82.9±17.8 

104.7±7.0 lOO.3±12.3 
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Figure 4.12. Effect of acute paroxetine and bac10fen administration on tota1 BDNF mRNA 
expression after CGP 55845 and CGP 46381 pre-treatment in the rat hippocampus at 4h after 
1ast injection . Data presented as percentage of control ; ***p<O . OOl , **p<O . Ol , *p<O . 05 
compared with control or saline pre - treated control animals (vs . CGP treated animals) . 
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A D 

1 

B E 

c , F 

Figure 4.13. In-situ hybridisation images showing the 
effect of acute paroxetine and baclofen on total BDNF mRNA 
expression after CGP 55845 pre- treatment in the rat 
hippocampus , 4h after last injection . KEY : A, 
saline/saline ; B, saline / baclofen ; C saline/paroxetine ; D, 
CGP 55845/saline ; E, CGP 55845 / baclofen ; F, CGP 
55845/paroxetine . 
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, 
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Figure 4.14. In-situ hybridisation images showing the 
effect of acute paroxetine and baclofen on total BDNF mRNA 
expression after CGP 46381 pre- treatment in the rat 
hippocampus , 4h after last injection . KEY : A, 
saline/saline ; B, saline/baclofen ; C saline/paroxetine ; D, 
CGP 46381 / saline ; E, CGP 46381/baclofen ; F, CGP 
46381 / paroxetine . 
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4.4. Discussion 

4.4.1. Summary of findings 

Acute administration of baclofen, but not flunitrazepam or 

THIP, significantly inhibited BDNF mRNA in the CA3 and DG 

at 4h. In addition, baclofen down-regulated BDNF exon IV 

mRNA, but not exon I mRNA in the DG. The selective GABAB 

antagonist CGP 46381 significantly attenuated the 

inhibitory effect on BDNF mRNA caused by acute baclofen or 

paroxetine administration in the CA3 and DG. However, CGP 

46381 alone significantly increased BDNF mRNA levels in the 

DG region to a similar magnitude as the attenuation. Pre­

treatment with CGP 55845 significantly attenuated baclofen­

mediated down-regulation of BDNF mRNA expression in the DG, 

however it failed to attenuate paroxetine-mediated down­

regulation in the CA3 and DG region of the hippocampus. 

4.4.2. The effect of acute GABA-ergic receptor agonist 

administration on BDNF mRNA and BDNF exon mRNA at 4h 

The main aim of this chapter was to elaborate on the role 

of GABAergic transmission in the acute regulation of BDNF 

mRNA in the rat hippocampus, in an attempt to link 
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facilitation in GABA transmission to antidepressant drug­

induced reductions in BDNF mRNA levels. Three GABA receptor 

agonists were tested which had varying effects on BDNF mRNA 

levels. The two agonists working on the GAB~ receptor, the 

GAB~ receptor agonist THIP and the benzodiazepine receptor 

agonist flunitrazepam, both failed to produce any 

significant effect on BDNF mRNA in any area of the 

hippocampus at 4h. This was in direct contrast to baclofen, 

a GABAB receptor agonist, which significantly inhibited 

levels in the CA3 and DG. GABAergic mechanisms have been 

suggested to be involved in the acute inhibitory effect of 

antidepressants (Vaidya et aI, 1997; Zetterstr5m et aI, 

1999; Vaidya and Duman, 2001; Section 4.1). The present 

results therefore indicate a preferential role for GABAB 

receptor-mediated mechanisms in the acute inhibition of 

BDNF mRNA in the CA3 and DG of the hippocampus. GABAB 

receptors have been observed in high quantities in the CA3 

and DG in comparison to the CAl (Knott et aI, 1993). 

In correspondence with the effect of acute antidepressant 

treatment, acute baclofen administration also significantly 

reduced BDNF exon IV (lEG-like), but not BDNF exon I 

(protein synthesis-dependent) mRNA in the DG region. 
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4.4.3. The effect of GABABreceptor antagonists on 

baclofen/paroxetine-mediated inhibition of BDNF mRNA at 4h 

In order to confirm the influence of GABAB receptor 

activation in the paroxetine/baclofen-mediated down­

regulation of BDNF mRNA, two selective GABAs receptor 

antagonists were employed at non-convulsive doses 

(10mg/kg), 30 minutes prior to injection with either 

baclofen or the SSRI paroxetine. Baclofen, when 

administered with saline, inhibited BDNF mRNA to a similar 

magnitude as the previous experiment. Likewise, acute 

paroxetine also significantly inhibited BDNF mRNA levels to 

similar levels as previous experiments (See Section 

3.3.1.1). 

Non-convulsive doses of CGP 55845 did not significantly 

enhance (or reduce) BDNF mRNA in any area of the 

hippocampus. Thus, the apparent attenuation of the acute 

baclofen-mediated inhibitory response on DG BDNF mRNA by 

CGP 55845 pre-treatment appears to be as a result of true 

GABAB receptor blockade, as opposed to the any overriding 

effect of the antagonist. However, the compound failed to 

attenuate the paroxetine-mediated BDNF mRNA down-regulation 

in the DG. Therefore, if it had successfully blocked local 
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GABAB receptor transmission, one may conclude that CGP 55845 

blocks acute baclofen-, but not paroxetine-mediated down­

regulation in the DG region. 

In comparison, when administered with saline at non­

convulsive doses, CGP 46381 significantly up-regulated BDNF 

mRNA in the DG. Similar, transient increases in BDNF mRNA 

have been reported following acute administration of the 

GABAB receptor antagonists (CGP 56999 and CGP 56433) in the 

hippocampus and cortex at 6h, with levels returning back to 

baseline at 24h (Heese et aI, 2000). Such increases may be 

anticipated due to the reduction in GABAB-mediated 

inhibition of BDNF mRNA in the DG, due to local receptor 

blockade. Thus, whilst pre-treatment with CGP 46381 

significantly attenuated the acute down-regulatory response 

of BDNF mRNA in the DG after acute baclofen or paroxetine, 

when the up-regulatory effect CGP 46381 (+35.4%) is 

considered, the attenuation is minimal. Therefore, it may 

be debated whether the lack of reduction of BDNF in the DG 

region was due primarily to an additive effect of CGP 46381 

via glutamatergic induction, or true antagonism of the 

effects of baclofen or paroxetine. 
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However in the CA3 area, CGP 46381 alone had little effect 

on BDNF mRNA levels. Thus, the significant attenuating 

effect of CGP 46381 pre-treatment before paroxetine 

treatment was not influenced by any enhancing effect from 

the compound. Thus, it appears that the attenuation in CA3 

levels may be genuine and may implicate the activation of 

the GABAB receptor in the acute inhibition of BDNF after 

acute paroxetine treatment in the CA3. 

Returning to the supposition that forms the basis behind 

these experiments, which suggested a role for localised 

GABAergic interneurone activation via excitatory 5-HT 

receptor activation in the down-regulation of BDNF mRNA in 

the hippocampus (Vaidya et al, 1997; Zetterstr5m et al, 

1999; Vaidya and Duman, 2001). It appears that the results 

from this chapter partially confirm this hypothesis. 

Firstly, acute baclofen, but not THIP or flunitrazepam 

administration significantly down-regulated BDNF mRNA in 

the DG region, this effect was blocked by both CGP 55845 

and CGP 46381 pre-treatment. This suggests a predominant 

role for GABAB receptor-mediated inhibition in BDNF mRNA in 

the DG. In addition, administration of the GABAB antagonist 

CGP 46381, but not CGP 55845 significantly attenuated 

paroxetine-mediated down-regulation in the DG. However, the 
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additive effect of CGP 46381 may have influenced the 

attenuating effect in the DG. Nevertheless, the results 

suggest activation in GABAB receptor-mediated transmission 

in the down-regulatory effect of paroxetine in the CA3 

region of the hippocampus. 

The results in this chapter appear to confirm the 

hypothesis that suggests a role for excitatory 5-HT 

receptors on GABAergic interneurones within the 

hippocampus. However, it was demonstrated in Chapter 3 that 

acute administration of antidepressant drugs with varying 

affinities to NA/5-HT reuptake or metabolism (as well as 

two compounds with no potency to 5-HT) had an equivocal 

effect on BDNF mRNA inhibition. Thus, it was concluded that 

the inhibition of BDNF mRNA at 4h after acute 

antidepressant treatment was not exclusively 5-HT-mediated 

and may be induced by a general facilitation of 5-HT, NA 

(or possibly DA) transmission in the hippocampus. 

Excitatory ~-adrenoceptor stimulation has been shown to 

depolarise groups of interneurones within the hippocampus 

and increase IPSP amplitude in CAl and CA3 pyramidal cells 

(Bergles et aI, 1996). In addition, both GAB~and GABAB­

receptor-mediated inhibition in DG granule cells is 

enhanced by ~-adrenoceptor activation (Bijak and Misgeld, 
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1995). Electrophysiological data also suggests that 

GABAergic interneurones can be excited via al adrenoceptors 

resulting in pyramidal and granule cell inhibition (Bergles 

et aI, 1996). This therefore suggests the presence of 

excitatory adrenoceptors on hippocampal interneurones, 

activation of which may result in the inhibition of BDNF 

mRNA in the DG and CA3 areas of the hippocampus. The role 

of DA in BDNF mRNA inhibition within the hippocampus is 

unclear. Little evidence exists for the presence of 

excitatory DA receptors on GABAeregic interneurones. 

However, inhibitory D2 receptors have been shown to be 

present in the DG and at the layer of the mossy fibre zone 

(Khan et al, 1998). Facilitation in extracellular 

hippocampal DA levels therefore may result directly in the 

activation of inhibitory control over DG granule cells, 

thereby inhibiting local BDNF mRNA levels. 

In conclusion, it appears that BDNF mRNA is regulated 

acutely via GABAB-mediated mechanisms in the DG and CA3 

regions of the hippocampus. Moreover, the inhibitory effect 

of the SSRI paroxetine on BDNF mRNA appears to be 

significantly influenced by GABAB receptor blockade in the 

CA3, possibly implicating GABAB activation in the inhibitory 

effect of paroxetine on BDNF mRNA. Overall, this suggests 
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that GABAB transmission participates in the early effects of 

antidepressant drug action on BDNF mRNA in the hippocampus. 

The next chapter examines the effect of chronic 

antidepressant administration on total BDNF mRNA, as well 

exon I and exon IV mRNA in the rat hippocampus. 
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Chapter Five 

Effect of Chronic Administration of 

Antidepressant Drugs on BDNF mRNA and 

BDNF exon mRNA in the Rat Hippocampus 
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5.1. Introduction 

As explained earlier (See Section 1.5), a central flaw in 

monoamine hypothesis is the failure to explain the need for 

chronic treatment of antidepressant drugs, despite their 

acute effects on monoamine transmission. This has led to 

research focusing on post-synaptic events beyond the 

monoamine receptor. The actions of 5-HT and NA receptors at 

both pre- and post-synaptic sites are mediated by their 

coupling to respective intracellular signal transduction 

pathways (Duman, 1998; Shelton, 2000). These monoamine­

linked cellular mechanisms therefore would be expected to 

mediate the actions of antidepressants, via increased 

extracellular 5-HT/NA and the subsequent stimulation of 

monoamine receptors. Furthermore, the long-term activation 

of such mechanisms has been postulated to result in 

adaptation that may result in the eventual therapeutic 

efficacy of antidepressant drugs (Nestler et aI, 1989; 

Manji et aI, 1995). 
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5.1.1. The effect of chronic antidepressant drug treatment 

on receptor-coupled signalling cascades 

Several studies have demonstrated an up-regulation in the 

components comprising the cAMP signalling cascade after the 

chronic administration of antidepressants via noradrenergic 

~-AR; or serotonergic 5-HT4, 5-HTs, 5-HT6 and 5-HT7 receptor 

activation (Nestler et al, 1989: Perez et al, 1991; Ozawa 

and Rasenick, 1991; Thome et al, 2000). Additionally, the 

phosphoinositide (PI) pathway, which is linked via Gq 

proteins to noradrenergic Ul and 5-HT2 receptors, has also 

been shown to be affected by chronic antidepressant 

treatment. However, its precise role is more complex. Some 

studies have reported increased PI turnover (Newman et aI, 

1989: Pandey et aI, 1991), while others have reported 

decreases (Li et al, 1988: Dwivedi et al, 2002) or no 

effects (Coull et aI, 2000) after chronic antidepressant 

drug treatment. 

A downstream target of both the cAMP at PI pathways that 

has been suggested to mediate the action of antidepressants 

is the cAMP response element binding protein (CREB; Meyer 

and Habener, 1993; Thome et al, 2000). CREB is a 

transcription factor, which is activated by increased cAMP 
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production as a consequence of stimulation by Gs-coupled 

receptors. CREB mediates the actions of cAMP on gene 

expression and could thereby underlie some of the effects 

of chronic antidepressant treatment. Nibuya et al (1996) 

demonstrated that chronic, but not acute administration of 

several different types of antidepressants (SSRls, NA­

selective reuptake inhibitor, MAOI, atypical) enhanced CREB 

mRNA and its corresponding protein in the rat brain. 

Phosphorylation of CREB is increased after chronic, but not 

acute antidepressant treatment (Duman et aI, 1997; 1999; 

Thome et aI, 2000) and the function of CREB is regulated by 

its state of phosphorylation at serine residue 133 (Mayr et 

aI, 2001). Phosphorylation of CREB by kinases (PKA, PKC) 

leads to increased binding to the CREB response element 

(CRE) sequence sites in promoters (Nichols et aI, 1992; 

Lonze and Ginty, 2002). 

Deletion and mutational analysis of the promoter directly 

upstream of the BDNF gene has revealed that gene activation 

is dependent on an element 5' to the mRNA start site. The 

element (located between 40 and 30 bp upstream of the mRNA 

start site) within the BDNF gene matches the consensus 

sequence of the CRE and is required for activation of the 

promoter (Shieh et aI, 1998; Tao et aI, 1998). The CRE-
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dependent component of the response appears to be mediated 

by CREB as it is part of the complex that binds to this CRE 

and since negative mutants of CREB attenuate activation of 

the promoter (Shieh et aI, 1998). 

An additional area within the BDNF gene, upstream from the 

CRE promoter region (between 47 and 72bp upstream of the 

mRNA start site) has been identified. This site is a novel 

calcium response element site and is required for calcium­

dependent BDNF expression (Shieh et aI, 1998; Tao et aI, 

1998). BDNF has been suggested to be a likely target gene 

of calcium signalling (Shieh and Ghosh, 1999). Activation 

of voltage-sensitive Ca2+ channels or NMDA type glutamate 

receptors leads to the enhancement of BDNF mRNA and 

stimulates the release of BDNF protein (Zafra et aI, 1990; 

1991; Ghosh et aI, 1994). Ca2
+ influx also triggers 

phosphorylation of CREB and interfering with CREB inhibits 

calcium-dependent BDNF transcription (Finkbeiner, 2000), 

thus indicating a common reciprocal pathway. 

The possibility that induction of BDNF is mediated by CREB 

is further supported by the apparent anatomical co­

localisation after chronic antidepressant treatment. Both 

CREB and BDNF mRNA have been shown to be significantly up-
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regulated in hippocampal, as well as cortical areas (Nibuya 

et aI, 1995; 1996; Duman et aI, 1997; Coppell et aI, 2003). 

A role for the cAMP pathway in regulating this response in 

these areas is supported by studies using phosphodiesterase 

(PDE) inhibitors, which inhibit the breakdown of cAMP 

molecules. Chronic administration of the PDE inhibitor 

rolipram enhances CREB and BDNF mRNA expression (Nibuya et 

aI, 1996; Fujimaki et aI, 2000). 

Many previous studies have demonstrated an increase in BDNF 

mRNA levels after chronic, but not acute antidepressant 

drug treatment (Nibuya et aI, 1996: Zetterstr~m et aI, 

1998; Russo-Neustadt et aI, 1999; Coppell et aI, 2003). 

However, significant differences exist in the magnitude of 

the BDNF mRNA response to chronic antidepressant 

intervention. Using ISH and Northern blot techniques, 

Nibuya et al (1996) found a robust (2-3 fold) increase in 

BDNF mRNA in the CAl area hippocampus, after administration 

of a wide range of drugs (SSRIs, TCAs, MAOIs, atypical). 

Subsequent studies have found less pronounced changes also 

localised to the hippocampus and not common to all 

antidepressants (Zetterstr~m et aI, 1998; Russo-Neustadt et 

aI, 1999). For instance, a recent study (Coppell et aI, 

2003) found Significant elevation in BDNF mRNA after 
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chronic administration of the SSRls paroxetine, fluoxetine 

and sertraline, but not with the non-selective MAOI TCP or 

the noradrenergic TCA desipramine. 

As explained earlier (See Section 1.6.3), the BDNF gene has 

multiple transcripts, each with unique promoters. 

Transcripts consist of a variable 5' region (exons I-IV) 

and a common 3' segment (exon V), which codes for mature 

BDNF protein. Previous studies have revealed differential 

use of the individual BDNF exon mRNA transcripts, which 

vary in response to chronic antidepressant. Russo-Neustadt 

et al (2000) found chronic administration of the non­

selective MAOI TCP, but not the TCA imipramine 

Significantly up-regulated exon I rnRNA in the CA3 and DG 

region of the hippocampus, but no significant change was 

seen in exon II mRNA. The study however did not examine the 

corresponding effect on exon III or IV. In contrast, a more 

recent study (Dias et al, 2003) found chronic 

administration of TCP or the noradrenergic TCA desipramine 

significantly up-regulated exon II and exon III mRNA, but 

not exon I or exon IV rnRNA. 

Both studies however lacked data on total BDNF mRNA making 

conclusions regarding predicted net effects on the 

translation of the corresponding protein difficult. 
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In Chapter 3, it was found that that acute (single 

injection) administration of several antidepressant 

compounds had varying effects on individual BDNF exon 

transcripts in the rat hippocampus at 4h. Acute 

antidepressant treatment resulted in an overall inhibition 

in total BDNF mRNA expression, which seemed to be due in 

part to exon IV, but not exon I mRNA down-regulation. 

Therefore as a continuation of this series of experiments, 

this chapter aims to investigate which of the exon 

transcripts studied is influenced by chronic administration 

of antidepressant drugs. 

In order to clarify the influence of chronic antidepressant 

drug treatment on varying individual exon mRNA, as well as 

total BDNF mRNA regulation, this series of experiments 

investigates the effect of chronic administration of three 

antidepressants. Two antidepressants with varying 

affinities to the NA/5-HT reuptake sites (the noradrenergic 

TCA desipramine and the SSRI fluoxetine), together with the 

non-selective MAOI TCP were administered for a 3-week 

period. In the following series of ISH experiments, we 

utilised oligonucleotide probes selective to total BDNF 

mRNA (exon V), as well as a representative form of protein-
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dependent exon mRNA (exon I) and a non-protein synthesis­

dependent 'lEG-like' exon mRNA (exon IV; Lauterborn et aI, 

1996; 1998; See Section 1.6.3). 
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5.2. Methods 

Male Sprague-Dawley rats (225-250g) were injected (i.p) 

once daily for 2ld with either: saline (lml/kg) or 

fluoxetine (lOmg/kg), desipramine (lOmg/kg) or TCP (5mg/kg) 

in 0.9% saline, and sacrificed 24h after the last 

injection. Brains were isolated and flash-frozen in cooled 

isopentane, before being stored at -70°C until further use. 

In-situ hybridisation and densitometric analysiS procedures 

are described in Chapter 2. 
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5.3. Results 

5.3.1. Effect of chronic administration of antidepressant 

drugs on BDNF mRNA and BDNF exon mRNA at 24h 

5.2.1.1. Effect on total BDNF mRNA 

Three different antidepressant drugs were assessed for 

their effect on BDNF mRNA at 24h, the SSRI fluoxetine, the 

TCA desipramine and the non-selective MAOI TCP. Daily 

injections were administered over a three-week period. 

Fluoxetine (lOmg/kg) caused a significant up-regulation of 

BDNF mRNA in the DG area (36.4%iP<O.05) of the 

hippocampus. No significant changes were observed in the 

CAlor CA3 regions (Table 5.1; Figures 5.1 and 5.4). 

Repeated administration of desipramine (lOmg/kg) also 

caused a significant up-regulation in the DG (36%; p<O.05), 

no significant changes were observed in the CAlor CA3 

areas (Table 5.1; Figures 5.2 and 5.5). Likewise, chronic 

TCP (5mg/kg) administration caused a significant up­

regulation in BDNF mRNA in the DG (48%; p<O.Ol) at 24h. In 

addition, chronic TCP administration caused a significant 

up-regulation in the CA3 (37.5%; p<O.05) field of the 
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hippocampus, but not the CAl (Table 5.1; Figures 5.3 and 

5.6) . 

5.3.1.2. Effect on BDNF exon I mRNA 

Chronic treatment with fluoxetine caused a significant up­

regulation in BDNF exon I mRNA at 24h in the DG (64.4%; 

p<O.OOl) and also in the CA3 (37.5%; p<O.05), but not in 

the CAl (Table 5.2; Figures 5.1 and 5.4). Unlike the effect 

on whole BDNF mRNA, desipramine had no significant effect 

on BDNF exon I mRNA in any area of the hippocampus (Table 

5.2; Figures 5.2 and 5.5). Chronic TCP treatment resulted 

in a significant up-regulatory effect in the DG (51.2%; 

p<O.Ol) and the CA3 (47.5%; p<O.05; Table 5.2; Figures 5.3 

and 5.6). No significant effect was seen in the CAl. 

5.3.1.3. Effect on BDNF exon IV mRNA 

Chronic treatment with either fluoxetine, TCP or 

desipramine had no significant effects on BDNF exon IV mRNA 

in any area of the rat brain tested (Table 5.3; Figures 5.1 

to 5.6). 
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~able 5.1. Effect of chronic drug treatment on BDNF mRNA 
expression in the rat hippocampus 24h after the last 
injection. Data presented as percentage of control 
***p<O.OOl, **p<O.Ol, *p<O.05 compared to control (ANOVA 
with Bonferroni's post-hoc test) 

CAl CA3 DG 

Saline n=6 lOO±.3.8 lOO±5.9 lOO±.4.9 
Fluoxetine n=6 105.5±6.4 113.4±.6.1 136.4±.6.3'" 

Saline n=6 lOO±.3.8 lOO±5.9 100±4.9 
Desipramine n=6 118.4±4.6 123.6±.5.1 136.0±.6.0'" 

Saline n=6 lOO±.3.8 100±5.9 100±4.9 
Tranylcypromine n=6 123.6±11.1 137.5±3.9* 148.0±.11.4** 
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Table 5.2. Effect of chronic drug treatment on BDNF exon X 
mRNA expression in the rat hippocampus 24h after the last 
injection. Data presented as percentage of control 
***p<O.OOl, **p<O.Ol, *p<O.05 compared to control (ANOVA 
with Bonferroni's post-hoc test) 

CAl CA3 DG 

Saline n=6 lOO±8.8 lOO±14.5 lOO±10.5 
Fluoxetine n=6 113.4±6.1 137.8±7.7 164.4±5.2** 

Saline n=6 lOO±8.8 lOO±14.5 100±10.5 
Desipramine n=6 81.4±9.7 lO1.9±18.0 119.0±18.3 

Saline n=6 lOO±8.8 lOO±14.5 lOO±lO.5 
Tranylcypromine n=6 113.6±7.6 147.5±11.9* 151.2±11.0** 

Table 5.3. Effect of chronic drug treatment on BDNF exon XV 
mRNA expression in the rat hippocampus 24h after the last 
injection. Data presented as percentage of control 
***p<O.OOl, **p<O.Ol, *p<O.05 compared to control (ANOVA 
with Bonferroni's post-hoc test) 

CAl CA3 DG 

Saline n=6 100±10.1 lOO±8.6 lOO±7.5 
Fluoxetine n=6 115.0±6.4 121.0±5.6 lOO.7±7.3 

Saline n=6 10O±10.1 100±8.6 lOO±7.5 
Desipramine n=6 89.4±4.6 93.3±14.1 84.3±7.6 

Saline n=6 100±1O.1 lOO±8.6 100±7.5 
Tranylcypromine n=6 80.4 ± 13.4 lO3.3±9.8 81.8±6.7 
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Figure 5.1. The effect of chronic fluoxetine (21 days at lOmg/kg) administration on total 
BDNF mRNA, exon I mRNA and exon IV mRNA at 24h in the CAl , CA3 and dentate gyrus (DG) 
regions of the hippocampus . Data presented as percentage of control ***p<O . OOl , **p<O . Ol , 
*p<O . 05 compared to control (Bonferroni ' s post - hoc test) . 
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Figure 5.3 . The effect of chronic tranylcypromine (TCP i 21 days at 5mg!kg) administration 
on total BDNF mRNA, exon I mRNA and exon IV mRNA at 24h in the CAl , CA3 and dentate gyrus 

(DG) regions of the hippocampus . Data presented as percentage of control ***p<O . OOl , 
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A B 
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Figure 5. 4 . In- situ hybridisation images showing the effect 
of chronic fluoxetine (10mg/kg) treatment on AlB total BDNF 

mRNA; C/D exon I mRNA and ElF exon IV mRNA in the rat 
hippocampal region at 24h . Control groups are situated left . 
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Figure 5.5. In-situ hybridisation images showing the effect 
of chronic desipramine (10mg/kg) treatment on AlB total BDNF 

mRNA; C/D e xon I mRNA and ElF e xon IV mRNA in the rat 
hippocampal region at 24h . Control groups are situated left . 
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Figure 5.6. In situ hybridisation images showing the effect 
of chronic tranylcypromine (5mg/kg) treatment on AlB total 

BDNF mRNA; C/D exon I mRNA; ElF exon IV mRNA in the rat 
hippocampal region at 24h . Control groups are situated left. 
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5.4. Discussion 

5.4.1. Summary of results 

The major finding in this chapter related to the 

differential variable exon transcript expression at 24h 

after chronic antidepressant drug treatment and how this 

contributed to the net effect on total BDNF mRNA in the rat 

hippocampus. Chronic administration of the SSRI fluoxetine, 

the noradrenergic TCA desipramine or the non-selective MAOI 

TCP resulted in the up-regulation of BDNF mRNA in the DG 

region of the hippocampus. In addition, chronic TCP 

administration also increased BDNF mRNA expression 

significantly in the CA3 area. 

Among the variable exon transcripts, exon I mRNA was 

significantly up-regulated after chronic fluoxetine and TCP, 

but not desipramine administration. In contrast, chronic 

treatment of fluoxetine or TCP (as well as desipramine) had 

no significant effect on exon IV mRNA expression in any area 

of the hippocampus. 
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5.4.2. The effect of chronic antidepressant drug 

administration on total BDNF mRNA 

Chapter Five 

As with earlier experiments (Nibuya et aI, 1996; Russo­

Neustadt, 1999; Coppell et aI, 2003), different 

antidepressants, when given chronically, up-regulated total 

BDNF mRNA in areas of the hippocampus. However, there are 

some differences between the present findings and previous 

experiments. 

Nibuya et al (1996) chronically administered two 

antidepressants the SSRr fluoxetine or MAOr TCP. Unlike the 

present study, they found the largest up-regulatory effect 

on BDNF mRNA in the CAl after chronic fluoxetine (161%) 

administration. Chronic TCP administration also 

significantly increased CAl levels (75%), though not to the 

extent of fluoxetine. However, similar significant increases 

in BDNF mRNA expression to the present study were recorded 

in the CA3 and DG after chronic fluoxetine and TCP 

administration. The reason for the apparent differences 

between the present and the previous studies are unclear. 

However, the period after the last injection however was 

shorter in the Nibuya et al (1996) study (18h). Thus, it may 

be that such increases may have subsided in the subsequent 
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period (6h) from where the current study was measured. 

Russo-Neustadt et al (1999) found similar significant 

increases in the DG (57%) to the present study after chronic 

TCP treatment from a similar treatment regimen (20d, once 

daily). CAl levels were also significantly increased (25%), 

though to a less extent than the Nibuya study. No 

significant change was seen in CA3 levels. 

Coppell et al (2003) found repeated injection of fluoxetine, 

paroxetine, sertraline or TCP (14d, twice daily) increased 

BDNF expression in the hippocampus at 24h. This effect 

however was confined to the DG, with the exception of 

chronic TCP, which also caused an increase in the CAl 

region. In comparison to the present study, which found a 

significant increase in total BDNF mRNA levels after chronic 

desipramine treatment, Coppell et al (2003) failed to find 

any change in BDNF mRNA after chronic administration of the 

noradrenergic TCAs desipramine and maprotiline at 24h. As 

explained in Section 3.4.3, the Coppell study also failed to 

find any significant change (inhibition) after acute 

administration of desipramine, whilst other SSRI compounds 

inhibited BDNF mRNA in the DG, this indicated a predominant 

role for 5-HT-mediated mechanisms in acute (at 4h) and 

chronic (at 24h) regulation of BDNF mRNA in the hippocampus. 
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The present study found changes in BDNF mRNA after 

desipramine treatment at both these time points therefore 

counteracting this assertion. It is unclear why these 

anomalies exist, however it may be speculated that a 

significant inhibitory response is required acutely in order 

to gain a significant increase after chronic treatment. 

The results from this chapter appear to correspond with 

previous studies, which have identified the BDNF as a target 

gene for chronic antidepressant drug treatment (Nibuya et 

aI, 1996; Russo-Neustadt et aI, 1999; Coppell et aI, 2003). 

Additionally, the up-regulation in BDNF mRNA levels appears 

to follow the time-course for the commencement of 

therapeutic effect from antidepressants (i.e. 10-21d; 

Heninger and Charney, 1987; Vaidya and Duman, 2001). 

Previous studies (Nibuya et al, 1996; Ying et al, 2002) have 

revealed significantly similar up-regulatory effects of the 

transcription factor CREB in proximity to that of BDNF mRNA 

(i.e. the DG region of the hippocampus). CREB function is 

augmented by the up-regulation of the cAMP system, which 

results in the phosphorylation of CREB by PKA (Meyer and 

Haebner, 1993; Ghosh and Greenberg, 1995). Activation of the 

cAMP cascade may occur as a result of increased excitatory 

monoamine receptor (i. e. 5-HT4, 5-HTsA, 5-HT6, 5-HT7, ~NA) 
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activation due to prolonged increases in extracellular 

monoamine concentration (Duman, 1998; Russo-Neustadt et aI, 

2003). This has suggested a common series of signal 

transduction events, resulting in the increase in BDNF mRNA 

expression in the hippocampus. Indeed, culture studies have 

indicated that activation of cAMP increases BDNF mRNA 

expression (Tao et aI, 1998; Shieh et aI, 1998) and 

identified a CRE binding element within the promoter region 

of the BDNF gene (See Section 1.5.2). The PI pathway also 

may be activated by prolonged 5-HT2, al NA receptor 

stimulation, which also has been shown to target CREB (See 

Section 1.5.3). CREB may therefore represent a common target 

for various antidepressant drug types (Duman et aI, 1997; 

1999; Shelton, 2000). 

5.4.3. The effect of chronic antidepressant administration 

on BDNF exon mRNA 

Chronic antidepressant administration produced differential 

effects among the various BDNF transcripts tested in the DG 

area of the hippocampus at 24h. Chronic administration of 

the SSRI fluoxetine and the MAOI TCP resulted in significant 

increases in exon I mRNA expression, however no significant 

increase was seen after chronic desipramine treatment. In 
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contrast, no effect was seen in exon IV mRNA in any area of 

the hippocampus after any drug tested. These findings 

contrast those found after acute administration of various 

antidepressants at 4h, where exon IV mRNA was significantly 

altered (inhibited) and exon I mRNA was unchanged (See 

Chapter 3). This may therefore suggest the differential 

usage of the variable exon transcripts in response to 

differing antidepressant interventions at different time 

points, which contribute to the overall change in total BDNF 

mRNA. 

It has been suggested that altered transcription of exon I 

and II mRNA is regulated by intervening protein synthesis 

mechanisms (Lauterborn et aI, 1996) and influenced by 

calcium/calmodulin-dependent protein kinase activation 

(Murray et aI, 1998). Facilitation of such mechanisms has 

been implicated in the function of chronic antidepressant 

treatment. Indeed, a cAMP-response element has been 

identified in the promoter region of exon I sequence (Sheih 

et aI, 1998; Tabuchi et aI, 2002). Using a similar treatment 

regimen to the current study (7.5mg/kg; 20d, once daily), 

Russo-Neustadt et al (2000) also found a similar up­

regulatory effect in exon I mRNA after chronic TCP treatment 

in the DG region at 24h. This may suggest a pivotal role for 
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exon I mRNA transcription in the up-regulatory response of 

antidepressants on the BDNF gene and may reflect the 

initiation of a stable long-term change in 

neurotransmission. Exon IV-containing transcripts, which 

were predominantly affected by acute antidepressant 

administration at 4h, were unaffected by chronic 

antidepressant administration at 24h. Regulation of exon III 

and IV mRNA is not protein synthesis-dependent, they are 

thought to share properties with lEGs. Thus, time course 

studies indicate that exon III and IV mRNAs are changed more 

rapidly and maximal or minimal levels are attained earlier 

than exon I and II mRNAs (Lauterborn et aI, 1996). As the 

chronically-treated groups were assessed 24h after the last 

injection, any acute alteration in exon IV mRNA 

transcription may have elapsed, with levels returning to 

normal. 

A difference in the effects of chronic SSRI fluoxetine or 

the non-selective MAOI TCP occurred with the noradrenergic 

TCA desipramine. Though chronic desipramine administration 

significantly up-regulated total BDNF mRNA levels in the DG, 

a corresponding significant up-regulation in exon I 

transcript mRNA was not seen (though an upward trend was 

recorded). The net BDNF expression depends on the cumulative 
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effect of the multiple alternative exon-containing 

transcripts (Timmusk et aI, 1993; Nakayama et aI, 1994; 

Bishop et aI, 1997). This may therefore implicate the up­

regulation of either exon II and/or exon III in the DG after 

chronic desipramine treatment, which contributes to the 

overall increase in total BDNF mRNA. As the present study 

was unable to reliably measure exon II or exon III­

containing transcripts, it was not possible to confirm which 

exon primarily contributed to the overall effect. However, 

the findings may represent the differential use of BDNF exon 

transcripts in response to the chronic administration of 

varying types of antidepressant drugs. In addition, there 

was no induction of any BDNF exon transcript in frontal 

cortex and striatal areas (data not shown). 

In conclusion, the chronic administration of three 

antidepressant drugs each resulted in the up-regulation of 

BDNF mRNA in the DG region of the hippocampus at 24h. 

Chronic TCP administration also up-regulated BDNF mRNA in 

the CA3 region. Chronic treatment with fluoxetine or TCP 

also significantly up-regulated exon I mRNA levels. Chronic 

fluoxetine, TCP or desipramine administration had no effect 

on exon IV mRNA in any area of the hippocampus at 24h. 
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There was no induction in BDNF, BDNF exon I or BDNF exon IV 

in either striatal or frontal cortex areas (data not shown). 
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Chapter Six 

The Effect of Electroconvulsive Shock on BDNF 

mRNA in the Rat Hippocampus 
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6.1. Introduction 

Chapters three and five outlined the bi-phasic effect of 

antidepressant drugs on total BDNF mRNA in the rat 

hippocampus, whereby acute antidepressant drug treatment 

inhibited BDNF mRNA in the CA3 and DG of the hippocampus at 

4h. Whereas chronic, but not acute treatment, up-regulated 

BDNF mRNA in the same areas at 24h. Additionally, it was 

shown that these changes are achieved by the differential 

use of the variable exon-containing transcripts. The acute 

down-regulatory response appeared to be mainly due to the 

inhibition in the immediate early gene-like (Lauterborn et 

al, 1996; 1998) exon IV mRNA transcription. The chronic up­

regulatory response however, appeared to be due to the 

comparable increase in the protein synthesis dependent exon 

I transcription, changes in expression of which has been 

shown to be protein synthesis dependent (Lauterborn et al, 

1996; 1998). 

Electroconvulsive therapy (ECT) is considered to be one of 

the most effective forms of therapy available for severe 

types of depression (Greenberg et aI, 1988; Fink, 1990; 

Mann, 1998). Like antidepressant drug treatment however, 

ECT requires the induction of a series of convulsions over 
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a period of weeks and the mechanisms behind its efficacy 

remain ambiguous (Greenberg et aI, 1988; Fink, 1990). 

6.1.1. The effect of ECS treatment on central monoamine 

function 

Several studies have reported marked effects on both 5-HT 

and NA function after chronic application of ECS. Repeated 

ECS in rodents was found to produce a significant increase 

in 5-HT2 receptor binding in the cortex and hippocampus. 

These changes corresponded with behavioural alterations 

indicative of such a change ('head twitch behaviour'; Green 

et aI, 1983; Goodwin, 1984). Repeated ECS application has 

also been shown to increase 5-HT1A receptor mRNA and binding 

site densities in the DG (Hayakawa et aI, 1994; Burnet et 

aI, 1995). An increase in interstitial 5-HT concentration 

in the hippocampus has been recorded in microdialysis 

studies after chronic ECS application (Zis et aI, 1992). 

This facilitation in 5-HT release appears to be as a result 

of neuronal activation as such an increase is blocked by 

the sodium channel blocker tetrodoxin (Zis et aI, 1992). 

It has been demonstrated that locus coeruleus (LC) electro­

physiological activity is decreased after chronic ECS 
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treatment (Grant and Weiss, 2001), despite elevation in 

tyrosine hydroxylase (TH) activity in the LC area (Weiner 

et aI, 1991; Kapur et aI, 1993; Brady et aI, 1994), though 

decreases in TH immunoreactivity activity have also been 

recorded in the LC area (Nestler et aI, 1990). It has been 

suggested that this inhibition in activity may be due to 

stimulation of somatodendritic a2 adrenoceptors on LC 

neurones (Cedarbaum and Aghajanian, 1976; Aghajanian and 

Vandermaelen, 1982; Simson and Weiss, 1987). Thus, the 

elevation in interstitial NA levels may result in an 

increase in stimulation of such receptors, which will 

inhibit depolarisation of LC neurones. 5-HT receptors have 

also been found on LC cell bodies (Pickel et aI, 1997). 

These are also thought to be inhibitory in nature (Segal, 

1979), thus increases in interstitial 5-HT levels arising 

from ECS application may also inhibit LC neuronal 

depolarisation. Interestingly, Teppet et al (1992) found a 

decrease in responsiveness of somatodenritic a2 adrenoceptor 

of LC NA neurones to the inhibitory effect of intravenous 

clonidine after repeated ECS, which may suggest an adaptive 

response to ECS. However, the desensitising effect was also 

seen after acute ECS, which does not produce a therapeutic 

response in humans. 
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6.1.2. The effect of ECS treatment on receptor-coupled 

signalling cascades 

Seizure is known to produce dramatic and diverse effects on 

a variety of signalling components including 

neurotransmitters (Nomikos et aI, 1991; Zis et aI, 1991; 

1992; McGarvey et aI, 1993; Stenfors et aI, 1995; 

Zetterstrom et aI, 1998; Gur et aI, 2002), neurotransmitter 

receptors (Burnet et aI, 1999; Ishihara et aI, 2001; Gur et 

aI, 2002; Dremencov et aI, 2003), G-proteins (Ozawa and 

Rasenick, 1991), protein kinases (Nestler et aI, 1989) and 

transcription factors (Nibuya et aI, 1995; Jeon et aI, 

1997), potassium channels (Pei et aI, 1997) and structural 

proteins (Pei et aI, 1998). The similarities in many key 

components activated by both chronic antidepressant 

treatment and ECS has suggested that prolonged ECS and 

antidepressant application may activate similar cascades, 

leading to a common therapeutic response. Chronic ECS has 

been demonstrated to augment the cAMP signalling system at 

various levels. The coupling of stimulatory G-proteins to 

adenylate cyclase is increased (Ozawa and Rasenick, 1991), 

as well as the expression of cAMP phosphodiesterase 

(Sattin, 1971; Lust et aI, 1976; Clarenbach et aI, 1978). 

ECT has been demonstrated to result in an increase in 
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plasma and urine cAMP concentration in depressed patients 

(Lykouras et aI, 1990). The expression of downstream 

targets of cAMP, including PKA (Nestler et al 1989) and 

CREB (Nibuya et aI, 1995; 1996) are enhanced by ECS 

application. Seizure induction is known to have widespread 

effects on the regulation of neurotrophic factors. 

Chemically- and electrically- induced seizures elicit a 

dramatic up-regulation in BDNF mRNA and its receptor, trkB 

(Zafra et aI, 1991; Ballarin et aI, 1991; Gall et aI, 1991; 

Nibuya et aI, 1995; Zetterstrom et aI, 1998). 

This chapter aims to elaborate on the effect of acute and 

chronic ECS treatment on the BDNF gene, focussing on the 

effect on individual BDNF transcript (exon I and exon IV) 

mRNA as well as on the whole gene. 
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6.2. Methods 

6.2.1. ECS application 

The protocol used for ECS application is listed in Section 

2.1.1.3. 

Animals were sacrificed 4h after acute ECS application and 

24h after chronic application. The time-points were chosen 

to correspond with the antidepressant drug treatment 

protocols (See Chapters 3 and 5). 
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6.3. Results 

6.3.1. Effect of acute ECS on total BDNF mRNA 

Acute ECS elicited more than a four-fold increase in total 

BDNF mRNA in the DG (385.4%; p<O.OOl) at 4h, compared with 

the sham treated animals. However, CAl and CA3 levels were 

not significantly altered (Table 6.1; Figures 6.1, 6.3). 

Exon I mRNA levels increased three-fold in the DG (221.5%; 

p<O.OOl) after acute ECS treatment at 4h, no significant 

changes were seen in the CA3 or CAl areas (Table 6.1; 

Figures 6.1, 6.3). 

Acute ECS resulted in over a five-fold increase (446.0%; 

p<O.OOl) in DG exon IV mRNA levels at 4h, no significant 

changes were seen in CAlor CA3 levels (Table 6.1; Figures 

6.1, 6.3). 
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6.3.2. Effect of chronic ECS on total BDNF mRNA, exon I 

mRNA and exon IV mRNA 

Chronic ECS treatment resulted in an increase in whole BDNF 

gene mRNA in the DG at 24h after the last shock (144.3%; 

p<O.OOl). In comparison, BDNF mRNA levels were not 

significantly altered in CAl and CA3 areas (See Table 6.2; 

Figures 6.2, 6.4). 

Exon I mRNA was significantly increased in the DG (77.4%; 

p<O.Ol), 24h after chronic ECS administration. No change 

was seen in CAlor CA3 areas (See Table 6.2; Figures 6.2, 

6.4) . 

Chronic treatment had no effect on exon IV mRNA in the DG 

at 24h, in addition to CAl and CA3 (See Table 6.2; Figures 

6.2,6.4). 
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Xable 6.1. Effect of acute ECS treatment on total BDNF 
mRNA, exon I mRNA and exon IV mRNA expression in the rat 
hippocampus 4h after shock. Data presented as percentage of 
control ***p<O.OOl, **p<O.Ol, *p<O.05 compared to control 
(Student's t-test) 

BDNF 
Acute Sham. n=4 
Acute ECS n=4 

Exon I mRNA 

Acute Sham. n=4 
Acute ECS n=4 

Exon IV mRNA 

Acute Sham n=4 
Acute ECS n=4 

CAl 

lOO±ll.4 
ll0.5±4.2 

100±8.l 
l23.4±5.6 

lOO±14.4 
123.2±7.6 

CA3 

lOO±lO.1 
91.9±4.5 

lOO±8.1 
lOO.3±6.8 

lOO±l?3 
132.4±5.6 

DG 

lOO±l7.0 
485.4±l4.2·" 

lOO±l2.4 
321.5±lO.8·" 

lOO±21.9 
546.0±l5.0·" 
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Table 6.2. Effect of chronic ECS treatment on total BDNF 
mRNA, exon I mRNA, and exon IV mRNA expression in the rat 
hippocampus 24h after shock. Data presented as percentage 
of control ***p<O.OOl, **p<O.Ol, *p<O.05 compared to 
control (Student's t-test) 

CAl CA3 DG 

BDNF 

Chronic Sham n=5 lOO±14.8 lOO±11.0 lOO±15.3 
Chronic ECS n=5 79.3±11.4 77.5±17.7 244.3±11.6u * 

BDNF Exon I 

Chronic Sham n=5 lOO±6.8 lOO±5.4 lOO±12.4 
Chronic ECS n=5 82.3±12.5 92.5±9.6 177.4±10.4** 

BDNF Exon IV 

Chronic Sham n=5 lOO±12.7 lOO±12.1 lOO±16.4 
Chronic ECS n=5 76.5±17.7 92.4±19.8 78.1±8.4 
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A B 

c D 

E r 

Figure 6.3. In-situ hybridisation images showing the effect 
of acute ECS administration on AlB total BDNF , C/D exon I 
mRNA and ElF exon IV mRNA in the rat hippocampal region at 
4h . Sham groups are situated left . 
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A 
B 

c D 

E 

Figure 6.4. In-situ hybridisation images showing the effect 
of chronic ECS administration on AlB total BDNF , C/D exon I 
and ElF exon IV mRNA in the rat hippocampal region at 24h . 

Sham groups are situated left . 
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6.4. Discussion 

6.4.1. Summary of findings 

Acute and chronic application of ECS substantially 

increased BDNF mRNA expression in the DG region of the 

hippocampus. Acute ECS resulted in a large increase in DG 

BDNF mRNA abundance, this increase declined upon further 

chronic ECS application. The substantial initial rise in 

BDNF mRNA appeared to be due in part to the large up­

regulation in exon I and exon IV mRNA. Chronic ECS however, 

resulted only in an up-regulation in exon I mRNA, exon IV 

was not significantly altered. 

6.4.2. The effect of ECS treatment on total BDNF mRNA 

In contrast to antidepressant drug treatment, where a bi­

phasic BDNF mRNA response was found (an initial acute down­

regulatory effect followed by up-regulation after chronic 

treatment), both acute and chronic ECS up-regulated BDNF 

mRNA in the DG. Similar rapid facilitation of BDNF mRNA has 

been shown in response to numerous seizure paradigms 

including kainic acid-induced seizure (Zafra et aI, 1990; 
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1991), kindling stimulation (Ernfors et aI, 1991; Kokaia et 

aI, 1994; 1996; Sato et aI, 1996), electrolytic lesions 

(Isackson et aI, 1991), as well as ECS (Nibuya et aI, 1995: 

Zetterstrom et aI, 1998a). However the up-regulation in 

total BDNF mRNA after acute ECS was transient, with levels 

returning to controls within 24h (Zetterstrom et al, 

1998a) . 

The mechanisms behind the rapid induction of BDNF after 

seizure are unclear. However, as mentioned earlier (Section 

4.4), BDNF is acutely regulated by neuronal activity and 

interplay between glutamate and GABA transmission (Zafra et 

aI, 1991; 1992; Bonanno et aI, 1998). ECS has been shown to 

produce a long-term 'LTP-like' enhancement in 

neurotransmission in the DG (Stewart et aI, 1994; Burnham 

et al, 1995). This effect has also been demonstrated after 

kindling stimulation. The kindling phenomenon, where sub­

convulsive electrical stimulations become convulsive upon 

chronic application, has been associated with enhancement 

in the potency of glutamate at its respective receptor. 

Thus, kindling seizures have been shown to produce 

substantial change within NMDA receptor subunits (Kraus et 

aI, 1994; Vezzani et aI, 1995; Watkins et al, 1998). 

Activation of NMDA receptor subtypes leads to the 

205 



Ahmad Adam Khundakar Chapter Six 

enhancement of BDNF mRNA levels (Zafra et al 1990; 1991). 

In addition, stimulation of DG granule cells that evoke LTP 

has been shown to enhance BDNF mRNA in the same cells 

(Castren et aI, 1993; Dragunow et aI, 1993). Such increases 

appear to be also influenced by non-NMDA glutamate 

receptors, as the non-NMDA receptor antagonist CNQX blocks 

the ECS-induced increase in BDNF mRNA in the hippocampus 

(Zetterstr5m et ai, 1998b). 

Acute ECS application has been demonstrated to elicit 

immediate early gene (lEG) induction. Expression of c-fos 

is rapidly increased after acute ECS in the hippocampus and 

cortex (Cole et ai, 1990; Winston et aI, 1990). The 

induction of c-fos has been shown to be a reliable marker 

of neuronal activity (Morgan et ai, 1987; Sagar et ai, 

1988), thereby indicating hippocampal and cortical activity 

after acute ECS application. Interestingly, acute ECS 

induction of c-fos has been shown to be blocked by the NMDA 

antagonist MK801 in the hippocampus, but not several other 

neurotransmitter receptor antagonists (DI, 5-HT2A/2c, ulNA, 

~NA; Morinobu et aI, 1997), implicating a role for acute 

glutamatergic activity in the hippocampus in response to 

acute ECS. The induction of BDNF mRNA after seizure has 

also been shown to be dependent on Ca2
+ signalling and 

206 



Ahmad Adam Khundakar Chapter Six 

activation of calmodulin-dependent protein kinases (Bading 

et ai, 1993; Lerea and McNamara, 1993; Murray et ai, 1998) 

and BDNF mRNA is regulated in a ca2+/calmodulin-dependent 

manner in vitro (Murray et ai, 1998). In contrast, a fast 

decrease in hippocampal GABA function has been shown after 

seizure (kainic acid-induced) at a pre-synaptic level, 

resulting in a decrease in inhibitory postsynaptic 

potentials (IPSPs; Zafra et ai, 1991). Such an effect could 

be considered the opposite to the effect demonstrated in 

Chapter 4, where the acute administration of the GABAa 

agonist baclofen resulted in the rapid decrease in BDNF 

mRNA expression in the hippocampus (See Section 4.3.1). 

The up-regulatory effect on BDNF mRNA from acute ECS is not 

consistent with the time-course for the therapeutic action 

of ECT. Therefore it seems that up-regulation of BDNF mRNA 

alone is not sufficient to bring therapeutic response in 

humans, it appears that sustained elevation from chronic 

treatment may be necessary for eventual efficacy. ECS has 

been reported to up-regulate the cAMP signalling system at 

several levels (Ozawa and Rasenick, 1991), suggesting 

prolonged cAMP cascade activation may underlie the 

therapeutic mechanism. As explained in Chapter 5, various 

5-HT and NA receptor subtypes are linked to the cAMP 
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systems via G-protein activation. Microdialysis studies 

have revealed enhanced release of both 5-HT (Zis et aI, 

1992) and NA (Thomas et aI, 1991; 1992) after acute and 

chronic ECS application. Additionally, adaptive changes in 

monoamine receptor number and sensitivity have been 

demonstrated. Post-synaptic 5-HTIA receptor mRNA up­

regulation has been found in DG granule cells following 

chronic ECS (Burnett et aI, 1999) and decreased sensitivity 

has been reported among 5-HT1A receptors to agonist 

compounds (Gur et aI, 2002). Down-regulation in p­

adrenoreceptor number has also been observed (Nutt et aI, 

1989; Seo et aI, 1999). As with chronic antidepressant drug 

treatment, persistent increases in monoamine concentration 

from chronic ECS application may activate similar 

downstream components. One possible converging target point 

for both ECS and antidepressant drug treatment may be the 

transcription factor CREB. CREB levels are increased in the 

hippocampus by ECS (Nibuya et aI, 1996; vaidya and Duman, 

1998) and antidepressant drug treatment (Nibuya et al 1996 

Duman et aI, 1997, 1999; Thome et aI, 2000). CREB has been 

associated as a transcription factor for the BDNF gene 

(Nibuya et aI, 1996; See Section 5.1). 
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Overall, it appears that glutamate may be a likely mediator 

of BDNF mRNA induction after acute ECS induction, however 

the maintenance of BDNF mRNA elevation after chronic ECS 

appears more complex. The prolonged facilitation of 

monoamine receptor-linked signalling cascades, resulting in 

CREB induction may lead to longer-term BDNF augmentation 

and may possibly underlie ECS therapeutic action. 

6.4.3. The effect of ECS on individual BDNF exon mRNA 

The induction of acute and chronic ECS produced 

differential effects on the transcription of exon I and IV 

mRNA in the DG region of the hippocampus. Acute ECS 

resulted in an up-regulation in both exon I and IV mRNA. 

Exon IV-containing mRNAs have been shown to share 

properties with lEGs (Lauterborn et aI, 1996; 1998). 

Therefore chanqes in exon IV mRNA may have been expected 

after 4h, reflecting the overall change in BDNF. However, 

the induction of exon I mRNA has been shown to be dependent 

on ongoing Ca2+/calmodulin protein synthesis mechanisms 

(Lauterborn et aI, 1996; 1998) and displays a delayed 

induction process (Kokaia et aI, 1994). It is therefore 

surprising that the response in exon I mRNA is evident 

after only 4h post-injection. Acute ECS results in a 
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massive depolarising effect on granular cells of the DG, 

resulting in Ca2+ influx into neurones. Several studies have 

indicated that activation of L-type voltage-sensitive Ca2+ 

channels can lead to a transient increase in exon I (as 

well as exon II and III) containing transcripts (Timmusk et 

aI, 1993; Metsis et aI, 1993; Tao et aI, 1998), increases 

may take place as early as 3h after acute ECS application 

(Tao et al, 1998). Indeed, putative calcium-responsive 

elements have been detected within the promoter region of 

exon I, it may be a possibility therefore that fast exon I 

transcription may occur in response to rapid depolarising 

stimuli, such as from acute ECS. 

As with the effect acute antidepressant drug treatment, 

alteration in exon IV mRNA transcription mirrored the 

change to total BDNF mRNA. This suggests a primary role for 

exon IV transcripts in the BDNF mRNA response to acute 

stimuli. Like chronic antidepressant drug treatment, 

chronic ECS application resulted in increases in exon I 

mRNA, but not exon IV mRNA in the DG region of the 

hippocampus. This further implicates exon I activation in 

long-term interventions involving intervening protein 

synthesis mechanisms. 
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In conclusion, the effect of acute application of ECS on 

total BDNF mRNA and two individual exon transcripts differs 

from that of acute antidepressant drug treatment. Unlike 

acute drug treatment where total BDNF mRNA as well as exon 

IV mRNA were inhibited, acute ECS up-regulated total BDNF 

rnRNA as well as both exon I and IV mRNA. As the up­

regulatory effect on BDNF mRNA from acute ECS is not 

consistent with the time-course for the therapeutic action 

of ECS it appears that that up-regulation of BDNF mRNA 

alone is not sufficient to bring therapeutic response. 
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Chapter Seven 

The Effect of Chronic Antidepressant Treatment 

on BDNF Immunoreactivity in the Rat 

Hippocampus 
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7.1. Introduction 

The majority of studies relating to the regulation of BDNF 

after chronic antidepressant treatments have been based on 

the analysis of BDNF mRNA and not on the corresponding 

protein product. This has been due in part to technical 

limitations, such as lack of sensitive tissue assays for 

BDNF protein, as well as difficulties in quantifying (Altar 

et aI, 2003). However, examination of protein expression is 

vital in order to elucidate the functional properties of 

BDNF. In addition, its localisation in relation to BDNF 

mRNA alludes to how the protein is synthesised and 

transported. 

7.1.1. Basal distribution of BDNF protein in the rat brain 

Previous animal (Conner et aI, 1997; Yan et aI, 1997) and 

human studies (Iritani et aI, 2003) using similar 

immunocytochemistry (ICC) strategies to those in this 

chapter have revealed distinct BDNF immunoreactivity in 

several structures of the brain. These included the frontal 

and parietal cortices, as well as the hippocampus (Yan et 

aI, 1997; Conner et aI, 1997). Within the hippocampal 

formation, relatively dense staining has been found in the 

213 



Ahmad Adam Khundakar Chapter Seven 

CA3, particularly in the mossy fibre zone (MFZ), which 

connects granule cells of the DG with the CA3 pyramidal 

cells (Conner et al, 1997). Less basal staining has been 

reported in the CA3 area, and DG staining minimal (Conner 

et al, 1997, Iritani et aI, 2003). 

7.1.2. The effect of chronic ECS treatment on BDNF 

immunorectivity in the rat hippocampus 

Previous studies examining the effect of chronic ECS on 

BDNF protein have generally found an up-wards trend in 

expression in several areas of the brain. A recent enzyme­

linked sorbent assay (ELISA) study (Altar et al, 2003) 

found 10 consecutive days of ECS treatment elicited rapid, 

large and widespread increases in BDNF protein in the 

parietal cortex (219%), hippocampus (132%), frontal cortex 

(94%) and neostriatum (67%). These increases peaked at 15 

hours after the last treatment and were sustained for a 3-

day period. Another ELISA study (Angelucci et aI, 2002) 

found increased immunoreactivity restricted to the 

hippocampus and frontal cortex after 8 consecutive days of 

ECS. However, these findings were not replicated by the 

same group (Angelucci et aI, 2003). 
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Within the hippocampus, Smith et al (1997) found increased 

immunoreactivity localised in the hippocampal mossy fibres 

projecting from the DG granule cells to the CA3 pyramidal 

cells after chronic ECS application. 

The present study used the ICC technique, with specific 

affinity-purified antibodies selective to BDNF, to assess 

the effect of chronic application of ECS within the rat 

hippocampus. In addition, basal levels of BDNF protein in 

coronal sections through three major areas of the rat 

brain: the frontal cortex, striatum and hippocampus were 

established. 
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7 • 2. Methods 

Immunocytochemistry and densitometric analysis procedures 

are described in Chapter 2. 
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7.3. Results 

7.3.1. Basal distribution of BDNF protein in the rat brain 

Basal BDNF immunoreactivity was found in the hippocampus, 

as well as cortical and striatal areas. Significant 

labelling was established in the parietal (See Figure 7.4) 

and frontal cortices (See Figure 7.5). Within the 

hippocampus, basal BDNF immunoreactivity was found in the 

pyramidal cells of the CAl and CA3. However, the most 

intense staining appeared to be within the MFZ. No 

significant basal expression was seen in the granule cells 

of the DG (See Figure 7.3). As the DG basal level was so 

weak the accuracy of analysis could be questioned, 

therefore the effect of antidepressant treatments was 

focussed on the CAl, CA3 and MFZ within the hippocampus. 

A high level of magnification appeared to highlight BDNF 

protein labelling in somatic and axonal regions of cortical 

pyramidal neurones. Labelling appeared to be concentrated 

in somatic areas, which occasionally extended along axonal 

areas. However, under close scrutiny considerably less 

staining appeared to be present in central areas of the 

soma in many cells (See Figure 7.4B). 
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Figure 7.1. Photomicrograph showing basal expression of 
BDNF protein in the rat hippocampus . The anat omical 
location is highlighted on a schematic diagram above 
(Adapted from Paxinos and Watson , 1986; Plate 34) . 

MFZ 
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Figure 7.2. Photomicrograph showing the basal e xpressio n of 
BDNF protein in the rat parietal cortex . The anatomical 
location is highlighted on a schematic diagram above 
(Adapted from Paxinos and Watson , 1986 ; Plate 34) . 
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Figure 7.3. Photomicrograph showing basal expression of 
BDNF protein in the rat frontal cortex . The anatomi cal 
location is highlighted on a schematic diagram above 
(Adapted from Pax inos and Watson , 1986; Plate 8 ) . 

220 



Ahmad Adam Khundakar Chapter Seven 

Figure 7.4. Photomicrograph showing basal expression of 
BDNF protein in the rat striatum (caudate putamen) . The 
anatomical location is highlighted on a schematic diagram 
above (Adapted from Paxinos and Watson , 1986 ; Plate 22 ) . 
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7.3.2. Effect of chronic ECS treatment on BDNF 

immunoreactivity in the rat hippocampus at 24h 

Chronic application of ECS elicited significant increases 

in BDNF protein expression in all areas assessed over sham­

treated animals. CAl (+143.3%, p<O.Ol) and CA3 (+144.6, 

p<0.05) and parietal cortex (+166.0%, p<0.05) levels 

increased over two-fold. The largest change was in the MFZ, 

where over a twelve-fold increase was recorded (+1159.3%, 

p<O.Ol; See Table 7.1; Figure 7.5; 7.6). 

7.3.3. Effect of chronic antidepressant treatment on BDNF 

immunoreactivity in the rat hippocampus at 24h 

An attempt was made to measure the effect of chronic 

antidepressant (TCP) treatment on BDNF immunoreactivity in 

the rat brain. However, only a cursory examination was 

possible due to low sample numbers (n=2; data not shown). 
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Tab~e 7.1. Effect of chronic ECS treatment on BDNF protein expression in the rat 
hippocampus 24h after injection. Raw data presented ***p<O.OOl, **p<O.Ol, *p<O.05 
compared to control (Unpaired two-tailed Student's t-test). Units corrected for non­
specific signalling over white matter (corpus callosum) 

CAl CA3 MF Par Ctx 

Sham n=3 0.1007±0.015 0.1073±0.028 0.0133±0.0133 0.047+0.006 

ECS n=4 0.245±0.027** 0.2625±0.042 * 0.1675±0.032 ** 0.125+0.017* 
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CAl CA3 

Figure 7.6. Photomicrographs showing the effect of chronic 
ECS treatment on BDNF immunoreactivity in the hippocampus 
in comparison with sham treated animal (A) . The anatomical 
location is highlighted on a schematic diagram above 
(Adapted from Paxinos and Watson , 1986 ; Plate 33) . 
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7.4. Discussion 

7.4.1. Basal distribution of BDNF protein in the adult rat 

brain 

In conjunction with previous studies (Yan et al, 1997; 

Conner et al, 1997) basal immunoreativity was found with 

frontal and parietal cortices, striatum and the 

hippocampus. Within the hippocampus, similar basal BDNF 

expression has been recorded in the pyramidal cells of the 

CA3 and the MFZ connecting the DG granule cells and the 

CA3. In addition, the present study also found significant 

basal BDNF protein expression was found in the CAl. 

However, no significant basal BDNF expression was detected 

throughout the DG. Interestingly, at a cellular level, a 

distinct pattern of BDNF distribution appeared to exist. A 

high level of immunoreactivity was present in the periphery 

of the soma, sometimes extending along axons, however a 

lack of staining was observed in the centre of the soma. 

This appears to confirm previous findings (Conner et aI, 

1997), that unlike BDNF mRNA, BDNF protein is not present 

within the nucleus and is localised to the cytoplasm, 

extending into proximal processes. 
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7.4.2. The effect of chronic ECS treatment on BDNF 

immunoreactivity 

Chronic ECS treatment produced widespread, significant 

increase in BDNF protein in all areas assessed. Within the 

hippocampus, the largest increase in protein levels was 

seen in the MFZ. Such large increases in MFZ levels have 

also been recorded in a previous ICC study (Smith et al, 

1997). Previous ELISA studies (Altar et al, 2003; Angelucci 

et al, 2002) have found significant increases in overall 

hippocampal BDNF protein levels. 

From the data gained in this chapter, as well as the data 

concerning BDNF gene alterations after chronic ECS 

treatment, it is seems that chronic ECS administration 

elicits a profound effect on both BDNF mRNA and it protein 

product in the hippocampus. It must be stressed that 

considerable limitations of ICC exist from the inherent 

inability to quantify changes in immunoreactivity. 

Technique such as western immunobotting or 

immunoautoradiography may have provided more accurate 

readings (Xu et aI, 2002; Altar et aI, 2003). 
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In addition, variability exists in the localisation of 

alterations in BDNF gene and protein expression within the 

hippocampus. Basal expression of BDNF mRNA was high in 

granule cells of the DG, with lower expression in the CAl 

(See Section 3.3.1). However, basal BDNF protein level in 

DG granule cells was minimal, with expression present in 

the pyramidal cells of the CAl and CA3, as well as the MFZ. 

As explained in Section 1.7.3, soma arising from the DG 

area project mossy fibres axons through the MFZ to the CA3 

pyramidal layer cells. ICC visualisation studies on BDNF at 

a cellular level have confirmed that neurones expressing 

BDNF mRNA also synthesise their corresponding protein 

(Wetmore et aI, 1991: Wetmore et aI, 1994; Dugich­

Djordjevic et aI, 1995). The soma of such neurones have 

been shown to be rich in BDNF mRNA (Altar and DiStefano, 

1998). BDNF protein has been shown to be mainly expressed 

in axonal and terminal areas (Altar et aI, 1997). Thus, it 

has been suggested that the predominant direction for 

transport of BDNF is anterograde (Altar and DiStefano, 

1998). Indeed, transection of the dorsal root ganglion axon 

has revealed accumulation of BDNF protein on the proximal 

side of the ligature (Tonra et aI, 1998). This phenomenon 

may also explain the apparent lack of BDNF mRNA signal in 
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striatal areas, compared with rich BDNF protein labelling 

in the same area. 

The apparent co-localisation of increases in BDNF protein 

after ECS application with the sprouting of the mossy fibre 

pathway offers a tempting hypothesis that BDNF enhancement 

may act as a precursor to impending structural change in 

areas associated with depression after antidepressant 

treatment. Furthermore, this analogy appears to suggest a 

central role for granule cells in the DG and their axons in 

the mossy fibre tract in the aetiopathology of depression. 

Indeed, stress models in rodents have been shown to induce 

atrophy in mossy fibres and dendritic trees of the CA3 

pyramidal neurones (Popoli et al, 2002; McEwen, 1999), 

indicating decreases in synaptic transmission in this 

critical neuronal pathway (Castren, 2004). In addition, 

hippocampal neurogenesis has been suggested in areas 

similar to those where BDNF mRNA is enhanced after 

antidepressant treatment. Repeated administration of a 

variety of antidepressant drugs and ECS causes an increase 

in the number of Brd-U labelled cells in the hippocampus 

(Malberg et al, 2000; Jacobs and Fornal, 1999; Manev et al, 

2001). The new cells have been shown to migrate into the 

granule cell layer, before extending axons along the mossy 
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fibre pathway to the CA3 pyramidal layer (van Praag et al, 

1999). It appears that new cells exhibit similar 

characteristics as mature granule cells and integrate into 

hippocampal circuitry (Duman et al, 2001). 

In conclusion, the present study found that chronic 

application of ECS significantly increased BDNF 

immunoreactivity in the CAl, CA3 and the MFZ of the 

hippocampus, as well as in the parietal cortex. Chronic 

administration of the non-selective MAOI antidepressant 

drug TCP failed to elicit any significant increase in these 

areas, however these results were very preliminary due to 

low group sample numbers. 
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Chapter Eight 

General Discussion 
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8.1 Background 

Major depression is one of the most common and devastating 

psychiatric disorders and is characterised by a number of 

mental, as well as somatic symptoms (DSM-Ivm, 1997). The 

serendipitous discovery of antidepressant treatments in the 

1950s led to the establishment of numerous theories into 

the pathophysiology of depression and the mechanism of 

action of antidepressant drugs. The most prominent of these 

the "monoamine hypothesis" implicated a role for 

noradrenaline (NA) and serotonin (5-HT) transmitter systems 

(Schildkraut, 1965). Most antidepressant drugs facilitate 

the signalling of 5-HT or NA either by inhibiting their 

reuptake back into pre-synaptic terminals (e.g. SSRls, 

TeAs) or by inhibiting their catabolism (e.g. MAOls). 

However, alterations in monoamine turnover take place 

quickly, within hours of drug administration, but the 

therapeutic antidepressant effect may take several weeks of 

chronic drug treatment to manifest (Nestler et aI, 2002). 

In addition, one of the most effective forms of 

antidepressant treatment electroconvulsive therapy (ECT; 

animal model, ECS) requires several applications in order 

for full efficacy to occur (Fink, 1990). This suggests that 

alterations in monoamine transmission alone cannot explain 
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the efficacy of antidepressants and has led to research 

focusing on events beyond the monoamine receptor. The cAMP 

signalling cascade is regulated by several 5-HT and NA 

receptor subtypes. Increased levels of cAMP induces protein 

kinase A (PKA) activation, which in turn catalyses a 

variety of regulatory proteins including transcription 

factors such as cAMP response element binding protein 

(CREB). CREB mRNA and protein has been shown to be 

increased after chronic antidepressant treatment (Nibuya et 

aI, 1995; 1996). CREB regulates gene transcription by 

binding to a cAMP response element on the regulatory region 

of various genes. One such target gene identified as 

containing such a region is brain-derived neurotrophic 

factor (BDNF). 

The BDNF gene has multiple transcripts with unique 

promoters. The BDNF transcripts consist of a variable 5' 

region (exons I-IV) and an invariable 3' segment (exon V) . 

The common 3' exon codes for the mature BDNF protein, 

whereas exons I to IV arise from the differential use of 

four different promoters (Russo-Neustadt et aI, 2000). The 

transcripts are differentially expressed across areas of 

the brain (Bishop et aI, 1994) and differing stimuli has 

been shown to regulate the expression of distinct BDNF exon 

233 



Ahmad Adam Khundakar Chapter Eight 

transcripts in the brain. It has been demonstrated that 

exon 111- and exon IV-containing transcripts share 

properties with immediate early genes, whereas changes exon 

1- and exon II-containing transcript expression is 

dependent on ongoing protein synthesis mechanisms 

(Lauterborn et aI, 1996; 1998). 

Several studies have demonstrated an up-regulatory effect 

on BDNF after chronic, but not acute antidepressant drug 

(Nibuya et aI, 1995; Zetterstrom et aI, 1998; Russo-

Neustadt, 1999; 2000; Coppell et aI, 2003) and ECS (Nibuya 

et aI, 1995; Schmidt-Kastner et aI, 1996; Zetterstrom et 

aI, 1998b) treatment. However, a recent study (Coppell et 

aI, 2003) demonstrated an apparent bi-phasic effect of 

antidepressant drug treatment on BDNF mRNA, involving an 

initial down-regulation of the BDNF gene in the hippocampus 

at 4h after acute and chronic treatment, and an up­

regulatory effect at 24h following chronic treatment. 

Against this background, this thesis aimed to study the 

effect of numerous antidepressant drugs as well as ECS, 

when given chronically or acutely, on the total BDNF gene 

mRNA as well as as a representative form of protein­

dependent exon mRNA (exon I) and a non-protein synthesis-
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dependent 'lEG-like' exon mRNA (exon IV; Lauterborn et aI, 

1996; Russo-Neustadt et aI, 2001) in the rat hippocampus. 

Further research into the apparent acute inhibitory effect 

on BDNF mRNA at 4h was also conducted. In addition, the 

effect of antidepressant drug and ECS treatment on BDNF 

immunoreactivity was examined. A summary of the findings, 

ranked in perceived order of importance is listed below. 

8.2. Summary of main findings 

8.2.1. Differential effect of acute and chronic 

antidepressant drug administration on total BDNF mRNA and 

BDNF exon mRNA distribution in the adult rat hippocampus 

One of the key findings within this body of research 

related to the differential effect of acute (at 4h) and 

chronic (at 24h) antidepressant drug treatment on BDNF mRNA 

within the hippocampus and the corresponding effect on the 

variable exon-containing transcript expression within the 

hippocampus. A previous study had revealed an apparent "bi­

phasic effect" (Coppell et aI, 2003), whereby acute 

antidepressant administration inhibited BDNF mRNA within 

the DG region of the hippocampus at 4h, whereas chronic 

antidepressant administration increased BDNF mRNA at 24h. 
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This effect was confirmed in this thesis, not only after 

compounds potent to 5-HT reuptake inhibition, but also from 

drugs with high affinity to noradrenergic/dopaminergic 

transporters. Furthermore, an apparent differential use of 

the variable exon-containing transcripts was discovered in 

response to acute and chronic antidepressant 

administration. Thus, acute administration of a variety of 

antidepressant drugs (as well as the non-antidepressant 

compounds with high affinity for the DA transporter: 

methylphenidate and GBR 12909), down-regulated BDNF mRNA 

expression within the DG region of the hippocampus at 4h, 

an effect which appeared to be mediated in part by an 

inhibition in exon IV (lEG-like) mRNA transcription, rather 

than exon I mRNA (protein synthesis-dependent), which was 

unchanged (See Section 3.3.2). In contrast, chronic 

administration of the SSRI fluoxetine or the MAOI TCP 

significantly up-regulated BDNF mRNA in the DG at 24h, an 

effect which appeared to be mediated in part by an increase 

in exon I mRNA transcription, rather than exon IV, which 

was unchanged (See 5.3.1). However, chronic administration 

of noradrenergic TCA desipramine significantly increased 

total BDNF mRNA, without a corresponding increase in exon I 

mRNA expression. This suggested a predominant increase in 
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an exon transcription in those not tested (exon II or exon 

III) in NA-mediated up-regulation of BDNF in the DG. 

8.2.2. The acute inhibitory effect of antidepressant drugs 

on BDNF mRNA in the DG is influenced by GABAB-mediated 

mechanisms 

The acute administration of baclofen, but not flunitrazepam 

or THIP, significantly inhibited BDNF mRNA in the CA3 and 

DG at 4h, thus suggesting involvement of GABAs, rather than 

GABAA receptor-mediated mechanisms. The GABAs-selective 

antagonist CGP 46381 significantly attenuated the 

inhibitory effect on BDNF mRNA caused by acute baclofen or 

paroxetine administration in the CA3 and DG. However, CGP 

46381 alone significantly increased BDNF mRNA levels in the 

DG region to a similar magnitude as the attenuation, 

suggesting the existence of an endogenous inhibitory tone 

by GABA on BDNF mRNA in this region. Pre-treatment with an 

additional GABAs receptor antagonist, CGP 55845, 

significantly attenuated baclofen-mediated down-regulation 

of BDNF mRNA expression in the DG, however it failed to 

attenuate paroxetine-mediated down-regulation in the CA3 

and DG region of the hippocampus. 
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8.2.3. The effect of acute and chronic ECS application on 

total BDNF mRNA and BDNF exon mRNA 

Both acute ECS at 4h and chronic ECS at 24h significantly 

up-regulated total BDNF mRNA in the DG region of the 

hippocampus. The magnitude of the increase however, was 

larger in acutely treated animals (See Section 6.3.1 and 

6.3.4). In addition, the induction of acute ECS at 4h and 

chronic ECS at 24h resulted in a variable use of BDNF exon 

transcripts measured in the DG region of the hippocampus. 

Acute ECS resulted in the up-regulation of both exon I and 

IV mRNA at 4h, whereas chronic ECS resulted in an increase 

in exon I mRNA only at 24h, exon IV mRNA expression was 

unchanged (See Sections 6.3.2, 6.3.3, 6.3.5 and 6.3.6) 

8.2.4. BDNF protein levels are increased after chronic ECS, 

but not chronic antidepressant drug treatment 

Chronic administration of ECS resulted in a significant 

increase in immunoreactivity in the CAl, CA3 and mossy 

fibre zone of the hippocampus, as well as the parietal 

cortex. Chronic administration of the MAOI antidepressant 

drug TCP failed to increase BDNF protein in the same areas, 

however these results were preliminary in nature and 
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significance may not have been achieved due to low sample 

numbers (n=2). 

8.3. Discussion 

8.3.1. Implications of the main findings 

B.3.1.1. Differential use of variable BDNF exon transcripts 

in response to antidepressant drug treatment 

As explained in Chapter 3 and Chapter 5, acute and chronic 

antidepressant drug treatment had a differing effect on the 

two exon-containing transcripts measured. Whilst like total 

BDNF mRNA, exon IV-containing transcripts were down­

regulated by acute antidepressant drug treatment, exon 1-

containing transcripts were unchanged. In contrast, 

following chronic administration, exon I mRNA expression 

was up-regulated in conjunction with total BDNF mRNA, while 

exon IV mRNA remained unchanged. The physiological 

consequences of this phenomenon are unclear. However, it 

has been shown previously that exon IV- (as well as exon 

111-) containing mRNAs share properties with lEGs, whereas 

transcription of exon I (and exon II) mRNA is regulated via 

intervening protein synthesis mechanisms (Lauterborn et aI, 
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1996; 1998). As each variable exon (exon I-IV) has a unique 

promoter, it appears that the differential effect on total 

BDNF mRNA after acute and chronic antidepressant treatment 

may be as a result of the recruitment of different 

promoters, which result in the corresponding change in exon 

transcription and total BDNF mRNA expression. Thus, the 

presence of numerous transcripts, each with unique promoter 

regulatory mechanisms might act as fine-tuning mechanism, 

mediating control over BDNF transcription, and translation 

into BDNF protein. 

8.3.1.2. GABAB-mediated inhibition of BDNF mRNA after acute 

antidepressant drug treatment 

Chapter 4 outlined a hypothetical mechanism for the 

regulation of BDNF mRNA after acute antidepressant 

treatment. This involved the activation of excitatory 5-HT 

receptors present on GABA-ergic interneurone architecture 

within the hippocampus. This would, in theory, result in 

increased GABA release and subsequent inhibitory control 

over hippocampal cells, thereby inhibiting BDNF mRNA. Acute 

administration of the GABAs agonist baclofen, but not the 

GABAA agonist THIP or the benzodiazepine flunitrazepam 

significantly inhibited BDNF mRNA in the CA3 and DG. 
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Furthermore, GABAB receptor antagonist pre-treatment prior 

to acute baclofen treatment appeared to attenuate the 

inhibitory response. This therefore appears to confirm a 

role for GABAB, but not GABAA mechanisms in the acute 

regulation of BDNF in the DG. However, the role of GABAB-

mediated mechanisms in acute antidepressant (paroxetine) 

inhibition of BDNF mRNA in the hippocampus was not fully 

established. Further research incorporating the acute 

administration of antidepressants with varying affinities 

to NA and/or 5-HT reuptake sites after GABAB receptor 

antagonist administration is required to confirm this 

effect. 

Several studies, including the present study, have 

demonstrated an up-regulatory effect on BDNF after chronic, 

but not acute antidepressant drug treatment (Nibuya et aI, 

1995; Zetterstr6m et al, 1998; Russo-Neustadt, 1999; 2000; 

Coppell et al, 2003). These findings have suggested a 

significant role for BDNF in the mechanism of action of 

antidepressant drugs, thereby implying an up-regulatory 

effect on BDNF gene transcription may be beneficial in the 

treatment of depression. It may be speculated that the 

initial inhibitory effect on BDNF mRNA found after acute 

antidepressant administration could be seen as a 
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detrimental phenomenon which may contribute to the apparent 

~therapeutic latency period" (See Section 1.4.3.1) of 

antidepressant drugs. Therefore, the elimination of such an 

effect may enhance the action of antidepressants on BDNF 

and possibly reduce the latency period. Possible GABAs 

receptor-mediated involvement in the acute down-regulatory 

response in BDNF after acute antidepressant treatment 

perhaps suggest that GABAs receptor blockade may be 

beneficial in the initial phase of antidepressant 

treatment. This could have important clinical implications 

for the shortening of the latency period of therapeutic 

onset of antidepressant drugs. 

B.3.1.3. Chronic and acute ECS up-regulate BDNF mRNA in the 

rat hippocampus 

Unlike antidepressant drug treatment where chronic, but not 

acute administration, resulted in the up-regulation in 

BDNF, ECS up-regulated BDNF mRNA in the DG, when given both 

acutely and chronically. BDNF mRNA has been shown to be up­

regulated acutely by enhanced neuronal activity and 

glutamatergic transmission (Zafra et aI, 1991; 1992). The 

up-regulatory effect on BDNF mRNA from acute ECS however is 

not consistent with the time-course for the therapeutic 
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action of ECS. Therefore it was suggested in Chapter 6, 

that up-regulation of BDNF mRNA alone is not sufficient to 

bring therapeutic response. Interestingly, Zetterstr6m et 

al (1998a) found that though acute ECS produced an up­

regulation in BDNF mRNA at 4h, the effect was transient and 

levels returned to normal after 24h. However, chronic ECS 

application produced far longer lasting increases in BDNF 

mRNA, perhaps suggesting chronic adaptation in components 

mediating BDNF signalling. Both ECS and antidepressant drug 

treatments potentiate the cAMP signalling cascade at 

several levels (Ozawa and Rasenick, 1991; Nibuya et aI, 

1996). An important target for this system is CREB, which 

has been shown to regulate BDNF transcription (Shieh et aI, 

1998; Tao et aI, 1998). Moreover, chronic administration of 

antidepressant drugs or ECS increases CREB in the rat 

hippocampus (Nibuya et aI, 1996). 

8.3.1.4. The implications of enhanced BDNF signalling 

BDNF has been identified as an important mediator in 

several vital functions within the brain. In addition to 

promoting the survival of both 5-HT and NA neurones (Altar 

et aI, 1994), direct BDNF infusion has also been shown to 

produce neurotrophic effects of 5-HT neurones in the 
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neocortex (Mamounas et al, 1995; 2000). This may represent 

a reciprocal process between monoamine function and BDNF 

production, whereby persistent increases in monoamine 

levels, such as from chronic antidepressant drug treatment, 

potentiate BDNF levels which in turn produce neurotrophic 

events, altering morphology and increasing neuronal system 

efficiency. Conversely, chronic stress, through enhanced 

CRF and/or glucocorticoid levels may promote morphological 

deficits in such neuronal systems associated with 

depression, chronic stress has been demonstrated to result 

in neuronal atrophy in CA3 neurones (Sapolsky et al, 1990; 

Watanabe et al, 1992; Magarinos et al, 1996), possibly 

through deleterious effects on BDNF turnover (Smith et al, 

1995). It is therefore tempting to suggest that elevations 

in BDNF protein may be predictive response for the 

mechanistic actions of antidepressant interventions. 

However, despite the apparent up-regulatory effect of 

chronic ECS, the effect antidepressant drug administration 

on BDNF protein remains somewhat inconclusive. It is 

therefore apparent that more studies are needed in this 

area in order to fully establish the role of BDNF in the 

mechanistic action of antidepressant drugs. 
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8.3.2. Future studies and areas of investigation 

8.3.2.1. Impact of stress on BDNF exon transcripts 

Chronic exposure to stress has long been implicated in the 

pathophysiology of depression. Additionally, chronic stress 

models in rats have been shown to lower BDNF mRNA in the 

hippocampus (Smith et aI, 1995; Ueyama et aI, 1997), as 

does elevation of exogenous corticosterone levels (Schaaf 

et aI, 1998), an effect that is blocked by subsequent 

antidepressant treatment (Nibuya et aI, 1995; See Section 

1.6.2.4). Using exon-specific oligonucleotide probes, the 

effect of stress paradigms upon variable BDNF transcripts 

could be assessed. In addition, the impact of subsequent 

antidepressant treatment after stress on BDNF exon 

transcripts could be examined. Such studies would help 

address which BDNF exons are affected by stress and allude 

to the mechanism by which chronic antidepressant treatment 

may reverse this effect. 
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8.3.2.2. Double-labelling strategies 

Double ISH and ICC labelling techniques may be employed to 

help assess the changes in total BDNF and individual BDNF 

exon transcript mRNA, in relation to the localisation 

subsets of neurones. For example, this series of 

experiments may be important in identifying the 

localisation of GABAergic interneurones in relation to 

changes in BDNF mRNA after acute antidepressant drug 

treatment (See Chapter 4). 

8.3.3.3. Transgenic animals 

Transgenic mice contain additional foreign DNA in every 

cell, allowing them to be used to study gene function or 

regulation and to model human diseases. Thus, targeted gene 

insertion techniques could be used to produce transgenic 

mice displaying knockout genes to further investigate the 

role of BDNF in antidepressant function. For instance, to 

further investigate the role of specific monoamine 

receptors in BDNF mRNA transcription, specific receptor 

protein knockout mice could be bred. The effect of 

antidepressant treatment on BDNF mRNA or individual BDNF 
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exon transcript mRNA in the receptor knockout mice could 

then be assessed. 

8.4. Concluding remarks 

BDNF is a versatile molecule, capable of variable responses 

to antidepressant challenge. The results presented in this 

thesis have outlined some novel findings with regard to the 

regulation of the BDNF gene after antidepressant treatment. 

Continued study in this area will hopefully facilitate the 

development of faster, more efficacious and specific 

treatments for those suffering this devastating affliction. 
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