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Abstract 
 

 

 ADHD pharmacotherapy uses methylphenidate (MPH), D-amphetamine (D-

amph), two psychostimulants targeting dopamine transporters, or atomoxetine (ATX), 

specifically targeting norepinephrine transporters. We have assessed the 

pharmacological mechanisms of these three drugs on the in vitro efflux of 

neurotransmitters in rat prefrontal cortex (PFC) and striatal slices as well as on the in 

vivo electrical activities of PFC pyramidal neurons, striatal medium spiny neurons, 

ventral tegmental area dopamine neurons or dorsal raphe nucleus serotonin neurons, 

using single cell extracellular electrophysiological recording techniques. We have also 

tested whether chronic methylphenidate treatment, during either adolescence or 

adulthood, could have long-lasting consequences on body growth, depression and 

neuronal functions. 

 

Release experiments showed that all ADHD drugs induce dose-dependent 

dopamine efflux in both the PFC and striatum, with different efficacies, while only D-

amph induced cortical norepinephrine efflux. Atomoxetine induced an unexpected 

massive dopamine outflow in striatal regions, by mechanisms that depend on 

physiological parameters. 

 

Our electrophysiological studies indicate that all three drugs equally stimulate 

the excitability of PFC pyramidal neurons, in basal and NMDA-evoked conditions, 

when administered acutely (3 mg/kg). While the electrophysiological effects elicited by 

psychostimulants may be dependent on D1 receptor activation, those induced by 

atomoxetine relied on different mechanisms. In the ventral tegmental area (VTA), 

methylphenidate (2 mg/kg), but not atomoxetine, induced firing and burst activity 

reductions, through dopamine D2 autoreceptor activation. Reversal of such effects 

(eticlopride 0.2 mg/kg) revealed an excitatory effect of methylphenidate on midbrain 

dopamine neurons that appear to be dependent on glutamate pathways and the 

combination of D1 and alpha-1 receptors. Finally, acute intraperitoneal psychostimulant 



ii 

 

injections increased vertical locomotor activity as well as NMDA2B protein expression 

in the striatum.  

 

Some animals chronically treated with intraperitoneal administrations 

(methylphenidate 4 mg/kg/day or saline 1.2 ml/kg/day) showed decreased body weight 

gain. Voluntary oral methylphenidate intake induces desensitisation to subsequent 

intravenous methylphenidate challenges, without altering dopamine D2 receptor 

plasticity. Significant decreases in striatal NMDA2B protein expression were observed in 

animals chronically treated.  

 

After adolescent MPH treatment, midbrain dopaminergic neurons do not display 

either desensitisation or sensitisation to intravenous methylphenidate re-challenges. 

However, partial dopamine D2 receptor desensitisation was observed in midbrain 

dopamine neurons. Using behavioural experiments, cross-sensitisation between 

adolescent methylphenidate exposure and later-life D-amphetamine challenge was 

observed. Significant decreases in striatal NMDA2B protein expression were observed in 

animals chronically treated, while striatal medium spiny neurons showed decreased 

sensitivities to locally applied NMDA and dopamine. 

 

While caffeine is devoid of action on baseline spike generation and burst activity 

of dopamine neurons, nicotine induces either firing rate enhancement, firing rate 

reduction, or has no consequences. Adolescent methylphenidate treatment leads to 

decreased neuronal sensitivities to the combination of nicotine, MPH and eticlopride, 

compared to controls. Finally, nicotine partially prevented D-amphetamine-induced 

increase of rearing activities.  

 

Our results show that increases in the excitability of PFC neurons in basal 

conditions and via NMDA receptor activation may be involved in the therapeutic 

response to ADHD drugs. Long-term consequences were observed after 

psychostimulant exposure. Such novel findings strengthen the mixed hypothesis in 

ADHD, whereby both dopamine and glutamate neurotransmissions are dysregulated. 

Therefore, ADHD therapy may now focus on adequate balancing between glutamate 

and dopamine. 



iii 

 

Acknowledgements 
 

 
 First I would like to thank De Montfort University for allowing me to follow this 

Ph-D program, for paying my tuition fees and giving me financial support in the form of 

a stipend. For the last 3 years, it has been a real pleasure to come to the University and 

work with such amazing colleagues, to all of whom I express my heartfelt gratitude. 

 I would also like to thank all the members of staff involved in the radioactivity 

work: Liz O’Brien, for all the help she provided regarding isotope regulations, 

radioactivity handling as well as laboratory health and safety; Nazmin Juma and Dr. 

Ketan Ruparelia for their patience in collecting the radioactive waste and pointing out 

some mistakes they found in my log book entries while doing so. 

This work could never have been done without technical support from the 

B.S.U. team, including Anita O’Donoghue, Stephen Bowen (†) and Mike Storer. Their 

assistance in maintaining high standards within the animal unit has allowed us to save 

time and effort, but has also had an impact on the quality of work that we were able to 

perform. 

I would like to thank all the technicians in room 2.17 for their immense technical 

support, in particular David Reeder, Amrat Khorana, Claire West, Jo Tonkin and Leonie 

Hough. By providing gallons of purified water as well as many consumables, this work 

could not have been done without their almost daily assistance. 

On more than one occasion, I have found myself thinking about all the animals 

used during the last 3 years. I would like to emphasis the help they provide by 

increasing our knowledge in biology and Science. Memento Mori. 

I would also like to express my gratitude to my second supervisor, Dr. Tyra 

Zetterström for her support and ideas from start to end of this Ph-D. 

Last but of great importance, I personally thank my supervisor, Dr. Benjamin 

Gronier, for his three years of support, his extensive scientific knowledge and for 

increasing my research skills. Pour tout cela et tout le reste, merci beaucoup ! 

À ma famille, sans laquelle je n’aurais jamais pu arriver jusqu’au doctorat. 



iv 

 

Abbreviations 

 
ADHD  Attention Deficit and Hyperactivity Disorder 

AMPA  2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid 

ATX  Atomoxetine 

BAPTA-AM  Bis(aminophenoxy)ethane-N-tetraacetic acid-acetoxymethyl ester 

CNVs Copy number variation(s) 

D-amph  Dextro-amphetamine 

o
C  Degree Celsius 

DAT  Dopamine transporter 

EC50  Dose inducing 50% of maximum response 

EPSCs  Excitatory post-synaptic currents 

fMRI Functional magnetic resonance imaging 

g - kg Gram - kilogram 

GABA  γ-amino-butyric acid 

GlyT1 Glycine reuptake transporter 1 

IC50  Dose inducing 50% of maximum inhibition 

i.e.  id est 

IPSCs  Inhibitory post-synaptic currents 

KATP ATP-gated potassium channel 

Ki Inhibitory constant, binding affinity 

KIR Inwardly rectifying potassium channel 

Kv1  Voltage-gated potassium channel, family 1 

l  Litre 

LTD Long-term depression 

LTP Long-term potentiation 

mEq  Milliequivalent 

min  Minute 

ml  Millilitre 

mm  Millimetre 

mM  Millimolar 

MΩ  Megaohm 



v 

 

MPH  Methylphenidate 

ms  Millisecond 

MSN  Medium spiny neurons  

nA  Nanoampere 

NET  Norepinephrine transporter 

nM  Nanomolar 

NMDA  N-methyl-D-aspartate 

%  Percentage 

PFC  Prefrontal cortex 

rpm  Rotations per minute 

s - sec Second 

SERT  Serotonin transporter 

SHR  Spontaneously hypertensive rat 

SNPs Single nucleotide polymorphism(s) 

µm  Micrometre 

µM  Micromolar 

VMAT2  Vesicular monoamine transporter 2 

VTA  Ventral tegmental area 

v/v  Volume to volume ratio 

w/v  Weight to volume ratio 

 

 

 

 



vi 

 

Table of content 
 

The impact of psychostimulant administration during development on adult brain 

functions controlling motivation, impulsivity and cognition. ...................................... i 

Abstract ............................................................................................................................ i 

Acknowledgements ........................................................................................................ iii 

Abbreviations ................................................................................................................. iv 

Table of content ............................................................................................................. vi 

Table of figures .............................................................................................................. xi 

List of tables ................................................................................................................ xvii 

Introduction .................................................................................................................... 1 

ADHD: statistics and symptoms ................................................................................... 1 

Aetiology of ADHD ...................................................................................................... 2 

Neurotransmitters and brain regions implicated in ADHD .......................................... 4 

ADHD drugs pharmacology ......................................................................................... 6 

Methylphenidate ........................................................................................................ 6 

Amphetamines ........................................................................................................... 7 

Atomoxetine .............................................................................................................. 8 

The new ADHD drug Metadoxine ............................................................................ 9 

Efficiency, safety and side effects of ADHD drugs ...................................................... 9 

Methylphenidate as a drug of abuse, misuse and addiction ........................................ 12 

Pharmacology of ADHD drugs in animal studies....................................................... 13 

Freely available psychostimulants .............................................................................. 17 

A link between ADHD and substance abuse? ............................................................ 19 

Animal models of ADHD ........................................................................................... 20 

Objectives ...................................................................................................................... 21 

Chapter I – ADHD drugs induce in vitro neurotransmitter release. ....................... 22 

I-1- Introduction........................................................................................................ 22 

I-2- Material and Method ......................................................................................... 24 

I-2-A- Subjects ............................................................................................................ 24 

I-2-B- In vitro radio-labelled neurotransmitter efflux ................................................ 24 

I-2-C- Drugs ................................................................................................................ 26 



vii 

 

I-2-D- Data analysis .................................................................................................... 26 

I-3- Results ................................................................................................................. 28 

I-3-A- ADHD drugs induce dopamine efflux ............................................................. 28 

I-3-A-1- In the prefrontal cortex ................................................................................. 28 

I-3-A-2- In the striatum ............................................................................................... 30 

I-3-A-3- Interaction between drugs ............................................................................ 33 

I-3-A-4- Dependency of dopamine efflux by ADHD drugs upon sodium, calcium, 

vesicle integrity and KIR channels............................................................................... 35 

I-3-B- ADHD drugs also induce PFC norepinephrine efflux ..................................... 42 

I-4- Discussion ........................................................................................................... 44 

Chapter II – Acute in vivo ADHD drug administration............................................ 52 

II-1- Introduction ...................................................................................................... 52 

II-2- Material and Methods...................................................................................... 54 

II-2-A- Subjects .......................................................................................................... 54 

II-2-B- In vivo extracellular single unit electrophysiology ......................................... 54 

II-2-C- Behaviour........................................................................................................ 57 

II-2-D- Western blot protein quantification ................................................................ 57 

II-2-E Data analysis .................................................................................................... 58 

II-3- Results ............................................................................................................... 60 

II-3-A- Neuronal population included in the present study ........................................ 60 

II-3-B- Methylphenidate and D-amphetamine increase pyramidal neuron activity by a 

dopamine D1 receptor dependent mechanism ............................................................. 62 

II-3-C- Dose-dependent activating effects of ATX and effects of selective 

catecholamine antagonists on ATX-induced firing activation.................................... 66 

II-3-D- ADHD drugs preferentially stimulate the firing activity of spontaneously 

active PFC neurons ..................................................................................................... 69 

II-3-E- ADHD drugs potentiate NMDA-induced firing activation ............................ 70 

II-3-F- Iontophoretic drug ejections induce spike amplitude variations without 

affecting spontaneous firing activity nor NMDA-induced responses ......................... 76 

II-3-G- Influence of locally applied dopamine on NMDA-induced firing of striatal 

medium spiny neurons and acute MPH administration .............................................. 79 

II-3-H- Acute psychostimulant administration enhances locomotor activity and 

NMDAR2B protein expression in the striatum ............................................................ 81 

II-4- Discussion .......................................................................................................... 83 



viii 

 

Chapter III – Excitatory glutamate components involved in the 

electrophysiological response of ventral tegmental area dopamine neurons to acute 

methylphenidate............................................................................................................ 96 

III-1- Introduction .................................................................................................... 96 

III-2- Material and Methods .................................................................................... 98 

III-2-A- Subjects ......................................................................................................... 98 

III-2-B- In vivo extracellular single unit electrophysiology ....................................... 98 

III-2-C- Prefrontal cortex inhibition ........................................................................... 99 

III-2-D- Data analysis ............................................................................................... 100 

III-3- Results ............................................................................................................ 100 

III-3-A- Methylphenidate, but not atomoxetine, decreases firing and burst activities of 

VTA dopamine neurons in a dose-dependent manner .............................................. 100 

III-3-B- Methylphenidate exerts hidden excitatory effects on dopamine neurons ... 104 

III-3-C- The excitatory component of MPH depends upon both D1 and alpha-1 

receptors .................................................................................................................... 106 

III-3-D- Influences of local catecholamines ............................................................. 110 

III-3-E- Importance of glutamatergic neurotransmission and NMDA receptors in 

MPH-induced excitatory effects ............................................................................... 112 

III-3-F- Role of the PFC in MPH-induced excitatory effects ................................... 114 

III-4- Discussion ...................................................................................................... 115 

Chapter IV – The impact of chronic methylphenidate administration on adult 

animals. ........................................................................................................................ 121 

IV-1- Introduction ................................................................................................... 121 

IV-2- Material and Method .................................................................................... 122 

IV-2-A- Subjects and groups .................................................................................... 122 

IV-2-B- In vivo extracellular single unit electrophysiology ..................................... 123 

IV-2-C- Evaluation of glycaemia and growth .......................................................... 123 

IV-2-D- In vitro 
3
H-dopamine release ...................................................................... 124 

IV-2-E- Western Blots .............................................................................................. 124 

IV-2-F- Data analysis ................................................................................................ 124 

IV-3- Results ............................................................................................................ 125 

IV-3-A- Effects of treatments on growth and blood sugar levels ............................. 125 

IV-3-B- Chronic methylphenidate induces MPH-insensitivity in VTA dopamine 

neurons ...................................................................................................................... 126 



ix 

 

IV-3-C- Chronic methylphenidate does not modify baseline VTA neuronal population 

activities but triggers burst activity increases following intravenous MPH and D2 

blockade challenges .................................................................................................. 129 

IV-3-D- Chronic methylphenidate leads to dopamine transporter desensitisation rather 

than D2 receptor desensitisation ................................................................................ 130 

IV-3-E- The impact of chronic methylphenidate on the spontaneous and glutamate- 

induced firing activity of PFC pyramidal neurons, striatal MSN and NMDA2B protein 

expression ................................................................................................................. 132 

IV-4- Discussion ...................................................................................................... 136 

Chapter V – The long-term consequences of methylphenidate treatment during 

adolescence on adult brain functions. ....................................................................... 144 

V-1- Introduction .................................................................................................... 144 

V-2- Material and Methods .................................................................................... 145 

V-2-A- Subjects and groups...................................................................................... 145 

V-2-B- Sucrose preference test ................................................................................. 146 

V-2-C- In vivo extracellular single unit electrophysiology....................................... 148 

V-3- Results.............................................................................................................. 149 

V-3-A- Adolescent treatment with methylphenidate does not induce growth deficits

................................................................................................................................... 149 

V-3-B- Adolescent MPH treatment and depressive-like phenotypes during adulthood

................................................................................................................................... 150 

V-3-C- Adolescent MPH leads to long-term adaptations in serotonin neurons in 

adulthood................................................................................................................... 153 

V-3-D- Adolescent MPH leads to long-term adaptations in midbrain dopamine 

neurons in adulthood ................................................................................................. 154 

V-3-E- Adolescent MPH induces partial dopamine D2 receptor desensitisation in 

adulthood................................................................................................................... 155 

V-3-F- Adolescent MPH does not modify NMDAR2B protein expression in the PFC 

at adulthood but induces behavioural sensitisation to D-amphetamine .................... 157 

V-4- Discussion ........................................................................................................ 159 

Chapter VI – The conjunction of caffeine or nicotine, two other freely available 

psychostimulants, with methylphenidate. ................................................................ 167 

VI-1- Introduction ................................................................................................... 167 

VI-2- Material and Methods .................................................................................. 169 

VI-2-A- Subjects and groups .................................................................................... 169 



x 

 

VI-2-B- In vivo extracellular single unit electrophysiology ..................................... 170 

VI-2-C- Behaviour .................................................................................................... 170 

VI-2-D Data analysis ................................................................................................ 170 

VI-3- Results ............................................................................................................ 170 

VI-3-A- Caffeine does not change baseline firing or burst activity of VTA dopamine 

neurons, or the efficiency of the combination of both MPH and eticlopride ........... 170 

VI-3-B- The distinction between three neuronal populations following nicotine 

administration ........................................................................................................... 173 

VI-3-C- Nicotine does not change the efficiency of the combination of both MPH and 

eticlopride ................................................................................................................. 176 

VI-3-D- Adolescent exposure to MPH tends to reduce neuronal sensitivity to the 

combination of nicotine, MPH and eticlopride ......................................................... 177 

VI-3-E- Nicotine normalises amphetamine-induced high rearing activities ............ 182 

VI-4- Discussion ...................................................................................................... 183 

Chapter VII – Concluding remarks and perspectives. ........................................... 188 

Publications ................................................................................................................. 195 

References.................................................................................................................... 196 

 

 

 

 

 

 

 



xi 

 

Table of figures 

 

Figure 1: Regions of interest for in vitro neurotransmitter efflux experiments. ............ 25 

Figure 2: Time course example of a typical 
3
H-dopamine efflux experiment in the 

striatum. .......................................................................................................................... 27 

Figure 3: Dose-response of ADHD drugs and other selective uptake inhibitors on 

prefrontal cortex 
3
H-dopamine efflux............................................................................. 29 

Figure 4: Role of norepinephrine terminals in ATX-induced dopamine efflux. ........... 30 

Figure 5: Dose-response of ADHD drugs and other selective uptake inhibitors on 

striatal 
3
H-dopamine efflux. ........................................................................................... 32 

Figure 6: Atomoxetine induces striatal dopamine efflux from dopamine terminals, but 

not noradrenergic terminals. ........................................................................................... 33 

Figure 7: Interactions between ADHD drugs on prefrontal cortex and striatal 
3
H-

dopamine efflux. ............................................................................................................. 34 

Figure 8: Interactions between atomoxetine and D-amphetamine on prefrontal cortex 

3
H-dopamine efflux. ....................................................................................................... 35 

Figure 9: Sodium dependency of both methylphenidate and atomoxetine in inducing 

striatal tritiated dopamine efflux..................................................................................... 36 

Figure 10: ADHD drugs produced additional effects on dopamine efflux from striatal 

slices when co-applied with a potassium-rich buffer. .................................................... 37 

Figure 11: Atomoxetine induces striatal dopamine efflux by a gradient-dependent 

mechanism. ..................................................................................................................... 37 

Figure 12: Atomoxetine-induced dopamine efflux is not dependent upon extracellular 

calcium concentrations. .................................................................................................. 38 

Figure 13: Atomoxetine-induced dopamine efflux, but not methylphenidate-induced 

dopamine efflux, is dependent upon intracellular calcium concentrations. ................... 39 

Figure 14: Superfusion of reserpine induces prefrontal and striatal dopamine efflux. . 40 

Figure 15: Atomoxetine-induced dopamine efflux is dependent upon vesicle integrity.

 ........................................................................................................................................ 40 

Figure 16: Dependency of methylphenidate on vesicle integrity to induce dopamine 

efflux. .............................................................................................................................. 41 



xii 

 

Figure 17: Atomoxetine-induced striatal dopamine efflux does not depend upon the 

inwardly rectifying potassium channels. ........................................................................ 42 

Figure 18: Atomoxetine also induces 
3
H-norepinephrine efflux from prefrontal cortex 

slices. .............................................................................................................................. 43 

Figure 19: Role of adrenergic alpha-2 receptors on atomoxetine-induced 

norepinephrine efflux. .................................................................................................... 43 

Figure 20: Areas of interest for in vivo single-cell extracellular electrophysiological 

recordings. ...................................................................................................................... 56 

Figure 21: In vivo PFC pyramidal neuron recording example. ..................................... 61 

Figure 22: Methylphenidate preferentially increases the firing rate of the spontaneously 

active PFC neurons through a mechanism partially dependent on dopamine D1 

receptors.......................................................................................................................... 62 

Figure 23: D-amphetamine dose-dependently increased the firing rate of PFC neurons 

through a dopamine D1 receptor dependent mechanism. ............................................... 64 

Figure 24: D-amphetamine requires functional dopamine D1 and adrenergic alpha-1 

receptors to induce firing rate increases. ........................................................................ 66 

Figure 25: Effects of selective dopamine D1 receptor antagonism on atomoxetine-

induced activation of PFC neurons. ................................................................................ 68 

Figure 26: Effects of selective monoamine receptor antagonists on atomoxetine-

induced activation of PFC neurons. ................................................................................ 69 

Figure 27: Local NMDA application induces transient firing rate activation of 

pyramidal neurons by a partial NMDA receptor 2B dependent mechanism. ................. 71 

Figure 28: ADHD drugs increase NMDA-induced activation of PFC neurons. ........... 72 

Figure 29: Individual neuronal responses to local NMDA application following ADHD 

drug intravenous administrations.................................................................................... 74 

Figure 30: Effect of dopamine D1 receptor blockade on NMDA-induced activation of 

PFC neurons induced by D-amphetamine. ..................................................................... 75 

Figure 31: Effect of dopamine D1 receptor blockade on subsequent NMDA-induced 

activation of PFC neurons induced by D-amph.............................................................. 75 

Figure 32: Effect of iontophoretically-applied molecules on spike amplitudes of PFC 

pyramidal neurons. ......................................................................................................... 77 

Figure 33: Effect of iontophoretically-applied dopamine, MPH and D-amph on 

electrical parameters of PFC pyramidal neurons. ........................................................... 78 



xiii 

 

Figure 34: Modulation of the NMDA neurotransmission of striatal GABAergic medium 

spiny neurons by dopamine. ........................................................................................... 79 

Figure 35: Modulation of the NMDA neurotransmission of striatal GABAergic medium 

spiny neurons by methylphenidate. ................................................................................ 80 

Figure 36: Behavioural effects of psychostimulant exposure using D-amphetamine and 

methylphenidate.............................................................................................................. 82 

Figure 37: Psychostimulant exposure increases cortical and striatal NMDA receptor 2B 

protein expression. .......................................................................................................... 83 

Figure 38: Locations of the ventral tegmental area and local PFC lidocaine perfusions.

 ...................................................................................................................................... 100 

Figure 39: Vehicle administration does not alter the electrophysiological activity of 

midbrain dopamine neurons. ........................................................................................ 101 

Figure 40: Methylphenidate decreases the firing and burst activities of midbrain 

dopamine neurons. ........................................................................................................ 102 

Figure 41: Methylphenidate decreases the firing and burst activities of midbrain 

dopamine neurons in a dose-dependent manner. .......................................................... 103 

Figure 42: Atomoxetine does not change the electrophysiological activity of midbrain 

dopamine neurons. ........................................................................................................ 104 

Figure 43: Methylphenidate exerts a hidden excitatory effects on midbrain dopamine 

neurons.......................................................................................................................... 105 

Figure 44: Adrenergic alpha-1 receptors alone are not responsible for the excitatory 

effects of methylphenidate............................................................................................ 107 

Figure 45: Dopamine D1 receptors alone are not responsible for the excitatory effects of 

methylphenidate............................................................................................................ 108 

Figure 46: Methylphenidate requires both adrenergic alpha-1 and dopamine D1 

receptors to exert its excitatory effects on midbrain dopamine neurons. ..................... 109 

Figure 47: Importance of glutamatergic neurotransmission in methylphenidate-induced 

excitatory effects........................................................................................................... 110 

Figure 48: The excitatory effect induced by the combination 

methylphenidate/eticlopride does not mainly involve local catecholamine receptors. 111 

Figure 49: The importance of local glutamatergic neurotransmission in 

methylphenidate-induced excitatory effects. ................................................................ 113 



xiv 

 

Figure 50: The importance of local NMDA neurotransmission on midbrain dopamine 

neurons.......................................................................................................................... 114 

Figure 51: The role of the prefrontal cortex in methylphenidate-induced excitatory 

effects on midbrain dopamine neurons. ........................................................................ 115 

Figure 52: Experimental protocol for chronic methylphenidate treatment during 

adulthood. ..................................................................................................................... 123 

Figure 53: Chronic exposures to methylphenidate or sucrose do not alter blood sugar 

levels. ............................................................................................................................ 125 

Figure 54: Impact of intraperitoneal dosing and methylphenidate on weight gain. .... 126 

Figure 55: Chronic methylphenidate exposure induces tolerance in midbrain dopamine 

neurons to subsequent intravenous challenges. ............................................................ 127 

Figure 56: Tolerance to methylphenidate challenges in midbrain dopamine neurons 

recorded from orally treated animals. ........................................................................... 128 

Figure 57: Tolerance to methylphenidate challenges in midbrain dopamine neurons 

recorded from intraperitoneally-treated animals. ......................................................... 129 

Figure 58: Neuronal populations before/after methylphenidate and eticlopride 

administrations and their respective responses. ............................................................ 130 

Figure 59: Chronic treatment with methylphenidate does not induce dopamine D2 

autoreceptor desensitisation. ......................................................................................... 131 

Figure 60: Dopamine release tolerance to methylphenidate perfusion in chronically 

treated animals. ............................................................................................................. 132 

Figure 61: Effect of chronic methylphenidate treatment on spontaneous and NMDA-

induced firing activities of prefrontal cortex pyramidal and striatal medium spiny 

neurons.......................................................................................................................... 134 

Figure 62: Chronic exposure to methylphenidate induces dampening of striatal medium 

spiny neurons to locally applied dopamine. ................................................................. 135 

Figure 63: Chronic methylphenidate exposure leads to decreased striatal NMDA 2B 

receptor expression. ...................................................................................................... 136 

Figure 64: Experimental protocol for chronic methylphenidate treatment during 

adolescence. .................................................................................................................. 146 

Figure 65: Sucrose preference test protocol. ............................................................... 147 

Figure 66: Dorsal raphe nucleus location. ................................................................... 148 



xv 

 

Figure 67: Adolescent exposure to chronic methylphenidate does not induce body 

growth delay. ................................................................................................................ 150 

Figure 68: Chronic adolescent exposure to methylphenidate does not induce 

depression-like behaviour at adulthood. ....................................................................... 152 

Figure 69: Responses of dorsal raphe nucleus serotonin neurons to chronic 

methylphenidate in correlation to anhedonia. ............................................................... 154 

Figure 70: Long-term neuronal adaptations of midbrain dopamine neurons following 

adolescent exposure to methylphenidate. ..................................................................... 155 

Figure 71: Adolescent exposure to methylphenidate partially induces dopamine D2 

autoreceptor desensitisation in adulthood..................................................................... 156 

Figure 72: Adolescent exposure to methylphenidate does not induce tolerance to 

methylphenidate challenges in adulthood..................................................................... 157 

Figure 73: Adolescent exposure to methylphenidate does not increase prefrontal cortex 

NR2B protein expression. .............................................................................................. 158 

Figure 74: Adolescent exposure to methylphenidate induces behavioural sensitisation to 

later D-amphetamine challenge. ................................................................................... 159 

Figure 75: Caffeine administration does not induce significant electrophysiological 

changes to midbrain dopamine neurons. ...................................................................... 171 

Figure 76: Pre-treatment with caffeine does not prevent the excitatory component of 

methylphenidate following dopamine D2 receptor antagonism. .................................. 172 

Figure 77: Pre-treatment with caffeine tends to increase the excitatory component of 

methylphenidate following dopamine D2 receptor antagonism. .................................. 173 

Figure 78: Responses of midbrain dopamine neurons to intravenous nicotine 

challenges. .................................................................................................................... 175 

Figure 79: Pre-treatment with nicotine does not alter the excitatory component of 

methylphenidate following dopamine D2 receptor antagonism. .................................. 176 

Figure 80: Pre-treatment with nicotine does not alter the methylphenidate-induced 

excitatory effects on midbrain dopamine neurons. ....................................................... 177 

Figure 81: Absence of cross-sensitisation between adolescent exposure to 

methylphenidate and adult exposure to nicotine. ......................................................... 179 

Figure 82: In vivo extracellular single cell recordings illustrating the absence of cross-

sensitisation between adolescent exposure to methylphenidate and later exposure to 

nicotine. ........................................................................................................................ 180 



xvi 

 

Figure 83: In vivo extracellular single cell recordings illustrating the absence of cross-

sensitisation between adolescent exposure to methylphenidate and post-exposure to 

nicotine. ........................................................................................................................ 181 

Figure 84: A possible tendency of adolescent methylphenidate exposure to induce long-

lasting desensitisation to the excitatory component of MPH. ...................................... 181 

Figure 85: Nicotine normalises the rearing events induced by acute D-amphetamine 

exposure. ....................................................................................................................... 182 

 

 

 

 

 
 

 

 

 

 

 

 

 

 



xvii 

 

List of tables 
 

 

Table 1: Binding properties of the 3 main ADHD drugs and other compounds. ............ 7 
 

Table 2: Proportion of neurons showing significant or non-significant changes in basal 

firing rate and in their responses to the iontophoretic application of NMDA to the 

different ADHD drugs and to SCH23390. ..................................................................... 76 
 

Table 3: Summary of known and proposed interactions between the molecules under 

study................................................................................................................................ 84 

 

 

 

 

 

 
 

 



1 

 

Introduction 
 

 

ADHD: statistics and symptoms 

 

 Among the worldwide population, Attention-Deficit and Hyperactivity Disorder 

(ADHD) affects 6-7% of children if diagnosed via the DSM-IV (Diagnostic and 

Statistical Manual of Mental Disorders, fourth edition, (Willcutt, 2012)). The 

prevalence of ADHD in the US child population has been estimated at 8.7% (Froehlich 

et al., 2007), a rate that is very similar to the UK figure of 8% of school-aged children 

(McClure, 2013). However, the prevalence rate could climb up to 14%-16% depending 

on the population studied and the methodology used (Perera et al., 2009; Rader et al., 

2009). In an American adult cohort (18-44 years old), ADHD occurred at a prevalence 

of just over 4% (Kessler et al., 2006). According to the DSM-IV, symptoms of ADHD 

include impulsivity, inattention as well as social and academic difficulties. Depending 

upon the symptoms, 3 different types of ADHD can be distinguished: predominantly 

difficulty in concentration, predominantly hyperactivity and impulsiveness and finally a 

combination of all of the above (Steinau, 2013). This can be diagnosed in children as 

well as adults (Gentile et al., 2006). ADHD can include a wide range of symptoms such 

as restlessness, fidgeting, anxiety, attention deficit, distractibility, excessive talking, 

forgetfulness and frequent interruption of others (American Psychiatric Association, 

2013; Wilens et al., 2009; Wilens et al., 2010). After being diagnosed with ADHD, 

patients will then either follow a psychosocial therapy or receive medication, or both. 

Although the pharmacological approach is preferred, there is clear meta-analysis 

evidence that the psychosocial approach is highly effective (Fabiano et al., 2009). This 

consists in intervention at school, parent management training but also neurofeedback, 

which consists in self-training the patient to modify the EEG patterns of his own brain, 

while under fMRI scanning and while also receiving visual feedback on such EEG 

patterns (Linden, 2014). Neurofeedback is considered as being “efficacious and 

specific” (Arns et al., 2009). Evidence for beneficial effects of non-pharmacological 

approaches now exist, such as behavioural training and modification, dietary programs 

(supplementation or elimination of some compounds), relaxation exercises, massage 
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and psychotherapy (Catala-Lopez et al., 2015; Hodgson et al., 2014; Moore et al., 2015; 

Poncin et al., 2007; Richardson et al., 2015; Roman, 2010). All these alternative 

treatments have led to statistically significant results (Sonuga-Barke et al., 2013). 

Physical exercise is also efficient in reducing core symptoms of ADHD (Cerrillo-Urbina 

et al., 2015; Gapin et al., 2011; Hoza et al., 2015; Pontifex et al., 2013; Silva et al., 

2015; Ziereis et al., 2015). Acute exercise at moderate intensity also improves fatigue, 

confusion and depression, as shown by a recent study (Fritz et al., 2016). And yet, 

stimulant medications are often preferred. Stimulant drugs can consist of either 

methylphenidate or amphetamine salts. They have been associated with a high response 

rate in ADHD patients (Wigal, 2009), improving attention-related symptoms such as 

vigilance, short-term memory, cognition, restlessness and distractibility (Kolar et al., 

2008). An alternative to these stimulants is the drug atomoxetine, which, unlike 

stimulants, fails to improve academic work in children (Prasad et al., 2013) and has a 

longer onset of action (Bushe et al., 2014). Atomoxetine can be prescribed to patients 

with a previous history of substance use or patients displaying serious side effects to 

psychostimulant therapy (Kolar et al., 2008) because of its significantly lower abuse 

potential than psychostimulants (Niederhofer, 2010; Wee et al., 2004). However, 

atomoxetine (1.2-1.8 mg/kg/day) also improves ADHD symptoms such as 

hyperactivity, inattention and impulsivity (Ledbetter, 2006; Michelson et al., 2001b; 

Purper-Ouakil et al., 2005). 

 

Aetiology of ADHD 

 

 The causes of ADHD are yet to be clarified. Some studies have reported 

possible genetic factors, involving dopamine and serotonin neurotransmission as well as 

the BDNF gene (Kebir et al., 2009). Other studies have shown that ADHD may be 

caused by environmental factors such as low birth weight, premature birth, infections or 

traumas (Millichap, 2008; Thapar et al., 2012). More studies are needed to determine 

the exact cause of ADHD, if a specific one could be determined. Genetic studies have 

found an association between several proteins and ADHD. These proteins are often 

found to be dopamine transporters (DAT1), dopamine receptors (D4, D5) or serotonin (5-

HT1B) receptors (Gizer et al., 2009). A few studies have also focused on glutamate 

neurotransmission. Indeed, genome scans of ADHD patients have identified the GRIN2A 

gene, encoding for the ionotropic glutamate NMDA receptor 2A (N-methyl-D-
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aspartate), as a risk factor for ADHD (Adams et al., 2004; Banaschewski et al., 2010; 

Dorval et al., 2007). All the genetic studies highlight single nucleotide polymorphism 

(SNP) in the aforementioned proteins/genes (Adams et al., 2004; Banaschewski et al., 

2010; Dorval et al., 2007; Guan et al., 2009; Kollins et al., 2008; Lasky-Su et al., 2008; 

Oades et al., 2008). Although the NMDA receptor 2A seems to be linked to ADHD, the 

association between the NMDA receptor 2B and ADHD remains unclear, as it may only 

be linked to the inattention and hyperactivity dimensions and has yet to be proven to be 

associated with both verbal working memory and verbal short-term memory (Dorval et 

al., 2007). These genetic insights into the cause of ADHD emphasise the importance of 

serotonin, dopamine and glutamate pathways in the physiopathology of ADHD. 

 

 Structural evidence of decreased white and grey matter volumes exists in ADHD 

patients, if compared to healthy control patients. Regional anatomical abnormalities 

such as decreased grey matter in the right insula and the right orbitofrontal cortex, 

combined with decreased connectivity between the insula and the right hippocampus 

have been observed (Li et al., 2015a). Some studies reported structural abnormalities in 

the dorsolateral prefrontal cortex and the anterior cingulate cortex, two regions involved 

in cognition control (Kessler et al., 2014). Cerebellar structural changes have also been 

analysed in patients with ADHD and have been found to be linked to some of the 

symptoms the patients suffer from (Valera et al., 2007). Some studies have associated 

ADHD with decreases in regional brain volumes (Castellanos et al., 2002; Lopez-

Larson et al., 2012; Mostofsky et al., 2002; Wolosin et al., 2009), although this has 

been recently disputed by some other studies (Onnink et al., 2014; Semrud-Clikeman et 

al., 2012; Stevens et al., 2012). In 2008, Perlov found no differences in the hippocampal 

and amygdaloid volumes of adults with ADHD, compared to healthy volunteers (Perlov 

et al., 2008), although another study on children and adolescents (6-18 years old) found 

increased hippocampal volumes (Plessen et al., 2006). In contradiction, a third study 

found decreased volumes of the left hippocampus in non-medicated ADHD children, 

which suggests, according to the authors, increased risks for developing depression 

(Posner et al., 2014). 
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Neurotransmitters and brain regions implicated in ADHD 

 

 The pathophysiology of ADHD suggests two main neurotransmitter pathway 

alterations: those involving dopamine neurotransmission and those involving 

norepinephrine neurotransmission (Bokor et al., 2014). Therefore, two brain regions, 

where both norepinephrine and dopamine are densely stored inside synaptic terminals, 

are involved: the prefrontal cortex (PFC) and the ventral tegmental area (VTA), 

respectively. In the prefrontal cortex, therapies aiming at increasing monoamine 

neurotransmission have been proven efficient in improving cognition, either via alpha-2 

receptor activation (Arnsten et al., 2005) or via dopamine D1 receptor enhancement 

(Gronier, 2011; Levy, 2009), which help to reinforce the noradrenergic theory of 

ADHD. The dopamine theory is at the centre of understanding ADHD. There is no 

doubt that psychostimulants either block the dopamine reuptake transporter (DAT) or 

influence dopamine transmission, as evidenced before (Gonon, 2009). Positron 

emission tomography performed in ADHD patients suggests altered striatal dopamine 

transporter/receptor availability (Volkow et al., 2007a; Volkow et al., 2007b; Wang et 

al., 2013), although this was partly contested by Wang’s study in 2013 (Wang et al., 

2013). Therefore, one could still challenge the dopamine hypothesis in ADHD. The 

efficiency of methylphenidate in reducing ADHD symptoms seems to be directly 

associated with striatal dopamine receptor availability (Crunelle et al., 2013; 

Kasparbauer et al., 2015; Krause et al., 2005; Rosa-Neto et al., 2005). Finally, a 

polymorphism located within the enzyme dopamine beta-hydroxylase (rs5320) was 

hypothesised as being a risk factor for ADHD (Wang et al., 2012), suggesting a possible 

role for norepinephrine in ADHD. The current literature remains contradictory 

concerning brain dopamine receptor/transporter availability at baseline levels in ADHD 

patients. 

 

Growing evidence is now suggesting altered glutamate neurotransmission in 

ADHD. Indeed, a study performed in children with ADHD revealed decreased 

glutamate/glutamine ratios in the striatum following chronic (14-18 weeks) 

methylphenidate and atomoxetine, while ratios in the prefrontal cortex were only altered 

in patients receiving atomoxetine, but not methylphenidate (Carrey et al., 2002). 

Besides, compared to healthy controls, ADHD patients present greater baseline levels of 

glutamate and creatinine in the striatum (Carrey et al., 2007) and reduced 
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glutamate/glutamine ratios in the cingulate cortex (Perlov et al., 2007). ADHD can be 

characterised by a hypofunctioning glutamatergic neurotransmission (Carlsson, 2000; 

Carlsson, 2001). Moreover, variations within CNVs (copy number variants) of 

glutamate metabotropic receptors have been observed in ADHD patients and appear to 

be related to the clinical characteristics of ADHD (Akutagava-Martins et al., 2014). 

 

Adequate balancing between excitatory and inhibitory neurotransmitters is crucial 

for the maintenance of normal brain functioning (Purkayastha et al., 2015). A recent 

imagery study found decreased cortical GABA concentrations in ADHD children 

(Edden et al., 2012), although a meta-analysis study (performed on 173 studies) 

revealed no association between ADHD and GABA levels (Schur et al., 2016). Another 

study observed elevated plasmatic GABA levels in ADHD patients with compulsive 

disorders, but not in ADHD patients without such a comorbidity (Prosser et al., 1997). 

In the cingulate cortex of ADHD children, the functioning of GABAA receptors seems 

to be in direct correlation to abnormal behavioural disturbances (Nagamitsu et al., 

2015). 

 

Attention and impulsivity are core symptoms of ADHD (Adesman, 2001). In 

rodents, the whole prefrontal cortex can be divided into three parts: the medial, lateral 

and ventral prefrontal cortex (Dalley et al., 2004). Within the medial prefrontal cortex, a 

few subregions can be of interest due to the roles they play in attention or impulsivity. 

Indeed, in rats, lesions within the prelimbic, infralimbic and cingulate cortices induce 

impaired attention (Dalley et al., 2004; Muir et al., 1996). Lesions within the anterior 

cingulate do not seem to induce impulsivity (Cardinal et al., 2001), although another 

study found increased impulsivity following lesions of the anterior cingulate cortex 

(Muir et al., 1996). On the other hand, the orbitofrontal cortex does not seem to be 

implicated in impulsivity (Winstanley et al., 2004). Finally, lesions within the 

infralimbic cortex tend to increase impulsive choices (Chudasama et al., 2003). 

Although these substructures can be functionally distinguished, anatomical segregation 

remains heterogeneous and equivocal (Machens et al., 2010). 

 

The cerebellum, located beneath the occipital lobe, is important for motor 

coordination and information processing. It is composed of GABAergic Purkinje 

neurons and glutamatergic granule neurons (Hibi et al., 2012). Its role in ADHD is 
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slowly emerging. Indeed, a few studies found loss of volume in the superior cerebellar 

vermis of ADHD patients (Berquin et al., 1998; Mackie et al., 2007; Mostofsky et al., 

1998). Stimulants appear to alleviate such differences in a time-dependent manner, 

where the longer the treatment, the stronger the effect on cerebellar volumes (Ivanov et 

al., 2014). The severity of ADHD symptoms is also directly correlated to decreased 

cerebellar hemisphere volumes (Ivanov et al., 2014). Moreover, a recent study using 

fMRI demonstrated that ADHD patients display prominent cerebro-cerebellar functional 

connectivity, an effect that was barely observed in matched controls, highlighting the 

importance of interactions between the frontal cortex and the cerebellum in a normally 

functioning brain (Kucyi et al., 2015). Finally, postural abnormalities have been 

reported in ADHD children (Bucci et al., 2014; Buderath et al., 2009; Kooistra et al., 

2009; Pitcher et al., 2003; Shorer et al., 2012) and adults (Hove et al., 2015), an effect 

partially due to cerebellar gray matter abnormalities (Hove et al., 2015). 

 

ADHD drugs pharmacology 

 

Three main drugs are available: methylphenidate, D-amphetamine, the two 

being stimulants, and atomoxetine, a non-stimulant medication. 

 

Methylphenidate 

 

Methylphenidate is known to block the Dopamine Transporter 

(DAT, with an IC50 of 0.19 µM) and the Norepinephrine Transporter (NET, with an IC50 

of 0.034 µM, Table 1) (Bymaster et al., 2002; van der Marel et al., 2014). These two 

mechanisms induce concentration increases of dopamine and norepinephrine inside the 

synaptic cleft. Pharmacokinetics studies have shown differences between the two threo-

methylphenidate enantiomers (Kimko et al., 1999), although all forms of 

methylphenidate easily cross the brain-blood barrier. In therapy, only racemic mixtures 

of d-threo-methylphenidate and l-threo-methylphenidate are administered while erythro 

enantiomers are not found in any formula. Because of different metabolic 

stereoselective clearances, d-threo-methylphenidate becomes more potent than its 

enantiomer counterpart. Methylphenidate is considered a short-acting drug because of 

its limited half-life (between 2 to 3 hours). The duration of action can extend to 4 hours 
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maximum, but peak methylphenidate concentration is achieved after 2 hours (Kimko et 

al., 1999). 

 

Table 1: Binding properties of the 3 main ADHD drugs and other compounds. 

Please refer to in-text references. DAT: dopamine reuptake transporter, NET: 

norepinephrine reuptake transporter, SERT: serotonin reuptake transporter, VMAT2: 

vesicular monoamine transporter, KIR: inward rectifying potassium channel, Ax 

receptors: adenosine receptor types, αxβy receptors: nicotinic acetylcholine 

receptor types, IC50: half maximum inhibitory concentration, Ki: binding affinity, EC50: 

half maximum excitatory concentration. 

 

 

 

Amphetamines 

 

    Amphetamines, like methylphenidate, exist in different forms. 

The well-known methamphetamine (“crystal meth”, “blue meth”, “meth”) is a common 

addictive substance in western countries like the US and Canada, but also in countries 

from the European Union (De-Carolis et al., 2015; Lecomte et al., 2014). Levo-

amphetamine is used to increase wakefulness while Dextro-amphetamine (D-amph) is 

prescribed to treat ADHD. The Adderall® formulation contains both types of 

stereoisomers with a 1:3 L/D ratio (25% L-amphetamine, 75% D-amphetamine). D-

Compound Target IC50 Ki EC50

Methylphenidate DAT 0.19 µM 0.06 µM

NET 0.03 µM 0.1-0.4 µM

D-amphetamine VMAT2 3.3 µM 2 µM

DAT 35 nM

NET 39 nM

Atomoxetine DAT 1451 nM 2.3 µM

NET 5 nM 5 nM

SERT 77 nM

KIR 30-50 µM

VMAT2 3.4 µM

Caffeine A1, A2, A3 receptors 10-800 µM

Dopamine DAT 2.5 µM

NET 0.67 µM

Nicotine α7 13.2 µM

α4β2 0.1-2.5 µM

α3β4 87 µM

https://en.wikipedia.org/wiki/Nicotinic_acetylcholine_receptor
https://en.wikipedia.org/wiki/Nicotinic_acetylcholine_receptor
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amphetamine exerts its action by firstly penetrating into the synapse through the 

dopamine transporter. After reaching the cytoplasm, it will block the vesicular 

dopamine transporter VMAT2, therefore inducing vesicular neurotransmitter depletion 

as well as increases in intracellular dopamine concentrations (Eiden et al., 2011). This 

process will result in strong dopamine efflux from the synapse by two distinct 

mechanisms. Passive dopamine diffusion will occur directly across the membrane as a 

result of dramatic increases in intracellular dopamine concentrations (Wallace, 2012). 

Dopamine will also leave the intracellular compartment through reverse dopamine 

transport via the DAT that will switch in a “reverse” mode (Sulzer et al., 1995). Early 

onset of amphetamine treatment can induce growth deficits in some children (Faraone et 

al., 2005; Swanson et al., 2007). Amphetamine-like drugs cause neurotoxicity, either by 

increasing oxidative stress or through consequences of induced epileptic seizures 

(Berman et al., 2008; Berman et al., 2009b; de la Torre et al., 2000; Steinkellner et al., 

2011). 

 

  Atomoxetine 

 

   Although atomoxetine is not a stimulant, its mechanisms of 

action are similar to those of MPH by inhibiting the NET (IC50 of 5 nM) and to a lower 

extent the serotonin transporter (SERT, IC50 of 77 nM) as well as the DAT (IC50 of 1451 

nM, Table 1) (Bymaster et al., 2002). ATX also binds to KIR channels (IC50 30-50 µM) 

and post-synaptic NMDA receptors (IC50 of 3.5 µM (Ludolph et al., 2010)). Compared 

to stimulants, ATX has a longer onset of action, usually 4 to 8 weeks (Bushe et al., 

2014). Core symptoms of ADHD patients (hyperactivity, inattention and impulsivity) 

reduce gradually under ATX treatment. Following 16 weeks of ATX treatment, 

attention was significantly improved (greater than placebo) (Wietecha et al., 2013a), so 

was the response inhibition following a 12-week treatment (Shang et al., 2012). 

Following oral administration, peak plasma levels culminate after 1-2 hours (Sauer et 

al., 2003). Daily atomoxetine doses are generally within the range of 60-120 mg/day 

(Simpson et al., 2004). Typical ATX titration is initiated with 0.5 mg/kg on the first day 

and could be gradually increased up to 1.2 mg/kg on the fourth day (Ledbetter, 2006; 

Velcea et al., 2004). Patients under 12 generally receive 40 +/- 11 mg/day while patients 

aged between 12-18 receive 61 +/- 19 mg/day (Bastiaens, 2007). It is important to note 
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that chronic ATX treatment leads to side effects in more than 10% of all adult ADHD 

patients (Walker et al., 2015).  

 

  The new ADHD drug Metadoxine 

 

   Metadoxine was originally designed to treat alcohol intoxication 

(Addolorato et al., 2003; Diaz Martinez et al., 2002; Shpilenya et al., 2002), but is now 

targeting other medical conditions such as fatty liver disease (Abenavoli et al., 2014; 

Caballeria et al., 1998; Stefanini et al., 1999), fragile X syndrome (de Diego-Otero et 

al., 2014; Schaefer et al., 2015) and ADHD (Manor et al., 2012; Manor et al., 2013; 

Manor et al., 2014). The molecular formula is composed of a pairing between an ion 

and vitamin B6 (Guerrini et al., 2006). Because vitamin B6 is necessary for GABA 

synthesis (Petroff, 2002; Schousboe et al., 2007), Metadoxine may play a crucial role in 

the regulation of GABA neurotransmission (Bono et al., 1991), the dysregulation of 

which has been closely linked to ADHD (Bollmann et al., 2015; Ende et al., 2015; 

Nagamitsu et al., 2015; Purkayastha et al., 2015). Up until 2016, this new molecule is 

still under clinical trials for its use in ADHD. Core ADHD symptoms were found to be 

significantly improved following 2 weeks of Metadoxine treatment (1400 mg/day), or 

after a single acute administration (Manor et al., 2012; Manor et al., 2013; Manor et al., 

2014). Side effects of chronic Metadoxine intake are similar to the ones observed 

following atomoxetine treatment (Manor et al., 2012). Prescriptions of Metadoxine 

could be indicated for ADHD patients with alcohol abuse (Buoli et al., 2016), because 

of its efficiency in treating alcohol abuse (Addolorato et al., 2003). In mice, acute 

Metadoxine exposure (starting at 150 mg/kg) leads to increased dopamine levels in the 

striatum after 1 hour, but peak levels are observed after 24 hours (Fornai et al., 1993). 

 

Efficiency, safety and side effects of ADHD drugs 

 

 Questions arise as to whether chronic psychostimulant treatments could produce 

deleterious effects on the brain, especially considering that the brain will continue to 

develop up to the age of 24 (Andersen, 2003). Recent studies conducted on rats have 

tried to identify possible side effects of such chronic treatments. One study on juvenile 

rats has shown that methylphenidate administration for 13 weeks leads to weaker and 

less mineralised bones (Komatsu et al., 2012). It is important to note that, after 
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termination of the treatment and a recovery period of 5 weeks, all the side effects 

previously observed were relieved. In Humans, growth is not affected by treatment 

(Biederman et al., 2010; Faraone et al., 2008; Goldman, 2010; Harstad et al., 2014). 

Another animal study has focused on the relationship between chronic MPH 

administration and cortical thickness (van der Marel et al., 2014). This study fails to 

observe any MPH-induced cortical thinning or functional connectivity loss, but rather 

highlights significant age-dependent effects of psychostimulant treatment on brain 

characteristics such as grey and white matter volumes, striatal functional activity and 

cortical thickness. It will be essential to assess questions regarding the possible 

addictive effect of MPH on ADHD patients, in order to determine the safety of such 

medication. Supra-therapeutic doses of MPH, used therefore as a recreational drug, have 

the potential to induce addiction (Swanson et al., 2003). When used at therapeutic 

doses, MPH seems to be a safe drug to improve ADHD symptoms in children and 

adults, although sporadic MPH-induced side effects have been reported such as 

insomnia, headaches, appetite disturbances, dyskinesia as well as dizziness (Ahmann et 

al., 1993; Efron et al., 1997; Rappley, 1997; Rodrigues et al., 2008; Senecky et al., 

2002). Very surprisingly, a few studies have recently proven that MPH could be 

prescribed for cocaine-addicted ADHD patients, thus decreasing both addiction-related 

brain connectivity and cocaine administration, but also improving the inhibitory control 

of such patients (Collins et al., 2006; Konova et al., 2013; Li et al., 2010). One clinical 

trial has investigated the efficiency of methylphenidate, or other dopamine uptake 

blockers, in reducing severe abuse-related effects of amphetamines (Howell et al., 

2014). This could be of great interest for preventing craving and withdrawal side 

effects. While it is easy to understand how MPH can attenuate the effect of D-amph by 

preventing its penetration into the presynaptic terminal through the 

dopamine/norepinephrine transporter, the beneficial effect of MPH on cocaine addiction 

is more difficult to understand, as they both exert DAT blockade. 

 

 From 1990 to 1998, the annual number of children diagnosed with ADHD has 

increased, with discrepancies among genders, ranging from 2 fold for boys to 3 fold for 

girls (Robison et al., 2002). Unsurprisingly, ADHD drugs consumption has followed the 

worldwide increase in ADHD diagnoses. This is reflected, for example, in Israel, where 

D-amphetamine prescriptions have increased by 30% over a 7-year period (Ponizovsky 

et al., 2014). As with MPH, D-amph has been extensively studied for its use in ADHD 
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patients. It has been proven that D-amph improves ADHD symptoms in adults, but can 

also trigger cardiovascular and psychiatric adverse effects, as well as substance abuse 

(Castells et al., 2011). Although several studies have reported an increased risk of 

sudden cardiac events in patients under psychostimulant therapy (Munk et al., 2015; 

Schelleman et al., 2012; Vetter et al., 2008; Winterstein et al., 2009), no consequences 

were found on the QRS and QT intervals, even after a methylphenidate overdose (Hill 

et al., 2010). Therefore, the risk of developing abnormal heart rhythms such as 

”torsades de pointes” is not increased (Hill et al., 2010; Hole et al., 2014; Lamberti et 

al., 2015; Noda et al., 2004). For children aged 6-12 and adults, daily treatment with 

amphetamine is safe and efficient in improving symptoms (Hart et al., 2013; Najib, 

2009; Spencer et al., 2013). However, 0.25% of all patients under D-amph treatment 

experience strong adverse effects such as psychosis or delayed motor response (Berman 

et al., 2009a; Ross, 2006). Nevertheless, D-amph appears today to be a safe and 

efficient medication for ADHD treatment. 

 

 For ADHD patients that do not respond well to the stimulants, atomoxetine may 

be the medication of choice. As a NET inhibitor, it increases norepinephrine 

concentration inside the synaptic cleft. However, recent data using the in vivo 

microdialysis technique have shown that it can also increase dopamine efflux in the 

PFC. Although ATX is also safe and well tolerated, the symptomatology of a subgroup 

of patients did not improve with medication (Schwartz et al., 2014). Some patients 

reported adverse effects during ATX treatment with variances amongst onset (Wietecha 

et al., 2013b), but all could be resolved with an appropriate dose schedule and titration. 

Some known side effects are insomnia, nausea, sweating and decreased appetite (Kolar 

et al., 2008). As a sympathetic indirect agonist, this drug may produce undesirable 

cardiovascular side effects, but may have no action on the motor system and drug abuse 

liability. However, the onset of action is particularly long compared to that of 

psychostimulants, usually between 4-8 weeks (Bushe et al., 2014). There is an almost 

complete lack of scientific evidence of abuse potential for ATX (Upadhyaya et al., 

2013). Only one study (Lile et al., 2006) reported a partial effect of ATX on 

discriminative stimulus in subjects with recent histories of stimulant use. On the other 

hand, some studies found that ATX remains well tolerated, safe and efficient (Garnock-

Jones et al., 2009; Michelson et al., 2001a). One study reported that ATX, ingested in a 
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suicide attempt at a dose of nearly 3 grams, induced widening of the QRS interval as 

well as a tonic-clonic seizure, but not death (Kashani et al., 2007). 

 

 Overall, the three ADHD drugs MPH, D-amph and ATX are considered as 

efficient in treating ADHD symptoms and appear safe for use, even during pregnancy 

(Bro et al., 2015). However, it is wise to remember that some adverse effects have been 

reported, justifying the need for close monitoring of at-risk patients. 

 

Methylphenidate as a drug of abuse, misuse and addiction 

 

 Growing concerns have arisen regarding methylphenidate non-medical 

diversions (Sembower et al., 2013). As a psychostimulant drug, it can be used for 

cognitive enhancement by some users and an estimated proportion of 6-8% of all adult 

students used such cognitive enhancement (Teter et al., 2006). This off-label use is 

often found in students wanting to improve academic performance (Beyer et al., 2014; 

Outram, 2010), although methylphenidate is not the only cognitive enhancer in use 

(Micoulaud-Franchi et al., 2014). 

 

 Toxic exposure to methylphenidate is often caused by drug misuse (Jensen et 

al., 2014). Intentional misuse remains very low whereas intentional overexposure to 

methylphenidate is often found as a result of suicide attempts (Jensen et al., 2014; Zosel 

et al., 2013). Due to the nature of the drug and its physiological effects, death after 

methylphenidate overdose or misuse has never been reported (Zosel et al., 2013). 

 

 Addiction to methylphenidate, also called dependence, remains rare (Ozaki et 

al., 2006). Paradoxically, methylphenidate seems to be efficient in decreasing 

amphetamine cravings in amphetamine-dependent patients (Solhi et al., 2014; Tiihonen 

et al., 2007), although this is disputed (Konstenius et al., 2010; Miles et al., 2013; 

Tiihonen et al., 2007). 
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Pharmacology of ADHD drugs in animal studies 

 

 In animal studies, two brain regions have been particularly scrutinised for their 

involvement in physiological processes that are fundamental in ADHD symptoms. The 

first region of interest is the Prefrontal Cortex (PFC), where the brain processes 

information regarding social behaviour, cognition and executive functions. As a matter 

of fact, the PFC is responsible for executive functions such as mentation, environment 

representation and semantic processing (Goldman-Rakic, 1996). Short-term and long-

term memory also originate within the PFC (Fletcher et al., 1998; Shimamura et al., 

1990). Another major function of the PFC is composed of both the filtering of 

information and the inhibition of irrelevant activities (Chao et al., 1998; Shimamura, 

2000). Finally, the PFC also processes all the sensorimotor information, including 

language and self awareness (Clemo et al., 2012; Kayser et al., 2012b; Laurienti et al., 

2003; Siddiqui et al., 2008; Stephan et al., 2002). Psychostimulants enhance PFC 

activities, as observed recently (Berridge et al., 2011; Gronier, 2011). The PFC is 

characterised by dense cellular populations of glutamatergic pyramidal neurons and γ-

amino-butyric acid (GABA) interneurons. Pyramidal neurons are modulated by several 

neurotransmitters, such as dopamine, serotonin, GABA and norepinephrine (Steketee, 

2003). The second region of interest is the Ventral Tegmental Area (VTA). This region 

is involved in reward processes, motivation as well as addiction (Adinoff, 2004) and so 

is extensively studied in rodents. A functional connectivity exists between the VTA and 

the PFC. Although these two regions are physically separated, they are able to maintain 

a physiological connectivity, thus allowing permanent communication between the two 

structures. This is achieved by axonal projections from the VTA dopaminergic neurons 

onto PFC pyramidal neurons and interneurons. Thereby, the VTA exerts control over 

the PFC, through complex mechanisms (Steketee, 2003). In parallel, PFC glutamatergic 

neurons also project onto VTA dopaminergic neurons in vivo, proving a two-way 

communication between the two structures (Kauer et al., 2007; Lewis et al., 2000). The 

PFC directly controls burst activity of midbrain dopamine neurons, mainly through 

descending pathways (Floresco et al., 2003; Gariano et al., 1988; Kalivas, 1993; Murase 

et al., 1993; Overton et al., 1997; White, 1996). Therefore, glutamate plays a major role 

in inducing burst-like electrical discharges (Charlety et al., 1991; Chergui et al., 1993; 

Geisler et al., 2008; Johnson et al., 1992), which will be discussed later on. Within the 

VTA, dopamine neurons represent 55-60% of all neurons, while GABAergic neurons 
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represent around 20% of all neurons (Kim et al., 2015). Interestingly, midbrain 

dopamine neurons can enter a GABA synthesising pathway through activation of an 

evolutionary alternative using the enzyme aldehyde dehydrogenase 1a1 (Kim et al., 

2015). The remaining 20% of all neurons are composed of glutamate neurons (Nair-

Roberts et al., 2008; Yamaguchi et al., 2007). Subchronic D-amphetamine exposure (5 

mg/kg for 5 days, intraperitoneal) was found to alter midbrain GABAergic 

neurotransmission in rats (Giorgetti et al., 2002). 

 

 Pharmacology studies have been performed in the PFC and the VTA, using 

MPH, ATX, D-amph or other psychostimulants. 

 

 In the PFC, methylphenidate dose-dependently enhances signal processing, 

underlying the therapeutic effects of MPH for social behaviour and cognition (Devilbiss 

et al., 2008). Indeed, 0.5 mg/kg of acute MPH improved working memory, while 2 

mg/kg impaired performance. Such behavioural effects were also positively correlated 

to prefrontal cortex neuronal activities, where low doses of MPH (0.25-2 mg/kg) 

enhanced electrical activities while higher doses (15 mg/kg) reduced spontaneous 

discharges (Devilbiss et al., 2008). Today, it is generally admitted that the mechanism 

of action of MPH within the PFC is triggered through dopamine D1 and adrenergic α2 

receptor modulations (Gronier, 2011). However, acute administration of such a 

stimulant (2.5 and 10 mg/kg) to rodents lead to behaviour sensitisation, described here 

as increased stereotypic movements as well as an increase in horizontal activity (Salek 

et al., 2012; Yang et al., 2007). Though dopamine in the prefrontal cortex is known to 

control a broad spectrum of brain activities, dopamine innervations are relatively sparse 

in the prefrontal cortex, compared to other monoamines innervations (Devoto et al., 

2006) such as norepinephrine. Because dopamine has a higher affinity for the NET at 

norepinephrine terminals than for the dopamine transporter itself, it is believed that a 

significant part of the dopamine released in prefrontal areas originates from 

norepinephrine terminals (Devoto et al., 2006; Horn, 1973). Evidence for this 

hypothesis includes experiments in dopamine transporter knockout mice, where 

dopamine efflux is stimulated in the PFC by cocaine and norepinephrine uptake 

blockers (Moron et al., 2002). Prefrontal dopamine, at the adequate concentration range, 

is thought to play a major positive role in cognition, attention and working memory, 

mainly via stimulation of dopamine D1 receptors (Floresco, 2013). Activation of 
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dopamine D1 receptors in the prefrontal cortex initially suppress inhibitory post-

synaptic currents (IPSCs), which is followed by facilitation of such IPSCs (Paul et al., 

2013). Such biphasic effects are also observed following amphetamine exposure. As a 

matter of fact, acute D-amphetamine (0.01-3 mg/kg) exposure facilitates long-term 

potentiation (LTP) in pyramidal neurons of the PFC via D1, but not D2, receptor 

stimulation, while 10 mg/kg impairs LTP (Xu et al., 2010). 

 

 In the VTA, methylphenidate modulates dopamine neurotransmission by 

decreasing dopaminergic neuron activities through dopamine D2 receptor stimulation in 

vivo. The electrophysiological effects of psychostimulants all seem to trigger decreases 

in VTA dopaminergic neurons activity, as observed with MPH and cocaine (Bunney et 

al., 2001), but can also lead to the uncoupling of D2/D3 midbrain receptors from Gαi2 

proteins when amphetamine is applied, while leaving striatal D2/D3 receptors unchanged 

(Calipari et al., 2014). This is of great importance considering that receptor alterations 

can lead to synaptic reorganisation and altered brain plasticity. 

 

 In the dopaminergic synapse, D-amphetamine is known to cause dopamine 

release by interacting mainly with the membrane dopamine transporter and with the 

vesicular dopamine uptake system (VMAT), causing vesicular dopamine depletion and 

increases in cytoplasmic dopamine, as already mentioned. In return, these increases 

promote reverse transport of dopamine through the DAT (Robertson et al., 2009) but 

may also increase extracellular dopamine levels by other mechanisms, such as 

promoting rapid internalisation of dopamine carrier (El-Kabbani et al., 2004) or 

“passive membrane diffusion” (Wallace et al., 2008), although this passive dopamine 

diffusion has only been demonstrated in a computational model. Passive diffusion of 

relatively small and neutrally-charged hydrophobic molecules can occur directly across 

the phospholipidic bi-layer (Bergstrom et al., 2003; Camenisch et al., 1998; Cooper, 

2000). However, no direct in vivo evidence of such a process has yet been observed. In 

the PFC, D-amph has a strong impact on synapse plasticity, inducing increases in the 

presynaptic membrane area, spine density and postsynaptic membrane area, but also 

inducing a reduced synaptic vesicle density (Uranova et al., 1989). The drug also 

induces behavioural sensitisation, defined here as an enhancement of the behavioural 

activating effects of the drug when repeated injections are performed, as well as a long-

lasting hypersensitivity to later environmental or pharmacological challenges (Cador et 
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al., 1999). The study by Cador also shows that when an NMDA receptor antagonist was 

co-administered with D-amph within the VTA, behavioural sensitization was abolished, 

underlying the involvement of the glutamatergic neurotransmission in inducing 

sensitization, as well as PFC-VTA innervations (Cador et al., 1999). 

 

 Pharmacologically, systemic administrations of ATX (3 mg/kg) led to increases 

in prefrontal norepinephrine and dopamine levels, but not serotonin (Ago et al., 2014). 

This study underlines the monoamine system as a target for ATX. The drug also targets 

the NMDA (N-methyl-D-aspartate) neurotransmission in the striatum, as revealed by a 

marked reduction of the NMDA receptor 1 mRNA after 2 months of ATX treatment, as 

well as an increased NMDA2B receptor expression (Udvardi et al., 2013). These 

transcriptions/translations of the NMDA receptor and the norepinephrine transporter in 

the rat brain might contribute to ATX’s clinical effects in the treatment of ADHD, in 

which synaptic processes and especially a dysregulated glutamatergic metabolism seem 

to be involved. Another in vitro study has shown that 3 µM of ATX could block 

NMDA-induced membrane currents in a voltage-dependent manner, suggesting an 

open-channel blocking mechanism by ATX (Ludolph et al., 2010). Surprinsingly, the 

bioavailability of ATX in the rat is only around 4% when absorbed through the gastro-

intestinal tract, probably due to their powerful first-pass metabolism capacities (Mattiuz 

et al., 2003). 

 

  ADHD patients have difficulties in controlling impulsive behaviour (Connor et 

al., 2010; Ende et al., 2016; Raiker et al., 2012; Urcelay et al., 2012). As a matter of 

fact, clinical diagnosis of ADHD accounts for impulsive choices (Neef et al., 2005), a 

trait arising from impaired control inhibition in patients (Schachar et al., 1995). In 

rodents, different experiments can be used to determine impulsivity. Indeed, rodents can 

be submitted to a delayed reward task, whereby either a large food reward is given 

following visual clues or an immediate but small food reward is given following a 

different visual clue (Schippers et al., 2016; van Gaalen et al., 2006). In this model, 

impulsivity is assessed as enhanced responses for an immediate but small reward 

(impulsive) compared to the delayed large reward (non-impulsive). Other experiments 

used the 5-choice serial reaction task. In this protocol, rodents are trained to perform 

correct nose poke in one (out of five) previously-illuminated holes following a waiting 

period. Here, impulsivity corresponds to the amount of premature nose pokes observed 
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during the waiting period (Pillidge et al., 2016; Young et al., 2004; Young et al., 2009). 

Another method of assessing impulsivity is by using the go/no-go task. Such a protocol 

can be applied to rodents and humans (Anker et al., 2008; Bezdjian et al., 2009) and 

consists of only responding to a precise visual clue (“go”) whilst refraining responses 

(“no-go”) to other clues (Gomez et al., 2007). Some studies have shown the impact of 

psychostimulants on impulsivity. Indeed, D-amphetamine induces impulsivity in control 

rats but not in already impulsive spontaneously hypertensive animals (Adriani et al., 

2003b; Furlong et al., 2016; Hand et al., 2009). Moreover, such an effect is dose 

dependent at regimens between 0.3 and 1 mg/kg (Paterson et al., 2011). In socially 

isolated rats, both D-amphetamine (2 mg/kg) and methylphenidate (2.5 mg/kg) 

decreased impulsivity, while only D-amphetamine increased impulsivity in rats housed 

socially (Perry et al., 2008). However, one study found decreased impulsivity following 

intraperitoneal D-amphetamine (Winstanley et al., 2003). Another study has shown that 

acute methylphenidate (5.6-10 mg/kg) can increase impulsivity in control rats (Wistar-

Kyoto) but not in SHR rats (Wooters et al., 2011). Moreover, a low dose of 

methylphenidate (0.1 mg/kg) can decrease both impulsivity and premature responding 

(Puumala et al., 1996) while a higher dose (1 mg/kg) fails to do so (Puumala et al., 

1996). However, the validity of these models to mimic impulsivity remains arguable, as 

they may not always accurately reflect human symptomatology (Sontag et al., 2010). In 

rodents and humans, impulsivity involves the hippocampus and the prefrontal cortex 

(Cummings, 1993; Kayser et al., 2012a; Kheramin et al., 2002). Finally, D-

amphetamine increases impulsivity in healthy volunteers, but not in ADHD patients 

(Seo et al., 2008; Sostek et al., 1980). 

 

Freely available psychostimulants 

 

 Caffeine is one of the few freely available stimulants. It belongs to the Xanthine 

family and possesses psychoactive effects (Nehlig et al., 1992). Caffeine exerts a 

blockade of every adenosine receptor (A1, A2 and A3 receptors). In humans, caffeine 

consumption leads to increased locomotor activity as well as enhanced vigilance but 

also decreases fatigue (Nehlig et al., 1992). Interestingly, one study reported that 

supplementation of methylphenidate (10 mg) with a low dose of caffeine, produced a 

stronger attenuation of behavioural symptoms in children, compared to methylphenidate 

alone (Garfinkel et al., 1981).  In young adults, caffeine use can modulate ADHD 
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symptoms (Broderick et al., 2004), but a recent study observed that caffeine is only 

associated with ADHD symptomatology if caffeine is taken in combination with 

nicotine (Dosh et al., 2010). In young adolescents, one study reported a clear 

association between high caffeine consumption (4 or more beverages per day) and 

ADHD (Martin et al., 2008). 

 

  In young rats, early caffeine consumption leads to an increased locomotor 

activity after methylphenidate administration in adulthood, proving a cross-sensitisation 

(Boeck et al., 2009). However, some studies reported the beneficial effects of caffeine 

on ADHD symptoms. In an animal model of ADHD (juvenile administration of the 

dopamine and norepinephrine neurotoxin 6-hydroxy-dopamine), a 14-day chronic 

caffeine treatment improved spatial attention (Caballero et al., 2011), providing 

potential evidence for the use of caffeine as an adjuvant to psychostimulants. Another 

study on adolescent spontaneous hypertensive rats (another animal model of ADHD) 

revealed that chronic caffeine (2 mg/kg, twice a day) for 21 days can normalise ADHD 

traits (Pandolfo et al., 2013). 

 

  The other freely available psychostimulant is nicotine. Nicotine is a potent 

agonist of nicotine acetylcholine receptors. Extracted from tobacco plants, this chemical 

also belongs to the alkaloid family. Although the legal age limit for smoking in the UK 

is 18 years old, many abuses have been recorded. In fact, a recent European study found 

that 17.3% of adolescents smoke regularly every week in the UK (Pfortner et al., 2015). 

Current literature on nicotine and ADHD remains contradictory. While some clinical 

studies report a positive association between nicotine consumption and ADHD 

medication (Bron et al., 2013; Symmes et al., 2015), others fail to find any correlation 

in rats (Justo et al., 2010). A Dutch study reported that smoking amongst ADHD 

patients is twice the national average and that methylphenidate use increases tobacco 

consumption (Bron et al., 2013). Acute methylphenidate is also responsible for 

increases in nicotine consumption in ADHD patients (Vansickel et al., 2011) and non-

ADHD patients (Rush et al., 2005). However, few studies have suggested that 

methylphenidate could be an efficient medication for reducing nicotine intake in ADHD 

patients (Covey et al., 2010; Gehricke et al., 2011; Hammerness et al., 2013), but one 

study proved its inefficacy (Hurt et al., 2011). These contradictory findings remain 

ambiguous and need to be further examined. While caffeine cannot be purely 
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considered as a cognitive enhancer (Lienert et al., 1966; Nehlig, 2010), nicotine has 

been proven efficient in enhancing cognition, in both rodents and humans (Griesar et 

al., 2002; Semenova et al., 2007; Warburton, 1992; Wignall et al., 2011; Young et al., 

2004), as well as in young adults with ADHD (Potter et al., 2008). 

  

A link between ADHD and substance abuse? 

 

 Substance abuse can also be found as a comorbidity in adult ADHD (Mao et al., 

2014) and may be explained by the fact that it gives patients a sense of feeling normal, 

therefore accepted by society (Nehlin et al., 2014), a feeling that ADHD children have 

lost (Mueller et al., 2012; Whalen et al., 1981). Adult ADHD patients have also a 

higher risk of nicotine addiction (Ginsberg et al., 2014). Recent studies on adult ADHD 

patients have revealed the need to understand substance addiction in ADHD in an 

attempt to improve the difficult diagnosis in these patients as well as avoiding 

inadequate treatment (Crunelle et al., 2013; Matthys et al., 2014). Moreover, cocaine-

dependent patients diagnosed with ADHD are more severely addicted to cocaine than 

cocaine-dependent users without ADHD (Daigre et al., 2013). 

  

 The relative risk of substance abuse among 208 ADHD adolescents treated with 

stimulants has been assessed in a recent Danish study (Dalsgaard et al., 2014). Here, the 

authors found that adolescent ADHD patients, compared to the background population, 

have a relatively higher risk of substance abuse than the general population as well as 

alcohol abuse. This study has also shown discrepancies in gender for later-life substance 

use disorder, females being the most susceptible. Four populations are therefore of 

interest: ADHD adolescents currently under medication, untreated ADHD adolescents, 

ADHD adults previously treated during their adolescence and, finally, ADHD adults 

that never received medication. However, current literature lacks data concerning long-

term effects of ADHD medication during adolescence or childhood and substance abuse 

during later life. 
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Animal models of ADHD 

 

  Different animal models are currently available to mimic ADHD in rodents: 

1- The spontaneous hypertensive rat (SHR). This model has been validated to 

behaviourally and biologically mimic ADHD symptoms (Adriani et al., 2003a; Meneses 

et al., 2011; Sagvolden, 2000; Sagvolden et al., 2009; Vendruscolo et al., 2009).  

2- The 6-hydroxydopamine lesioned rat. Postnatal intracerebroventricular 

administration of 6-hydroxydopamine (6-OHDA) induces massive destruction of 

dopaminergic neurons in the substantia nigra, but has less destructive effects on 

dopamine neurons located in the ventral tegmental area and the prefrontal cortex 

(Kostrzewa et al., 2015). The loss of dopamine neurons functionally mimics ADHD and 

Parkinson’s disease (Caballero et al., 2011; Kostrzewa et al., 1994; Masuo et al., 2012; 

Moran-Gates et al., 2005; Russell, 2011; Thiele et al., 2012). 

3- In mice, genetic manipulations have led to dopamine transporter knockout mice 

(DAT
-/-

). Indeed, mice that do not express the dopamine reuptake transporter are used as 

models for ADHD (Leo et al., 2013; Russell, 2011; Takamatsu et al., 2015; Yamashita 

et al., 2013). 

4- Other models include the Naples high-excitability rat (NHE), the hypo-sexual rat, the 

Wistar-Kyoto hyperactive rat (WKHA), the polychlorinated biphenyl exposed rat 

(PCB), the acallosal mouse (corpus callosum agenesis), the lead-exposed mouse and 

rats reared in social isolation (Davids et al., 2003; Eubig et al., 2010; Johansen et al., 

2014; Magara et al., 2000; Russell et al., 2005; Sagvolden et al., 2005). 

 

  While these models have proven truly beneficial in the understanding of ADHD, 

one should not forget that they do not always reflect the exact neurobiology observed in 

ADHD patients (Alsop, 2007; Sontag et al., 2010). Therefore, such models are limited 

in precisely mimicking ADHD symptoms. Finally, concerning the SHR strain, the 

hypertensive aspect can make handling difficult and drug administration inaccurate. 

Besides, spontaneous mortality in this particular strain occurs frequently, due to cerebral 

haemorrhage (Dupont et al., 1975). 
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Objectives 
 

 

 Pharmacotherapies for ADHD involve either methylphenidate, D-amphetamine, 

atomoxetine or a combination of these drugs. While both stimulants (MPH and D-

amph) preferentially target dopamine transporters, the non-stimulant ATX potently 

targets both norepinephrine and dopamine transporters. However, the exact mechanisms 

underlying the efficiency of such pharmacotherapies are not yet completely understood. 

Glutamate neurotransmission appears to be altered in patients suffering from ADHD 

(Carrey et al., 2002; Grados et al., 2015; MacMaster et al., 2003; Moore et al., 2006), 

but some results have linked ADHD drugs to improved glutamatergic functions. 

  

Here, using radiolabelled neurotransmitters, we will compare the in vitro effects 

of atomoxetine, D-amphetamine and methylphenidate on prefrontal cortex (PFC) and 

striatal slices in rats. We will also determine the consequences of these drugs on the 

regulation of the in vivo electrical activities of PFC pyramidal neurons, striatal medium 

spiny neurons, ventral tegmental area dopamine neurons and dorsal raphe nucleus 

serotonin neurons, using single cell extracellular electrophysiology. We will also test 

whether chronic methylphenidate treatment, during either adolescence or adulthood, 

could induce long-lasting effects on body growth, neuronal functions and drug cross-

sensitisation. Moreover, depression-like behaviour in animals previously exposed to 

methylphenidate will be examined as well as sensitivity to D-amphetamine. Finally, we 

will assess if pre-treatments with either nicotine or caffeine can modulate neuronal 

responses to methylphenidate. 
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Chapter I – ADHD drugs induce in vitro 

neurotransmitter release. 
 

 

I-1- Introduction 

 

The mechanism by which ADHD drugs exert their therapeutic effects, 

particularly on attention and cognition processes, is not well understood. The 

paradoxical effect of ADHD drugs resides in both their abilities to calm hyperactivity 

while also improving cognition (De Sousa et al., 2012). Although apparently safe to 

use, ADHD drugs require adequate dosing to avoid negative consequences (Spiller et 

al., 2013; Vitiello, 2008; Wigal, 2009). The usefulness of such medication for ADHD 

patients is unquestionable, providing enhancement of both cognition and attention 

(Swanson et al., 2011) as well as improvements of some of the ADHD symptoms. 

Many drugs are available to treat ADHD, such as methylphenidate, amphetamine salts, 

atomoxetine, bupropion, clonidine and reboxetine, although not all have received 

approval from the Food and Drug Administration (De Sousa et al., 2012). However, the 

latter three are rarely given to patients. Both MPH and D-amph have immediate effects 

on ADHD symptoms, whereas ATX has a longer onset of action, usually between 4 to 8 

weeks (Bushe et al., 2014; Kolar et al., 2008). 

 

D-amphetamine and methylphenidate are strong inhibitors of the synaptic 

reuptake of both dopamine and norepinephrine. MPH potently inhibits the dopamine 

reuptake transporter (Ki = 34 nM) as well as the norepinephrine reuptake transporter (Ki 

= 339 nM) (Bymaster et al., 2002). Other effects of D-amph include the inhibition of 

monoamine oxidase and blockade of vesicular transport of catecholamines (Ki = 2 µM, 

Table 1) (Erickson et al., 1996; Heal et al., 2009). On the other hand, atomoxetine 

interacts very selectively with the norepinephrine transporter, with a Ki of 5 nM (Table 

1) (Bymaster et al., 2002). It is believed that the therapeutic effects of these drugs are 

associated with their abilities to stimulate dopamine release in the prefrontal cortex 

(PFC) (dela Pena et al., 2015; Kalivas, 2007). The PFC is considered as one of the main 

brain regions involved in the behavioural-calming and cognition-enhancing effects of 
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ADHD drugs (Gamo et al., 2010). It plays a critical role in the control of higher 

cognitive function such as vigilance, attention, impulsivity and behavioural inhibition 

(Kieling et al., 2008). As a matter of fact, lesions within the orbitofrontal areas of the 

prefrontal cortex lead to altered social perception in humans while having anxiolytic 

effects and increasing impulsiveness in rodents (Deacon et al., 2003; Mah et al., 2004; 

Schneider et al., 2005). According to microdialysis studies, MPH and ATX, at 

therapeutic doses (1-3 mg/kg), increase dopamine release preferentially in prefrontal 

areas, with little or no effect in basal ganglia (Koda et al., 2010). Prefrontal dopamine, 

at the adequate concentration range, is thought to play a major positive role in 

cognition, attention and working memory, mainly through stimulation of dopamine D1 

receptors (Floresco, 2013). Nevertheless, dopamine innervations are relatively sparse in 

the PFC (Devoto et al., 2006). Because dopamine has an affinity for the NET (Ki = 0.67 

µM, Table 1) (Giros et al., 1994), it is believed that a significant part of the dopamine 

released in prefrontal areas is cleared by (or even originates from) norepinephrine 

terminals (Devoto et al., 2006; Moron et al., 2002). Moreover, dopamine and 

norepinephrine can be simultaneously co-released in specific noradrenergic terminals 

(Devoto et al., 2001) while dopamine can even be reuptaken by the norepinephrine 

reuptake transporter (Moron et al., 2002). In contrast, in the striatum, dopamine 

innervations are dense (Matsuda et al., 2009). Besides, the striatum is believed to play 

an important role in ADHD, as increased striatal dopamine transporters and low striatal 

activity have both been observed in adult ADHD patients (Fusar-Poli et al., 2012; Lou 

et al., 1989), two effects alleviated by MPH pharmacotherapy (Krause et al., 2000). 

Moreover, ADHD patients present altered cortico-striatal functional connectivity (Hong 

et al., 2015), a characteristic that was also observed in rodents following early postnatal 

dopamine lesions (Braz et al., 2015). 

 

In the present chapter, the in vitro neurotransmitter release experiments aim to 

compare the effects of the main ADHD drugs on dopamine and norepinephrine 

neurotransmissions, in an attempt to characterise a possible common mechanism by 

which ADHD drugs alter monoamine neurotransmission. Here, we compare the effects 

of ADHD drugs on 
3
H-dopamine and 

3
H-norepinephrine efflux from rat PFC and 

striatal slices. 
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I-2- Material and Method 

 

  I-2-A- Subjects 

 

  Male Sprague-Dawley rats were purchased from Charles River, UK. 

Animals were housed in groups of 2-4 animals per cage, maintained at 20-22
o
C with 

humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00 AM (Ante 

Meridiem). Animals were kept in polypropylene cages measuring 56x38x17 cm. Food 

and water were provided ad libitum. Animals were allowed a 3-day acclimatisation 

period after delivery. All experiments were performed during the light phase and with 

permission from the UK Home Office and De Montfort University Ethics Committee 

under the Project Licence 60/4333 and with the Personal Licence 60/13750. 

 

I-2-B- In vitro radio-labelled neurotransmitter efflux  

 

  Seventy-one naïve rats weighing between 150 and 250 grams were 

sacrificed by cervical dislocation. The brain was quickly dissected out and immersed 

into ice-cold oxygenated Krebs buffer (NaCl 125 mM, MgSO4 1.2 mM, KCl 2.5 mM, 

CaCl2 2.5 mM, KH2PO4 1.2 mM, NaHCO3 25 mM, glucose 10 mM and pargyline 10 

μM, an inhibitor of monoamine catabolism, pH 7.4). The brain was then placed on an 

ice-cold platform for further dissection of either the prefrontal cortex (PFC, Fig. 1A) or 

the striatum (Fig. 1B). The tissue was then sliced into 350x350 µm prisms using a 

McIlwain tissue chopper. Constant oxygenation was maintained after this step. Prisms 

were then left for 20 min to rest at room temperature. Tissue prisms were then loaded 

for 40 minutes at 37
o
C with either 

3
H-dopamine (1.0 μCi/ml, specific activity 28.7 

Ci/mmol) or 
3
H-norepinephrine (1.0 μCi/ml, specific activity 12-15 Ci/mmol; Perkin-

Elmer USA) in the presence or absence of desipramine 10 µM to inhibit norepinephrine 

uptake. Once the loading completed, the prisms were then washed 3 times with fresh 

Krebs buffer before being divided into 6 even portions and loaded into 6 perfusion 

chambers. Throughout the experiment, all prisms and superfusion Krebs buffers were 

maintained at 37
o
C and under constant oxygenation. An equilibrating period of 40 

minutes was initiated by superfusion of the chambers with Krebs buffer at 0.6 ml/min. 

In order to determine baseline outflow of dopamine, 3-4 samples were collected per 

chamber at intervals of 4 minutes. Sample were collected into vials and each sample 
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would hold 2.4 ml of perfusion liquid, to which scintillation liquid was added up to a 

total volume of 7 ml per vial. At the end of the experiment, all tissues were collected 

and dissolved with 1 ml of tissue solubiliser. Total tritium (
3
H) quantities were 

measured in a liquid scintillation counter (Hidex, UK), from which disintegrations per 

minute were extracted. If necessary, the composition of the superfused Krebs buffer was 

altered. The low Na
+
 Krebs buffer consisted of a 20 mEq of NaCl (instead of 125 mEq) 

substituted by isotonic concentration of choline chloride. The Ca
2+

-free Krebs buffer 

was made by omitting the CaCl2 in the buffer (CaCl2 0 mM). In addition to the calcium-

free Krebs buffer, a further intracellular calcium chelation was achieved by adding 50-

100 µM of BAPTA-AM, a cell-permeable calcium chelator, to the Ca
2+

-free Krebs 

buffer. A depolarisating buffer was also tested by increasing KCl concentration from 

2.5 to 20 mM. Superfusion of such potassium-rich buffer is known to induce sudden 

membrane depolarisation and neurotransmitter release (Ayata et al., 2000; Chen et al., 

1996; Khvotchev et al., 2000; Nagai et al., 1998; Okuma et al., 1986; Zhao et al., 

2001). 

 

 

 

Figure 1: Regions of interest for in vitro neurotransmitter efflux experiments. 

Prefrontal cortex (A) and striatum (B) locations. Shaded areas correspond to regions of 

interest for in vitro neurotransmitter releases. Scales represent distances (in mm) from 

the midline and the surface of the brain. Coronal slices adapted from Paxinos and 

Watson (1997). Cg1 cingulate cortex area, PrL prelimbic cortex, CPu caudate putamen. 
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 I-2-C- Drugs 

 

  All drugs were purchased from Sigma (Sigma-Aldrich, UK) except for 

BAPTA-AM (Abcam, UK), atomoxetine and reboxetine (Sequoia Research, UK) as 

well as SCH23390 (Tocris, UK). The drugs were dissolved into normal or modified 

Krebs buffers, as appropriate, except for BAPTA-AM and desipramine that were firstly 

dissolved into DMSO (dimethyl-sulfoxide, 20%) as stock solutions before being diluted 

back into the appropriate buffers. The final concentration of DMSO in the buffer was 

below 0.02% (v/v). 

 

I-2-D- Data analysis 

 

  All data are expressed as the mean±standard error of the mean (S.E.M.). 

Statistical analyses were performed using paired or unpaired Student's t-tests or 

one/two-way analysis of variance (ANOVA), followed by appropriate post-hoc 

Neuman–Keuls (one-way ANOVA) or Bonferroni tests (two-way ANOVA). The mixed 

model two-way ANOVA was used when sampling size varied across groups. 

Probabilities smaller than 0.05 were considered to be significant; n values refer to the 

number of samples used. Fractional efflux for each superfusate sample was calculated 

by dividing the amount of tritium in each sample by the total tritium left thereafter. The 

effect of a tested condition was assessed on at least 3 subsequent sample collections and 

averaged. Normalised efflux values are calculated for each chamber as the ratio between 

the mean tested values (generally from at least 3 collections) and average baseline 

values (usually 3-4 collections). All of the experiments presented were repeated on at 

least 3 animals. Fig. 2 shows an example of a typical experiment testing the effect of 

ATX on 
3
H-dopamine efflux from striatal prisms. In this chapter, a distinction between 

dopamine release and dopamine efflux/outflow was made. Indeed, dopamine release, 

arising from exocytosis, only occurs under in vivo or artificially-stimulated conditions 

(perfusions of KCl or D-amphetamine), while dopamine efflux/outflow occurs when 

prisms are not under stimulated conditions (Beani et al., 1984; Kahlig et al., 2005). 
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Figure 2: Time course example of a typical 
3
H-dopamine efflux experiment in the 

striatum. 
Atomoxetine was superfused at 10 and 100 µM. Data shows the average fractional 

efflux from 6 perfusion chambers over time. In this and the following figures, n values 

indicate the number of tissue samples which have been tested (from which an average 

fractional efflux is calculated from 3-4 subsequent collections). **P<0.01, ***P<0.001 

vs. baseline, Neuman-Keuls after significant repeated measures ANOVA. 
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I-3- Results 

 

 I-3-A- ADHD drugs induce dopamine efflux 

 

I-3-A-1- In the prefrontal cortex 

 

   In the prefrontal cortex (PFC), the application of  

methylphenidate (100 µM), atomoxetine (100 µM) and D-amphetamine (10 µM) 

significantly increased dopamine efflux (respectively 52%, 300% and 84% over 

baseline, Fig. 3A). Interestingly, ATX elicited dopamine efflux in the frontal cortex in a 

dose-dependent manner. Indeed, rising concentrations of ATX, from 10 to 100 µM, all 

induced significant (p<0.001) dopamine efflux (Fig. 3B). Perfusion of ATX at 100 µM 

produced a considerable dopamine efflux, but may here trigger other mechanisms to 

explain such a high outflow. At this concentration of 100 µM, the NET blocker ATX 

elicits a massive release of efflux, increasing baseline levels by 400%. All drugs, except 

the very selective DAT inhibitor GBR-12909, promoted 
3
H-dopamine efflux when 

perfused at 100 µM, including the NET inhibitors desipramine and reboxetine (Fig. 3C). 

At 100 µM atomoxetine induced dopamine efflux at a significantly greater level (post-

hoc test F(2,182)=11.66, p<0.001) than 100 µM of MPH (Fig. 3A), an effect not observed 

at 10 µM. Methylphenidate significantly induced dose-dependent dopamine efflux (Fig. 

3D). 
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Figure 3: Dose-response of ADHD drugs and other selective uptake inhibitors on 

prefrontal cortex 
3
H-dopamine efflux.  

 (A): Superfusion of ATX, MPH or D-amph (100 µM) all significantly induced 

dopamine efflux with different level of efficacy. (B): ATX induces dopamine efflux in a 

dose-dependent manner. (C): Effects of other selective reuptake inhibitors on prefrontal 

dopamine release. Interestingly, desipramine (DMI) and reboxetine (REB) both 

significantly induced dopamine efflux when applied at 100 µM, while the selective 

DAT inhibitor GBR-12909 (10 and 100 µM) did not induce dopamine efflux. (D): MPH 

promotes dopamine efflux in a dose-dependent manner from 10 µM to 1 mM. MPH: 

methylphenidate, ATX: Atomoxetine, D-amph: D-amphetamine, DMI: desipramine, 

REB: reboxetine, GBR: GBR-12909. *P<0.05, **P<0.1, ***P<0.001 vs. respective 

baseline, $$ P<0.01, $$$ P<0.001 vs specified conditions, Bonferroni after significant 

mixed model repeated measures two-way ANOVA. 

 

 

When the loading of the slices with 
3
H-dopamine was made in the 

presence of desipramine (10 µM, to prevent norepinephrine terminal uptake and storage 

of 
3
H-dopamine), MPH and ATX exert a significant increase of dopamine efflux but 

only when applied at the concentration of 100 µM (Fig. 4) and to a lower extent than 

what was previously observed in desipramine-free (normal) condition, respectively with 

38% and 17% lower levels of dopamine efflux (vs baseline condition). This indicates 

that blocking the norepinephrine transporter during the loading of the slices 

significantly reduces, but does not prevent, the ability of MPH to induce dopamine 

efflux.  
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Figure 4: Role of norepinephrine terminals in ATX-induced dopamine efflux. 

When prefrontal cortex tissues were loaded with tritiated dopamine in the presence of 

10 µM of desipramine (NET inhibitor), 100 µM of ATX still promoted dopamine 

efflux, but to a level that is significantly lower than in desipramine-free conditions, 

indicating that ATX promotes dopamine efflux from both dopamine and noradrenergic 

terminals. ns: non-significant, *P<0.05, ***P<0.001 vs. respective baseline, $P<0.05 vs. 

specified condition, Neuman-Keuls after significant ANOVA (A). 

 

  I-3-A-2- In the striatum 

 

   As observed in the PFC, all drugs tested dose-dependently 

stimulated dopamine efflux from striatal slices (Fig. 5A). When applied at 10 µM, both 

GBR-12909 and MPH significantly increased dopamine efflux, but with different 

efficacies (15% and 108% over baseline, respectively, Fig. 5B). Interestingly, ATX, but 

not reboxetine or desipramine, two other potent NET inhibitors, also significantly 

increased the efflux of dopamine by 42% over baseline (Fig. 5A,B), when tested at the 

concentration of 10 µM (p<0.001, Neuman-Keuls test after ANOVA). Reboxetine and 

desipramine both have Ki values of over 10 µM for the dopamine transporter (Millan et 

al., 2001; Zhou, 2004), which is consistent with our study (Fig. 5B). As expected, D-

amph, applied at 10 µM, induced strong dopamine release (437% over baseline). When 

tested at higher concentrations (100 µM), ATX elicited an unexpected and robust efflux 

of dopamine, like in the PFC, increasing baseline levels by more than 680%, which is 

significantly higher than the efflux produced by the potent DAT blockers MPH 
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(p<0.001, Neuman-Keuls test after ANOVA) and GBR-12909 (p<0.01, Neuman-Keuls 

test after ANOVA). As observed in the prefrontal cortex, in the striatum, ATX also 

induced dopamine efflux in a dose-response manner (Fig. 5C). On the other hand, we 

did not observe any saturation in the striatum. Very interestingly, the DAT blocker 

Modafinil (IC50 for dopamine reuptake of 4 µM) (Zolkowska et al., 2009), induced 

dopamine efflux only at 1000 µM (Fig. 5D). This result may be explained by the ability 

of Modafinil to act as a partial dopamine D2 receptor agonist (Seeman et al., 2009) and 

by the higher concentration of drug perfusion needed in order to penetrate our tissue, 

compared to techniques using synaptosome assays. Both MPH and ATX perfusions 

significantly induce dopamine efflux in dose-dependent manners from 1 µM to 1 mM 

(Fig. 5E). These results suggest that ATX, and possibly the two other NET inhibitors 

desipramine and reboxetine, may interact with other targets in order to induce such 

strong dopamine efflux (7 folds over baseline), while other potent DAT blockers only 

increase striatal dopamine efflux by 3-4 folds and specific inhibitors such as GBR have 

very limited effects. Loading the striatal slices with 
3
H-dopamine in the presence of 

desipramine (10 µM) did not alter at all the ability of ATX to induce 
3
H-dopamine 

efflux at 100 µM, as it induced significantly greater efflux than under desipramine-free 

conditions (p<0.001, Neuman-Keuls after significant ANOVA, Fig. 6). 
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Figure 5: Dose-response of ADHD drugs and other selective uptake inhibitors on 

striatal 
3
H-dopamine efflux. 

(A): Superfusion of either ATX (10 and 100 µM), MPH (10 and 100 µM) or D-amph 

(10 µM) all significantly induced dopamine efflux with different level of efficacy. ATX 

promoted an unexpected massive dopamine efflux from striatal slices at concentrations 

higher than 60 µM. (B): GBR-12909, desipramine (DMI) and reboxetine (REB) all 

significantly induced dopamine efflux when applied at 100 µM. (C): ATX promotes 

striatal dopamine efflux in a dose-dependent manner from 10 µM to 100 µM. (D): Dose 

response of Modafinil, another drug used for ADHD, on striatal dopamine efflux. Here, 

Modafinil significantly induced dopamine efflux only if applied at concentrations above 

100 µM. (E): In the striatum, ATX is more efficient than MPH in inducing dopamine 

efflux at high concentrations. ***P<0.001 vs. respective baseline, $$$P<0.001 vs. 

specified condition (A-D) or vs. MPH (E), Neuman-Keuls (A-D) or Bonferroni (E) after 

significant one-way or two-way ANOVA. 
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Figure 6: Atomoxetine induces striatal dopamine efflux from dopamine terminals, 

but not noradrenergic terminals. 

Contrary to what was observed in the prefrontal cortex, when striatal slices were loaded 

with tritiated dopamine in the presence of 10 µM of desipramine, 100 µM of ATX still 

promoted dopamine efflux to higher levels than in desipramine-free conditions, 

indicating that ATX promotes dopamine efflux from dopamine terminals but not 

noradrenergic terminals. ***P<0.001 vs. respective baseline, $$$P<0.001 vs. specified 

condition, Neuman-Keuls after significant ANOVA. 

 

  I-3-A-3- Interaction between drugs  

 

   Pre-exposure of slices with ATX (100 µM), did prevent the 

releasing effect of MPH (100 µM) in the PFC, but not in the striatum, where efflux is 

stimulated with similar efficacy as in basal conditions (Fig. 7A). On the other hand, the 
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massive effect of ATX on dopamine efflux (Fig. 7A). This result suggests that ATX 

triggers dopamine efflux by a mechanism that is not dependent on the dopamine 

reuptake transporter, whilst MPH-induced dopamine efflux originates from the 

blockade of such a transporter. In both structures, D-amph-induced dopamine release 

was completely prevented when slices were previously perfused with MPH (Fig. 7B). 

Reciprocally, in both structures, MPH did not increase further the efflux of dopamine 

elicited by D-amph (10 µM). Dopamine efflux was even significantly decreased in 

striatal slices following MPH application (Fig. 7B). Interestingly, in the PFC, the 

outflow effects of ATX or D-amph were also partially reduced (in this case) by each 

other’s pre-administration (Fig. 8), an effect not observed in the striatum (not shown). 

However, such a dampening may be due to ceiling effects and require therefore further 

experiments. 
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Figure 7: Interactions between ADHD drugs on prefrontal cortex and striatal 
3
H-

dopamine efflux. 

(A): Pre-incubation with ATX (100 µM) prevented the outflow of dopamine induced by 

MPH (100 µM) in the prefrontal cortex, but not in the striatum. However, pre-

incubation with MPH before ATX application did not reduce ATX effects in both 

regions. (B): In both regions, pre-exposure with MPH (100 µM) completely prevented 

the subsequent effects of D-amph. Similarly, pre-exposure with D-amph prevented or 

significantly reduced the effects of MPH (PFC and striatum, respectively). Here and in 

the following figures, co-perfusion of two drugs is represented by a + in the legends and 

denotes therefore addition of the last-mentioned drug into the buffer, already containing 

the first-mentioned drug. ns: non-significant, ***P<0.001 vs. respective baselines, 

+P<0.05, ++P<0.01, +++P<0.0001 vs. specified conditions. Newman-Keuls after 

significant ANOVA. 
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Figure 8: Interactions between atomoxetine and D-amphetamine on prefrontal 

cortex 
3
H-dopamine efflux. 

 In the prefrontal cortex, pre-incubation with either ATX (100 µM) or D-amph (10 µM) 

did not prevent the dopamine efflux induced by subsequent applications of either drug. 

**P<0.01, ***P<0.001 vs. respective baselines, +P<0.05 vs. specified conditions, 

Newman-Keuls after significant ANOVA. 

 

  I-3-A-4- Dependency of dopamine efflux by ADHD drugs upon sodium, 

calcium, vesicle integrity and KIR channels 

 

   Superfusion of striatal slices with an isotonic medium containing 

a low concentration of sodium (20 mEq instead of 125 mEq) increased significantly 

basal 
3
H-dopamine efflux by nearly 380% (Fig. 9A) and completely prevented both 

MPH and ATX-induced dopamine efflux (Fig. 9B). The dopamine transporter strongly 

depends upon balanced intracellular and extracellular sodium concentrations (Itokawa et 

al., 2002; Manepalli et al., 2012; Pramod et al., 2013; Vaughan et al., 2013). 

Extracellular sodium depletion also significantly reduced D-amph-induced dopamine 
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produced additional effects on KCl-induced dopamine efflux (vs buffer only, 

respectively p<0.001, p<0.01 and p<0.05, Newman-Keuls after significant ANOVA, 

Fig. 10). Interestingly, D-amph was the most efficient of the three drugs (Fig. 10B,E). 

Ouabain (100 µM), a potent Na
+
/K

+
-ATPase inhibitor, also increased basal dopamine 

efflux (Fig. 11A) and prevented dopamine efflux induced by ATX (Fig. 11B), 

indicating that ATX-induced dopamine efflux may be dependent upon active processes 

and/or physiological electrochemical gradients. However, such effects are most 
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not change the ability of ATX to elicit 
3
H-dopamine efflux from PFC or striatal slices 

(Fig. 12). On the other hand, the intracellular calcium chelator BAPTA-AM (50-100 

µM), applied for 20 min before sample collection to the end of the experiment in 

combination with extracellular calcium depletion, significantly reduced ATX-induced 

3
H-dopamine efflux in the striatum (Fig. 13) but not MPH-induced dopamine efflux. 

When the potent depleting agent of monoamine vesicles reserpine was applied at 1 µM, 

large dopamine efflux were observed from striatal slices and this effect was 

significantly more pronounced (F(1,51)=173.7, p<0.01, two-way ANOVA) than on PFC 

slices (Fig 14). However, when the concentration of reserpine was increased to 10 µM, 

both regions produced stronger dopamine efflux, indicating a dose-response mechanism 

of reserpine on dopamine efflux. Reserpine, applied at 1 µM for 20 min before 

superfusion of PFC or striatal slices also significantly attenuated the effect of ATX on 

dopamine efflux (Fig. 15), but had no effect on MPH-induced striatal dopamine efflux 

(Fig. 16), indicating therefore that ATX, but not MPH, require catecholamine vesicle 

integrity in order to induce such a dopamine efflux. 
 

 

Figure 9: Sodium dependency of both methylphenidate and atomoxetine in 

inducing striatal tritiated dopamine efflux. 

(A) Superfusion of a buffer containing a low sodium concentration (20 mEq of Na
+
) 

significantly increased basal dopamine outflow. ***P<0.001 vs. respective baselines, 

unpaired Student’s t-test. (B) Under these perfusion conditions, 100 µM of either ATX 

or MPH could not induce striatal dopamine efflux. However, 10 µM of D-amph 

significantly promoted dopamine efflux, but to a lower level than under physiological 

sodium concentration (125 mEq). ns: non-significant, *P<0.05 vs. respective baselines, 

unpaired Student’s t-test. 
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Figure 10: ADHD drugs produced additional effects on dopamine efflux from 

striatal slices when co-applied with a potassium-rich buffer. 

(A) Superfusion of a buffer containing a high potassium concentration (20 mM of KCl) 

increased dopamine release in a reversible manner. The addition of 10 µM of D-amph 

(B), 100 µM of ATX (C) or 100 µM of MPH (D) significantly increased dopamine 

efflux when co-applied with KCl, assessed by increased S2/S1 ratios. D-amph was the 

most efficient of the three drugs used. Note the non-linear scale in B. *P<0.05, 

**P<0.01, ***P<0.001 vs. KCl 20 mM, ++P<0.01 vs. specified condition, Newman-

Keuls after significant ANOVA. 
 

 

Figure 11: Atomoxetine induces striatal dopamine efflux by a gradient-dependent 

mechanism. 

(A) Superfusion of a buffer containing 100 µM of ouabain, a potent Na
+
/K

+
-ATPase 

inhibitor, significantly (p<0.001, unpaired Student’s t-test) increased basal dopamine 

outflow. (B) Under these perfusion conditions, 100 µM of ATX did not induce further 

striatal dopamine efflux, indicating that ATX may require physiological electrochemical 

gradients to induce dopamine outflow. ns: non-significant, most probably due to a 

ceiling effect, *P<0.05, **P<0.01 vs. respective baselines, Newman-Keuls after 

significant ANOVA. 
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Figure 12: Atomoxetine-induced dopamine efflux is not dependent upon 

extracellular calcium concentrations. 

In the PFC and the striatum, superfusion of a calcium-free buffer (0 mEq of Ca
2+

) did 

not reduce the capacity of ATX to induce dopamine efflux. ns: non-significant, 

*P<0.05, ***P<0.001 vs. respective baselines, Newman-Keuls after significant 

ANOVA. 
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Figure 13: Atomoxetine-induced dopamine efflux, but not methylphenidate-

induced dopamine efflux, is dependent upon intracellular calcium concentrations. 

When intracellular calcium chelation was performed for 20 minutes before collection, 

using 50-100 µM of BAPTA-AM, together with the use of an extracellular calcium-free 

buffer, ATX-induced dopamine efflux was significantly reduced, an effect not observed 

with MPH. 

BAPTA-AM: 1,3-bis(aminophenoxy)ethane-N-tetraacetic acid-acetoxymethyl ester, 

intracellular calcium chelator. ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 vs. 

respective baselines, +++P<0.001 vs. control condition, Newman-Keuls after significant 

ANOVA. 
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Figure 14: Superfusion of reserpine induces prefrontal and striatal dopamine 

efflux. 

Superfusion with reserpine (1 and 10 µM), a powerful depleting agent of monoamine 

vesicles, produced significant dopamine efflux from prefrontal cortex and striatal slices. 

*P<0.05, **P<0.01, ***P<0.001 vs. baseline outflow, $$P<0.01, $$$P<0.001 vs. PFC, 

Bonferroni after significant repeated measures two-way ANOVA. 

 

 
 

Figure 15: Atomoxetine-induced dopamine efflux is dependent upon vesicle 

integrity. 

When monoamine vesicles were depleted (1 µM of reserpine) for 20 minutes before 

collection, subsequent application of ATX on prefrontal cortex and striatal slices 

induced significantly lower dopamine efflux than under control conditions. *P<0.05 

vs. respective baselines, ++P<0.01, +++P<0.001 vs. specified conditions, Newman-

Keuls after significant ANOVA. 
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Figure 16: Dependency of methylphenidate on vesicle integrity to induce dopamine 

efflux. 

In the prefrontal cortex, monoamine vesicle depletion prevented MPH-induced 

dopamine efflux, but not in the striatum, where MPH induced dopamine efflux to 

similar levels as under control conditions. ns: non-significant, ***P<0.001 vs. 

respective baselines, $$$P<0.001 vs. all other conditions, Newman-Keuls after 

significant ANOVA. 

 

 

We then examined the possibility that ATX could induce 

dopamine efflux through the inwardly-rectifying K
+
 channels (KIR). Indeed, a previous 

study on frog oocytes has shown that ATX also interacts with the Gi-protein-activated 

Kir channel with IC50 values in the 30-50 micromolar range (Table 1) (Kobayashi et al., 

2010). In our experiment, co-perfusion of 20 µM of SCH23390, a dopamine D1 receptor 

antagonist as well as a KIR blocker (IC50 of 268 nM) (Kuzhikandathil et al., 2002), 

combined with 100 µM of ATX, failed to reduce ATX-induced dopamine efflux in a 

small population of samples (n=3, Fig. 17). SCH23390 did not have an effect on its own 

on baseline dopamine outflow. These observations indicate that ATX induces dopamine 

outflow through interaction with other surface receptors or intracellular targets, some of 

which may still be unknown. 
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Figure 17: Atomoxetine-induced striatal dopamine efflux does not depend upon 

the inwardly rectifying potassium channels. 

Specific blockade of KIR channel, using 20 µM of SCH23390, did not prevent ATX-

induced dopamine efflux in the striatum. ns: non-significant, **P<0.01, ***P<0.001 vs. 

baseline, Newman-Keuls after significant ANOVA. 

 

 I-3-B- ADHD drugs also induce PFC norepinephrine efflux 

 

  One hundred micromolars of ATX significantly induced prefrontal 

cortex norepinephrine efflux, (Fig. 18). However, the two other ADHD drugs, MPH and 

D-amph, did not induce norepinephrine efflux. Finally, we also tested whether ATX-

induced norepinephrine efflux could be dependent upon alpha-2 receptors, as a previous 

study in monkeys has shown that ATX enhances memory tasks through indirect alpha-2 

receptor stimulation (Gamo et al., 2010). Blockade of α2 receptors did not potentiate the 

subsequent effects of ATX in our model (Fig. 19). 
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Figure 18: Atomoxetine also induces 
3
H-norepinephrine efflux from prefrontal 

cortex slices. 

Among the three ADHD drugs, only ATX (100 µM), significantly induced tritiated 

norepinephrine efflux from prefrontal cortex slices. ***P<0.001 vs. respective 

baselines, Newman-Keuls after significant ANOVA. 
 

 
Figure 19: Role of adrenergic alpha-2 receptors on atomoxetine-induced 

norepinephrine efflux. 

Blockade of adrenergic alpha-2 receptors, using 20 µM of yohimbine, did not affect 

ATX-induced (10 and 100 µM) norepinephrine efflux. **P<0.01, ***P<0.001 vs. ATX 

0 µM, Bonferroni after significant repeated measures two-way ANOVA. 
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I-4- Discussion 

 

 Here, we have demonstrated that, compared to other drugs, D-amph is able to 

elicit the greatest amount of dopamine release in both striatum and PFC when applied at 

the lowest concentration (10 µM, Fig. 3A), a concentration in the same range as brain 

levels achieved following administration of therapeutic (0.5-2 mg/kg) D-amph doses 

(Wallace, 2012). D-amphetamine is known to exert its effect on dopamine efflux by 

initial competition with dopamine at the dopamine reuptake transporter, followed by 

inhibition of the vesicular monoamine transporter 2 (VMAT2, IC50 of 3.3 µM, Table 1), 

required for dopamine reuptake from the cytosol into vesicles (Partilla et al., 2006; 

Teng et al., 1998). Blockade of VMAT2 by D-amph and methamphetamine induces 

dopamine release from the neuron through dopamine transporter reversal (Brown et al., 

2000; Nickell et al., 2014; Sulzer et al., 1995). High intracellular dopamine 

concentrations induce cytotoxicity when D-amph is administered chronically, caused by 

apoptosis and oxidative stress (Steinkellner et al., 2011; Stumm et al., 1999). Other 

effects of D-amph on VMAT2 include redistribution of the transporter from the 

vesicular membrane to the cytosol (Eiden et al., 2011; Riddle et al., 2007). These 

dysregulations of brain monoamine concentrations induce hypersensitivity to later drug 

intake (Robinson et al., 1987) as well as hyperlocomotion (Antoniou et al., 1998; 

Sallinen et al., 1998) combined with stereotyped behaviour patterns (Sams-Dodd, 

1998). Active derivatives of the metabolism of amphetamines, such as 4-

hydroxyamphetamine and α-methyl-p-tyrosine, are known to accumulate in brain 

tissues following acute as well as chronic amphetamine administrations (Cho et al., 

1975; Dougan et al., 1986a). These derivatives are known to respectively induce 

mydriasis (dilatation of the pupil) and inhibition of the production of catecholamines 

(Cho et al., 1978; Dougan et al., 1986b; Lepore, 1985). Interestingly, when 1 and 10 

µM of D-amph were superfused onto striatal slices, dopamine release was significantly 

increased (Kantor et al., 1999; Kantor et al., 2002; Niddam et al., 1985) and promoted 

DAT surface trafficking (Furman et al., 2009). In non-human primates, chronic D-amph 

administration at 0.1-1 mg/kg twice a day for 1 to 4 weeks induced plasma D-amph 

concentration ranging from 0.4 to1.5 µM (Ricaurte et al., 2005). Consistent with these 

findings, another study measured D-amph accumulation in rat brains following a single 

3 mg/kg intraperitoneal injection and found peak plasma D-amph levels around 0.6 µM 

(Fuh et al., 2004). Moreover, striatal perfusion through microdialysis of an ACSF 
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solution containing 30 µM of D-amphetamine induced significant dopamine release in 

rats (Loweth et al., 2009). However, the use of the microdialysis technique is known to 

result in perfusate loss, up to 85% (Chefer et al., 2009; Hillman et al., 2005; Keeler et 

al., 2014; MacVane et al., 2014; Shippenberg et al., 2001). In humans, a single 0.7 

mg/kg dose of D-amph produced plasma D-amph levels peaking at 0.6 µM (Kirkpatrick 

et al., 2012). In agreement with previous investigations (Jones et al., 1998; Sulzer et al., 

1993), our findings suggest that D-amph enters the catecholamine terminals via a 

catecholamine uptake carrier system, given the preventive effect of MPH on D-amph-

induced dopamine efflux (Fig. 5B) and the strict sodium dependency (Fig. 14B). Recent 

evidence suggests that uptake of D-amph, which competes very strongly with dopamine 

for the dopamine reuptake transporter (DAT), promotes sodium and to a lesser degree 

calcium influx inside the terminal to a level that is enough to promote reverse transport 

of dopamine (Robertson et al., 2009). These observations corroborate our results, to 

some extent, because MPH significantly reduced D-amph-induced striatal dopamine 

efflux when subsequently perfused after D-amph, as MPH blocks the necessary 

transporter for D-amph to further penetrate inside the synapse and prevents dopamine 

from leaving the cell through reverse transport (Fig. 7B). Indeed, a previous study using 

mice lacking the dopamine transporter observed that perfusion of striatal slices with D-

amphetamine fails to induce extracellular dopamine efflux, an effect not observed using 

wild-type mice (Jones et al., 1998).  

 

We have also demonstrated that pre-exposure with ATX prevents MPH-induced 

dopamine efflux in the PFC, but not in the striatum (Fig. 7A). This result suggests the 

involvement of the NET in MPH-dependent 
3
H-dopamine efflux in the PFC but not in 

the striatum, where noradrenergic innervations as well as norepinephrine reuptake 

transporter levels are low (Berridge et al., 1997; Moron et al., 2002; Swanson et al., 

1975). Our data suggest that MPH, though a psychostimulant, may be a useful 

therapeutic tool to prevent D-amph from penetrating inside neuronal terminals and 

inducing persisting dysregulation of monoamine neurochemistry and behaviour (Fig. 

7B). Besides, drugs that potently block dopamine transporters, including MPH, have 

been shown to prevent D-amph-induced dopamine release from HEK-293 cells 

expressing the human dopamine transporter (Simmler et al., 2014), in agreement with 

our study on dopamine neuron terminals. There have been several recent clinical trials 

investigating the efficacy of DAT blockers in reducing severe abuse-related effects of 
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amphetamine-like compounds (Howell et al., 2014). Indeed, the DAT blocker 

Modafinil was found to be efficient in reducing cocaine cravings and increasing the 

number of days without cocaine use (Anderson et al., 2009; Dackis et al., 2005; Dackis 

et al., 2003; Hart et al., 2008). Moreover, genetically-modified dopamine transporters 

can present decreased affinity for cocaine whilst still functioning efficiently for normal 

dopamine reuptake (Thomsen et al., 2009), therefore reducing the dopamine releasing 

effect of cocaine whilst maintaining physiological dopamine transporter activity. In 

rhesus monkeys, strategies aiming to inhibit monoamine reuptake have proven efficient 

in reducing cocaine self-administration, with agents such as selective dopamine and 

non-selective monoamine reuptake inhibitors as well as ester derivatives of GBR 12909 

(Glowa et al., 1996; Negus et al., 2009). In humans, chronic amphetamine maintenance, 

also called agonist replacement therapy, can significantly decrease cocaine self-

administration in chronic cocaine users (Greenwald et al., 2010; Rush et al., 2010). 

  

MPH, at the same concentration as D-amph (10 µM), more moderately 

stimulated dopamine efflux in the striatum and in the PFC. Modafinil, another DAT 

blocker, also induced dopamine efflux effect in the striatum (Fig. 5D), a result that 

corroborates, at least in part, previous in vitro observations on synaptosomes where 

inhibition of dopamine uptake was observed following 1 µM of Modafinil (Zolkowska 

et al., 2009), which in fine produces extracellular dopamine concentration rises. 

Contrary to what was seen in the striatum, 100 µM of MPH does not increase further 

dopamine efflux in PFC slices previously exposed with 100 µM of ATX (Fig. 7A). 

Moreover, MPH-induced dopamine efflux is reduced in the PFC when the slices have 

been pre-loaded with the norepinephrine reuptake transporter (NET) inhibitor 

desipramine (Fig. 4). Therefore, our data supports previous assumptions that in the PFC, 

MPH elicits dopamine efflux mainly via an inhibition of the NET, suggesting that 

extracellular dopamine in the PFC originates not only from dopaminergic terminals but 

also from noradrenergic ones where it can act both as a precursor for norepinephrine 

and as a co-transmitter (Devoto et al., 2006; Devoto et al., 2003; Devoto et al., 2001; 

Devoto et al., 2004). Indeed, dopamine is transformed into norepinephrine by the 

dopamine beta-hydroxylase enzyme, requiring ascorbic acid and oxygen as co-factors 

(Kapoor et al., 2011; Rush et al., 1980). Some studies have suggested that both 

dopamine and norepinephrine are located within the same dense core vesicles in 

noradrenergic nerves (De Potter et al., 1997; Ou et al., 1998). Moreover, MPH has 
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similar in vitro affinity for the human NET (Ki 0.1 µM) as for the DAT (Ki 0.06 µM), 

whilst dopamine has an even higher affinity for the NET (Km = 0.67 µM) than for the 

DAT (Km = 2.54 µM, Table 1) (Giros et al., 1994; Han et al., 2006; Moron et al., 2002). 

Previous microdialysis and neurochemical studies on DAT knockout mice, as well as on 

naive rats, have shown that selective NET inhibitors increase prefrontal, but not striatal, 

dopamine efflux (Bymaster et al., 2002; Moron et al., 2002), in line with previous 

published observation, showing that in the striatum, the NET is responsible for 

dopamine uptake only when DAT levels reach critically low levels, as observed in 

Parkinson’s disease (Arai et al., 2008; Chotibut et al., 2012). This indicates the 

involvement of the NET in MPH-dependent 
3
H-dopamine efflux in the PFC but not in 

the striatum, where noradrenergic innervations as well as norepinephrine reuptake 

transporter levels are low (Berridge et al., 1997; Moron et al., 2002; Swanson et al., 

1975). Taken together, these results suggest that MPH also induces dopamine efflux in 

the PFC through norepinephrine transporters blockade, but not in the striatum, where 

MPH rather targets dopamine transporters. We remain unable to evaluate the exact 

contribution of the dopamine transporter in the effects of MPH to induce dopamine 

efflux in the PFC in our experimental conditions. It probably contributes to increasing 

dopamine efflux as MPH can still exert its effects when the slices were previously 

loaded in the presence of desipramine. However, following the loading of the slices, 

redistributions of the tritiated dopamine within both dopamine and norepinephrine 

terminals could have occurred. 

 

Microdialysis studies have demonstrated that MPH, administered at therapeutic 

doses (0.5-2 mg/kg), increased extracellular dopamine efflux in the PFC, but with 

limited or no effects in the striatum (Koda et al., 2010). However, when the authors 

raised the MPH administration to 10 mg/kg, increases of dopamine efflux were also 

observed in the striatum. On the other hand, our in vitro study shows a more efficient 

effect of MPH in the striatum than in the PFC (respectively Fig. 5A, 5E vs Fig. 3A, 3D), 

which is compatible with the dense dopaminergic innervations found in striatal regions 

(Matsuda et al., 2009). In the striatum, dopamine is cleared faster than in the PFC by the 

dopamine transporter because of higher DAT densities (Sesack et al., 1998). Our results 

can be explained by the fact that other mechanisms contribute to extracellular dopamine 

clearance in the PFC, as emphasised before (Wayment et al., 2001), while dopamine 

clearance in the striatum solely depends upon DAT activity. Moreover, in vitro DAT 
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blockade differs greatly from in vivo mechanisms, where compensatory mechanisms 

could occur, such as passive stabilisation, whereby adjacent neurons can uptake 

dopamine (Bergstrom et al., 2001; Fujimori et al., 1986; Woodward et al., 1995). 

  

Conversely, the efficacy of MPH and ATX in inducing dopamine efflux in the 

PFC under our conditions is much lower than under in vivo conditions using the 

microdialysis techniques. Systemic administration of low doses of MPH or ATX (1-2 

mg/kg), probably reaching a concentration in the low micromolar range near the 

catecholamine synapse (Balcioglu et al., 2009; Ding et al., 2004; Gerasimov et al., 

2000), could stimulate dopamine efflux by more than 300% (Berridge et al., 2006; 

Bymaster et al., 2002). When administered on the intact brain, these drugs are likely to 

activate other neuronal circuitries potentiating further the release of dopamine in the 

PFC. Such activation may occur at local levels, as applications of MPH by reverse 

microdialysis in the PFC or the nucleus accumbens can still produce consistent large 

increase in dopamine efflux in vivo (Ahn et al., 2013; Nomikos et al., 1990; Schmeichel 

et al., 2013). 

 

However, at a higher concentration (100 µM), ATX produced a surprisingly 

massive efflux of dopamine in both brain regions (Fig. 3A,B, 5A,C,E), so did the other 

two NET inhibitors, reboxetine and desipramine (Fig. 3C, 5B). Such an effect does not 

seem to be related to the selective blockade of the NET, as noradrenergic innervations 

are practically absent in the dorsal striatum, but not in the nucleus accumbens (Berridge 

et al., 1997; Ferrucci et al., 2013; Saigusa et al., 2012; Zhang et al., 1999), and this 

effect is identical when striatal slices have been preloaded with 
3
H-dopamine in the 

presence of the NET inhibitor desipramine (Fig. 6). In line with these results, previous 

studies found that the NET has a more limited impact in the reuptake of dopamine in the 

striatum than in the PFC (Berridge et al., 1997; Moron et al., 2002; Swanson et al., 

1975). Whether this effect would be relevant in some clinical situations is an open 

question. Therapeutic doses of ATX (1-2 mg/kg) are believed to reach brain 

concentrations of ATX in the low micromolar range, up to 5 µM, and possibly more, as 

the drug can slowly accumulate within the brain after chronic administration (Ludolph 

et al., 2010). In our model, dose-responses of ATX in the striatum showed a massive 

effect on dopamine efflux starting at 30-50 µM (Fig. 5C). Atomoxetine is metabolized 

primarily by the polymorphically expressed enzyme cytochrome P450 CYP2D6 
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(Petroff, 2002). In children with poor metabolising status, who represent just under 10% 

of all ADHD children (ter Laak et al., 2010), plasma ATX concentration can increase 

by 10 times the average therapeutic concentration (Loghin et al., 2013). One can assume 

that, in these patients, concentration in the brain may reach levels likely to significantly 

affect dopamine release in the striatum, according to our in vitro investigation (as ATX 

can induce dopamine efflux in the striatum at concentration as low as 1-10 µM, Fig. 

5E,C). 

 

The mechanism by which ATX induces this massive efflux needs to be fully 

clarified. Our study demonstrates that it is dependent on sodium (Fig. 14B) and on the 

integrity of the catecholamine vesicles (Fig. 15). In our experimental design of sodium 

depletion, no osmolarity shock occurred due to the isotonic addition of choline chloride, 

preventing therefore astrocyte swelling (Lauderdale et al., 2015; Schober et al., 2015), 

as seen previously (Lehmann et al., 1990). This sodium substitution is known to induce 

rapid membrane hyperpolarisation (Cvetkovic-Lopes et al., 2010), which should 

decrease dopamine efflux. Our results are compatible with the sodium dependency of 

dopamine reuptake (Wheeler et al., 1993). Indeed, under extracellular sodium depletion 

conditions, dopamine cannot be reuptaken by the DAT (Roitman et al., 1999), as 

sodium gradients are known to be the driving forces of dopamine transport. 

Interestingly, extracellular calcium depletion on its own is not sufficient to reduce ATX-

induced dopamine efflux (Fig. 12), although calcium is crucial for successful spike 

generation (Llinas et al., 1981). However, intracellular calcium chelation, which has 

been found to successfully reduce neurotransmitter release (Adler et al., 1991; Chavez 

et al., 2006; Fredholm et al., 1993; Hunt et al., 1994), completely prevented ATX-

induced dopamine efflux when combined with extracellular calcium depletion (Fig. 13 

and 15). Taken together, these results indicate that ATX requires electrochemical 

gradients and intracellular calcium to induce dopamine efflux. In vivo, such outflows 

arise from vesicular fusion (Kasai, 1993; Simon et al., 1985; Stanley, 1997). We can 

hypothesise that ATX may interfere with the efflux of catecholamine-containing 

vesicles by interacting with an unknown intracellular target after being transported 

inside the terminal through a sodium dependent process (as ATX-induced effects were 

found to be sodium dependent), but different from the NET/DAT. Atomoxetine may 

also bind extracellularly to ion channels or proteins located on the neuronal membrane. 

Atomoxetine, compared to MPH, has a non-negligible affinity (Ki of 3.4 µM, Table 1) 
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for the dopamine vesicle transporter (Easton et al., 2007). Therefore ATX could be 

uptaken inside the dopaminergic terminals through a relatively low affinity transporter, 

but different from the DAT or NET, where it will then interact with the vesicular 

transporter to promote intracellular dopamine efflux, followed by extracellular 

dopamine efflux. However, the fact that we found that MPH can still increase dopamine 

efflux following ATX exposure indicates that dopamine does not leave the terminals via 

the dopamine transporter (unlike with D-amphetamine). Therefore, D-amph-like effects 

following ATX remains unlikely. To note, D-amph-induced monoamine release is also 

dependent on intracellular calcium concentration (Gnegy et al., 2004; Kantor et al., 

2001). ATX has also been shown to interact with various ion channels with IC50 values 

in the micromolar range, including the Gi-protein-activated inwardly rectifying K
+
 

channel (KIR), which has an important function in regulating neuronal excitability 

(Kobayashi et al., 2010; Loghin et al., 2013; Scherer et al., 2009; Vandenberg et al., 

2012). However, we did not find any contribution of the potassium inward rectifying 

channel (KIR) in triggering ATX-induced dopamine efflux, as the perfusion of 

SCH23390, an inhibitor of dopamine D1 receptor as well as a KIR blocker with an IC50 

of 268 nM (Kobayashi et al., 2010; Kuzhikandathil et al., 2002), did not prevent ATX-

induced massive dopamine efflux in the striatum (Fig. 17). These results are in line with 

a previous study where the authors found no involvement of KIR channels in dopamine 

outflow (Martel et al., 2011). One could put forward the hypothesis that ATX activates 

other intracellular target or membrane receptors, such as sodium channels. However, 

ATX may also interact with other potassium channels, different from the KIR itself. 

Atomoxetine has been found to interact with NMDA channels, by exerting blockade of 

NMDA-induced currents in cortical neurons (IC50 = 3 µM) (Ludolph et al., 2010). In 

the striatum, dopamine has been found to modulate NMDA currents via dopamine D1 

and D2 receptors (Cepeda et al., 1998; Flores-Hernandez et al., 2002). However, more 

studies will be needed to understand the exact mechanism of ATX-induced dopamine 

efflux. Finally, in a preliminary study in our laboratory, superfusion of ATX did not 

induce any serotonin outflow from cortical slices. 

 

In this chapter, we have demonstrated that the three ADHD drugs 

methylphenidate, D-amphetamine and atomoxetine can induce dopamine efflux from 

both cortical and striatal slices, with different efficacies. While both stimulants appeared 

to target the dopamine transporter system, ATX triggered an unexpected strong 
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dopamine efflux by other mechanisms. However, ATX requires vesicle integrity and 

physiological electrochemical gradients. When norepinephrine release was investigated, 

only ATX produced mild efflux, indicating that this effect is specific to dopaminergic 

terminals. The possible clinical implications of these unexpected effects induced by 

ATX should be investigated further. 
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Chapter II – Acute in vivo ADHD drug 

administration. 

 

 

II-1- Introduction 

 

Spike generation is closely linked to neuronal computation, which involves 

complex spatial and temporal summation (Tran-Van-Minh et al., 2015). Although spike 

generation can be simplified in silico using mathematical models (Brown, 1999; Brown, 

2000) adapted from previous observations (Hodgkin et al., 1952; Llinas et al., 1982; 

Morris et al., 1981; Platkiewicz et al., 2010; Sato et al., 1974), in vivo electrical 

activities result from far more complex input/output dendrite currents. In this next 

chapter, we will investigate how ADHD drugs modulate in vivo neuronal electrical 

spike generation, which is closely linked to neurotransmitter release.  

 

One of the main brain regions involved in the behavioural-calming and 

cognition-enhancing effects of ADHD drugs is the prefrontal cortex (PFC) (Gamo et al., 

2010). It plays a critical role in the control of higher cognitive functions such as 

vigilance, attention, impulsivity and behavioural inhibition (Kieling et al., 2008), as 

well as on the activity of the basal ganglia which controls movement and emotional 

behaviour. Recent evidence supports the role played by the glutamatergic system in the 

pathology and treatment of ADHD (Chang et al., 2014), particularly in the PFC, the 

main cellular constituents of which are glutamate pyramidal neurons. In the PFC, there 

is evidence for both functional and anatomical interaction between catecholamine and 

glutamate systems. Most prefrontal catecholamine innervations, originating from the 

midbrain, terminate onto pyramidal glutamate neurons and modulate various cortico-

cortical circuits, as well as cortical excitatory descending pathways. This includes the 

massive prefrontal projections to the basal ganglia, known to regulate, as part of a series 

of complex feedback loops, executive, motor and affective functions, impaired in 

ADHD (Carli et al., 2014). As a result, changes in PFC catecholamine levels could 

affect these excitatory drives and, in turn, impact on catecholamine neurotransmission 

in many subcortical structures (Sullivan et al., 2003). Furthermore, there is evidence in 
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the PFC for colocalisation of glutamate and catecholamine receptors, which can interact 

with each other on common intracellular signalling pathways and modulate synaptic 

transmission (Tseng et al., 2004; Urban et al., 2013a). Imaging studies in drug-naive 

ADHD patients indicate dysregulations of glutamatergic fronto-striatal circuits, which 

are strongly modulated by dopamine and norepinephrine, as well as reduction in the 

thickness and hypofunction of some specific subregions of the PFC (Cubillo et al., 

2012). Attention has been drawn to the glutamate/N-Methyl-D-aspartate (NMDA) 

receptor. It has been well established that NMDA receptors have critical roles in 

excitatory synaptic transmission and plasticity underlying cognitive processes, short-

term and long-term memory, long-term potentiation as well as motor function 

(Collingridge et al., 2013; Hasan et al., 2013; Henley et al., 2013; Jurado, 2014; 

Luscher et al., 2012; Rowland et al., 2005). There is evidence for genetic polymorphism 

of both the NR2A and the NR2B subunits of the NMDA receptor in ADHD patients 

(Dorval et al., 2007; Turic et al., 2004). Although not a pharmacological model for 

ADHD, glutamate NMDA receptor antagonists induce hyperlocomotion and disrupt 

attention as well as impulsivity control (Amitai et al., 2010). These NMDA antagonists 

also mitigate some of the neurochemical and behavioural effects of psychostimulants in 

animal models (Bristow et al., 1994).  

 

In this second chapter, we will investigate to what extent acute in vivo ADHD 

drug administration can modulate the spontaneous or NMDA-induced electrical 

activities of silent or tonically active neurons, located either in the prefrontal cortex or 

in the striatum. Moreover, we will assess the impact of local dopamine on NMDA 

neurotransmission in PFC pyramidal neurons and striatal medium spiny neurons, using 

microiontophoretic techniques. We will also study the impact of such treatments on 

NMDA receptor 2B protein expression using western blot techniques. Finally, we will 

perform some behavioural experiments on locomotor activity to examine whether we 

could correlate our electrophysiological results with such behavioural pattern. 
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II-2- Material and Methods 

 

  II-2-A- Subjects 

 

Male Sprague-Dawley rats were purchased from Charles River, UK. 

Animals were housed in groups of 2-4 per cage, maintained at 20-22
o
C with humidity 

rates above 40% under a 12:12 L/D cycle with lights ON at 07h00 AM. Food and water 

were provided ad libitum. Animals were allowed a 3-day acclimatisation period after 

delivery. All experiments were performed during the light phase and with permission 

from the UK Home Office and De Montfort University Ethics Committee under the 

Project Licence 60/4333 and with the Personal Licence 60/13750. 

 

II-2-B- In vivo extracellular single unit electrophysiology 

 

 One hundred and seventy-five naïve rats weighing between 220 and 330 

grams were used. Animals were initially deeply anaesthetized with urethane (1.2–1.7 

g/kg, intraperitoneal, with additional doses administered if necessary), secured to a 

stereotaxic frame and maintained at 36–37 °C with a heating pad. A catheter was 

inserted into the lateral tail vein to perform systemic drug administration. An incision 

was made across the top of the head and the edges of the skin drawn back to reveal the 

cranium. Bregma was identified and a hole was drilled through the bone at the 

coordinates of the prefrontal cortex (PFC) or the striatum, according to the atlas of 

Paxinos and Watson (Paxinos et al., 1997). Electrodes were manufactured in-house 

from borosilicate capillaries (1.5 mm, Harvard Apparatus Ltd., UK), pulled on a PP-830 

vertical electrode puller (Narishige, Japan) and filled by hand with an electrolyte 

solution of NaCl 147 mM. The tip of the electrode was broken down under a 

microscope to an external diameter of 1-1.5 μm. Typical electrode resistance was in the 

range 4-8 MΩ. Single-unit recordings with iontophoresis drug application were made 

using five-barrel glass micropipettes (World Precision Instruments, UK). The central 

recording barrel was filled with NaCl 147 mM. The side barrels were filled with either: 

NaCl 147 mM, N-methyl-D-aspartate (NMDA, 30 mM, pH 7-8, Sigma, St. Louis, MO), 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA, 5 mM, pH7-8, 

Abcam, UK), dopamine 20 mM, MPH 20 mM, D-amphetamine 20 mM, all dissolved 

into 147 mM of NaCl, or a combination of the above and NaCl 2 M for current 
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balancing, although we later found that current balancing was not necessary while using 

low currents (0-20 nA). NMDA or AMPA pulses were applied during 40-70 seconds 

onto prefrontal cortex (PFC) glutamatergic neurons at regular intervals (80-100 s). 

Outputs from the electrode were sent to a Neurolog AC pre-amplifier and amplifier 

(Digitimer, UK). If necessary, signal amplification was manually adjusted to record 

whole neuronal action potential amplitudes. Signals were filtered and sent to an audio 

amplifier, a Tektronix 2201 digital storage oscilloscope and a 1401 interface connected 

to a computer running Spike 2 (CED, UK) for data capture and analysis. Descent of the 

electrode was carried out using a hydraulic micromanipulator (Narishige, MO-103, 

Japan).  

 

   Coordinates for the prefrontal cortex were (Fig. 20A): anteroposterior 

2.5-3.7 mm to Bregma, lateral 0.3-2 mm, dorsoventral 1-4.7 mm below cortical surface. 

Putative pyramidal glutamatergic neurons were identified according to previous 

electrophysiological criteria (Gronier, 2011; Wang et al., 2011): a broad action potential 

(1 ms), with a biphasic or triphasic, large wave form, starting with a positive inflection, 

a relatively slow firing rate typically between 1 and 50 spikes/10 s and an irregular 

firing pattern. A burst activity of PFC pyramidal neuron is characterised as at least two 

bursts occurring within 45 ms or less and followed by a silence period of at least 90 ms. 

Compared to single spikes, bursts release greater quantities of neurotransmitters (Bean 

et al., 1991; Gonon, 1988; Oster et al., 2015), resulting in greater occupancies of post-

synaptic receptors. 

 

   GABAergic medium spiny neurons (MSN) were found in the striatum 

(Fig. 20B) at the following coordinates: anteroposterior 2-3.7 mm to Bregma, lateral 

0.2-2 mm, dorsoventral 5-9 mm below cortical surface. Presumed medium spiny 

neurons were identified according to previous electrophysiological criteria such as a 

very low level of spontaneous activity or even no spontaneous activity (Galvan et al., 

2012; Mallet et al., 2005), in combination with a long-lasting action potential 

waveform, usually above 1 ms (McGinty et al., 2008; Murray et al., 2015). These 

neurons can be easily distinguished from both cholinergic and GABAergic interneurons, 

which respectively display spontaneous discharges and thinner action potentials (Lim et 

al., 2014; McGinty et al., 2008; Murray et al., 2015; Wilson et al., 1990). 
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Figure 20: Areas of interest for in vivo single-cell extracellular electrophysiological 

recordings. 
Shaded areas correspond to areas of interest for recordings of putative PFC 

glutamatergic pyramidal neurons (A) or putative GABAergic striatal medium spiny 

neurons (B). Scales represent distances (in mm) from the midline and the surface of the 

brain. Coronal slices adapted from Paxinos and Watson (1997). Cg1 cingulate cortex 

area, PrL prelimbic cortex, CPu caudate putamen. 
 

 

  GABAergic MSN receive strong GABA inputs from striatal GABA 

interneurons, also called feed-forward inhibition (Mallet et al., 2006; Mallet et al., 

2005), explaining their very low or silent baseline firing activities. Such low 

spontaneous discharges are also the consequence of the inhibition of these medium 

spiny neurons by other medium spiny neurons, which represent lateral inhibition 

(Moyer et al., 2014). In the rat striatum, MSN represent 95% of all neurons (Jiang et al., 

1991; Kemp et al., 1971; Mallet et al., 2006; Murray et al., 2015), while cholinergic 

interneurons represent up to 5% of all neurons (Cachope et al., 2012). Cholinergic 

interneurons strongly modulate the activity of MSN within the striatum (Zhou et al., 

2002). In our experiments, cholinergic interneurons were excluded from our recordings, 

as only medium spiny neurons (but not low-firing cholinergic interneurons) are silent 

and also display glutamate-induced (NMDA iontophoresis) firing rate excitation (Galati 

et al., 2008; Sandstrom et al., 2003). However, we cannot totally exclude that some 

extremely low-firing “tonically” active cholinergic interneurons might be included 

within this study, even if they only represent 1-2% of all striatal neurons (Bernacer et 

al., 2007; Matamales et al., 2016; Nelson et al., 2014). Extensive literature now exists 

for the distinction between striatal GABAergic and cholinergic interneurons (Adler et 

al., 2013; Chuhma et al., 2011; Kawaguchi et al., 1997; Stalnaker et al., 2016). 

 

A B
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II-2-C- Behaviour 

 

  Psychostimulants are known to alter locomotion (Amini et al., 2004; 

Paulus et al., 1991), activity (Fang et al., 1998), grooming (Taylor et al., 2010; Wooters 

et al., 2009), scratching (Antoniou et al., 1998; Malin et al., 2009) and stereotypy 

(Bonasera et al., 2008; Rebec et al., 1997). Therefore, the consequences of 

psychostimulants on such behaviours were assessed. 

 

   Twelve naïve rats weighing 250 grams were housed individually at the 

beginning of the behavioural experiments. All drugs were dissolved into saline. Animals 

received a single intraperitoneal injection of either : 0.8 ml/kg of saline (NaCl 147 mM), 

5 mg/kg of methylphenidate or 3 mg/kg of D-amphetamine. Animals were then scored 

for behavioural parameters during 15 minute time periods and up to a total of 60 

minutes. Counting of well-defined behavioural traits such as rearing, scratching, 

grooming, jumping, running, climbing, catalepsy and stereotypical movements were 

done manually. At the end of the 60 minute observation period, animals were sacrificed 

by cervical dislocation and brains were quickly removed, dissected and immersed into 

liquid nitrogen. Brain regions were kept at -80
o
C for further protein analysis using 

western blot techniques. 

 

II-2-D- Western blot protein quantification 

 

 Following behavioural experiments, brain tissues were immediately 

dissected on an ice-cold platform and before being immersed in liquid nitrogen. Tissues 

were stored at -80
o
C until further analysis. Brain tissue was homogenised in an ice-cold 

lysis buffer (radio-immuno-precipitation buffer, RIPA) containing: 150 mM NaCl, 1% 

Triton-X-100, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, protease and 

phosphatase inhibitors, pH 8. Tissue homogenates were made using a glass potter and 

were then centrifuged at 12000 rpm at 4
o
C for 20 minutes. Supernatants were kept for 

further analysis and total protein quantification was performed using bovine serum 

albumin (BSA) standards and the Bradford assay. Aliquots of protein lysates (20μg) 

were separated on 4-20% SDS gels (Biorad, UK) and transferred onto nitrocellulose 

membranes (GE Healthcare, USA) at 400 mA (constant current) for 1h. After transfer, 

membranes were stained with Ponceau red to help visualise correct protein transfer. 
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Membrane saturation was then performed for 1 hour at room temperature in a Tris 

buffer saline solution (20mM Tris- HCl, 150mM NaCl, pH 7.6) containing 5% of BSA 

and 0.1% of Tween 20 (TBS-T-BSA). The immuno-reaction was carried out overnight 

at 4
o
C in TBS-T-BSA containing both NMDA2B and β-actin polyclonal primary 

antibodies, each diluted at 1:5000 (v/v). After being washed three times with TBS-T (5 

min each), membranes were incubated with the corresponding secondary IgG-coupled 

horseradish peroxidase antibody diluted at 1:5000 in TBS-T-BSA (v/v) for 1h and at 

room temperature. The nitrocellulose sheets were rinsed three times in TBS-T (5min 

each) before developing the reaction with ECL (Biorad). Results were recorded on X-

ray films (Kodak, USA). 

 

II-2-E Data analysis 

 

  All data are expressed as the mean±standard error of the mean (SEM). 

Statistical analyses were performed using paired or unpaired Student’s t-tests or 

one/two-way analysis of variance (ANOVA), followed, if appropriate, by Neuman–

Keuls (one-way ANOVA) or Bonferroni tests (two-way ANOVA). Probabilities smaller 

than 0.05 were considered to be significant; n values refer to the number of cells tested 

or animals used. 

 

For electrophysiology, the mean basal firing activity was evaluated after 

the neuron had attained a stable firing rate, generally after at least 5 min of recording. 

Pre-drug values of firing rate were obtained by averaging the firing rate over a period of 

at least 4 min immediately prior to the intravenous administration while post-drug 

values were obtained by averaging the firing over a period of 5 min following drug 

administration. Individual change in basal firing activity was considered significant 

following drug (or saline) administration when the post-drug value was significantly 

different from the pre-drug value (determined as indicated above, paired Student’s t-test 

analysis). When neurons with very low spontaneous activity were recorded (baseline 

activity below 4 spikes per 10 seconds), a change of more than 5 spikes per 10 seconds 

was considered significant, or if the analysis of 100 spikes before and after drug 

administration led to significant unpaired Student’s t-test for each neuron tested this 

way. These two methods of analysis did not differ in the results obtained. When 

appropriate, portions of recording involving iontophoretic application of excitatory 
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substances were excluded from these calculations. Proportions of a specific type of 

response in two different groups of animals were also compared using the Fisher’s exact 

test (comparing proportions of responses and no response/opposite responses in two 

groups). The response of neurons to iontophoretic applications of NMDA or AMPA 

were assessed by subtracting the mean baseline activity measured immediately before 

the application (typically during the last 50 s before the application) of the drug from 

the mean activity obtained during the application of the drug (typically during the first 

50 s of the application). Responses were expressed as the number of supplementary 

spikes (over baseline activity) per 10 nA of NMDA or per 5 nA of AMPA (as these 

currents were systematically administered to neurons). Effects of drugs/saline were 

examined by comparing the averaged response of at least three subsequent applications 

of NMDA/AMPA occurring immediately before or after the drug administration. For an 

individual neuron, a change in baseline, NMDA- or AMPA-induced firing rates 

(defined as the % difference between pre-drug and post-drug values) of more than 20% 

was considered significant, as observed in other electrophysiology studies (Conrad et 

al., 2009; Hu et al., 2011; Mulkey et al., 2003; Roland et al., 2011; Wang et al., 1998). 

Although we acknowledge that this 20% cut-off value may seem arbitrary at first, one 

study reported that no more than 20% of the variability in firing of an individual neuron 

could be predicted from the activity of its neighbours (Shlens et al., 2009). Therefore, 

we considered a drug to have a significant effect on the firing rate of an individual 

neuron if baseline firing varied by 20% or more (increase or decrease). All burst results 

are reported as the % of spikes in burst. 

 

For behavioural experiments, the sum of each behavioural trait occurring 

during 15 minute interval periods was plotted against the type of drug administered. 

Results are expressed as the mean±standard error of the mean (SEM) of counts for each 

trait per group. 

 

NMDA2B protein quantification was analysed using MCID software (GE 

Healthcare, USA) following densitometric analysis of Western blot autoradiograms. 

The expression of the NR2B protein was normalized to the housekeeping protein β-actin. 

Data were expressed as a percentage of the control group (saline, mean±standard error 

of the mean). 
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II-3- Results 

 

II-3-A- Neuronal population included in the present study 

 

  Only one neuron per rat (n=175 animals) was tested with each of the 

ADHD drugs, unless otherwise stated. All neurons included in the present data (n=230) 

were recorded in the dorsal part of the medial PFC (n=219) in subregions which include 

the cingulate and the prelimbic cortex and the medial part of the frontal cortex as well as 

in the striatum (n=11). Some recording sites were marked by ejection of pontamine blue 

(n=13, Fig. 21A) and were confirmed to be within the PFC at similar locations from 

what was determined from stereotaxic measurements. Moreover, pyramidal neurons 

were discriminated from other neurons (such as interneurons) according to their typical 

action potential shapes (Fig. 21B), such as a total action potential length of more than 1 

ms, displaying a triphasic and large waveform, starting with a positive inflection 

(depolarisation) and presenting irregular slow firing rates typically between 1 and 50 

spikes/10 s, sometimes with burst activity (two spikes occurring at an interval of 45 ms 

or less, followed by a silence period of at least 90 ms). The effects of ADHD drugs were 

investigated on neurons that were spontaneously active (n=103) and on neurons with 

low firing activity (n=45, firing rate <4 spikes/10 s, arbitral cut-off). These neurons 

were detected by recording neuronal activity using an iontophoretic electrode and 

applying small current pulses of NMDA or AMPA, which induced reversible neuronal 

activations. Spontaneously active neurons were usually recorded with single-barrel 

electrodes and low-firing neurons with multi-barrel ones. However, a few 

spontaneously active neurons (n=22) were also recorded with multi-barrel electrodes. 

Low-firing neurons and spontaneously active neurons did not differ in their action 

potential characteristics. When the vehicle was injected (saline, n=28, Fig. 21C), 

neurons did not display any significant change in firing, even during a long recording 

period (>2000 s), as already observed (Gronier, 2011). 



61 

 

 

 

Figure 21: In vivo PFC pyramidal neuron recording example. 

(A): Recording coordinates of 13 putative pyramidal neurons located in the prefrontal 

cortex. Ejection of pontamine blue (−400 nA, 20 min) was performed after some 

recordings to confirm stereotaxic coordinates. Each dot represents the location of one 

recording (n=13), determined using stereotaxic coordinates. This diagram is a stack of 

recordings ranging from +2 to +3.5 mm anteroposterior from Bregma. Scales represent 

distances (in mm) from the midline and the surface of the brain. Reproduced from 

Paxinos and Watson (1997). Recordings performed further than 1.9 mm from midline 

(arbitral cut-off, determined using stereotaxic coordinates) were excluded (n=3, red 

dots). (B): Typical action potential waveform (or spike) of a PFC glutamatergic 

pyramidal neuron. Note that the waveform can be divided into three phases (initial 

positive depolarisation, repolarisation and hyperpolarisation). Only neurons which 

displayed such features were recorded. The black bar represents a scale corresponding 

to 1 millisecond. (C): Typical electrophysiological recording of a PFC pyramidal 

neuron showing the firing rate (number of spikes generated per 10 seconds, represented 

by each vertical histogram) over a time course, in seconds (s). Please note that saline 

intravenous administration (0.2 ml/kg) did not alter the firing rate of this neuron. 
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II-3-B- Methylphenidate and D-amphetamine increase pyramidal neuron activity 

by a dopamine D1 receptor dependent mechanism 

 

  We have found, in a small population of spontaneously active neurons 

(n=6), that 3 mg/kg of intravenous methylphenidate, a slightly higher dose to what is 

used in clinics, significantly increased the basal firing activity of PFC neurons (p<0.05, 

Student’s paired t-test, Fig. 22A). In another population of low-firing neurons (n=7, 

firing activity below 4 spikes per 10 seconds, arbitral cut-off) 3 mg/kg of MPH fails to 

significantly increase neuronal firing activities (Fig. 22B), although significant firing 

rate activations (more than a 2-fold increase)  were observed in 5 out of 7 neurons. We 

have also observed a small reduction of this excitatory effect following the 

administration of SCH23390, a dopamine D1 receptor antagonist, in three out of four 

neurons tested this way (75%), in complete agreement with a previous study from our 

laboratory (Gronier, 2011). In our laboratory, the excitatory effect of MPH on the basal 

firing activity of PFC neurons has previously been demonstrated in a larger population 

(n=28) of PFC neurons and was found to be partially reversed (return of the firing rate 

to its baseline level) in 55% of neurons following the administration of SCH23390 (0.6 

mg/kg), a drug that exerted no effects on its own on the basal firing activity of PFC 

neurons (Gronier, 2011). 

 

Figure 22: Methylphenidate preferentially increases the firing rate of the 

spontaneously active PFC neurons through a mechanism partially dependent on 

dopamine D1 receptors. 

Methylphenidate, administered intravenously at 3 mg/kg, significantly increased the 

firing rate of spontaneously active pyramidal neurons (A), but not of low-firing neurons 

(firing rate below 4 spikes per 10 seconds) (B). Administration of the D1 receptor 

antagonist SCH 23390 (0.6 mg/kg) slightly decreased the activation of firing rate 

elicited by MPH on spontaneously active neurons. Here and in subsequent figures, the 

same neurons were studied in the complete sequence. ns: non-significant, *P< 0.05 vs. 

baseline, Newman–Keuls test after significant ANOVA. 
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  In a group of 17 spontaneously active neurons, D-amphetamine was 

cumulatively administered up to a dose of 9 mg/kg (Fig. 23A), by consecutively 

injecting intravenous doses of 1, 2, 3 and 3 mg/kg. D-amph induced a significant 

increase of 34% and 207% in mean firing activity of PFC neurons, versus initial basal 

firing, at the cumulative dose of 3 and 6 mg/kg, respectively (p<0.01, compared to 

baseline levels for the 3 and 6 mg/kg doses, respectively, Newman-Keuls test after 

significant repeated measures ANOVA, n=17). Activity remained unchanged at the 

highest dose (9 mg/kg) compared to the 6 mg/kg dose. Three spontaneously active 

neurons (17%) remained insensitive to D-amph administration and only one neuron 

exhibited a progressive reduction in firing activity during the course of the cumulative 

administration of the drug. In another group of low-firing neurons (n=13, firing activity 

below 4 spikes per 10 seconds), 3 mg/kg of intravenous D-amphetamine significantly 

increased firing activities by 5 folds over baseline (Fig. 23B). While the majority of 

neurons (6/13, 46%) exhibited firing activity increases over the course of D-amph 

administration, 2 neurons (15%) responded by decreases of firing rate, while 5 neurons 

(39%) remained insensitive to any of the cumulative doses. 
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Figure 23: D-amphetamine dose-dependently increased the firing rate of PFC 

neurons through a dopamine D1 receptor dependent mechanism. 

Starting at 3 mg/kg, cumulative doses of D-amph significantly increased the firing rates 

of both spontaneously active (A) and silent neurons (B). However, in another neuronal 

population, doses of D-amph in the range of 0.5-1 mg/kg did not induce any significant 

change of basal firing rates (C). (D): Following cumulative administration of D-amph, 

selective blockade of dopamine D1 receptors, using SCH23390 (0.6 mg/kg) 

significantly decreased the activation of firing rate elicited by D-amph. (E): Typical 

firing rate histogram of a prefrontal cortex neuron during D-amph and SCH23390 

administrations. Boxed is shown a typical action potential shape of this pyramidal 

neuron. Here and in the following boxes, the horizontal black bars below the waveforms 

represent a 1 ms time interval. Note that in this neuron, a transient firing rate reduction 

was observed, as seen in few other recordings. Also, note that in this neuron, SCH23390 

administration strongly reduced the firing rate following cumulative doses of D-amph (6 

mg/kg). *P< 0.05, **P<0.01 vs. baseline, ++P<0.01 vs. specified condition, Newman–

Keuls test after significant repeated-measures ANOVA. 
 

 

When tested at lower doses (0.5–1 mg/kg) in a larger population of 

neurons (n=36), D-amph did not have an overall significant effect on basal activity (Fig. 

23C), although 12/36 neurons (33%) had their firing activity significantly increased 

(individual firing activity increasing by at least 5 spikes/10 seconds or significant 

unpaired Student’s t-test when 100 spikes were analysed before and after drug 

administration in each neuron recorded) compared to their respective baseline levels. 

Moreover, in this population of 36 neurons treated with low doses of D-amph, the 

proportion of neurons responding by an increase in firing activity is significantly higher 
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(33%) compared to neurons treated with saline, where only 3.5% of all neurons 

responded by an increase in firing rate following saline administration (p<0.05, Fisher’s 

exact test). Similarly to what was observed with methylphenidate, Fig. 23D,E shows 

that the increase in firing activity elicited by cumulative doses of D-amph (6–9 mg/kg) 

is significantly attenuated by the subsequent administration of 0.6 mg/kg of the D1 

receptor antagonist SCH23390 (p<0.01 compared to levels obtained after 6-9 mg/kg of 

D-amph, Newman-Keuls test after significant repeated measures ANOVA). Complete 

reversal occurred in 9 out of 15 neurons tested this way (60%), while the firings of 6 

neurons were not affected following SCH23390, despite D-amph was found to more 

than double their basal firing activities (Table 2). One should note that transient firing 

rate reduction is sometimes observed, as shown in Fig. 23E. Such temporary firing rate 

inhibitions are often recovered during the recording period, usually within 100-200 

seconds, as also observed in Fig. 23E. In 2 out of 4 neurons, pre-administration of 

SCH23390 at 0.8 mg/kg successfully prevented D-amph-induced firing activation of 

pyramidal neurons, although there was more than a two-fold increase of firing activities 

in the 2 other neurons (Fig. 24A). Interestingly, blockade of both dopamine D1 receptors 

and alpha-1 receptors (respectively with 0.8 mg/kg of SCH23390 and 0.6 mg/kg of 

prazosin) completely prevented the subsequent D-amph-induced firing activation, even 

with doses of D-amphetamine reaching 4 mg/kg (Fig. 24B). 
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Figure 24: D-amphetamine requires functional dopamine D1 and adrenergic alpha-

1 receptors to induce firing rate increases. 

Dopamine D1 receptor blockade (SCH23390 0.8 mg/kg) alone (A) only partially 

prevented the subsequent D-amph-induced firing rate activation of PFC neurons, an 

effect totally prevented by both dopamine D1 (SCH23390 0.8 mg/kg) and adrenergic 

alpha-1 receptor (prazosin 0.6 mg/kg) blockades (B). Note that SCH23390 and prazosin 

have no action on their own on firing rate levels. 

 

II-3-C- Dose-dependent activating effects of ATX and effects of selective 

catecholamine antagonists on ATX-induced firing activation 

 

  Atomoxetine was cumulatively administered up to a dose of 9 mg/kg, by 

injecting sequential doses of 1, 2, 3 and 3 mg/kg. At clinically relevant doses (1 and 3 

mg/kg) ATX did not increase significantly the basal activity of spontaneously active 

pyramidal neurons (Fig. 25A). A cumulative dose of 6 mg/kg significantly increased 

firing rate by 69% over baseline (p<0.001, Student’s paired t-test). Ten neurons were 

further injected with a cumulative dose of 9 mg/kg of ATX, but this dose did not 

increase further the firing activities of spontaneously active neurons. When tested on 

silent neurons (n=7), a cumulative dose of ATX reaching 6 mg/kg also significantly 

increased firing activity very potently (p<0.05, Student’s paired t-test, Fig. 25B). 

Interestingly, unlike methylphenidate or D-amphetamine, the same dose of ATX more 

potently increases firing activities of silent neurons than spontaneously active neurons. 

Indeed, 6 mg/kg of ATX increases baseline firing activity by 69% in spontaneously 

active neurons and induced massive firing activity enhancement in almost silent neurons 

(see paragraph below). 
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  We have found previously that the different selective monoamine 

receptor antagonists SCH23390, prazosin and yohimbine exerted no effects on their 

own on the basal firing activity of PFC neurons (Gronier 2011). We then confirmed 

previous established data regarding neuronal insensitivity to yohimbine 1 mg/kg, 

SCH23390 0.6 mg/kg and prazosin 1 mg/kg (respectively n=5, n=5 and n=4). As 

observed before in our laboratory (Gronier 2011), these selective monoamine receptor 

antagonists exerted no effects on their own on the basal firing activity of PFC neurons 

compared to respective baseline levels (Fig. 24B, 25C, paired Student’s t-test). In 

contrast to our previous findings with MPH and D-amph, administration of the D1 

dopamine receptor antagonist SCH23390 did not significantly reduce the mean 

excitatory effect produced by cumulative doses of ATX (Newman-Keuls test after 

significant repeated measures ANOVA, Fig. 25C, Table 1). However, in three out of 

seven neurons tested, a reduction of activation by more than 30% was observed. 

Similarly, administration of the α1 adrenoceptor antagonist prazosin, following 

cumulative doses of ATX, had no significant effect on the neuronal activation induced 

by ATX (Fig. 26A), although in three neurons out of seven tested, ATX-induced 

activation was reduced by more than 50% following prazosin administration. Fig. 26B 

represents the firing histogram of such a neuron whose firing activation induced by 

ATX was reduced by prazosin. In a group of seven neurons initially insensitive to ATX 

(cumulative doses reaching 3 mg/kg produced no significant change in firing activity), 

the α2 adrenergic antagonist yohimbine (1 mg/kg) promoted a significant activation of 

firing (p<0.01, compared to values obtained in baseline conditions or after ATX, 

Newman-Keuls test after significant repeated measures ANOVA, Fig. 26C). Moreover, 

a further administration of the dopamine D1 antagonist SCH23390 reversed this 

stimulatory effect in two out of the four neurons were tested this way (Fig. 26D). 
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Figure 25: Effects of selective dopamine D1 receptor antagonism on atomoxetine-

induced activation of PFC neurons. 
Administration of ATX, at a cumulative dose of 6 mg/kg, significantly increased the 

firing rates of spontaneously active (A) and silent neurons (B). (C): Neither yohimbine 

(1 mg/kg), SCH23390 (0.6 mg/kg) nor prazosin (1 mg/kg) could alter the firing rates of 

PFC pyramidal neurons. (D): Subsequent dopamine D1 receptor blockade did not 

reverse ATX-induced firing rate activation, although 2 out of 4 neurons had their firing 

rates reversed following SCH23390 administration. *P< 0.05, **P<0.01, ***P<0.001 

vs. 0 mg/kg, Newman–Keuls test after significant repeated-measures ANOVA. 
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Figure 26: Effects of selective monoamine receptor antagonists on atomoxetine-

induced activation of PFC neurons. 
(A): Alpha-1 receptor antagonism (prazosin, 1 mg/kg) could not significantly reverse 

ATX-induced activation of PFC neurons. (B): However, in some neurons (3/7), 

prazosin strongly reduced ATX-induced firing rate activation. (C, D): The α2 receptor 

antagonist yohimbine further increased the activation of firing rate induced by a 

cumulative dose of 3 mg/kg of ATX. This activation is partially dependent on dopamine 

D1 receptors. In two neurons out of 4 tested this way, shown in D, firing rate activities 

were dramatically increased following administrations of yohimbine, unlike other 

neurons tested this way. *P<0.05, **P<0.01 vs. baselines, ++P<0.01 vs. values obtained 

immediately before administration of yohimbine, Newman–Keuls test after significant 

repeated measures ANOVA.  
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neurons (94%) responded by an increase of firing rate following D-amph, while 6/9 

low-firing neurons (67%) increased their firing rates. When atomoxetine was tested, 

15/17 spontaneously active neurons (88%) responded by an increase in firing rate, while 

5/7 low-firing neurons (71%) increased their firing rates. Therefore, ADHD drugs may 

act preferentially, or more efficiently, on spontaneously active neurons. 

 

 II-3-E- ADHD drugs potentiate NMDA-induced firing activation 

 

Local application of NMDA (10 nA) onto PFC pyramidal neurons 

induced firing rate increases by a mechanism that is partially NR2B-dependent. Indeed, 

when the NMDA receptor 2B antagonist Ifenprodil (Brittain et al., 2012; Korinek et al., 

2011) was administered (2.5 mg/kg), local NMDA application produced significantly 

lower (p<0.05, Newman–Keuls test after significant one way ANOVA) firing rate 

increases (Fig. 27A,B). Although NMDA stimulation was strongly reduced following 

Ifenprodil intravenous administration, AMPA stimulations remained insensitive to 

cumulative doses of Ifenprodil (Fig. 27C). 
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Figure 27: Local NMDA application induces transient firing rate activation of 

pyramidal neurons by a partial NMDA receptor 2B dependent mechanism. 

(A): Administration of the specific NR2B antagonist ifenprodil (2.5 mg/kg) significantly 

reduced NMDA-induced firing rate activation. (B, C): Typical recordings showing that 

NMDA-induced activations of firing rates partially decrease with cumulative 

administrations of ifenprodil, an effect not observed using AMPA microiontophoresis. 

Each top horizontal bar represents the pulsed current applied onto the neuron, therefore 

inducing transient neuronal activation (NMDA −10 nA, AMPA −5 nA). *P< 0.05 vs. 

baseline, Neuman-Keuls test after significant repeated measures ANOVA. 
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activities (F(3,196)=6.38, p<0.001, Bonferroni test after significant two-way ANOVA, 

Fig. 28B). 

 

 
 

Figure 28: ADHD drugs increase NMDA-induced activation of PFC neurons. 

Local applications of NMDA (10 nA) and AMPA (10 nA) significantly increased the 

firing rates (A) and burst activities (B) of PFC pyramidal neurons. NMDA was more 

potent than AMPA in inducing burst discharges, using the same 10 nA current. (C): All 

three ADHD drugs, administered intravenously at 3 mg/kg, significantly increased 

NMDA neurotransmission in PFC pyramidal neurons. (D): D-amphetamine injections 

(1-3 mg/kg) did not change the ability of AMPA (5 nA) to induce transient neuronal 

activations. ***P<0.001 vs. respective 0 nA currents, $$$P<0.001 vs. 10 nA currents, 

Bonferroni test after significant two-way ANOVA (A-B), *P< 0.05, **P<0.01 vs. 

respective controls (white bars), paired Student’s t-test (C-D). 
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(-5 nA) was also tested on a group of neurons treated with D-amph (n=6). No 

significant effect was observed, though two neurons exhibited an increase in both their 

NMDA and AMPA responses after D-amph administration (1-3 mg/kg) by more than 

30% (Fig. 28D). Most of the neurons (14/18 in total) that were silent in basal conditions 

had their responses to NMDA significantly increased in response to the administration 

of the stimulant drugs but remained silent or with a very low baseline activity during the 

course of the experiment between two NMDA ejections (Fig. 29A-B). On the other 

hand, spontaneously active neurons generally showed an increase in both baseline and 

NMDA-induced firing (Fig. 29C-D). Lower doses of D-amph (0.5–1 mg/kg), closer to 

therapeutic ranges, did not change significantly the mean NMDA response (Fig. 30A). 

Although these low doses of D-amph failed to significantly change NMDA-induced 

firing activation in this population of 19 neurons, in 7 neurons (37%), such doses of D-

amph still increased by more than 20% the mean NMDA response of these neurons 

(Fig. 30B, Table 2). Eleven out of fourteen neurons (79%) responded to the 3 mg/kg 

dose of D-amph (Table 2). In a group of 5 neurons, this effect was found to be 

dependent upon dopamine D1 receptors (Fig. 30B-D), as a strong reduction of NMDA-

induced firing activity was observed following SCH23390 administration in 4 neurons 

(p<0.05 when comparing values obtained immediately before and after administration 

of SCH23390, Newman–Keuls test after significant repeated measures ANOVA). On 

the other hand, in one other neuron tested (not included in the graph), the NMDA 

response was further increased following SCH23390. When neurons were pre-treated 

with SCH23390 (0.6 mg/kg), the administration of D-amph at 3 mg/kg did not change 

significantly the neuronal response to NMDA, though two neurons out of the five still 

had their response increased by 20% following D-amph (Fig. 31A-B). Table 2 

summarises all data obtained in the present study, showing the proportion of neurons 

responding to the administration of the different drugs. 
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Figure 29: Individual neuronal responses to local NMDA application following 

ADHD drug intravenous administrations. 

Illustrating recordings showing local NMDA neurotransmission increases following 3 

mg/kg of MPH (A) and D-amph (B, C), while another neuron only mildly increased its 

NMDA-induced firing rate activation following 6 mg/kg of cumulative ATX doses, in 

conjunction with increases of baseline firing activity (D). 
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Figure 30: Effect of dopamine D1 receptor blockade on NMDA-induced activation 

of PFC neurons induced by D-amphetamine. 

Therapeutic doses of D-amph (0.5-1 mg/kg) did not change NMDA-induced firing rate 

activations in the population of 19 neurons recorded (A), although 7 neurons out of 19 

had their NMDA-induced firing rates significantly increased by more than 20% (B). (C, 

D): Dopamine D1 receptor blockade (SCH23390 0.6 mg/kg) significantly reversed the 

NMDA-induced firing rate activations induced by D-amph. The neurons in B and C 

showed an increase in their NMDA responses caused by D-amph, an effect partially 

reversed following dopamine D1 receptor antagonism. The same neurons were recorded 

during the complete sequence. **P<0.01 vs. baseline, *P<0.05 vs. corresponding values 

obtained immediately before administration of SCH23390, Newman–Keuls test after 

significant repeated measures ANOVA. 

 

 
Figure 31: Effect of dopamine D1 receptor blockade on subsequent NMDA-

induced activation of PFC neurons induced by D-amph. 

(A, B): Pre-administration of a dopamine D1 antagonist (SCH23390, 0.6 mg/kg) 

successfully prevented subsequent increase of NMDA neurotransmission induced by 3 

mg/kg of D-amph. 
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Table 2: Proportion of neurons showing significant or non-significant changes in 

basal firing rate and in their responses to the iontophoretic application of NMDA 

to the different ADHD drugs and to SCH23390. 

Neuronal population responses to the three ADHD drugs were evaluated on 

spontaneous firing activity (top) and on NMDA-induced firing activity (bottom). The 

dopamine D1 antagonist SCH23390 was subsequently injected when neurons had their 

firing activity increased by the different drugs. n.s.: not significant, ND: not determined 

*P<0.05, **P<0.01, ***P<0.001 versus corresponding control (saline) conditions, 

Fisher’s exact test 
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methylphenidate all induced significant action potential amplitude increases (55% and 

95%, respectively). However, dopamine failed to induce any significant spike amplitude 

variation under such conditions. Specific examples of action potential amplitude 

variations under local drug delivery by iontophoresis are represented in Fig. 32B. 

 

 
 

Figure 32: Effect of iontophoretically-applied molecules on spike amplitudes of 

PFC pyramidal neurons. 

(A): Microiontophoresis of saline, NMDA and the 3 ADHD drugs MPH, D-amph and 

ATX induces electrical variations of spike amplitudes in pyramidal neurons. Here, 

positive currents increased spike amplitudes while negative currents decreased spike 

amplitudes. Please note that the ordinates are not linearly drawn. (B): Representative 

electrophysiological traces showing either increases or decreases in electrical spike 

amplitudes when molecules are iontophoretically applied. Note that NMDA induced 

strong amplitude variations compared to the other drugs. 
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spontaneous firing activities when applied locally (Fig. 33A). When these drugs were 

applied locally in combination with NMDA pulses, no change was observed in the 

NMDA-induced firing activity of such neurons (Fig. 33B), although locally-applied 

dopamine had mixed effects (increase/decrease of NMDA responses in 50% of all 

recordings, Fig. 33B,D1,D2).  
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Figure 33: Effect of iontophoretically-applied dopamine, MPH and D-amph on 

electrical parameters of PFC pyramidal neurons. 

Using currents of +5 nA, neither saline, dopamine, MPH or D-amph could alter the 

firing rates (A) or the burst activities (B) of pyramidal neurons. While co-application of 

saline and NMDA does not affect neuronal responses to NMDA (C), some neurons 

displayed either strong activation (3/6 neurons, D1) or reduction (3/6 neurons, D2) of 

their NMDA responses following co-application of both dopamine and NMDA. Both 

MPH (E) and D-amph (F) did not have an overall effect on the NMDA 

neurotransmission of PFC pyramidal neurons. 
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II-3-G- Influence of locally applied dopamine on NMDA-induced firing of 

striatal medium spiny neurons and acute MPH administration 

 

  In presumed striatal medium spiny neurons (MSN), local application of 

NMDA, using microiontophoresis, produced reversible firing rate activation (Fig. 34). 

Very interestingly, when dopamine was applied at 10 nA and together with NMDA, 6 

neurons responded by a decrease in NMDA-induced firing rate activation, an effect that 

was recovered when ejection of dopamine was stopped (Fig. 34A,C). However, 4 MSN 

responded by an increase of NMDA-induced firing rate activation, an effect that was 

also recovered with dopamine retention (Fig. 34B,D). Such effects 

(potentiation/dampening) differ greatly from what was observed previously in the PFC, 

where locally-applied dopamine had only minimal effects on NMDA responses. These 

results highlight the importance of the strong regulation of NMDA neurotransmission 

by local dopamine in striatal medium spiny neurons, where it can either dampen and/or 

strengthen glutamate neurotransmission, as seen before on avian MSN (Ding et al., 

2002). 

 
 

Figure 34: Modulation of the NMDA neurotransmission of striatal GABAergic 

medium spiny neurons by dopamine. 
When dopamine (10 nA) was locally applied onto medium spiny neurons (MSN) 

simultaneously with NMDA (10 nA), two neuronal populations could be distinguished. 

Some neurons (6/10) displayed significant firing rate dampening (A, C) while others 

(4/10) displayed non-significant firing rate potentiation (B, D). When dopamine 

iontophoresis was no longer applied, NMDA-induced firing rates were recovered 

immediately. *P<0.05 vs. NMDA 10 nA, Newman–Keuls test after significant 

ANOVA. 
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  Methylphenidate was acutely administered at a dose of 1 mg/kg and 

produced a significant increase (p<0.027, paired Student’s t-test) of the NMDA-induced 

firing rate activation of medium spiny neurons (Fig. 35). A cumulative dose of 2 mg/kg 

of MPH further increased such effects, suggesting that glutamatergic neurotransmission 

of MSN neurons is altered following MPH exposure. Compared to what was found in 

the PFC, methylphenidate produced significant effects at lower doses, close to 

therapeutic doses, in the striatum. 

 
 

Figure 35: Modulation of the NMDA neurotransmission of striatal GABAergic 

medium spiny neurons by methylphenidate. 

(A): Intravenous administration of 1-2 mg/kg of MPH significantly increased the firing 

rate activations observed during NMDA applications. (B): Example of one neuronal 

recording showing potentiation of NMDA neurotransmission by intravenous MPH (1 

mg/kg). Here, local dopamine application following MPH exposure led to a strong 

reduction of the firing rate induced by NMDA applications. (C): Example of one out of 

five striatal medium spiny neurons where local applications of MPH (5 and 10 nA) 

dose-dependently potentiate NMDA responses. **P<0.01, ***P<0.001 vs. baseline, 

Newman–Keuls test after significant repeated measures ANOVA. 
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II-3-H- Acute psychostimulant administration enhances locomotor activity and 

NMDAR2B protein expression in the striatum 

 

  Behavioural traits such as rearing, grooming and scratching were 

assessed in single-housed rats during 60 minutes after a single D-amphetamine or 

methylphenidate administration. We observed that D-amphetamine, administered 

intraperitoneally at a single dose of 3 mg/kg, significantly decreased the grooming 

behaviour after the first 15 minutes and until the end of the observation period (Fig. 

36A1,A2). D-amph did not change the scratching behaviour (Fig. 36B1,B2), but had an 

immediate effect in increasing the rearing activity (Fig. 36C1,C2). The D-amph-induced 

increased rearing activity remained 300% higher than the control condition throughout 

the observation period. In contrast, methylphenidate did not induce any significant 

changes in scratching or grooming activities when administered at 5 mg/kg (Fig. 

36A3,B3). However, 5 mg/kg of MPH significantly increased rearing activity after 45 

minutes (Fig. 36C3), but this effect was milder than the one induced by D-amph. We 

show here that acute psychostimulant exposure increased vertical locomotor activity, 

which could be one amongst many consequences of increased cortical excitability, as 

seen in previous paragraphs. Please note that these results were obtained from 4 animals 

in each group and that such a small sampling size could be considered too small. 
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Figure 36: Behavioural effects of psychostimulant exposure using D-amphetamine 

and methylphenidate. 
In this experiment, 3 different behavioural traits such as grooming (A1), scratching (B1) 

and rearing (C1) were analysed during the first 60 minutes following intraperitoneal 

drug exposure. (A2, A3): Exposure to D-amph (3 mg/kg), but not MPH (5 mg/kg), 

significantly decreased the cumulative number of grooming events during the entire 

observation period. Scratching events were not altered following either drug exposure 

(B2, B3). D-amph strongly increased the number of rearing events throughout the 

recording period (C2), an effect only seen during the last 15 minutes of the observation 

period (46-60 minute window) when MPH was used (C3). *P<0.05, **P<0.01 vs. 

vehicle, unpaired Student’s t-test. $P<0.05, $$P<0.01 vs. vehicle, Bonferroni test after 

significant repeated measures two-way ANOVA. 
 

 

  We then examined the impact of such injections on the NMDA receptor 

2B protein expression (NR2B) using western blotting techniques in order to determine if 

a correlation between our electrophysiological results and NR2B protein could exist. 

Once set up, the blotting techniques were qualitatively reliable and routinely used. As a 

matter of fact, consistent results were always observed. We observed a significant 

increase of the NR2B protein expression in the PFC after D-amph administration (Fig. 

37), but not following MPH administration. Interestingly, in the striatum, both 
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treatments led to significant increases of NR2B expression. No change in this protein 

expression has been found in the hippocampus after any of the two treatments (Fig. 37). 

 

Figure 37: Psychostimulant exposure increases cortical and striatal NMDA 

receptor 2B protein expression. 

Following behavioural experiments, NR2B protein expression levels were quantified in 

different regions. In the prefrontal cortex, only D-amphetamine exposure (3 mg/kg) 

increased NR2B protein expression. However, both psychostimulants (D-amph 3 mg/kg 

and MPH 5 mg/kg) increased NR2B protein expression in the striatum, but not in the 

hippocampus. Bottom are displayed representative immunoblots with protein sizes in 

kilodaltons (kD). *P<0.05, **P<0.01, ***P<0.001 vs. respective vehicle, Newman–

Keuls test after significant ANOVA. 

 

   These results indicate a partial relationship between increased 

cortical/striatal excitability, locomotor activity and NR2B expression. 

 

 

 

II-4- Discussion 

 

 The present chapter demonstrates that the ADHD drugs MPH, D-amph and 

ATX modulate the firing activity and glutamate excitability of PFC pyramidal neurons. 

Table 3 summarised the proposed interactions within this study. 
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Table 3: Summary of known and proposed interactions between the molecules 

under study. 

This table summarises our main findings within this chapter. Please refer to in-text 

citations. ATX: atomoxetine, MPH: methylphenidate, D-amph: D-amphetamine, DAT: 

dopamine transporter, DA: dopamine, NET: norepinephrine transporter, NE: 

norepinephrine, SERT: serotonin transporter, 5-HT: serotonin, NMDA-R: N-methyl-D-

aspartate receptors, glut: glutamate, glyc: glycine, VMAT2: vesicular monoamine 

transporter 2, alpha1-R: adrenergic α1 receptors, D1-R: dopamine D1 receptor. 
  

 

Known interactions Hypothesised interactions
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As already demonstrated in our laboratory (Gronier, 2011), we confirmed that 

MPH excitatory effects on PFC neurons are largely dependent on dopamine D1 

receptors (Fig. 22). Indeed, MPH administration led to increases in the firing activities 

of spontaneously active neurons as well as silent neurons. MPH was able to elicit large 

firing activations, as observed before (Claussen et al., 2014b), some of which were 

reversed by subsequent dopamine D1 receptor antagonism, in line with a previous study 

showing that MPH enhances cortical excitability through D1 receptors (Gronier, 2011). 

However, a few other studies found the MPH-induced effects to be dependent upon 

alpha-2 receptors (Andrews et al., 2006; Berridge, 2006). Interestingly, according to 

Andrews’ study, the alpha-2 dependency of MPH to induce such activation of cortical 

pyramidal neurons might be mediated by stimulation of alpha-2 receptors on 

interneurons rather than direct pyramidal cell activation (Andrews et al., 2006). Indeed, 

alpha-2 receptors are majorly Gi protein coupled but some receptor subtypes can also 

interact with Gs or Gq11 proteins (Aantaa et al., 1995). When activated, they produce 

hyperpolarisation (Andrade et al., 1985; Egan et al., 1983) by increasing potassium 

conductance (Williams et al., 1985). Therefore, it was stipulated that MPH is likely to 

induce disinhibition of pyramidal neurons via hyperpolarisation of cortical interneurons 

(Andrews et al., 2006). Nonetheless, the present study is the first to demonstrate that D-

amph also stimulated PFC firing activity in a dose-dependent manner which is also 

partially dependent on the stimulation of dopamine D1 receptors (Fig. 23D,E). This is 

compatible with the fact that both D-amph and MPH, by interacting with synaptic 

catecholamine transporters and increasing dopamine efflux (Arnold et al., 2001), act as 

indirect dopamine D1 agonists and that D1 receptor activation can generate increases in 

neuronal excitability (Gronier et al., 2013; Tseng et al., 2007; Wang et al., 2011). As a 

matter of fact, a recent study from our laboratory found that the systemic administration 

of D1 selective agonists, and to a lesser extent their local application, can stimulate the 

firing activity of PFC neurons in vivo (Gronier et al., 2013). 

 

The magnitude of the increase in firing activity elicited by both 

psychostimulants, MPH and D-amph, does not seem directly proportional to the amount 

of dopamine release that these drugs can induce. According to microdialysis studies, D-

amph is far more potent than MPH in inducing dopamine release (Kuczenski et al., 

1997) but does not produce a more dramatic increase in firing activity (Fig 22-23). 

Indeed, we have found that D-amph and MPH produce similar firing activity 
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activations. This result indicates that D1-dependent activation of pyramidal neurons, 

produced by increases in extracellular dopamine levels, is likely to be at its maximum 

level, when the two drugs are already administered at intermediate doses (3-6 mg/kg). 

 

However, the present study also shows that these large activations occur at doses 

that slightly exceed therapeutic levels. Lower doses of MPH and D-amph closer to the 

therapeutic range (0.5–1 mg/kg for both drugs) produced milder electrical activation 

(Table 2) only in a subset of PFC neurons (Gronier, 2011; Gronier et al., 2010). 

Although it is difficult to compare doses in humans and rodents, which have a much 

more powerful metabolism capacity (Demetrius, 2005; Martignoni et al., 2006; Mraz et 

al., 1989), it can be expected that, in humans, therapeutic doses of D-amph and MPH 

are likely to produce a moderate dopamine D1-dependent excitability increase in a 

subset of pyramidal PFC neurons. Larger activation of PFC neurons occurring at higher 

doses is likely to be associated with the well-known motor and cognitive impairments 

induced by these drugs (Swanson et al., 2003). Indeed, psychostimulants can induce a 

sensation of being “high”. As an example, such sensations appear almost immediately 

(1-3 minutes) when acute intravenous exposure to 0.37-0.5 mg/kg of methylphenidate 

or cocaine occurs (Morton et al., 2000; Volkow et al., 1999b; Volkow et al., 1996b). 

These doses induce a dopamine transporter occupancy ranging from 80-93%, but only 

occupancies above 80% are considered to be necessary to induce a feeling of a “high”, 

although some patients with DAT occupancies higher than 80% do not experience the 

“high” but display clear behavioural effects (Volkow et al., 1996a) such as a need to 

move and anxiety as well as cardiovascular side effects (on heart rate, diastolic and 

systolic blood pressures). Very interestingly, in patients, cocaine and methylphenidate 

result in similar patterns for dopamine transporter occupancy. Both drugs display 

similar pharmacokinetic properties, except for their clearance profiles (Volkow et al., 

1995). The dopamine D1 receptor is known to exert a biphasic effect on PFC functions, 

with moderate activation producing cognition improvement and sharpening synaptic 

transmission, while excessive stimulation impairs cognitive function and neuronal 

network activity (Goldman-Rakic et al., 2000; Seamans et al., 2004). However, 

dopamine D1 receptor stimulation is probably not the only catecholamine receptor 

involved in psychostimulant-induced activation of PFC neurons. As a matter of fact, 

only 60-65% of the neurons activated by MPH or D-amph had their activation 

significantly reversed by D1 receptor antagonist and, in some of these D1-sensitive 
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neurons, the effect of the antagonist was only partial. Therefore, the contribution of 

other catecholamine receptors is also probable. It should be noted that we found in a 

previous study that adrenergic β1 and dopamine D2 receptors could contribute to MPH-

induced activation of PFC neurons in a subset of neurons. Nevertheless, in the present 

study, D1 receptor blockade alone or combined with alpha-1 receptor blockade were the 

only two pharmacological manipulations that could significantly prevent the excitatory 

effects of psychostimulants (Fig. 24). 

 

On the other hand, ATX-induced neuronal activation of PFC neurons did not 

seem to be primarily dependent on D1 receptors (Fig. 25C). Whether this can be 

associated with the lack of immediate effect of ATX, over psychostimulants, in ADHD 

patients is an interesting question to address. However, ATX is known to promote, with 

similar potency as MPH, large amounts of dopamine release in the PFC under in vivo 

conditions (Bymaster et al., 2002), most likely via its action on the NET, which plays a 

key role in the clearance of dopamine in the PFC (Devoto et al., 2006). The ATX-

induced effect may result from a more complex combination of the activation of 

different catecholamine receptors. The contribution of the α1 adrenoceptor has been 

demonstrated in our study in a fraction of the neurons tested (Fig. 26A-B). While one 

study acknowledges the role of alpha-1 receptor in ATX-induced cortical acetylcholine 

release (Tzavara et al., 2006), others failed to find any contribution of apha-1 receptors 

in ATX-induced risk taking (Yang et al., 2016), which is a PFC-controlled behavioural 

trait. Although acting as an indirect alpha-1 receptor agonist, ATX has also been shown 

to bind to alpha-1 receptors with low affinity (Bymaster et al., 2002). Furthermore, 

subsequent blockade of α2 receptors by yohimbine (Fig. 26C-D) was found to potentiate 

the effect of ATX on firing activity, at least in a subset of neurons in our experiments. 

These results are in agreement with a previous investigation in monkeys, where ATX 

and MPH indirectly improved working memory via alpha-2 and dopamine D1 receptor 

dependent mechanisms (Gamo et al., 2010). ATX, by potently blocking the NET, may 

initially indirectly activate inhibitory α2 receptors on the pyramidal cell and therefore 

attenuate possible excitatory effects mediated by other catecholamine receptors, 

including the D1 receptors, as demonstrated in some neurons tested in the present study 

(Fig. 26C). Therefore, in this way, ATX may not be able to promote the same dopamine 

D1 receptor-dependent excessive activation of PFC neurons which may be associated 

with the well-described behavioural disturbances elicited by psychostimulants when 
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administered at high doses (Spiller et al., 2013). However, in our study, we found 

similar potencies for D-amph and ATX to induce neuronal excitations (Fig. 23 and 25, 

respectively). 

 

Nevertheless, the fact that a significant proportion of neurons are activated by 

therapeutic doses of ADHD drugs (compared to saline-treated neurons) may help to 

improve ADHD symptoms. Moderate enhancement of PFC neuronal excitability may 

compensate for the well-documented cortical hypofunction observed in ADHD, as 

evidenced by reduced cortical thickness and metabolic activity in some subregions of 

the PFC in drug-free patients (Fernandez-Jaen et al., 2014; McLaughlin et al., 2014). 

 

In parallel with some of our latest observations using D1 receptor agonists 

(Gronier et al., 2013), we found that ADHD drugs preferentially increased the basal 

activity of spontaneously active PFC pyramidal neurons over silent neurons. This is 

compatible with the fact that dopamine D1 receptor may not directly stimulate the 

activity of PFC pyramidal neurons but may rather strengthen pre-existing tonic 

excitatory regulations of the firing activity of PFC neurons. Such tonic excitatory input 

is likely to be mainly maintained by glutamatergic neurotransmission, as the 

spontaneous activity of PFC neurons has been shown to be mediated by mutual 

excitation between glutamatergic pyramidal neurons (Kritzer et al., 1995). Moreover, 

we found that ADHD drugs powerfully stimulate the excitability of PFC neurons 

mediated by glutamate receptor activation (Fig. 27C). 

 

Indeed, the present study, for the first time, demonstrates that ADHD drugs 

promote an in vivo potentiation of the excitatory response of PFC neurons to the 

glutamate agonist NMDA, an effect not associated with changes in basal firing activity 

(Fig. 29-30). Ionotropic glutamate receptors in the PFC are essential for attention 

processes, impulse control and for efficient memory function (Nakanishi, 1992). In the 

PFC, local NMDA application by microiontophoresis produces transient neuronal 

activation (El Iskandrani et al., 2015; Gobbi et al., 2006), which is strongly decreased 

when glycine B site antagonists such as HA-966 and MRZ 2/576 are co-applied (Chen 

et al., 2003a; Christoph et al., 2006). In rodents and humans, NR2B and NR2A subunits 

predominate in prefrontal regions (Cull-Candy et al., 2001; Dingledine et al., 1999; 

Zhuo, 2009) and always form heterogeneous complexes with NR1 receptors. NR2B 
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subunits are major actors for synaptic potentiation, which is crucial for learning and 

plasticity (Zhuo, 2009). Moreover, administration of the specific NR2B antagonist 

ifenprodil, before a learning paradigm, is known to impair normal learning, indicating 

that NMDAR2B are required for synaptic potentiation (Zhuo, 2009). Our study also 

demonstrated the role of NMDA receptor 2B in the responses to local NMDA 

application, as ifenprodil (2.5 mg/kg) strongly reduced NMDA-induced firing rate 

activation (Fig. 28). Antagonism of NMDA receptor has been shown to prevent some of 

the acute and chronic neurochemical and behavioural effects of psychostimulants 

(Bristow et al., 1994; Gaytan et al., 2000; Hemrick-Luecke et al., 1992; Yang et al., 

2000), indicating that NMDA receptors may play a crucial role in stimulant-induced 

effects. Moreover, recent behavioural evidence shows that administration of NMDA 

antagonists directly in the PFC induced a profound deficit in attention and increased 

impulsivity in rodents (Carli et al., 2014). 

 

Imaging studies have shown that children with ADHD exhibit hypoactivity in 

prefrontal region, as well as anatomical and functional dysfunction in fronto-striatal 

circuits, associated with white matter loss (Cubillo et al., 2012; Liston et al., 2011). 

Patients suffering from ADHD exhibit regional abnormalities such as decreased cortical 

thickness in regions located beneath the cortex such as the right caudate, the insula and 

thalamus (Ivanov et al., 2010; Lopez-Larson et al., 2012; Rubia et al., 2014; Valera et 

al., 2007). These abnormalities can also be related to brain function. Indeed, hypo-

activation during sustained attention tasks has been observed in ADHD patients 

(Cubillo et al., 2012). Finally prefrontal and striatal connectivity impairments are also 

found in ADHD subjects (Liston et al., 2011; Tomasi et al., 2012). The elevated NMDA 

receptor function induced by ADHD drugs (Fig. 27C) may lead to an increase in the 

excitability of PFC neurons that could be essential in regulating glutamatergic cortico-

striatal transmission and strengthening synaptic transmission at these synapses. This 

NMDA receptor activation may trigger cortical as well as striatal synaptic plasticity and 

could therefore exert beneficial effects on various aspects of cognitive and executive 

functions, both impaired in ADHD. As a matter of fact, glutamate neurotransmission in 

ventral and dorsal striatum, originating mainly from glutamate fronto-striatal 

projections, plays a major role in controlling cognitive flexibility, required for normal 

attention and cognition (Ding et al., 2014). Moreover, NMDA receptor activation is 

known to induce synaptic plasticity, assessed by membrane receptor insertion and 
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long/short-term potentiation/depression (Lu et al., 2001; Malenka et al., 1993). ADHD 

drugs, by enhancing NMDA tone on PFC pyramidal neurons, may therefore restore 

adequate neurotransmission and plasticity in ADHD patients, as observed in animal 

models (Gandal et al., 2012; Sasaki et al., 2015). Moreover, we found that 

methylphenidate increased NMDA-induced responses of striatal medium spiny neurons 

(Fig. 35), an effect that may strengthen functional cortico-striatal connectivity. 

 

The question arises as to whether pharmacological manipulation that can 

enhance NMDA receptor function can be of therapeutic benefit for ADHD patients. For 

instance, one can wonder if cognition enhancers such as direct or indirect glycine B 

agonists of the NMDA receptor (e.g., Glycine transporter uptake inhibitors, GlyT1) 

could be of any clinical use (Cheng et al., 2014). Such agents have been shown to 

improve cognitive flexibility and working memory (Bado et al., 2011; Kuriyama et al., 

2011; Nikiforuk et al., 2011), as well as attention deficits caused by NMDA receptor 

blockade (Chang et al., 2014). Recently, glycine uptake inhibitors were proven to 

potentiate NMDA-dependent long-term potentiation in hippocampal CA1 pyramidal 

neurons (Alberati et al., 2012) and could restore MK801-induced LTP impairment 

(Manahan-Vaughan et al., 2008). Finally, GlyT1 antagonists increase in vitro and in 

vivo post-synaptic NMDA currents in neurons (Bergeron et al., 1998; Chen et al., 

2003a; Martina et al., 2004). However, such agents may be able to positively modulate 

NMDA channels only under precise conditions (Sur et al., 2007), such as under AMPA-

dependent release of the magnesium block. Despite the fact that these drugs have not 

yet been proven to have a clearly beneficial therapeutical effect on negative deficits in 

schizophrenia (Chue, 2013; Schoemaker et al., 2014), one cannot rule out that they can 

help to alleviate some of the symptoms of ADHD. Moreover, aberrant glutamate 

neurotransmission has been found in ADHD patients (Lesch et al., 2013). This recent 

study reinforces previous studies where ADHD was positively associated with 

polymorphisms in different glutamate receptor subtypes such as GluR7, NR2A and NR2B 

(Akutagava-Martins et al., 2014; Dorval et al., 2007; Elia et al., 2012; Park et al., 2013; 

Park et al., 2014; Turic et al., 2004), although one study did not find any relationship 

between ADHD and NR2A (Adams et al., 2004). Nevertheless, an increase in NMDA 

receptor function may only be one component of the complex mechanisms that can lead 

to therapeutic responses and it is now necessary to establish whether this effect can 

persist after the chronic administration of ADHD drugs. Our data confirms, in part, a 
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recent in vitro electrophysiological study showing that an acute low dose administration 

of MPH can increase NMDA-dependent excitatory post-synaptic potentials in PFC 

slices (Cheng et al., 2014). However, the authors did not demonstrate any contribution 

of the D1 receptor in this modulation but suggested rather the involvement of alpha-1/2 

adrenoceptors. 

 

Interestingly, we found that, for D-amph, this increase in NMDA 

neurotransmission may occur, at least partially, via an interaction with dopamine D1 

receptors as we found in a significant number of neurons tested (but not all) that the 

selective D1 antagonist SCH23390 reversed or prevented the potentiation of NMDA 

response elicited by D-amph. Dopamine is known to facilitate glutamatergic 

transmission onto PFC neurons via interactions with both AMPA and NMDA receptors. 

Intracellular electrophysiological studies have shown that NMDA receptor currents are 

potentiated by dopamine D1 receptor activation (Sarantis et al., 2009), while D1 receptor 

stimulation may promote AMPA receptor trafficking in the PFC (Sun et al., 2005). 

Postsynaptic dopamine D1 and some NMDA receptors colocalise in the PFC and have 

been shown to interact synergically (Goldman-Rakic et al., 2000; Kruse et al., 2009; 

Wang et al., 2001). It is generally believed that dopamine promotes NMDA receptor 

trafficking through phosphorylation induced by a D1 receptor-like signalling cascade 

(Hu et al., 2010; Trepanier et al., 2012; Urban et al., 2013b; Yang et al., 2005). 

Nevertheless, the role of dopamine on NMDA receptor function can be very complex in 

the PFC, with differential modulation depending on receptor subtypes (Urban et al., 

2013b). In addition, not all neurons tested were responsive to the dopamine D1 receptor 

antagonist after potentiation of their NMDA response by D-amph or MPH. While 

dopamine has a small dual effect on the NMDA-induced firing activation of PFC 

neurons (strengthening or dampening NMDA neurotransmission, in 50% of all neurons, 

Fig. 33), it strongly affects NMDA neurotransmission in striatal medium spiny neurons 

(also strengthening or dampening). Therefore, other mechanisms may also explain the 

increase in glutamate/NMDA excitability generated by ADHD drugs (Zhang et al., 

2012a). 

 

We have also found that acute psychostimulant administrations induce changes 

in local NMDA receptor 2B protein expression. The NMDA receptor 2B is responsible 

for neuronal excitations, which are increased following acute ADHD drug 
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administration (Fig. 27C). NR2B functions range greatly, from learning to pain and 

memory processing as well as feeding habits (Loftis et al., 2003). Both MPH and D-

amph induced strong NR2B protein expression elevation in the striatum, while only D-

amphetamine significantly increases NR2B protein expression in the prefrontal cortex 

(Fig. 37). Such increases in NR2B receptor expression can arise from either newly-

synthesised receptors or from membrane insertion of internally-stored receptors. One 

can assume that ADHD drugs may increase NR2B protein expression in specific brain 

regions, which, in turn, promotes neuronal excitation. These results are also in line with 

previous findings where the amount of NR2B protein level at the membrane surface 

increased following a single intraperitoneal 0.5 mg/kg MPH exposure, inducing 

increases in NMDA receptor-mediated excitatory post-synaptic current (Cheng et al., 

2014). The NR2B subunit of the NMDA receptor complex is responsible for long-term 

potentiation (Yoshimura et al., 2003), which is crucial for the development of plasticity 

as well as memory and learning (Loftis et al., 2003). And yet, a 1 mg/kg dose of MPH 

produced opposite effects on NR2B expression after 60 minutes (Urban et al., 2013b). 

NR1 protein, however, was found to be decreased in the frontal cortex following acute 

methamphetamine administration, while both NR2A and GluR2 proteins were increased 

(Simoes et al., 2008). Moreover, in vitro cocaine exposure (1 µM) induced increased 

total NR2B expression in the midbrain following 10 minutes of cocaine exposure 

(Schilstrom et al., 2006). Because such an increase of NR2B expression was abolished 

when slices were pre-treated with a protein inhibitor (anisomycin 20 µM), such a result 

can only be attributed to newly synthesised NR2B receptors (Schilstrom et al., 2006). 

Similar results were observed following bath application of a dopamine D1 receptor 

agonist (Hu et al., 2010) in the prefrontal cortex (SKF-81297, 10 µM). Chronic 

exposure to amphetamine (4 mg/kg) led to significant decreases of NR2B levels in the 

striatum, consistently with our study on chronic MPH exposure (see Chapter IV), while 

NR1, NR2A, NR3A, NR3B levels were not changed following chronic amphetamine 

exposure (Mao et al., 2009). However, in the prefrontal cortex, NR2B protein expression 

was not altered by such treatment in Mao’s study, contrary to what we have found. In 

the striatum, in vivo interactions between the dopamine D2 receptor and the NMDA2B 

receptor have been observed (Liu et al., 2006). Moreover, such functional interactions 

are responsible for the behavioural responses to cocaine. Therefore, NR2B protein may 

be linked to exposures with stimulants (Brunk et al., 2010; Gutierrez-Arenas et al., 

2014; Pascoli et al., 2011) or alcohol (Kash et al., 2008; Nagy, 2004; Wang et al., 
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2007a; Wang et al., 2010a). In our experiments, NR2B protein expression levels 

increased following acute stimulant exposure in some brain regions, which may reflect 

immediate synapse reorganisation and plasticity. The time allocated to our blotting 

project having run out, we were unable to elaborate our results, although we were 

considering studying phosphorylated NR2B receptors as well as distinguishing different 

cellular fractions, such as membrane-bound receptors or internally-stored receptors. 

 

Our results, showing that ATX also enhances NMDA-mediated response on 

PFC neurons, stand in contrast with a recent in vitro electrophysiological study, 

demonstrating that ATX, at a relatively low concentration (5 μM), inhibits NMDA- 

induced current when studied on PFC slices, via an open-channel blocking mechanism 

(Ludolph et al., 2010). Similar results were observed with D-amph which could act as a 

low affinity inhibitor of the NMDA receptor complex (Yeh et al., 2002). However, 

ATX, like D-amph, enhances dopamine efflux in PFC according to microdialysis 

studies. Even if D1 receptor stimulation helps to moderately enhance the basal activity 

of PFC neurons in ATX-treated animals, ATX may generate enough D1 receptor 

activation to interact with NMDA receptors and compensate for the weak inhibitory 

effects of this drug on NMDA receptors. 

 

Our data also differs from two other electrophysiological investigations carried 

out in non-anaesthetised rats, using different recording techniques, showing that D-

amph (2 mg/kg) and MPH (0.25–15 mg/kg) do not elicit firing activation of PFC 

neurons but rather, in the case of D-amph, tend to have suppressant effects (Devilbiss et 

al., 2008; Wood et al., 2012). Such divergence might be associated with differences in 

the recording techniques, in particular regarding the use of probes with different 

sensitivity levels for the recording of electrical signals. Nevertheless, the study by 

Devilbiss in 2008 shows that a low dose of MPH (0.5 mg/kg) increased the evoked 

excitatory responses of PFC neurons following hippocampus stimulation. Such a 

stimulatory effect, which is likely to involve glutamate-dependent processes, is not in 

contradiction with our study. 

 

We have also reported that local drug delivery, through iontophoresis, induces 

strong spike amplitude variations (Fig. 32). While positive currents tend to induce spike 

amplitude gain, negative currents tend to induce loss of amplitude. These results are in 
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agreement with numerous electrophysiological investigations in humans (Cepeda et al., 

1991), rodents (Kiyatkin et al., 1998; Stratton et al., 2012) and other species (Rose et 

al., 2013; Russo et al., 1992). Recent in vitro studies on subthalamic nucleus neurons by 

Shen have shown that NMDA application (10 µM) is responsible for the activation of 

ATP-sensitive outwards potassium currents (Shen et al., 2010; Shen et al., 2013). In 

another 2014 study, Shen also observed that such mechanisms are regulated by the 

adenosine monophosphate (AMP) kinase (Shen et al., 2014). These studies may explain 

the membrane hyperpolarisation that we observed in our results after termination of 

local NMDA application (Fig. 32) and for the post-NMDA firing rate reduction 

observed in spontaneously active neurons, as seen in Fig. 30D. Because none of the 

drugs applied iontophoretically induced a significant spike amplitude variation 

compared to saline iontophoresis, we can assume that such spike amplitude variations 

are not likely to change spontaneous spike generation (Fig. 33A) or NMDA-induced 

firing (Fig. 33B) and are rather the consequences of local current delivery in close 

vicinity to the neuronal membrane. Very interestingly, such electric artefacts have been 

observed before (Belle et al., 2013; Herr et al., 2010; Wang et al., 1977). 

 

Our results also show that acute MPH (at therapeutical doses) significantly 

increases NMDA neurotransmission in medium spiny neurons located in the striatum 

(Fig. 35). Interestingly, another study has shown that chronic MPH administration 

(daily 15 mg/kg for 2 weeks) leads to increased dendritic spine densities of such 

neurons (Kim et al., 2009). Moreover, ionotropic glutamate receptors (NMDA and 

AMPA receptors) are strongly expressed in dendritic spines of excitatory neurons 

(Alvarez et al., 2007; Bellot et al., 2014; Hasbani et al., 2001) and play key roles in 

synaptic plasticity (Fischer et al., 2000). Taken together, these results may link MPH 

exposure to increased glutamatergic neurotransmission of striatal MSN as well as 

improved cortico-striatal functional connectivity. 

 

Finally, we have positively correlated acute MPH and D-amph administrations 

with increases in the total amount of rearing activities (Fig. 36C), a consequence of 

increased vertical exploration behaviour (al-Khatib et al., 1995; Alves et al., 2005; 

Brown et al., 2008; El Yacoubi et al., 2000). Although the rearing activity is not similar 

to the locomotor activity, some consider rearing events to be the vertical components of 

the locomotor activity (al-Khatib et al., 1995; El Yacoubi et al., 2000). None of the two 
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drugs changed the animals’ scratching parameters while only D-amphetamine 

significantly reduced the total number of grooming events, 45 minutes after the 

injection (Fig. 36A). In previous studies, 1-3 mg/kg doses of D-amph (Aguilar-Rivera et 

al., 2015; Backstrom et al., 2011; Kubera et al., 2002; Leza et al., 1991; McNamara et 

al., 2006) or 2.5-20 mg/kg of MPH (Amini et al., 2004; Cheng et al., 2014; Claussen et 

al., 2014b; Marsteller et al., 2002; Penner et al., 2001) all significantly increased 

locomotor activity in rodents, in consistence with our study, where rearing activities 

were significantly increased following stimulant exposure. In addition, these locomotor 

activities solely depend upon blockade of the DAT, as DAT knockout mice do not 

display any hyper-locomotion following 1 mg/kg of D-amph (Spielewoy et al., 2001). 

In children, only a few studies have reported that MPH, given to children, can induce 

abnormal movements such as motor tics or dyskinesia (Balazs et al., 2011; Lipkin et al., 

1994; Wulbert et al., 1977). Acute administrations did not alter stereotypical events in 

our animals (not shown), as observed in another study (Claussen et al., 2014b). 

However, several studies have found opposite results, where MPH induced strong 

stereotypical events following high doses (15-50 mg/kg) of methylphenidate (Bell et al., 

1982; Davis et al., 1978; Mueller, 1993). 

 

In conclusion, our electrophysiological studies indicate that all three ADHD 

drugs equally stimulate the excitability of PFC pyramidal neurons, in basal and NMDA-

evoked conditions, when administered acutely. While the electrophysiological effects 

elicited by psychostimulants may be primarily dependent on dopamine D1 receptor 

activation, those induced by ATX may also rely on other mechanisms. When applied 

locally on prefrontal cortex pyramidal neurons, methylphenidate, D-amphetamine and 

dopamine induce spike amplitude variations, but without affecting spontaneous and 

NMDA-induced firing activities. However, in the striatum, locally-applied dopamine 

produced  more striking effects, showing two very distinct neuronal populations. In 

these striatal medium spiny neurons, low doses of MPH (1 mg/kg) produced significant 

effects on NMDA-induced firing rate activations. Striatal NR2B protein expression 

increased following acute exposure to MPH (5 mg/kg) and D-amph (3 mg/kg), while 

prefrontal cortex NR2B protein expression only increased following D-amph exposure. 

Finally, acute psychostimulant injections increased vertical locomotor activity in our 

rodent model.  
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Chapter III – Excitatory glutamate 

components involved in the 

electrophysiological response of ventral 

tegmental area dopamine neurons to acute 

methylphenidate. 

 

 

III-1- Introduction 

 

The ventral tegmental area (VTA) plays a central role in the response to 

psychostimulants (Kalivas et al., 1993). Indeed, VTA neuronal excitability has been 

found to be modulated by psychostimulants such as cocaine (Lee et al., 1999; Nimitvilai 

et al., 2012; Steffensen et al., 2008; Zhou et al., 2006), D-amphetamine (Shi et al., 

2000b; Xu et al., 2001), methamphetamine (Shi et al., 2004), methylphenidate (Jones et 

al., 2013), nicotine (Eddine et al., 2015; Erhardt et al., 2002; Zhang et al., 2012b) as 

well as cannabinoids (French et al., 1997). Addiction may first settle within the VTA 

(Adinoff, 2004; Koob et al., 2010; Taylor et al., 2013), whether drug-related or not, 

such as addiction to food, video games, pornography and gambling (Baik, 2013; 

Gearhardt et al., 2011; Han et al., 2011; Hilton et al., 2011; Love et al., 2015; Potenza 

et al., 2002; Shriner et al., 2014; Zhang et al., 2015).  

 

Midbrain dopamine neurons strongly modify their firing and burst activities 

following psychostimulant administration, but not necessarily by firing rate activation 

(Bunney et al., 1973; Einhorn et al., 1988; Shi et al., 2004). In vivo administration of 

0.25 mg/kg of D-amphetamine produced midbrain dopamine neuron silencing in 20% 

of all recordings (Bunney et al., 1973). In addition, this study also calculated an average 

IC50 of 1.6 mg/kg. However, this effect was specific to D-amph, as it was not observed 

following L-amph exposure, even with doses up to 25 mg/kg. When cocaine was 

administered intravenously (0.5 mg/kg), VTA GABAergic neurons increased their 

firing rates by 160%, an effect not observed with lidocaine (Steffensen et al., 2008). 

Cocaine administration (0.06-16 mg/kg, i.v.) results in dose-dependent inhibition of 



97 

 

VTA dopamine neurons (Hinerth et al., 2000). However, another study observed a 

proportion of VTA dopamine neurons (50% of all neurons recorded) that responded by 

an increase in the firing rate following cocaine administration (0.25 mg/kg) (Mejias-

Aponte et al., 2015). The study by Jones in 2014 on freely behaving animals observed 

dose-dependent responses of such neurons to 0.6, 2.5 and 10 mg/kg of acute intravenous 

methylphenidate, with increases in firing rates in 30%, 66% and 57% of all recordings, 

respectively (Jones et al., 2014). Other addictive substances, such as the two opioids 

morphine and heroin, can induce modifications of firing rates of midbrain dopamine 

neurons. Indeed, intra-VTA morphine infusions (60 nl of a 1 mg/ml morphine solution), 

increased baseline firing rates by 47%, while intravenous morphine administrations (1 

mg/kg) increased baseline firing rates by 25% (Jalabert et al., 2011). Finally, heroin (1 

µM), applied in baths onto midbrain slices, produced strong firing rate increases (4-

fold) of dopamine neurons (de Guglielmo et al., 2015).  

 

Because local dopamine transporter blockade will result in dopamine 

concentration increases within the synaptic cleft, psychostimulants will also trigger 

neuronal reorganisation (plasticity) as well as behavioural responses (Hughes, 1972; 

Russo et al., 2010; Sproson et al., 2001; Zehle et al., 2007). These modifications are 

now believed to be glutamate-related (Cheng et al., 2014; Guillem et al., 2015; Schmitz 

et al., 2015; Warton et al., 2009), because MPH treatment seems to normalise some of 

the glutamatergic abnormalities observed in ADHD patients (Hammerness et al., 2012). 

Several studies, using proton magnetic resonance spectroscopy, observed that drug-free 

ADHD patients present abnormal measurements of glutamate metabolites in the 

prefrontal cortex, the cerebellum, the basal ganglia and the striatum (Carrey et al., 2007; 

Courvoisie et al., 2004; Ferreira et al., 2009; MacMaster et al., 2003; Maltezos et al., 

2014; Perlov et al., 2010). In his 2012 study, Hammerness observed higher 

glutamate/myo-inositol ratio with ADHD patients under MPH treatment, while both 

untreated and control patients display lower ratios. In ADHD children, low levels of 

GABA and high levels of glutamate were detected (Purkayastha et al., 2015; Schuch et 

al., 2015).  

 

The relationship between glutamate and dopamine is central to the regulation of 

the excitability of prefrontal cortex pyramidal neurons (Tseng et al., 2004). Dopamine is 

known to protect neurons against glutamate excitotoxicity (Vaarmann et al., 2013). 
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Moreover, dopamine also prevents calcium dysregulations in midbrain dopamine 

neurons (Vaarmann et al., 2013), which can be triggered by over activation of 

ionotropic glutamate receptors. In an animal study on SHR rats, it has been suggested 

that the glutamate neurotransmission terminating onto dopamine-rich areas, such as the 

striatum, is hyperfunctional (Miller et al., 2014). Indeed, Miller’s study has shown 

significantly increased evoked glutamate release within the striatum from SHR (ADHD) 

rats compared to Wistar Kyoto (control) rats.  

 

In this third chapter, we will study the consequences of acute methylphenidate 

administration on the electrical activities of ventral tegmental area neurons and the 

implication of glutamate in such activities. Besides, using iontophoresis, we will also 

determine the role of glutamate neurotransmission, as well as the influence of local 

catecholamines, in the regulation of the electrical activities of midbrain dopamine 

neurons. 

 

III-2- Material and Methods 

 

III-2-A- Subjects 

 

  Please refer to paragraph II-2-A. Within this chapter, 85 animals were 

used, from which 188 neurons were recorded.  

 

III-2-B- In vivo extracellular single unit electrophysiology 

 

  Please refer to paragraph II-2-B. Putative midbrain dopamine neurons 

were identified according to electrophysiological criteria summarised by Ungless and 

Grace in 2012 (Ungless et al., 2012). Only presumed dopaminergic neurons presenting 

a notch in the rising phase, a prominent negative compound and a time greater than 1 

ms from the start of the depolarisation to the end of the repolarisation were selected in 

our study (Chenu et al., 2013; Grace et al., 1984; Grace et al., 1983; Ungless et al., 

2004; Valenti et al., 2011). A burst activity in such neurons is defined as two spikes 

occurring at an interval of 80 ms or less, followed by a silence period of at least 160 ms 

(Grace et al., 1984; Overton et al., 1997; Paladini et al., 2014). Using these 

identification criteria, we may exclude PFC-projecting and amygdala-projecting 



99 

 

midbrain dopamine neurons, as action potential duration does not always accurately 

determine dopamine-containing neurons (Chieng et al., 2011; Ford et al., 2006; Hnasko 

et al., 2012; Lammel et al., 2008; Margolis et al., 2006; Margolis et al., 2008; Marinelli 

et al., 2014; Zhang et al., 2010b). However, our strict criteria allow for the recording of 

a rather homogenous population of midbrain dopamine neurons. Coordinates for the 

ventral tegmental area (Fig. 38A) were: anteroposterior -4.5 to -5.5 mm to Bregma, 

lateral 0.3-1.2 mm, dorsoventral 7.2-9.5 mm below cortical surface. For 

microiontophoresis, multibarrel pipettes were filled with either: NMDA, 30 mM, 

dopamine 20 mM, MPH 20 mM, norepinephrine 20 mM, HA-966 20 mM, 7-chloro-

kinurenic acid 20 mM, all at pH 7-8 (dissolved into NaCl 147 mM), or a combination of 

the above and NaCl 2 M for current balancing. The central recording channel was filled 

with saline (NaCl 147 mM). 

 

III-2-C- Prefrontal cortex inhibition 

 

  Adapted from a previous study in rhesus monkeys (Tehovnik et al., 

1997), local prefrontal cortex inhibition was achieved by locally perfusing lidocaine 

(2% w/v in saline, pH 7) at a rate of 2 µl/min immediately prior to intravenous MPH 

challenge. Two and a half microliters of total volume was injected at each injection site. 

Two injection sites in total were made per hemisphere at the following coordinates (in 

mm from Bregma): anteroposterior/lateral: +3/+2 and +2/+1. Two depths per injection 

site were chosen: 1.5 and 3 mm below cortical surface (Fig. 38B). 
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Figure 38: Locations of the ventral tegmental area and local PFC lidocaine 

perfusions. 

(A): The small shaded area located ventrally corresponds to the location of the ventral 

tegmental area (VTA). (B): Representation of local intra-PFC lidocaine perfusions (2% 

in saline, w/v), performed immediately before intravenous MPH challenge. This 

diagram is a stack of two coronal slices with anteroposterior coordinates of +3 and +2 

mm from Bregma. Four injection sites were made per anteroposterior location. Black 

dots indicate microperfusion locations, while dotted circles indicate mean diffusion 

areas adapted from experiments in the rhesus monkey (Tehovnik et al., 1997). The open 

dot indicates the location of the VTA recording site, seen from the above. Adapted from 

Paxinos and Watson (1997). Cg1 cingulate cortex area, PrL prelimbic cortex, VTA 

ventral tegmental area, SNR substantia nigra reticular. 

 

III-2-D- Data analysis 

 

  Please refer to the electrophysiology analysis in paragraph II-2-E. 

 

III-3- Results 

 

III-3-A- Methylphenidate, but not atomoxetine, decreases firing and burst 

activities of VTA dopamine neurons in a dose-dependent manner 

 

  As expected, vehicle intravenous administration did not change either the 

firing (Fig. 39A) or the burst activity (Fig. 39B) of ventral tegmental area dopamine 

neurons. Methylphenidate, injected intravenously at 2 mg/kg, significantly reduced the 

firing and burst activity of midbrain dopamine neurons by 48% and 59%, respectively 
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(Fig. 40A,C). The vast majority (20/24) of neurons had their firing activity reduced by 

more than 20% after 2 mg/kg of MPH (Fig. 40B), but only a few neurons (4/24) 

remained insensitive to this dose, despite fulfilling all the assessment criteria used for 

midbrain dopamine neuron characterisation (Fig. 40D). On a smaller population of 

neurons (n=8), MPH was administered by 2 mg/kg increment doses up to a cumulative 

dose of 4 mg/kg, which further reduced firing and burst activities of ventral tegmental 

area dopamine neuron (Fig. 41A,C).  

 

 

Figure 39: Vehicle administration does not alter the electrophysiological activity of 

midbrain dopamine neurons. 

Neither the firing rate (A) nor the burst activity (B) of ventral tegmental area (VTA) 

dopaminergic neurons were significantly affected by intravenous vehicle 

administrations (saline, 0.2 ml/kg). 
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Figure 40: Methylphenidate decreases the firing and burst activities of midbrain 

dopamine neurons. 

Intravenous administration of a 2 mg/kg single dose of methylphenidate significantly 

reduced the firing rate (A) and burst activity (C) of 20 out of 24 VTA dopamine 

neurons. (B): Representative recording examples of such firing rate reduction following 

MPH exposure, although a few neurons (4/24) remained insensitive to this dose of MPH 

(D). Boxed is shown a typical action potential waveform of the VTA dopamine neuron 

recorded in B, which presents the typical notch during the initial positive inflexion. 

**P<0.01, ***P<0.001 vs. baseline, paired Student’s t-test. 
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Figure 41: Methylphenidate decreases the firing and burst activities of midbrain 

dopamine neurons in a dose-dependent manner. 

In another population of neurons, a cumulative dose of 4 mg/kg of MPH significantly 

reduced the firing rate (A) and burst activity (B) of VTA dopamine neurons. (C): 

Representative recording example of such progressive firing rate reduction following 4 

mg/kg intravenous MPH exposure. *P<0.05 vs. baseline, Neuman-Keuls test after 

significant repeated measures ANOVA. 
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of atomoxetine by 2 mg/kg increments and up to 10 mg/kg did not change significantly 

the firing and burst activity of dopaminergic neurons (Fig. 42), although 6 mg/kg of 

ATX resulted in an almost significant but mild decrease (p=0.06, baseline vs ATX 6 

mg/kg, paired Student’s t-test) in baseline burst activity (Fig. 42B). 
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Figure 42: Atomoxetine does not change the electrophysiological activity of 

midbrain dopamine neurons. 

On a small population of VTA dopamine neurons, atomoxetine was administered up to 

a cumulative dose of 10 mg/kg but did not change the firing (A) and burst activities (B) 

of these neurons. (C): Representative recording example of a neuron insensitive to 

cumulative intravenous ATX administration. Boxed is shown a typical action potential 

waveform of this VTA dopamine neuron. 
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0.2 mg/kg eticlopride administration, a dopamine receptor D2 antagonist, rescued 
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hidden excitatory effects on VTA dopamine neurons and that this effect can only be 

unmasked if dopamine D2 receptors are inactivated. 

 

Figure 43: Methylphenidate exerts a hidden excitatory effects on midbrain 

dopamine neurons. 

(A, B, C): Two mg/kg of MPH significantly decreased the firing and burst activities of 

midbrain dopamine neurons, as observed previously. However, dopamine D2 receptor 

antagonism (eticlopride, 0.2 mg/kg) successfully rescued MPH-induced firing rate 

decreases, and even further increased the firing and burst activities to levels higher than 

under baseline condition, revealing therefore the excitatory effects of MPH onto VTA 

dopaminergic neurons. Following eticlopride, burst activities were higher than baseline 

in 10 out of 20 neurons. Representative firing histogram example of one neuron which 

was silenced by MPH (C), and a less sensitive neuron, still responding to a dose-

response of MPH, administered up to 4 mg/kg (F). The selective dopamine D2 receptor 

antagonist eticlopride not only reversed the MPH-induced effects but produced an 

additional excitatory effect on the firing rates (A, C, D, F) and burst activities (B, C, E, 

F). Boxed are shown the corresponding dopamine neuron action potential waveforms. 

Note that alone, eticlopride did not alter the electrical activities of midbrain dopamine 

neurons (G-I). *P<0.05, ***P<0.001 vs. baseline, Neuman-Keuls test after significant 

repeated measures ANOVA. 
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  III-3-C- The excitatory component of MPH depends upon both D1 and alpha-1 

receptors 

 

  In 23 neurons, the combination of 2 mg/kg of MPH and 0.2 mg/kg of 

eticlopride (MPH/eti) resulted in a 27% and 74% significantly higher firing and burst 

activity (respectively Fig. 44A and 44B). Pre-administration of the alpha-1 receptor 

antagonist prazosin at 1.5 mg/kg, did not prevent (firing: F(1,26)=0.16, p>0.5, burst: 

F(1,26)=0.29, p>0.6) the excitatory effect observed following MPH and eticlopride 

administration (Fig. 44A-C). Three neurons did not show any increase in firing activity 

following MPH and eticlopride. Similarly, initial dopamine D1 receptor antagonism 

with SCH23390 (0.6 mg/kg) failed to prevent such effects (firing: F(1,26)=0.08, p>0.7, 

burst: F(1,26)=0.53, p>0.4, Fig. 45A-C). However, the excitatory effects of MPH 

following D2 blockade were completely lost when the combined administration of both 

prazosin (1.5 mg/kg) and SCH23390 (0.6 mg/kg) was performed (7/8 neurons, Fig. 

46A-C), showing that both D1 and alpha-1 receptors are required for MPH to exert its 

excitatory effects. On their own, prazosin and SCH23390 did not exert any significant 

effects on the firing and burst activities of VTA dopamine neurons. 



107 

 

 

 

Figure 44: Adrenergic alpha-1 receptors alone are not responsible for the 

excitatory effects of methylphenidate. 

(A, B): When the alpha-1 receptor antagonist prazosin was pre-administered (1.5 

mg/kg), MPH (2 mg/kg) still exerted excitatory effects on VTA dopamine neurons 

following dopamine D2 receptor antagonism (eticlopride 0.2 mg/kg). (C): 

Representative firing histogram example of a recording where prazosin was 

cumulatively administered as a pre-treatment and with progressive 0.5 mg/kg 

increments, up to a dose of 1.5 mg/kg. Boxed is shown the corresponding dopamine 

neuron action potential waveform. ns: non-significant, *P<0.05, **P<0.01, ***P<0.001 

vs. baseline, Bonferroni test after significant repeated measures two-way ANOVA. 
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Figure 45: Dopamine D1 receptors alone are not responsible for the excitatory 

effects of methylphenidate. 

When the dopamine D1 receptor antagonist SCH23390 was pre-administered (0.6 

mg/kg), the combination of MPH (2 mg/kg) and eticlopride (0.2 mg/kg) still induced 

higher firing (A) and burst activities (B) of VTA dopamine neurons than under baseline 

conditions. (C): Representative time course example of such recordings. Boxed is 

shown the corresponding dopamine neuron action potential waveform. In this neuron, 

eticlopride was administered before MPH. ns: non-significant, *P<0.05, **P<0.01, 

***P<0.001 vs. baseline, Bonferroni test after significant repeated measures two-way 

ANOVA. 
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Figure 46: Methylphenidate requires both adrenergic alpha-1 and dopamine D1 

receptors to exert its excitatory effects on midbrain dopamine neurons. 

Both alpha-1 receptor antagonism (prazosin 1.5 mg/kg) and dopamine D1 receptor 

antagonism (SCH23390 0.6 mg/kg), administered as a pre-treatment, successfully 

prevented MPH/eticlopride-induced activation of firing (A) and burst (B) activities in 

almost all of the neurons recorded this way (7/8). ns: non-significant, **P<0.01, 

***P<0.001 vs. baseline, $P<0.05 vs. specified conditions, Bonferroni test after 

significant repeated measures two-way ANOVA. 
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Figure 47: Importance of glutamatergic neurotransmission in methylphenidate-

induced excitatory effects. 

(A, B): Pre-treatment with the selective glutamatergic antagonist MK801 (0.5 mg/kg) 

completely prevented MPH-induced excitatory effects, observed following dopamine 

D2 receptor antagonism. (C): Representative recording example of such protocol. Boxed 

is shown the corresponding dopamine neuron action potential waveform. Note a return 

to baseline firing rate levels following recovery of MPH-induced firing rate reduction 

by eticlopride. ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, $P<0.05 vs. 

specified conditions, Bonferroni test after significant repeated measures two-way 

ANOVA. 
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Figure 48: The excitatory effect induced by the combination 

methylphenidate/eticlopride does not mainly involve local catecholamine receptors. 

(A, B): Local iontophoretic applications of dopamine, norepinephrine and 

methylphenidate on VTA dopamine neurons result in firing activity inhibitions. After 

MPH and eticlopride administration (C), these inhibitions are no longer observed. 

Under these conditions, norepinephrine and MPH produce only very small excitations, 

while locally applied dopamine remains devoid of action. Note the strong efficiency of 

norepinephrine to suppress spike generation under baseline conditions (A, B), which is 

a dopamine D2 receptor dependent mechanism, as these effects were not observed 

following D2 receptor blockade (A, C). Here and in the following figures, horizontal 

bars indicate the transient ejection periods using microiontophoresis. **P<0.01, 

***P<0.001 vs. respective 0 nA currents, Neuman-Keuls test after significant ANOVA. 

$P<0.05, $$$P<0.001 vs. respective 10 nA currents, unpaired Student’s t-test. 
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III-3-E- Importance of glutamatergic neurotransmission and NMDA receptors in 

MPH-induced excitatory effects 

 

  The impact of local glutamatergic neurotransmission was investigated on 

the excitatory effects of MPH. Local application of HA-966, a glycine NMDA receptor 

antagonist, or kinurenic acid, a ionotropic glutamate receptor antagonist, did not change 

the overall spontaneous firing (Fig. 49A) or burst activity (Fig. 49B) of dopamine 

neurons. However, we found that HA-966 had no consequences on VTA midbrain 

neuron firing rates in 8 out of 11 neurons (73%), increased firing rates in 1 neuron (9%) 

and decreased firing rates in 2 neurons (18%). On the other hand, kinurenic acid 

decreased firing rates in 10 out of 13 neurons (77%), increased firing rates in 1 neuron 

(8%) and had no effect in only 2 neurons (16%). Neither of the two antagonists ever 

exerted any effect on burst activities in all of the neurons (100%) tested this way. Fig. 

49C-E shows that both kinurenic acid and HA-966 tend to exert a stronger inhibition of 

VTA dopamine neurons following methylphenidate and eticlopride exposure than under 

baseline conditions. These results indicate that MPH exerts its excitatory effects through 

mechanisms that may depend upon local ionotropic glutamate receptor activation. The 

fact that both antagonists did not reduce burst activity was unexpected, as current 

literature suggests that the burst activity of midbrain dopamine neurons strongly 

depends upon tonic activation of local NMDA receptors. In the prefrontal cortex, 

however, HA-966 was very efficient in reducing NMDA-induced firing rate activations 

of pyramidal neurons (not shown, these results have been recently submitted for 

publication). 
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Figure 49: The importance of local glutamatergic neurotransmission in 

methylphenidate-induced excitatory effects. 

Local application of kinurenic acid, a ionotropic glutamate receptor antagonist, or HA-

966, a glycine NMDA receptor antagonist, did not change spontaneous firing (A) or 

burst activities (B), even following both MPH and eticlopride exposures (C). Note that 

some neurons are more sensitive than others to local glutamatergic receptor blockade 

(D, E) and that these firing rate reductions can be potentiated following 

MPH/eticlopride administration. 
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Figure 50: The importance of local NMDA neurotransmission on midbrain 

dopamine neurons. 

(A): Local application of NMDA (10 nA) produced strong and transient firing rate 

increases in VTA dopamine neurons, an effect reversed by kinurenic acid applications 

(10 nA), but not HA-966 (10 nA). (B): Similarly, burst activities were increased 

following NMDA application, an effect only reversed by kinurenic acid applications. 

(C, D): Representative recording examples illustrating such effects. *P<0.05, **P<0.01, 

vs. specified conditions, Neuman-Keuls test after significant ANOVA. 
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VTA, in the excitatory effects of methylphenidate following D2 receptor blockade. 
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Figure 51: The role of the prefrontal cortex in methylphenidate-induced excitatory 

effects on midbrain dopamine neurons. 

Inactivation of the prefrontal cortex (PFC) using micro-perfusions of lidocaine (2% w/v, 

2.5 µl per injection site, 2 µl/min, 8 sites in total) prevented MPH-induced excitatory 

effects on both the firing (A) and burst activities (B) of VTA dopamine neurons. 

Microperfusions of lidocaine were performed immediately prior to the intravenous 

MPH challenge. ns: non-significant, **P<0.01, ***P<0.001 vs. baseline, $P<0.05 vs. 

specified conditions, Bonferroni test after significant repeated measures two-way 

ANOVA. 
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al., 1988; Panin et al., 2012). MPH blocks the dopamine reuptake transporter, which 

prevents extracellular dopamine from being reuptaken into the presynaptic element 

(Markowitz et al., 2008; Volz et al., 2008). This increase in extracellular dopamine 

concentration (Wilens, 2008) activates the inhibitory dopamine D2 autoreceptors, 

therefore producing decreases in both firing rates and burst activities (Centonze et al., 

2002), through D2/D3-mediated negative feedback (Shi et al., 2000a; Viggiano et al., 

2004). Intravenous exposure to ATX did not induce firing or burst activity alterations in 

midbrain dopamine neurons (Fig. 42). Atomoxetine does not change extracellular levels 

of dopamine in both the striatum and the nucleus accumbens (Bymaster et al., 2002). 

Dopamine D2 receptors are major actors in dopaminergic neurons regulation (Guiard et 

al., 2008; Mercuri et al., 1997). Dopamine neuron firing activity alterations are believed 

to play a crucial role in the behavioural abuse responses to psychostimulants (Ellinwood 

et al., 1983; Wolf et al., 1993). The firing inhibition produced by either MPH or D2 

receptor agonists can be reversed by selective D2 antagonists (Ackerman et al., 1993; El 

Mansari et al., 2010; Federici et al., 2005; Tepper et al., 1997). However, we have 

shown here that firing and burst activity rescuing revealed the excitatory effects of MPH 

on these neurons (Fig. 43-44). A few studies have brought out the fact that 

psychostimulant administrations, followed by D2 receptor antagonism, lead to such 

effects (Shi et al., 2000b; Shi et al., 2004). However, we found that simultaneous alpha-

1 and D1 receptor antagonisms are required to suppress the MPH-induced excitatory 

effects (Fig. 46), while either alpha-1 or D1 antagonism alone failed to reduce such 

effects (Fig. 44-45). Such results differ from both the aforementioned studies, as the 

authors found only a partial effect of alpha-1 blockade, but not D1 blockade (Shi et al., 

2000a; Shi et al., 2004). Adrenergic alpha-1 receptor inhibition is known to reduce 

bursting activity as well as regularising the firing rates of VTA dopamine neurons, 

while alpha-2 receptor blockade increased burst activities and provoked irregular firing 

(Grenhoff et al., 1993b). In fact, alpha-1 inhibition sometimes increases, sometimes 

decreases firing and burst activities, according to some authors and in agreement with 

what we found, showing no overall effect due to inconsistencies. Another study also 

demonstrated that increases in extracellular adrenergic levels, induced by reboxetine 

exposure, will activate bursting discharges of VTA dopamine neurons, an effect that is 

probably mediated by the activation of excitatory alpha-1 receptors (Linner et al., 

2001). In the present study, we did not observe any reduction of burst activity following 

1.5 mg/kg of prazosin administration, even after 0.5 mg/kg progressive increments (Fig. 
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44). Moreover, the selective norepinephrine reuptake inhibitor atomoxetine failed to 

induce a modification of the firing rates of midbrain dopamine neurons (Fig. 42). 

Noradrenergic neurotransmission may play a crucial role in the regulation of VTA 

dopamine neurons, mainly through direct connexion from the locus coeruleus to the 

VTA, as shown by previous anatomical and electrophysiological studies (Grenhoff et 

al., 1993a; Jones et al., 1977; Simon et al., 1979). In parallel, VTA projections onto the 

locus coeruleus have been observed (Beckstead et al., 1979; Deutch et al., 1986; 

Samuels et al., 2008; Simon et al., 1979; Swanson, 1982), although they remain very 

sparse (less than 1% of all VTA dopamine neurons project onto the locus coeruleus) 

(Swanson, 1982). Interactions between the locus coeruleus and the VTA are crucial in 

mediating the effects of psychostimulants such as amphetamines (Ferrucci et al., 2013). 

Indeed, following methamphetamine exposure, initial norepinephrine release by 

noradrenergic neurons from the locus coeruleus, combined with dopamine release from 

midbrain terminals, will activate PFC functions (Ferrucci et al., 2013). Moreover, 

norepinephrine-deficient mice present hypersensitivity to cocaine and amphetamine 

(Schank et al., 2006; Weinshenker et al., 2008). In our study, local noradrenergic 

pathways may be partially required for MPH-induced excitatory effect. Noradrenergic 

modulation of midbrain dopamine neurons has not been clearly characterised. Indeed, a 

few studies have shown that the norepinephrine reuptake inhibitor reboxetine can 

increase the firing activities of midbrain dopamine neurons (El Mansari et al., 2010; 

Linner et al., 2001). The alpha-1 receptor antagonist prazosin is known to reduce 

bursting activity, while the alpha-2 receptor antagonist idazoxan  has opposite effects 

(Grenhoff et al., 1993a; Grenhoff et al., 1993b). Contradictory results emerge within 

our study, as the norepinephrine reuptake inhibitor atomoxetine did not induce firing 

rate inhibition of VTA dopamine neurons (Fig. 42), unlike reboxetine. To be noted: 

alone, eticlopride did not significantly affect the overall electrical discharges of VTA 

dopamine neurons (Fig. 45C). 

 

 Under baseline conditions, local iontophoretic application of dopamine, and 

norepinephrine exerted strong inhibition of dopamine neuron firing activities (Fig. 48), 

as emphasised before (Einhorn et al., 1988; Guiard et al., 2008; Kiyatkin et al., 1998; 

Paladini et al., 2004; Rosenkranz et al., 1999; White et al., 1984; White et al., 1986). 

According to some studies, norepinephrine strongly binds to the Gi-coupled dopamine 

D4 receptor, which belongs to the D2-like family, hence producing firing inhibition 



118 

 

(Lanau et al., 1997; Newman-Tancredi et al., 1997; Root et al., 2015). In the present 

study, we witnessed a strong reduction of dopamine and norepinephrine-induced firing 

rate inhibition following eticlopride administration (Fig. 48), which indicates that 

dopamine and norepinephrine-induced firing rate inhibitions are also both mediated 

through local dopamine D2-like receptor activation. Our study, for the first time, reports 

that local methylphenidate application onto VTA dopamine neurons produces a similar 

effect to what is observed using dopamine, a result of dopamine D2 inhibitory 

autoreceptors activation following MPH-induced DAT blockade. Surprisingly, when 

methylphenidate and eticlopride were administered, dopamine, but not methylphenidate 

or norepinephrine, still produced inhibitory effects (in all of our recordings) on 

dopaminergic neuron firing rates (Fig. 48A), although such effects are greatly 

dampened, which could be partially explained by mutual competition on the dopamine 

D2 receptor by dopamine (leaking from the pipette) and eticlopride. These results differ 

from those in the study by Einhorn in 1988, where the author found that local dopamine 

application does not alter firing parameters following sulpiride administration (Einhorn 

et al., 1988). In line with our results, one study found that local dopamine application 

onto VTA dopaminergic neurons leads to firing decreases even during the application of 

the D2 receptor antagonist raclopride (Guiard et al., 2008). In this study, the authors also 

found that norepinephrine application leads to firing inhibition under baseline 

conditions, an effect strongly attenuated under idazoxan iontophoresis, an alpha-2 

receptor antagonist. 

 

 In the ventral tegmental area, burst activity is regulated by local 

neurotransmission and each bursting activity releases greater quantities of dopamine at 

dopamine terminals versus single or bursting spike activity (Bean et al., 1991; Gonon, 

1988; Oster et al., 2015). Alternate firing modes between bursting and single discharges 

are vital to maintain balanced D1 and D2 receptor occupancies (Dreyer et al., 2010). 

Indeed, in our experiment, local NMDA application induced firing rate increases and 

burst discharges (Fig. 50), as seen before (Chergui et al., 1993; Johnson et al., 1992; 

Kitai et al., 1999; Mereu et al., 1997; Overton et al., 1997; Wickham et al., 2015; 

Zweifel et al., 2009), probably through enhancement of excitatory currents (Wu et al., 

1999). However, only the broad ionotropic glutamate receptor antagonist kinurenate, or 

7-chloro-kinurenic acid (Mok et al., 2009), was effective in abolishing NMDA-induced 

activations (Fig. 50A,C). The specific NMDA/glycine antagonist HA-966 failed to 
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reduce such activations in midbrain neurons (Fig. 50A,B), but strongly dampened 

NMDA-induced firing rate activations in cortical neurons (not shown). These two 

antagonists did not significantly modify spontaneous firing and burst activities of 

midbrain dopamine neurons (Fig. 49A-B), although a small population of neurons were 

mildly affected by these antagonists under both baseline and after MPH/eti conditions, 

explaining such variations in the responses (Fig. 49C-E). One study found opposite 

results, where intraperitoneal administration of kinurenic acid produced firing and burst 

activity decreases (Linderholm et al., 2007). These differences can be explained by the 

techniques used. Indeed, the authors administered a rather high intraperitoneal dose of 

4-chlorokinurenine, a precursor to 7-chloro-kinurenic acid, that will systemically block 

all NMDA receptors in the brain. Therefore, glutamatergic neurotransmission pathways, 

arising from other brain regions, may directly or indirectly play an important role in the 

regulation of midbrain dopamine neurons, an effect that we did not witness locally, 

although a previous study from our laboratory showed that 85% of midbrain 

dopaminergic neurons are activated following 0.5 mg/kg of intravenous MK801, a non-

competitive NMDA antagonist (Bennett et al., 2007), probably as a consequence of the 

inhibition of GABAergic pathways. Here, we suggest that only a minority of dopamine 

neurons are under direct tonic NMDA receptor activation, while other neurons remain 

insensitive to local glutamate neurotransmission. Here, we therefore counterbalance 

previous results showing that tonic activations of NMDA receptors are responsible for 

bursting discharges of midbrain dopamine neurons. Moreover, some dopamine neurons 

might be activated by kinurenic acid because of its diffusion onto GABAergic 

interneurons, located at close proximity to dopaminergic neurons, alleviating the 

inhibition of firing activities from interneurons on these neighbouring dopamine 

neurons. Such effects on interneurons have yet to be identified. Moreover, intra-VTA 

infusion of a GABA antagonist induced strong dose-dependent dopamine release 

(Giorgetti et al., 2002). 

 

 Finally, our results demonstrate the role of NMDA receptors in mediating the 

hidden MPH-induced excitatory effects. Many studies have found that burst activity is 

strongly regulated by afferent PFC connexions (Lodge, 2011; Murase et al., 1993; 

Omelchenko et al., 2007; Overton et al., 1997; Patton et al., 2013; Svensson et al., 

1989). Pre-treatment with the non-competitive NMDA antagonist MK 801 at 0.5 mg/kg 

significantly prevented the MPH-induced excitatory effects (Fig. 47). Local MK 801 
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application led to dopamine neurons excitation in one study, a result that partially 

corroborates our findings (French et al., 1993). Another study suggested that local MK 

801 application may also target GABA neurons, which are major actors in dopamine 

neuron modulations within the VTA (Liu et al., 2012a) and the substantia nigra 

(Nissbrandt et al., 1994). Lidocaine, a blocker of fast voltage-gated sodium channels 

(Catterall, 2002; Courtney, 1975; Sheets et al., 2003; Vedantham et al., 1999; Yeh et 

al., 1985), is used in medicine as a local anaesthetic (McDonald et al., 2015; Perniola et 

al., 2014; Terkawi et al., 2015; Yung et al., 2015) or in intravenous preparations 

(Hassani et al., 2015; Honarmand et al., 2015; Khan et al., 2015; Kranke et al., 2015; 

Papapetrou et al., 2015). This powerful anaesthetic is also routinely used in veterinary 

medicine (DeRossi et al., 2015; Hendrickx, 2015; Hermeto et al., 2015; Morgaz et al., 

2014). It has been frequently used to induce cortical inactivation in animal models (Ahn 

et al., 2002; Martin, 1991; Sara et al., 1995; Tehovnik et al., 1997; Uehara et al., 2007; 

Valenti et al., 2009). When lidocaine was slowly pre-perfused within the PFC, no 

hidden excitatory effects of MPH were observed following D2 receptor antagonism in 

the majority of the neurons tested (Fig. 51). This highlights the importance of PFC 

glutamatergic descending connexions onto the VTA in response to MPH/eti 

administration, in line with another study which clearly demonstrated that PFC lesion 

prevents MPH behavioural sensitisation (Lee et al., 2008). Moreover, it has been 

established that these pathways are essential in maintaining normal VTA functions 

(Almodovar-Fabregas et al., 2002; Carr et al., 2000; Chen et al., 2011; Fujisawa et al., 

2011), which can be disrupted under psychostimulant administration (Wolf, 1998), 

mainly through calcium channel regulations (Rajadhyaksha et al., 2004; Rajadhyaksha 

et al., 2005). 

 

  To conclude, we propose that MPH firstly activates both dopamine D1 and 

adrenergic α1 receptors within the PFC, which, in turn, trigger glutamate release in the 

midbrain originating from cortico-tegmental projections, inducing in fine NMDA 

receptor activation and therefore enhancement of the firing rates of VTA dopaminergic 

neurons. Such an excitatory input of MPH on midbrain dopamine neurons can only be 

observed when dopamine D2 inhibitory autoreceptors are inactivated. 
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Chapter IV – The impact of chronic 

methylphenidate administration on adult 

animals. 
 

 

IV-1- Introduction 

 

Some studies have reported that chronic stimulant use may lead to some growth 

deficits in adolescents (Charach et al., 2006; Poulton et al., 2003; Poulton et al., 2013; 

Rose et al., 2015; Safer et al., 1972; Spencer et al., 2006) and rodents (Komatsu et al., 

2012), although this is disputed by a few (Biederman et al., 2003; Harstad et al., 2014; 

Sirois et al., 2009). Other studies reported changes in fertility (Adriani et al., 2006; 

Fazelipour et al., 2012; Ramasamy et al., 2014). Concerns arise with acute and chronic 

psychostimulant uses, as they might induce long-lasting neuronal adaptations (Achat-

Mendes et al., 2003; Konova et al., 2015; Lepelletier et al., 2015; Marco et al., 2011; 

Urban et al., 2013a). As mentioned before, ADHD drugs may sensitise patients to later 

legal (Bron et al., 2013; Dalsgaard et al., 2014; Rush et al., 2005; Vansickel et al., 

2011) and/or illegal drug abuse (Dalsgaard et al., 2014; Dos Santos Pereira et al., 2015; 

Jordan et al., 2014; Vansickel et al., 2011). Indeed, in adults, acute MPH induces 

craving for nicotine, increases tobacco consumption and smoking. In humans, ADHD 

adolescents have higher risks of substance use disorders when compared to the 

background population. Animal studies performed on hypertensive rats (SHR strain, an 

animal model of ADHD) have revealed that an adolescent MPH treatment at 1.5 mg/kg 

for 30 days, orally and followed by 22 days of drug withdrawal, but not an ATX 

treatment (0.3 mg/kg, i.p., 22 days of withdrawal), can induce higher cocaine sensitivity 

in adulthood (Jordan et al., 2014; Somkuwar et al., 2013). Interestingly, acute 

methamphetamine administration leads to a rise in blood sugar (glucose) levels 

(Graham et al., 2010), probably through elevated levels of circulating corticosterone, as 

observed in that study. Methamphetamines induce hyperthermia and increase brain 

extracellular glucose (Pachmerhiwala et al., 2010). Pre-treatment with prazosin (1 

mg/kg, intraperitoneally) prevented the MDMA-induced high extracellular glucose 
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levels, but not hyperthermia. Such effects may arise from independent mechanisms 

following MDMA administration. Besides, extracellular glucose levels and neuronal 

activity are closely linked (Fellows et al., 1992; Routh, 2010; Silver et al., 1994; 

Vazirani et al., 2013), mainly through glia metabolism coupling (Tsacopoulos et al., 

1996; Turner et al., 2011a). In this fourth chapter, we will assess how chronic exposure 

to methylphenidate during adulthood can impact on physiological parameters such as 

body growth and glycaemia as well as neuronal adaptations of VTA dopamine neurons, 

PFC pyramidal neurons or striatal medium spiny neurons. With this aim, we will 

investigate whether chronic MPH can induce long-lasting desensitisation of dopamine 

D2 receptors, NMDA neurotransmission adaptations and NMDA receptor 2B expression 

as well as striatal dopamine release. 

 

IV-2- Material and Method 

 

IV-2-A- Subjects and groups  

 

  Seventy-eight male Sprague-Dawley rats were purchased from Charles 

River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22
o
C with 

humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and 

water were provided ad libitum. Animals were allowed a 3-day acclimatisation period 

after delivery. All experiments were performed during the light phase and with 

permission from the UK Home Office and De Montfort University Ethics Committee 

under the Project Licence 60/4333 and with the Personal Licence 60/13750. 

 

  Post-adolescence animals weighing 150 grams were used at the 

beginning of each treatment. Animals were randomly assigned to one of the following 

groups (Fig. 52): 

 

- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of saline, 

intraperitoneally and for 15 consecutive days. 

-  Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 ml/kg of 

sucrose 10% (w/v) and for 15 consecutive days. 
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   All experiments were performed the day following the last day of 

administration, hence allowing a washout period. 

 

 

 

Figure 52: Experimental protocol for chronic methylphenidate treatment during 

adulthood. 

Following 3 days of acclimatisation, rats were given MPH at doses of 4-5 mg/kg/day. 

Administration routes were either intraperitoneal (using a saline 0.9% w/v as vehicle) or 

oral (using a sucrose 10% w/v as vehicle). In the oral dosing protocol, each rat 

voluntarily drank 2 ml/kg of solution. MPH was either dissolved in saline 0.9% or 

sucrose 10%. Following 15 consecutive days of treatment, animals were allowed a 24-

hour washout period. n values represent the number of animals included in each group. 
 

 

IV-2-B- In vivo extracellular single unit electrophysiology 

 

  Please refer to paragraph III-2-B. In this chapter, the number of putative 

ventral tegmental area dopamine neurons per track was recorded by recording the total 

number of active neurons encountered during one electrode descent within the region of 

interest.  

 

 

IV-2-C- Evaluation of glycaemia and growth 

 

  Blood sugar level, or glycaemia, was measured immediately following 

anaesthesia induction. A single blood drop was taken from the lateral tail vein and blood 

sugar levels were assessed using the Accu-Chek® blood glucose system (Aviva). In the 

rat, normal blood sugar levels range between 5.5 and 8.1 mM (Akbarzadeh et al., 2007; 

Florence et al., 2014; Kahn et al., 1991; Wang et al., 2010b). Experimentally-induced 
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diabetes increases glycaemia to an average of 20 mM (Kahn et al., 1991; Manjunath et 

al., 2009; Nagai et al., 2013; Rasch, 1979), although some consider the limit to be 

above 11.1 mM (Lambertucci et al., 2012). 

 

  Animals were weighed daily, at 9 AM. Growth parameters were 

established by comparing the weights of the animals before and at the termination of the 

treatment. Therefore, the weight ratio between the end and the beginning of the chronic 

treatment was measured for each animal and was a direct reflexion of body weight gain. 

 

IV-2-D- In vitro 
3
H-dopamine release 

 

  At the termination of the treatments, some striata were used to determine 

the capacity of MPH to induce tritiated dopamine release. For the complete method, 

please refer back to paragraph I-2-B. 

 

IV-2-E- Western Blots 

 

  Please refer to paragraph II-2-D.  

 

IV-2-F- Data analysis 

 

  Please refer to previous paragraphs. In our model, glycaemic values 

above 20 mM (3.6 g/l) were arbitrarily considered diabetic. For cell per track protocols, 

the total number of spontaneously firing cells per electrode descent was recorded and 

expressed as a mean ± standard error of the mean (S.E.M.) for each group. 
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IV-3- Results 

 

IV-3-A- Effects of treatments on growth and blood sugar levels 

 

  Oral administrations of a sucrose 10% solution, at a dosing schedule of 4 

ml/kg/day and for 15 consecutive days, tended to increase blood sugar levels (p=0.065), 

compared to animals not receiving oral dosing, whether given MPH or not (Fig. 53A). 

In parallel, 4-5 mg/kg/day of methylphenidate and for 15 days did not significantly 

change glycaemia compared to similar vehicle administration (Fig. 53B). Therefore, 

neither dosing routes nor treatments could significantly alter blood glucose 

concentrations. 

 

 
 

Figure 53: Chronic exposures to methylphenidate or sucrose do not alter blood 

sugar levels. 

(A): Chronic oral ingestion of a 10% sucrose solution (2 ml/kg) almost significantly 

increased blood sugar levels (p=0.065, unpaired Student’s t-test), whether MPH was 

given or not. (B): Chronic exposure to MPH (5 mg/kg/day) did not influence blood 

sugar levels (glycaemia), measured with the Accu-Chek system kit (Aviva). 
 

 

  Animals treated intraperitoneally did not show any signs of slower 

growth (Fig. 54A). However, it was initially found in our first group of animals that 

daily intraperitoneal administrations of both vehicle (n=28) and MPH (4 mg/kg/day, 

n=19) induced a 4% significant reduction in weight gain (p=0.04 vs non-i.p., unpaired 

Student’s t-test), compared to animals treated orally (Fig. 54B). Similarly, daily MPH 

for 15 consecutive days did not affect growth parameters (Fig. 54C), reinforcing the 

hypothesis that MPH is not positively correlated to slower growth rates. 
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Figure 54: Impact of intraperitoneal dosing and methylphenidate on weight gain. 

Daily intraperitoneal administrations did not alter total body weight gain (A), although 

one population of animals included in a previous study showed significantly reduced 

weight gain (B). Chronic exposure to 4-5 mg/kg/day of MPH did not delay growth (C). 

*P<0.05, unpaired Student’s t-test. 

 

IV-3-B- Chronic methylphenidate induces MPH-insensitivity in VTA dopamine 

neurons 

 

  Different groups were used within our study. Indeed, animals received 4-

5 mg/kg of MPH (or corresponding vehicle) either orally or intraperitoneally, for 15 

consecutive days. Based upon similar responses to MPH regardless of frequency and 

administration route, groups were pooled between controls (naive and vehicle) and 

MPH-treated. Indeed, we did not observe any qualitative or quantitative difference 

between the two different administration routes (oral and intraperitoneal) and neuronal 

responses to MPH or eticlopride challenges. On a small naive population (n=10), 

methylphenidate was administered intravenously at 2 mg/kg. As previously mentioned 

(Chapter III, Fig. 43A,C), this dose successfully decreased firing and burst activities of 

ventral tegmental area dopamine neurons (n=9), an effect reversed after dopamine D2 

receptor antagonism using 0.2 mg/kg of eticlopride. Similarly, vehicle-treated animals 

displayed similar responses to both MPH and eticlopride, whether animals were treated 

with sucrose only (oral dosing) or saline (intraperitoneal dosing) (Fig. 55). However, in 

animals chronically treated with 4-5 mg/kg/day of MPH, the intravenous MPH 

challenge (2 mg/kg) failed to significantly decrease both firing and burst activities of 

midbrain dopamine neurons (Fig. 55), a result not observed with animals treated with 

the vehicle only (Fig. 55). Examples of representative firing rate histograms from naive, 

vehicle and oral MPH animals are represented respectively in Fig. 56A, B and C. 
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Identical representations are displayed on Fig. 57A and B for intraperitoneal 

administrations. Note that reversal of the MPH-induced decrease of electrical activities 

with eticlopride led to significantly higher firing rates compared to baseline activities in 

the majority of all recordings (Fig. 55A, 57A). 

 

 

Figure 55: Chronic methylphenidate exposure induces tolerance in midbrain 

dopamine neurons to subsequent intravenous challenges. 

When adult rats were chronically exposed to MPH (4-5 mg/kg/day), tolerance to 

subsequent intravenous challenges with MPH (2 mg/kg) was observed in VTA 

dopamine neurons, assessed by no significant change of the firing (A) and burst 

activities (B) of such neurons following MPH challenges in MPH-treated animals, 

contrary to what was seen in control animals (vehicle). Note successful recovery 

following eticlopride (0.2 mg/kg). Our different dosing routes (oral or intraperitoneal) 

did not produce any differences in the responses to either MPH or eticlopride. 

Therefore, here and in some following figures, groups of animals were pooled based 

upon similar responses. ns: non-significant, **P<0.01 vs. respective baselines, 

$$P<0.01, $$$P<0.001 vs. specified conditions, Bonferroni test after significant 

repeated measures two-way ANOVA. 
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Figure 56: Tolerance to methylphenidate challenges in midbrain dopamine 

neurons recorded from orally treated animals. 

In naive (A) and vehicle animals (B), intravenous challenge with 2 mg/kg of MPH 

considerably reduces spike generation of VTA dopamine neurons, an effect lost 

(tolerance) following chronic MPH treatment (C). Note that tolerance was observed 

even following 4 mg/kg of intravenous MPH challenge. 
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Figure 57: Tolerance to methylphenidate challenges in midbrain dopamine 

neurons recorded from intraperitoneally-treated animals. 

Similarly to what was observed previously, vehicle animals showed strong sensitivity to 

intravenous MPH challenges (A), while tolerance was observed in animals chronically 

exposed to MPH (B). Tolerance was even observed following 4 mg/kg of intravenous 

MPH challenge. 

 

IV-3-C- Chronic methylphenidate does not modify baseline VTA neuronal 

population activities but triggers burst activity increases following intravenous MPH 

and D2 blockade challenges 

 

  We then considered whether chronic MPH could affect the ventral 

tegmental area neuronal population (Fig. 58A) before and after intravenous MPH and 

eticlopride challenges. In both control and MPH-treated animals, baseline firing and 

burst activities as well as the total number of spontaneously discharging dopamine 

neurons are not significantly altered following 15 days of chronic 4-5 mg/kg/day MPH 

treatment (respectively Fig. 58B, C and D). After MPH and D2 blockade challenges 

(respectively 2 and 0.2 mg/kg), both groups displayed similar neuronal responses (Fig. 

58B-D). 
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Figure 58: Neuronal populations before/after methylphenidate and eticlopride 

administrations and their respective responses. 

(A): In this experiment, a cell per track protocol was performed, where spontaneously 

discharging VTA dopamine neurons were recorded per electrode descent. Vertical black 

bars indicate positions of the descents, while black dots indicate locations of some of 

the spontaneously discharging VTA dopamine neurons. Determined from stereotaxic 

coordinates. (B, C): In both control and MPH-treated animals (4-5 mg/kg/day), the 

global activity of dopamine neurons is not significantly altered after MPH 

administration and dopamine D2 receptor blockade. (D): The total number of active 

dopamine neurons found in each track remained unchanged in both groups. n values 

indicate the number of neurons included. *P<0.05, **P<0.01 vs. respective baselines, 

Neuman-Keuls test after significant ANOVA. 

 

IV-3-D- Chronic methylphenidate leads to dopamine transporter desensitisation 

rather than D2 receptor desensitisation 

 

  Following our results concerning MPH-insensitive dopaminergic 

neurons, we tested whether desensitisation arises at the dopamine transporter or the 

dopamine D2 receptor level. Intravenous administrations of a single 20 µg/kg dose of 

quinpirole, a dopamine D2 receptor agonist, successfully mimicked the 2 mg/kg MPH 

challenge by significantly decreasing the firing and burst activities of 10 out of 10 VTA 

dopamine neurons (firing: F(2,16)=53.99, p<0.0001,  burst: F(2,16)=3.54, p<0.05, Fig. 59). 

Both groups (MPH-treated animals and vehicle groups) displayed similar sensitivities to 

D2 receptor agonism (respectively 77.3% and 76.4%), calculated by the percentage of 

firing rate decrease before and following quinpirole administration (Fig. 59B). These 

results indicate that chronic MPH administration does not induce dopamine D2 receptor 

desensitisation. It should be noted that the neuronal firing rates returned to the exact 
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same baseline levels following both quinpirole (D2 receptor agonism) and eticlopride 

(D2 receptor antagonism) challenges (Fig. 59A), unlike what is observed following 

MPH/eticlopride challenges. 

 

 

Figure 59: Chronic treatment with methylphenidate does not induce dopamine D2 

autoreceptor desensitisation. 

(A): In both controls and MPH-treated animals, intravenous challenges with 20 µg/kg of 

quinpirole, a potent dopamine D2 receptor agonist, strongly decreased the firing 

activities of VTA dopamine neurons, an effect completely reversed by dopamine D2 

receptor antagonism (eticlopride 0.2 mg/kg). (B): Both groups showed similar 

sensitivities to quinpirole challenges. (C, D): Representative recording examples in 

controls and MPH-treated animals. ***P<0.001, Bonferroni after significant repeated 

measures two-way ANOVA. 
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strongly suggest that chronic MPH leads to dopamine transporter desensitisation or 

down-regulation, as animals belonging to the MPH-treated groups display milder effects 

for the same MPH concentration (either 10 or 100 µM) to induce dopamine release, 

rather than dopamine D2 receptor desensitisation, as they display similar sensitivity to 

dopamine D2 receptor agonism. 

 

Figure 60: Dopamine release tolerance to methylphenidate perfusion in chronically 

treated animals. 

Perfusion of striatal slices from control animals with 10 and 100 µM of MPH induced in 

vitro dopamine release, as observed previously. However, application of 10 µM of MPH 

in animals chronically treated with MPH failed to induce dopamine release. In MPH-

treated animals, 100 µM superfusions of MPH led to significantly lower dopamine 

release than striatal slices from control animals. n values represent the number of 

perfusion chambers used. **P<0.01, ***P<0.001 vs. respective baselines, $$P<0.01, 

$$$P<0.001 vs. respective doses, Neuman-Keuls after significant ANOVA. Here, n 

values represent the number of perfusion chambers used. 
 

IV-3-E- The impact of chronic methylphenidate on the spontaneous and 

glutamate- induced firing activity of PFC pyramidal neurons, striatal MSN and 

NMDA2B protein expression 

 

  Compared to controls, animals treated during adulthood with a chronic 

MPH treatment (5 mg/kg/day, orally for 15 days) displayed a significantly higher firing 

activity of pyramidal neurons in the PFC (p=0.01, unpaired Student’s t-test, Fig. 61A). 

Such treatment did not affect burst discharge (Fig. 61B) or the total number of active 

pyramidal neurons found in one electrode descent (Fig. 61C), although small but non-

significant increased tendencies were observed (p=0.1 and p=0.24, respectively, 
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unpaired Student’s t-test). In a large population of neurons (n>40), NMDA was locally 

applied (30 mM) onto pyramidal neurons using various iontophoresis currents. In both 

vehicle (saline) and MPH-treated animals (MPH 4 mg/kg/day, intraperitoneally and for 

15 days), different currents of NMDA (5, 10 and 15 nA) all successfully triggered large 

neuronal firing activation (Fig. 61D). No difference in the potency of NMDA to induce 

such activation was found between the two groups. When medium spiny neurons 

(MSN) were studied, we found a significant decrease in the NMDA-induced excitation 

in animals that were chronically treated with oral MPH during adulthood (p=0.05, 

unpaired Student’s t-test, Fig. 61E), suggesting that MPH administration may induce 

local electrophysiological changes in striatal MSN rather than in PFC pyramidal 

neurons. 
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Figure 61: Effect of chronic methylphenidate treatment on spontaneous and 

NMDA-induced firing activities of prefrontal cortex pyramidal and striatal 

medium spiny neurons. 

Chronic MPH treatment (5 mg/kg/day, oral) significantly increased the firing rates of 

spontaneously discharging prefrontal cortex pyramidal neurons (A), without altering 

burst discharges (B) nor the total number of active neurons (C), although tendencies to 

increase were observed. (D): In these neurons, chronic MPH exposure (4 mg/kg/day, 

i.p.) did not alter NMDA neurotransmission. (E): In silent striatal GABAergic medium 

spiny neurons, chronic MPH (5 mg/kg/day, oral) led to significantly decreased neuronal 

responses to locally applied NMDA. *P<0.05, **P<0.01 vs. vehicle, unpaired Student’s 

t-test (A, E). ns: non-significant, ***P<0.001 vs. respective 0 nA current, Neuman-

Keuls after significant ANOVA (D). 
 

 

   When dopamine (10 nA) was locally applied on striatal medium spiny 

neurons, using microiontophoresis, animals exposed to chronic MPH treatment (5 

mg/kg/day, orally and for 15 consecutive days) displayed decreased sensitivities of 

NMDA neurotransmission (Fig. 62). Indeed, as seen in Chapter II (Fig. 34), NMDA 

application (10 nA) on medium spiny neurons located in the striatum induced either a 

significant decrease (p<0.05) or a non-significant increase (p>0.05) in NMDA 

neurotransmission (Neuman-Keuls test after significant ANOVA, respectively Fig. 34A 

and B). The fact that some MSN display firing rate inhibition while other MSN display 

firing rate activation, following iontophoretic application of both dopamine and NMDA, 

can be explained by two different populations of MSN within the striatum. Indeed, 

0

10

20

30

40

50

*

silent, n=9-10

S
u

p
p

le
m

e
n

ta
r
y
 s

p
ik

e
s
/1

0
s

in
d

u
c
e
d

 b
y
 1

0
 n

A
 o

f 
N

M
D

A

A B C

D

n=35-80

0

10

20

30

40

**
S

p
ik

es
/1

0
 s

n=35-80

0

10

20

30

40

50

B
u

r
st

 A
c
ti

v
it

y
 (

%
)

n=4-13

0

5

10

15

N
u

m
b

e
r
 o

f 
p

u
ta

ti
v

e
p

y
r
a

m
id

a
l 
c
e
ll

s 
/ 
tr

a
c
k

E

0

20

40

60

80

100

MPH 4 mg/kg/day

i.p., 15 days

Vehicle

i.p., 15 days

n= 34 34 3228 28 2450 67

***

***

***

***

***

*** 0 nA

5 nA

10 nA

15 nA

S
u

p
p

le
m

e
n

ta
r
y

 s
p

ik
e
s/

1
0
s

in
d

u
c
e
d

 b
y

 N
M

D
A

Vehicle, oral,

MPH 5 mg/kg/day, oral

Vehicle, oral,

MPH 5 mg/kg/day, oral

ns



135 

 

several studies suggest that dopamine D1 receptor signalling enhances dendritic 

excitability and glutamatergic signalling, while D2 receptor signalling exerts the 

opposite effect (Nishi et al., 2011; Surmeier et al., 2007). Moreover, such a segregation 

of MSN according to the expression of either D1 or D2 receptors directly parallels the 

role they play in the direct or indirect pathways to the basal ganglia, respectively 

(Gerfen et al., 2011; Macpherson et al., 2014; Reinius et al., 2015; Umemiya et al., 

1997). To note: some MSN express both D1 and D2 dopamine receptors, but are 

confined within the nucleus accumbens (Bertran-Gonzalez et al., 2008; Nishi et al., 

2011; Yager et al., 2015). Consistently with what was previously observed in Chapter 

II, control animals displayed identical responses (potentiation or dampening of NMDA) 

to iontophoretically applied dopamine, in conjunction with NMDA (Fig. 62A and B). 

However, in striatal medium spiny neurons, adult animals chronically exposed to MPH 

presented decreased sensitivities of the NMDA neurotransmission to locally applied 

dopamine, an effect not observed following vehicle exposure (controls). 

 

 

Figure 62: Chronic exposure to methylphenidate induces dampening of striatal 

medium spiny neurons to locally applied dopamine. 

In control animals, locally applied dopamine (10 nA) induces either dampening (A) or 

potentiation (B) of the responses of striatal GABAergic medium spiny neurons (MSN) 

to local NMDA applications (10 nA), as seen previously in Fig. 34. In comparison, 

animals treated chronically with MPH during adulthood (5 mg/kg/day, for 15 

consecutive days) displayed decreased sensitivities (A, B) of the NMDA 

neurotransmission to locally applied dopamine. *P<0.05 vs. NMDA 10 nA, Neuman-

Keuls after significant ANOVA. 
 

 

Based upon such results and in order to further examine NMDA 

neurotransmission in the striatum, we then focused on NR2B protein expression. In the 

prefrontal cortex and the hippocampus, adult MPH treatment induced small but non-

significant NMDA2B protein expression decreases, whilst it significantly decreased 
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NR2B protein expression in the striatum (Fig. 63). These combined results indicate that 

chronic MPH exposure during adulthood leads to decreased NMDA neurotransmission 

in striatal medium spiny neurons, in correlation with a decreased striatal NR2B 

expression. 

 

 
 

Figure 63: Chronic methylphenidate exposure leads to decreased striatal NMDA 

2B receptor expression. 

Chronic exposure to MPH (4 mg/kg/day, intraperitoneally) significantly decreased 

NR2B protein expression in the striatum, but not in the prefrontal cortex, nor in the 

hippocampus. Bottom are displayed representative immunoblots with protein sizes in 

kilodaltons (kD). *P<0.05 vs. vehicle, unpaired Student’s t-test. 

 

IV-4- Discussion 

 

 In this chapter, we have first demonstrated that dissolving up to 5 mg/kg of 

methylphenidate in a 10% sucrose solution (w/v) can be considered an efficient and 

stress-free method for oral drug delivery to rats. Such a protocol also closely reproduces 

the pharmacokinetic profiles in humans following methylphenidate intake (Calipari et 

al., 2013). Indeed, we did not find any long-lasting increase in the blood sugar levels 

(glycaemia) of animals following chronic 2 ml/kg sucrose administrations (Fig. 53A). 

These observations confirm previous findings where efficient drug delivery was 

performed using the exact same protocol in Lister hooded rats (Atcha et al., 2010). 

Here, we avoid the stress that can result from using gastric gavage techniques (Hoggatt 
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et al., 2010; Turner et al., 2011b; Turner et al., 2012). It also reduces the risk of the 

potentially life-threatening consequences of gavage (Germann et al., 1994). Nowadays, 

countless alternative techniques are used for voluntary oral drug dosing in rodents, 

many using sweet or palatable substances such as chocolate (Huang-Brown et al., 

2002), peanut butter (Diogo et al., 2015; Taylor et al., 2016), cookie dough (Corbett et 

al., 2012), jelly (Flecknell et al., 1999), juice (Wheeler et al., 2007), milk (Matsumoto 

et al., 2014) or even honey (Kuster et al., 2012). 

 

 Intraperitoneal or oral methylphenidate, administered at 4-5 mg/kg/day during 

15 consecutive days, did not influence glycaemic parameters after the last 

administration (Fig. 53B). Amphetamines are known to induce hypoglycaemia in mice 

(Moore et al., 1965) whilst inducing hyperglycaemia in humans (Asser et al., 2015). 

Local fluctuations in cerebral glucose metabolism within the prefrontal cortex, the 

limbic cortex and some subcortical structures such as the caudate or the thalamus, have 

been observed following either acute MPH (0.35 mg/kg) or D-amphetamine (0.15-0.25 

mg/kg) injections (Ernst et al., 1997; Matochik et al., 1993), a result that might be 

explained by higher neuronal glucose demands upon activation (Gobel et al., 2013). In 

humans, consumption of another psychostimulant, caffeine, has been linked to systemic 

increases of glucose concentration (Olateju et al., 2015), although this was not observed 

in rats (Jarrar et al., 2014). It remains difficult to fully establish a linear relationship 

between local brain glucose metabolism and systemic blood glucose levels, although 

they may vary proportionally (Magnoni et al., 2012; Zetterling et al., 2011). Our results 

did not show any significant change in blood sugar levels following 15 days of chronic 

5 mg/kg/day MPH administration. The long delay between the last MPH administration 

and the blood sugar level measurement could explain such results, although it is more 

than likely that MPH has no effect on glycaemia, regardless of the presence or absence 

of drug withdrawal. 

 

 Neither the chronic MPH treatment nor the intraperitoneal administration route 

were shown to alter the growth parameters of adult rats (Fig. 54A,C). However, we 

earlier found in another group of animals that the intraperitoneal route (administration 

of both vehicle and MPH) led to a slightly but significantly lower body weight gain 

(Fig. 54B). Here, we put forward the hypothesis that stress, caused by the injection, may 

induce such an effect. This partly corroborates previous findings, where a 13 week long 
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MPH treatment in young rats induced a delayed body weight gain (Komatsu et al., 

2012), as observed before on neonatal and juvenile rats (Pizzi et al., 1986). However, 

these results were observed using very high doses of subcutaneous MPH, between 60 to 

200 mg/kg/day. As a matter of fact, Pizzi et al observed a high mortality rate within the 

200 mg/kg/day group, justifying the need to discontinue such a protocol (Pizzi et al., 

1987). Young developing rats may be more sensitive to the high doses of 

psychostimulant than adults and this may explain such differences. In our present study, 

MPH dosing remained low (4-5 mg/kg/day) compared to these studies (60-200 

mg/kg/day). Studies in monkeys have revealed that chronic MPH (20-60 mg daily, for 1 

year) does not affect growth or weight (Gill et al., 2012). Gill et al used MPH doses of 6 

+/- 1 mg/kg, which were chosen to mimic human serum levels following chronic MPH 

in children, resulting in MPH serum concentration of 11-13 ng/ml (Gill et al., 2012; 

Swanson et al., 2003). Studies on humans have shown that chronic MPH does not affect 

growth (Biederman et al., 2010; Rapoport et al., 2002), although this has been contested 

by others (Safer et al., 1972; Swanson et al., 2007; Zhang et al., 2010a). Nevertheless, 

our study observed possible body weight gain velocity decreases following chronic 

MPH treatments using slightly supratherapeutic doses, in one group of animals. 

 

 Next, we observed that animals receiving chronic MPH do not respond to 

subsequent intravenous MPH challenges, which only induce firing rate and bursting 

activity decreases in VTA dopaminergic cells in naive and vehicle groups (Fig. 55-57). 

This can be interpreted as a possible drug tolerance, where the same dose of a drug has 

less effect following repeated administration (Sellers, 1978; Wang et al., 2007b). In 

pharmacology, drug tolerance is also named desensitisation (Wolf et al., 2010; 

Yamamoto et al., 2013). We note with interest that MPH tolerance following chronic 

MPH exposure (using widely ranging doses, between 2 to 20 mg/kg) has been described 

before in rodents (Alam et al., 2015; Emmett-Oglesby et al., 1981; Jones et al., 2014; 

Pearl et al., 1976) and humans (Lakhan et al., 2012; Patrick et al., 2005; Ross et al., 

2002; Swanson et al., 1999; Swanson, 2005). Indeed, these behavioural studies show 

that long-term MPH administration induces: 1/ tolerance on cognition, assessed by the 

water maze test, where animals swam for a longer period following chronic MPH 

exposure (2 mg/kg/day), while acute MPH improved cognition (2 mg/kg);                     

2/ locomotion tolerance, where acute MPH exposure (0.6-10 mg/kg) induces increases 

in horizontal locomotion, while repeated exposure (10 consecutive days) failed to do so; 
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3/ tolerance to sweetened milk consumption, assessed by a return to initial baseline 

levels of milk consumption following chronic MPH exposure (15 mg/kg daily or every 

fourth day), while acute exposure resulted in a significant decrease in milk intake. In 

humans, tolerance to MPH can develop following repeated intake and is characterised 

by the inability of MPH to reduce ADHD symptoms (Ross et al., 2002; Swanson et al., 

1999; Winsberg et al., 1987), if using the same daily dose, hence requiring a higher 

dosage regimen for the alleviation of the same symptoms. Tolerance to 

psychostimulants in ADHD children is seen in “most patients”, requiring dose 

adjustments (Pliszka et al., 2007; Yanofski, 2011). In non-human primates, chronic 

MPH exposure leads to decreased dopamine D2/D3 receptor availability, assessed by 

positron tomography (Gill et al., 2012). Moreover, in an animal model of ADHD (using 

young spontaneously hypertensive rats), chronic MPH led to decreased dopamine 

transporter density (Simchon et al., 2010). Methylphenidate tolerance could be the 

consequence of two mechanisms. First, the dopamine reuptake transporter may not be 

sensitive enough to MPH in order to induce enough extracellular dopamine 

concentration increases in the synaptic cleft to produce enough dopamine D2 receptor 

activation, due to downregulation of dopamine transporters. The second hypothesis is 

that MPH still efficiently blocks the dopamine transporter to the same degree as in 

control animals, but the dopamine D2 autoreceptor has become insensitive to rises in 

extracellular dopamine.  

 

Here, we have shown that dopamine D2 receptors are not significantly affected 

by chronic MPH, as both vehicle and MPH-treated animals displayed similar sensitivity 

to the D2 receptor agonist quinpirole (20 µg/kg, Fig. 59). Interestingly, another study 

also found that neurons decreased their firing rates by 80% following quinpirole 

intravenous administration in both controls and MPH-treated rats (Shen et al., 2006), as 

observed in our present study (78%). These results corroborate the study of Volkow in 

2012 where the authors found no change in dopamine D2 receptor binding following 

chronic MPH in ADHD adults (Volkow et al., 2012). Therefore, one hypothesis arises 

from these results. The pre-synaptic dopamine reuptake transporter (DAT) may be 

down-regulated, resulting in the inefficiency of MPH in inducing DAT blockade. 

Interestingly, some studies have witnessed DAT internalisation in mice following 

chronic (20 mg/kg, twice a day for 3 days) cocaine exposure (Peraile et al., 2010) as 

well as a DAT downregulation in patients following 3 months of 0.25-0.6 mg/kg/day of 
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MPH, assessed by positron emission tomography (Vles et al., 2003). Cocaine and MPH 

both block the DAT with similar in vivo affinities in humans (Volkow et al., 1999a). 

Vles in 2003, however, also found a post-synaptic downregulation of the dopamine 

receptor (Vles et al., 2003), which has not been observed in our study. Paradoxically, 

one imaging study found a DAT up-regulation in adult patients that were never 

previously medicated (Wang et al., 2013), whilst another study found a higher DAT 

availability following sub-chronic cocaine exposure in mice (Koff et al., 1994). DAT 

membrane levels are rapidly regulated by intracellular mechanisms to maintain adequate 

dopamine homeostasis in the synapse (Gulley et al., 2003). After acute psychostimulant 

use, such regulations are believed to arise more rapidly and transiently than after 

chronic administration, which leads to more persistent changes in the transporter 

expression (Zahniser et al., 2001). Our study also demonstrated that perfusion of striatal 

slices with 10 µM of MPH fails to significantly induce radio-labelled dopamine release 

in animals chronically treated with 4-5 mg/kg/day of MPH for 15 days, while 100 µM 

of MPH superfusion induces lower dopamine release than animals treated with vehicle 

(Fig. 60), as observed in another study using rats sub-chronically treated (4 consecutive 

days followed by a 2-week washout period) with 4 mg/kg of MPH (Sproson et al., 

2001). Therefore, in MPH-treated animals, methylphenidate challenges fail to 

sufficiently block dopamine transporters in order to induce significant synaptic 

dopamine concentration rises to levels that are high enough to activate inhibitory 

dopamine D2 autoreceptors. This might be a consequence of a possible DAT down-

regulation after chronic MPH exposure. Further studies are needed to examine whether 

chronic MPH exposure induce long-lasting consequences on DAT local expression, an 

effect that may require careful monitoring in patients. 

 

 When a large neuronal population was examined, chronic MPH did not lead to 

modification in the neuronal activity of dopamine neurons (Fig. 58). In the study by 

Choong et al, the authors found no significant changes in the neuronal excitability of 

VTA dopaminergic neurons after an acute 1 mg/kg MPH intraperitoneal administration 

(Choong et al., 2004). However, the same laboratory found increases in the excitability 

of midbrain dopamine neuron after 1 mg/kg/day of MPH for 3 weeks, whilst decreases 

in neuronal excitability were found following 30-60 days of washout (Shen et al., 

2006). Chronic adolescent exposure to MPH (2 mg/kg/day for 7 days) led to increased 

neuronal firing of the midbrain dopamine neurons in adolescent rats, an effect lost after 
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2-3 weeks of washout (Brandon et al., 2003). However, chronic exposure to D-

amphetamine at 1.5 mg/kg/day for 20 days in adolescent rats, followed by 20 days of 

washout, induced firing enhancement of VTA dopamine neurons, an effect that was not 

observed using a higher dose of 5 mg/kg/day (Labonte et al., 2012). The consequences 

of adolescent psychostimulant exposures will be further discussed in the next chapter 

(Chapter V). 

 

 In the prefrontal cortex, chronic MPH treatment did not significantly alter 

NMDA-induced firing rate activation in a large population of neurons (Fig. 61D). These 

results that are different to what we have found following acute MPH and D-amph 

exposures (3 mg/kg, Chapter II), may indicate that chronic MPH exposure is not likely 

to induce persistent changes in the glutamatergic neurotransmission of cortical 

pyramidal neurons. The PFC is necessary to induce behavioural sensitisation following 

chronic MPH (Lee et al., 2008). However, we have found that chronic methylphenidate 

increases the firing rate of PFC pyramidal neurons (Fig. 61A). One study on freely 

behaving animals, using microarray electrodes, revealed that both acute and chronic 

methylphenidate (2.5 mg/kg, for 5 consecutive days, followed by a 3-day washout 

period) induce increases of the PFC pyramidal neuron firing rate in the majority of all 

neurons tested, but the authors did not characterise the underlying mechanisms of such 

increases (Salek et al., 2012). We put forward the hypothesis that chronic MPH 

treatment increases tonic input of PFC glutamate neurons onto midbrain dopamine 

neurons. In 2015, Schmitz et al observed higher glutamate levels as well as decreased 

glutamate uptake capacity in the PFC of juvenile rats after 30 days of daily 2 mg/kg 

MPH (Schmitz et al., 2015). It will be vital to assess the possible impacts of such 

glutamate neurotransmission, as excessive glutamate in the synaptic cleft leads to 

excitotoxicity (Ha et al., 2006; Han et al., 1997; Kritis et al., 2015; Tirosh et al., 2000), 

which can also be a result of excessive NMDA receptor stimulation (Schubert et al., 

2001). In our model, we did not observe any alteration of the NMDA-induced firing 

activity of pyramidal cells after chronic MPH. One can assume that the initial 

glutamatergic plasticity remains temporary, because of prolonged activation of NMDA 

receptors, but is crucial for therapeutical effects. In juvenile rats, chronic MPH 

administration (1 mg/kg/day for 3 weeks, 5 days per week) increases hyperpolarising 

currents in cortical pyramidal neurons and decreases EPSC (excitatory post synaptic 

current) frequencies (Urban et al., 2012). Such a depression of cortical activity within 
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the PFC of juvenile rats is not observed in adult animals in the present study (Fig. 61). 

Next, we observed a significant reduction in NMDA2B protein receptor expression in the 

striatum (Fig. 63) and a parallel decreased responsiveness of striatal medium spiny 

neurons to local NMDA delivery (Fig. 61E), which strengthens our observations. These 

results on chronic MPH intake are in total opposition to what we found using acute 

MPH exposure (Fig. 35, 37). A previous observation, using acute MPH (1 mg/kg), has 

shown decreased NR2B expression in the PFC (Urban et al., 2013b). 

 

Our results which show that chronic adult exposure to MPH tends to induce a 

dampening of the sensitivity of striatal medium spiny neurons (MSN) to locally applied 

dopamine (Fig. 62) are in line with previous findings. Indeed, one study in mice 

observed increased MSN dendritic spine formation following chronic psychostimulant 

exposure (cocaine, 30 mg/kg, intraperitoneally, over 4 weeks) in neurons located in the 

nucleus accumbens and which specifically express dopamine D1 and D2 receptors (Kim 

et al., 2009). These increases in spine densities are believed to trigger long-term 

potentiation (Matsuzaki et al., 2004). Another study witnessed behavioural sensitisation 

or tolerance (in a 1:1 ratio) to chronic MPH (0.6-10 mg/kg for 5 days), closely 

associated with electrophysiological sensitisation or tolerance in MSN of the nucleus 

accumbens (Claussen et al., 2014a). Therefore, chronic methylphenidate exposure may 

reduce striatal plasticity and might not be without long-term consequences. As a matter 

of fact, chronic MPH exposure (6 mg/kg, twice a day for 28 days, orally) significantly 

decreased dopamine D2 receptor availability in the striatum (Caprioli et al., 2015). 

Similarly, chronic oral methylphenidate intake (2 mg/kg/day) for 2 months significantly 

decreased striatal dopamine D2 receptor availability (Thanos et al., 2007). Our results 

need to be studied further in order to determine the role of D1- or D2-like receptors after 

chronic exposure to methylphenidate. 

 

 To conclude, we have shown here that chronic intraperitoneal treatments during 

adulthood can alter body growth parameters in some animals. Voluntary oral MPH 

administration can be easily performed using sucrose solutions, as suggested in previous 

studies. Chronic MPH treatment probably induces dopamine reuptake transporter down-

regulation, possibly by internalisation, assessed by dopamine neurons insensitivity to 

intravenous MPH challenges, but may not affect post-synaptic dopamine D2 inhibitory 

autoreceptors. Besides, striatal tissues from MPH-treated animals induce significantly 
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lower dopamine release using the same concentration of MPH compared to control 

tissues. The global VTA dopamine neuron population is not significantly affected by 

chronic treatment, although some neurons have higher burst activities following MPH 

and D2 receptor antagonism in MPH-treated animals than the respective control animals 

(Fig. 58), suggesting MPH-induced neuronal adaptations. Finally, in vivo NMDA-

induced neuronal activation of striatal MSN is reduced following chronic MPH, in 

parallel with significant decreases of striatal NMDA2B protein expression, which can be 

the visible result of the on-going side effects on neuronal plasticity. 
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Chapter V – The long-term consequences of 

methylphenidate treatment during 

adolescence on adult brain functions. 

 

 

V-1- Introduction 

 

ADHD occurs mainly during childhood and adolescence (Adesman, 2001; 

Hurtig et al., 2007; Wilens et al., 2010) but can persist throughout the entire adult 

lifespan in a widely ranged proportion of patients (ten to sixty percent), depending on 

the different cohorts, if previously diagnosed with childhood ADHD (Gentile et al., 

2006; Kessler et al., 2005; Pehlivanidis, 2012). Evidence for long-term side effects is 

limited. While some studies reported risks and/or side effects such as insomnia, tics, 

erythema, dyskinesia, sleep disturbance, abdominal pain, headache and appetite loss for 

ADHD patients under chronic psychostimulant therapy (Ahmann et al., 1993; Efron et 

al., 1997; Greenhill et al., 2002; Lerner et al., 2008; Martinez-Raga et al., 2013; 

Rappley, 1997; Rodrigues et al., 2008; Senecky et al., 2002), other studies reported no 

serious side effects to such treatments (Gadow et al., 1999). However, ADHD drugs, at 

clinically relevant doses, are known to improve academic performance in children and 

adolescents (Chacko et al., 2005; Evans et al., 1991; Greenhill et al., 2002; Hechtman et 

al., 2004; Najib, 2009; Pelham et al., 1993; Powers et al., 2008; Swanson et al., 2004), 

therefore outweighing the side effects, if correctly dosed (Manos, 2008; Martinez-Raga 

et al., 2013). In rodents, adolescent methylphenidate treatment is associated with altered 

behavioural responses in adulthood (Bolanos et al., 2003), impaired reproductive axis 

(Chatterjee-Chakrabarty et al., 2005; Fazelipour et al., 2012), impaired learning (Rowan 

et al., 2015) and increased hippocampal BDNF (brain-derived neurotrophic factor) 

mRNA levels (Simchon-Tenenbaum et al., 2015), a crucial protein for plasticity, 

memory, synapse establishment/maintenance and neuronal regeneration (Bekinschtein 

et al., 2008; Benraiss et al., 2001; Huang et al., 2001; Pencea et al., 2001; Yamada et 

al., 2003; Zigova et al., 1998). Another study found that chronic treatment with oral 

MPH (2 mg/kg, twice a day) leads to increased impulsiveness in adulthood (Pardey et 

al., 2012). In parallel, chronic adolescent amphetamine exposure at high doses (0.5-5 
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mg/kg/day) induced increases in the risk-taking behaviour of adult rats and increased 

firing activities of dopamine and serotonin neurons (Labonte et al., 2012). Interestingly, 

serotonin neurotransmission, alone or with dopamine neurotransmission, has been 

linked to impulsivity in humans (Dalley et al., 2012; Pattij et al., 2008; Seo et al., 2008; 

Stein et al., 1993; Walderhaug et al., 2010; Worbe et al., 2014). In rodents, adolescent 

exposure to stimulants may lead to drug-seeking behaviour in adulthood (Brandon et 

al., 2001; Carlezon et al., 2004; Crawford et al., 2011; Jordan et al., 2014), although 

this was not seen in rhesus monkeys (Gill et al., 2012; Martelle et al., 2013) or humans 

(Barkley et al., 2003; Wilens et al., 2003). However, it may be too early to draw 

conclusions on such matters. Adolescent exposure to drugs may not be without risk, 

knowing that the brain still develops up to 24 years of age (Andersen, 2003). 

 

In this fifth chapter, we will examine the impact of chronic adolescent 

methylphenidate treatment on growth, neuronal activities and glutamate 

neurotransmission, in an attempt to characterise any possible long-term consequences of 

such treatments. A focus will also be put on the link between depression-like behaviours 

and the electrical activities of dorsal raphe nucleus serotonin neurons. Finally, 

assessments of dopaminergic neurotransmission, combined with dopamine autoreceptor 

sensitivity as well as behavioural sensitivity to D-amphetamine, will be assessed in rats 

that received adolescent exposure to methylphenidate. 

 

V-2- Material and Methods 

 

V-2-A- Subjects and groups 

 

   Fifty-two male Sprague-Dawley rats were purchased from Charles River, 

UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22
o
C with 

humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and 

water were provided ad libitum, except in the sucrose preference test. Animals were 

allowed a 3-day acclimatisation period after delivery. All experiments were performed 

during the light phase and with permission from the UK Home Office and De Montfort 

University Ethics Committee under the Project Licence 60/4333 and with the Personal 

Licence 60/13750. 
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  Adolescent animals weighing 70-90 grams (Levin et al., 2007; 

McCutcheon et al., 2009; Milstein et al., 2013; Morris et al., 2010; Sengupta, 2013) 

were used at the beginning of each treatment. Animals were randomly assigned to one 

of the following groups (Fig. 64): 

- Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 ml/kg of a 

sucrose 10% (w/v) solution, orally and for 15 consecutive days, followed by a 28-day 

washout period. n=42. 

- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of saline, 

intraperitoneally and for 15 consecutive days, followed by a 28-day washout period. 

n=10. 

 

Figure 64: Experimental protocol for chronic methylphenidate treatment during 

adolescence. 

Following 3 days of acclimatisation, young rats weighing 70-90 grams were given MPH 

for 15 consecutive days, followed by a 28-day washout period. Administration routes 

were either intraperitoneal (4 mg/kg/day) or oral (5 mg/kg/day). n values represent the 

number of animals included in each group. 

 

V-2-B- Sucrose preference test 

 

  After at least 20 days following the last MPH administration, some 

animals were subjected to a sucrose preference test (Fig. 65), adapted from previous 

published protocols (Li et al., 2015a; Mateus-Pinheiro et al., 2014; Mileva et al., 2015; 

Overstreet, 2012; Tang et al., 2015). Briefly, rats were tested for sucrose preference 

over a five day period using a two-bottle choice test. Animals had ad libitum access to 

food and water throughout the experiment. On the first day, rats were housed singly and 

accustomed to drinking from two water bottles. On the following three days, rats were 

trained on the sucrose preference test, in which one out of the two water bottles was 
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replaced by a bottle containing a 2% sucrose solution (w/v). Rats were allowed to drink 

freely from both bottles during the 12-hour nocturnal phase (7.30 PM until 7.30 AM). 

During the light phase, both bottles were replaced by bottles containing water only. The 

bottles were weighed and refilled each day at the same time in the morning. The 

positions of the bottles were switched daily to avoid position preferences, which has 

been observed in mice (Bachmanov et al., 2002). After removing the bottles at the end 

of the last habituation day, rats were subjected to a preference test during 1 hour. 

Sucrose preference was determined after the last trial, on the fifth day, by the quotient 

of sucrose consumption over 12 hours to the total liquid intake, consisting of both water 

and sucrose intakes. A sucrose preference score lower than 65% was considered a 

depressive-like phenotype (Briones et al., 2012; Couch et al., 2013; Strekalova et al., 

2004; Willner, 1997). 

 

 

Figure 65: Sucrose preference test protocol. 

Animals were group-housed before being singly housed on the first day of the sucrose 

preference test. Animals had ad libitum access to food and water throughout the 

experiment. During the dark phase and starting on the second day (Day 2), animals 

could choose between two drinking bottles, containing either tap water (blue) or a 2% 

sucrose solution (orange). Sucrose preference was calculated from results obtained 

during a 1-hour test period, performed on the fifth day and during the light phase. 

Animals were kept in polypropylene cages (black rectangles) measuring 56x38x17 cm, 

whether singly- or group-housed. 
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V-2-C- In vivo extracellular single unit electrophysiology 

 

  Please refer to paragraph III-2-B. In this chapter, the number of putative 

dorsal raphe nucleus (DRN) serotonin neurons per track was recorded by recording the 

total number of active serotonin neurons encountered during one electrode descent 

within the DRN, at the following coordinates (Fig. 66): anteroposterior -7.5 to -8 mm to 

Bregma, lateral 0 mm, dorsoventral 5-7 mm below cortical surface. Here, only putative 

serotonin neurons presenting a triphasic extracellular waveform and a regular firing 

activity (1-40 spikes per 10 seconds) were recorded (Oosterhof et al., 2015; 

Vandermaelen et al., 1983). Bursting of DRN serotonin neurons was calculated with the 

following criteria: at least two bursts occurring within 20 ms or less and followed by a 

silence period of at least 40 ms. These parameters were adapted from previous 

electrophysiological investigations (Hajos et al., 1995; Labonte et al., 2012; Manta et 

al., 2009; Rouchet et al., 2008). To further confirm the specific recording of 

serotonergic neurons only, systemic exposure to 8-OH-DPAT (5-Hydroxy-N,N-

dipropyl-2-aminotetralin) was performed at the end of some recordings, which induced 

neuronal silencing that could be reversed by WAY-100135 administration. 

 

 

Figure 66: Dorsal raphe nucleus location. 

The shaded area delimits the location of the dorsal raphe nucleus (DRN), where 

serotonin neurons are found. Scales represent distances (in mm) from the midline and 

the surface of the brain. DRD dorsal raphe nucleus, dorsal part. DRV dorsal raphe 

nucleus, ventral part. Coronal slices adapted from Paxinos and Watson (1997). 
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V-3- Results 

 

Within this chapter, 115 putative serotonergic neurons were recorded in the DRN and 

179 putative dopaminergic neurons were recorded within the midbrain, from 52 

animals. 

 

V-3-A- Adolescent treatment with methylphenidate does not induce growth 

deficits 

 

The impact of a chronic methylphenidate treatment during adolescence 

on growth parameters was investigated. We noted with interest that MPH, administered 

orally at 2.5 mg/kg twice a day and for 15 days, did not induce any body weight gain 

deficiency during the treatment period (D18, Fig. 67A). After the 28-day washout 

period, no differences were observed between MPH-treated animals and vehicle-treated 

animals (D46, Fig. 67A). Similarly, a dosing schedule of 5 mg/kg under the same 

protocol failed to produce differences in body weight gain. MPH intraperitoneal 

administration, at 2 mg/kg for 15 days and twice a day, did not induce any significant 

change in body weight gain (Fig. 67B). Here, we show that adolescent MPH treatments 

in the range of 4-5 mg/kg/day do not induce weight gain deficiency. 
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Figure 67: Adolescent exposure to chronic methylphenidate does not induce body 

growth delay. 

(A, B): Body weight gain was not significantly affected by treatment with MPH. D 

values indicate experimental day numbers. 

 

V-3-B- Adolescent MPH treatment and depressive-like phenotypes during 

adulthood 

 

Five days before the end of the washout period (D41), animals were 

assessed for a depression-like behaviour using the sucrose preference test. Using this 

protocol, we found that animals successfully learnt to discriminate water from sucrose. 

Indeed, the transition from the first day to the second day is marked by an increase in 

liquid consumption in 11 out of 12 animals (92%, Fig. 68A). Interestingly, after this 

initial increase in sucrose consumption, animals tend to decrease their sucrose 

consumption on the third day to finally maintain this level of consumption (Fig. 68A). 

However, for the sucrose preference test, we found that 25% of all animals display a 

sucrose preference below 65% in both vehicle and MPH-treated animals (respectively 

1/4 and 2/8 animals, Fig. 68B). MPH-treated animals and vehicle-treated animals did 

not differ in their sucrose preferences (Fig. 68C). The low scores, observed in 25% of 

all animals tested, were not due to individual decreases in total volume intake, as both 

groups displayed similar liquid intake patterns (Fig. 68D). Although the 65% threshold 

appears arbitrary, it has been proven accurate in discriminating depression-like 
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phenotypes (Briones et al., 2012; Couch et al., 2013; Strekalova et al., 2004; Willner, 

1997). Therefore, MPH treatment did not induce any long-term depressive traits in rats. 

This trait was found in 25% of all animals studied (1/4 in the vehicle group, 2/8 in 

MPH-treated animals for a global 3/12 animals). This puzzling result was further 

examined. To our surprise, in naive animals (n=10), the same frequency of depression-

like phenotypes were observed in 3 of these animals (30%, Fig. 68E). Therefore, such 

behavioural characteristics, as assessed in our study by the sucrose preference test, 

might appear “spontaneously” in naive animals maintained under standard laboratory 

conditions. This result could be partly due to the fact that animals were switched from 

being group-housed to single-housed or that some animals naturally present such traits 

when maintained under artificial conditions. Sucrose preference tests could be routinely 

performed in laboratories to reveal naturally-occurring depression-like phenotypes in 

rodents. 
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Figure 68: Chronic adolescent exposure to methylphenidate does not induce 

depression-like behaviour at adulthood. 

(A): Control animals and MPH-treated animals successfully learned to discriminate 

water from sucrose, assessed by a drastic increase of volume intake from day 1 to day 2, 

corresponding to the transition between water and sucrose. (B): On the test day, animals 

from both groups showed similar sucrose preference scores. Both groups (1 animal out 

of 4 in controls, 2 animals out of 8 in MPH-treated) displayed similar levels of 

depression-like behaviour, assessed by a sucrose preference score below 65% (dashed 

blue line, see Briones et al., 2012). Note that one control animal displayed an 

anhedonic-like behaviour after the third experimental day, by showing practically no 

interest in sucrose. (C): Adolescent exposure to MPH (5 mg/kg/day, for 15 days, 

followed by a 28-day washout period) does not induce anhedonic-like behaviour. (D): 

Total volume intakes (water or sucrose) were identical between the two groups during 

the entire experimental protocol. (E): To confirm if any anhedonic-like behaviour was 

naturally occurring in our batch of animals, 10 naive animals were also scored for 

sucrose preference. Surprisingly, on the test day, we observed that 30% of all animals 

(3/10) could be considered as displaying depression-like behaviour (score below 65%), 

confirming our results in B. 
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V-3-C- Adolescent MPH leads to long-term adaptations in serotonin neurons in 

adulthood 

 

After the recovery period, serotonin neurons from the dorsal raphe nucleus 

(DRN) were examined in vivo. MPH, administered orally at 2.5 mg/kg twice a day for 

15 consecutive days during adolescence, did not change the global firing activity of 

DRN serotonin neurons (Fig. 69A) or the total number of spontaneously active neurons 

within the DRN (Fig. 69C) found during adulthood, but significantly increased (p<0.05, 

Student’s t-test) burst discharges in these neurons by 5 fold (Fig. 69B). Indeed, in the 

MPH-treated group, 26% of all neurons (13/50) displayed bursting activities whereas 

only 12% of all neurons in the control group (8/65) did so. These results suggest that 

VTA dopamine neurons shift their firing rates from regular to bursting activities, 

without altering the global firing rate frequency. No correlation between sucrose 

preference results and the electrical activities of these neurons could be observed (Fig. 

69D-F). In control animals (n=3, vehicles), we did not observe any correlation either. 

To be noted: average firing rates, burst activities and cells per track were assessed in at 

least 7 neurons per animal. Here, we show that low sucrose preference may be linked to 

high burst activities of serotonergic neurons. 
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Figure 69: Responses of dorsal raphe nucleus serotonin neurons to chronic 

methylphenidate in correlation to anhedonia. 

(A, B, C): Chronic MPH treatment during adolescence increased the burst activities of 

dorsal raphe nucleus (DRN) serotonin neurons at adulthood, without significantly 

changing the firing rates nor the total number of active neurons per electrode descent, 

suggesting a shift of firing rate activity from regular to bursting activities. (D, E, F): No 

correlation between the electrical activities of DRN neurons and sucrose preference 

scores could be found. In sections D, E and F, vehicle animals (n=3) were excluded due 

to a very low bursting activity in these animals and lack of samples. *P<0.05 vs. 

vehicle, unpaired Student’s t-test. r
2
 values indicate the correlation coefficient. 

 

 

V-3-D- Adolescent MPH leads to long-term adaptations in midbrain dopamine 

neurons in adulthood 

 

 Compared to controls, animals that received adolescent MPH exposure (5 

mg/kg/day for 15 days) displayed significantly higher (p<0.04) firing activities of 

ventral tegmental area (VTA) dopaminergic neurons (Fig. 70A). Burst activities were 

not significantly affected by chronic MPH treatment (Fig. 70B). The total number of 

spontaneously discharging midbrain dopamine neurons (firing rate > 4 spikes per 10 

seconds) was significantly increased (p<0.05) following chronic adolescence exposure 

to MPH (Fig. 70C). 
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Figure 70: Long-term neuronal adaptations of midbrain dopamine neurons 

following adolescent exposure to methylphenidate. 

(A): Chronic administrations of MPH (5 mg/kg/day) during adolescence significantly 

increased (p<0.04) firing activities of VTA dopaminergic neurons in adulthood.      

(B): No change in burst activity was observed following such chronic treatment.      

(C): Chronic exposure to MPH led to significantly greater number of active dopamine 

neurons found per electrode descent. *P<0.05 vs. vehicle, unpaired Student’s t-test. 

 

V-3-E- Adolescent MPH induces partial dopamine D2 receptor desensitisation in 

adulthood 

 

   In both controls and MPH-treated animals in adolescence, quinpirole 

intravenous administration (20 µg/kg) led to strong and reversible firing rate reductions 

of VTA dopamine neurons (F(2,28)=37.18, p<0.0001, Fig. 71A). Moreover, animals 

treated with MPH during adolescence displayed significantly lower sensitivities (% of 

firing rate decrease) to the high dose (20 µg/kg) of the dopamine D2 receptor agonist 

quinpirole (p<0.05, unpaired Student’s t-test, , Fig. 71B). Indeed, this dose of quinpirole 

completely stopped the firing activity of 5 out of 9 neurons from the control group, but 

in none out of 7 neurons in the MPH group. This prompted us to carry out a more 

thorough study on dopamine D2 autoreceptor sensitivity, within a large range of doses 

with another D2 receptor agonist: apomorphine. When apomorphine was intravenously 

injected, animals previously exposed to MPH during adolescence (5 mg/kg/day for 15 

days followed by 28 days of washout) displayed a significant shift in their sensitivity to 

the D2 agonist (F(1,11)=5.38 p<0.05), as seen in Fig. 71C. Moreover, in such animals, the 

sensitivity of dopamine D2 autoreceptor to each apomorphine dose (assessed as the 

percentage of the decrease in the firing rate), administered with progressive 10 µg/kg 

increments and up to a cumulative dose of 50 µg/kg, was significantly reduced 

(F(1,8)=12.57, p<0.01) when compared to control animals (Fig. 71D). 
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Figure 71: Adolescent exposure to methylphenidate partially induces dopamine D2 

autoreceptor desensitisation in adulthood. 

(A): Intravenous challenges with quinpirole (20 µg/kg) significantly reduced the firing 

activities of VTA dopamine neurons in both control and MPH-treated animals 

(F(2,28)=37.18, p<0.0001). Eticlopride (0.2 mg/kg) successfully recovered such MPH-

induced firing rate reduction in 15 out of 16 neurons. ***P<0.01 vs. saline, Bonferroni 

after significant repeated measures two-way ANOVA (B): Methylphenidate-treated 

animals during adolescence presented a significantly lower (p<0.05, unpaired Student’s 

t-test) sensitivity to quinpirole challenges in adulthood. (C): Similarly, compared to 

control animals, MPH-treated animals during adolescence displayed significantly lower 

firing rate reductions following progressive apomorphine (another D2 receptor agonist) 

challenges F(1,11)=5.38 p<0.05, administered in a dose-response manner and with 

progressive 10 µg/kg increments. *P<0.05, **P<0.01 vs. respective 0 µg/kg 

apomorphine, Bonferroni after significant repeated measures two-way ANOVA. (D): 

Compared to controls, animals previously exposed to chronic MPH in adolescence had 

significantly lower sensitivities to dopamine D2 receptor agonism (F(1,8)=12.57, p<0.01). 

*P<0.05, **P<0.01 vs. controls, Bonferroni after significant repeated measures two-way 

ANOVA. 

 
   Intravenous methylphenidate challenge (2 mg/kg) significantly decreased 

midbrain dopamine neuron firing rates in all groups by 50-65% (Fig. 72A,C,D), an effect 

reversed by injection of the dopamine D2 receptor antagonist eticlopride (0.2 mg/kg). In 

the vast majority of neurons (78%, 29 neurons out of 37) from all groups, the combination 
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of both dopamine transporter blockade (induced by MPH) and D2 receptor antagonism 

(eticlopride) led to significantly higher firing rates, compared to baseline levels (Fig. 

72A,C,D), as observed in Chapter III on naive animals (Fig. 43). Similar results were 

observed for burst activities in 18/37 neurons (Fig. 72B,D). 

 

 
 

Figure 72: Adolescent exposure to methylphenidate does not induce tolerance to 

methylphenidate challenges in adulthood. 

Intravenous challenges with MPH (2 mg/kg) significantly decreased the firing rates (A) 

and burst activities (B) of VTA dopamine neurons in MPH-treated animals. In the control 

group (vehicle), MPH induced significant firing rate reductions, but did not induce burst 

activity alterations. (C, D): Representative firing histogram examples of recordings 

performed in control and MPH-treated animals (intraperitoneal), respectively. Boxed are 

shown typical action potential waveforms. Please note that in 29 animals out of 37 (78%), 

reversal of MPH-induced firing rate reduction by eticlopride (0.2 mg/kg) led to 

significantly higher firing rates than under baseline conditions (A, C, D). ns: non-

significant, *P<0.05, **P<0.01, ***P<0.001 vs. respective baselines, Newman–Keuls 

after significant ANOVA. 

 
 

V-3-F- Adolescent MPH does not modify NMDAR2B protein expression in the 

PFC at adulthood but induces behavioural sensitisation to D-amphetamine 

 

  Neither 2.5-5 mg/kg of oral MPH, nor 2 mg/kg of i.p. MPH during 

adolescent (once or twice a day, leading to 4-5 mg/kg/day) had a long-term impact on 

NMDA receptor 2B protein expression in adulthood in the prefrontal cortex (Fig. 73), 

confirming our previous results with chronic adult MPH treatments (Fig. 63). 
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Figure 73: Adolescent exposure to methylphenidate does not increase prefrontal 

cortex NR2B protein expression. 

Chronic adolescent exposure with different regimens of MPH did not significantly alter 

NMDA receptor 2B protein expression in the prefrontal cortex. 
 

   

   When 3 mg/kg of D-amphetamine was administered intraperitoneally to 

naive adult rats, we observed a significant increase of rearing events (Fig. 36C2). Next, 

using a lower dose of D-amph (1 mg/kg), we observed that animals previously treated 

with MPH during adolescence (2.5 mg/kg/day, orally) displayed significantly more 

frequent rearing events during the first 30 minutes of observation (p<0.05, unpaired 

Student’s t-test) compared to animals that had received vehicle only during their 

adolescence (Fig. 74). Peak rearing events activity was observed during the first 30 

minutes of observation, which was followed by progressive time-dependent decreases 

of such events, in both groups. Such results indicate a possible immediate behavioural 

cross-sensitisation between MPH and D-amphetamine, which does not appear to persist 

in time. Besides, such a result can also indicate a possible risk of multiple drug abuse 

for previously-treated ADHD patients. 
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Figure 74: Adolescent exposure to methylphenidate induces behavioural 

sensitisation to later D-amphetamine challenge. 

During the first 30 minutes of observation following D-amphetamine (1 mg/kg, 

intraperitoneally) challenges, MPH-treated animals displayed significantly greater 

rearing events than control animals. *P<0.05 vs. vehicles, Bonferroni after significant 

repeated measures two-way ANOVA. 
 

V-4- Discussion 

 

 Our results, showing that adolescent exposure to MPH does not induce growth 

velocity deficits (Fig. 67), corroborates previous observations (Achat-Mendes et al., 

2003; Pizzi et al., 1987; Spencer et al., 2006). Contradictory results were also reported. 

Indeed, while some studies have reported growth alterations throughout the treatment 

period (Germinario et al., 2013; Poulton et al., 2003; Poulton et al., 2013; Powell et al., 

2015; Safer et al., 1972), others confirmed growth or height rebounds after MPH 

withdrawal in rodents and humans (Klein et al., 1988; Pizzi et al., 1986; Renes et al., 

2012; Safer et al., 1975). However, in one group of sub-adult rats investigated in 

Chapter IV (Fig. 54B), a slight weight reduction was observed following intraperitoneal 

administrations, but this effect could not be replicated in another batch of animals 

investigated later on. These findings suggest that stimulant medications may induce 

growth deficits in ADHD patients under stimulant pharmacotherapy, but such effects 

may only occur occasionally rather than systematically. Whether these consequences 

have any significant clinical implications, such as final stature and posture, is a question 

that requires further research (Poulton, 2005).  

 

 In adult rodents, high methylphenidate dosing (20 mg/kg, i.p., once a day for 14 

days) induces depression and anxiety, assessed by increased immobility and a decreased 

latency to become immobile in the forced swim test (Brookshire et al., 2012; 
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Motaghinejad et al., 2015). Paradoxically, in humans, high MPH dosing has off-label 

use in the treatment of depression. Indeed, some depressive patients improve following 

MPH administration (Ayache et al., 2001; Hardy, 2009; Kerr et al., 2012; Lavretsky et 

al., 2015; Patkar et al., 2006; Rozans et al., 2002). Patients found in palliative care or in 

geriatrics appear to respond well to MPH therapy (with dosages varying from 2.5 to 40 

mg/day), which efficiently reduces symptoms of depression. Consistent with these 

findings, our study supports the assumption that adolescent MPH administration does 

not induce more depression-like behaviour in adulthood (Fig. 68B,C) than what is 

generally found in the background population (Fig. 68E). In our sucrose preference test, 

the proportion of depression-like behaviour was high in both cohorts (25-30%, Fig. 68). 

One can wonder if this could be attributed to the transition from social to individual 

housing (inducing social isolation), which was necessary for assessing individual 

criteria for depression. Parallel observations in non-human monkeys and mice found 

isolation to be an important factor in inducing this type of behaviour (Fischer et al., 

2012; Hennessy et al., 2014; Li et al., 2013; O'Keefe et al., 2014). In rats, similar 

conclusions were drawn (Djordjevic et al., 2012; Jahng et al., 2012; Zanier-Gomes et 

al., 2015). However, whether low sucrose preference scores directly reflect depression-

like behaviours remains an open question and one could assume that such a test rather 

measures vulnerability to depression. It is important to note that in humans, social 

isolation, following heart failure, stroke or coronary disease, leads to poorer recoveries 

(Friedmann et al., 2006; O'Keefe et al., 2014; Wang et al., 2006).  

 

 Our results, showing that some control animals display sucrose preferences 

below 65%, stand in contrast to recent investigations using the same protocol and strain 

of animals. Indeed, Boyko in 2015 and Wang in 2014 found that all control rats (naive, 

n=30) showed sucrose preference above 70% (Boyko et al., 2015; Wang et al., 2014). 

However, such rates are easily explained in both studies by the housing conditions, 

where rats were group-housed until the 1 hour test. In our model, rats were individually-

housed at the start of the experiment, on day 1, for acclimatisation to the test conditions. 

Therefore, initial social isolation may have contributed to the induction of depressive-

like traits, although adolescent MPH treatment, given under the exact same conditions, 

did not affect depression-like rates in rats. However, adolescent exposure to MPH (2 

mg/kg, i.p., twice a day for 16 days) was found to significantly decrease the sucrose 

preference of adult rats for solutions ranging from 0.1 to 0.5% but not with a 1% 
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sucrose concentration (Bolanos et al., 2003), while we used a 2% concentration (Fig. 

68B,C). The study by Bolaños also highlights the fact that there is no difference in total 

liquid intake between control and MPH-treated rats, as seen in our results (Fig. 68D). 

One very interesting study, using slightly different experimental protocols, has reported 

similar results to ours. Indeed, adolescent chronic MPH administration (2-5 mg/kg, once 

daily, i.p., 10 days) led to unaltered sucrose preference (using 0.125% sucrose solution) 

in adulthood in singly-housed rats. However, the authors also witnessed sucrose 

preferences, in controls and MPH-treated animals, ranging between 59 and 72% 

(Crawford et al., 2013), consistent with our own observations. In naive wild type mice, 

several sucrose contents in the test solutions (0.5, 1 and 2% w/v) resulted in 

proportionate (45, 60 and 75%, respectively) sucrose preference scores (Couceyro et al., 

2005). Taken together, these observations suggest that adolescent MPH exposure does 

not induce subsequent depression-like behaviour in adulthood in rodents. Moreover, the 

65% sucrose preference depression threshold needs to be further investigated, or even 

reassessed, as it may not accurately reflect the phenotypes of these traits in rodents kept 

under standard laboratory conditions.  

 

 When dorsal raphe nucleus (DRN) serotonin neurons were recorded during 

adulthood, we did not see any change in the firing activity or in the total number of 

active neurons per track following chronic adolescent MPH treatment (Fig. 69A,C), 

although a small but non-significant (p<0.1) firing rate increase was observed. 

However, an adolescent exposure to MPH leads to increased burst activities of DRN 

serotonin neurons (p<0.01 vs vehicle, unpaired Student’s t-test, Fig. 69B). Each 

bursting activity results in a greater efficiency of neurotransmitter release at terminals 

(Overton et al., 1997; Paladini et al., 2003; Zhang et al., 2011). This indicates that some 

serotonin neurons in the DRN may have adapted their firing mode following chronic 

MPH, by switching from single firing activities to bursting activities, without increasing 

their firing rates, an effect that persists in time. Baseline burst levels in the control group 

(around 3%), was similar to previous findings (Manta et al., 2009). A recent study 

found that adolescent exposure to 1.5 mg/kg of daily D-amphetamine for 21 days, 

followed by 20 days of washout, significantly increases the firing rate of both DRN 

serotonin and VTA dopamine neurons, without affecting burst activities (Labonte et al., 

2012). This study also shows that higher doses of D-amphetamine (5 mg/kg) do not lead 

to any long-lasting change in the firing activities of both types of neurons. Although 
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DRN serotonin neurons have long been considered as incapable of producing burst 

discharges, mainly due to their slow firing mode (5-25 spikes per 10 seconds), evidence 

for a large bursting neuronal population now exists (Allers et al., 2003; Gartside et al., 

2000; Hajos et al., 1995; Jennings, 2013; Schweimer et al., 2010). One of the 

physiological significances of burst activity from DRN serotonin neurons may be to 

mediate the anticipation of reward, but not punishment. Indeed, during the anticipation 

period of a sucrose reward, mice displayed strong burst activity of DRN serotonin 

neurons, an effect not seen during the rewarding event itself (Li et al., 2016). Odour-

related reward has also been found to trigger bursting discharges of these neurons 

(Cohen et al., 2015). Besides, bursting DRN serotonin neurons induce high serotonin 

release in the forebrain, including the prefrontal cortex (Gartside et al., 2000; Hajos et 

al., 2007; Hajos et al., 1996). 

 

In our experiments, there was no correlation between sucrose preference and the 

electrical parameters of DRN serotonin neurons (Fig. 69D-F). A recent study on head-

restrained and water-deprived mice observed bursting activities of such neurons after 

rewarding (water) but not punishing (puff of air) events (Cohen et al., 2015). Indeed, 

burst discharges were observed in the anticipation of rewarding events, whilst punishing 

events did not induce such effects. Moreover, clues (in the form of odours) to 

subsequent rewarding or punishing events strongly induce bursting activities of DRN 

serotonin neurons. Finally, all the neurons recorded in this study displayed firing rate 

modifications during these behavioural tasks (Cohen et al., 2015). Our results may 

indicate that “anhedonic” rats displayed higher burst activities of DRN serotonin 

neurons compared to non-anhedonic rats (Fig. 69E). Anhedonic-like behaviour, 

measured in our methods through the sucrose preference test, are the typical symptoms 

of endogenous and non-endogenous depression (Li et al., 2015b; Liu et al., 2012b; Ng 

et al., 2014; Yee et al., 2015). Anhedonia can reflect a state of stress, occurring at the 

same frequency in both MPH-treated and control animals (Fig. 68). Mild stress has been 

linked to decreased sucrose preferences in rodents, an effect alleviated by chronic 

antidepressant therapies (Gupta et al., 2014; Liang et al., 2015; Tianzhu et al., 2014; 

Willner et al., 1987). More studies will be needed to characterise the exact relationship 

between depression-like traits in rodents and the electrical activities of serotonergic 

neurons. Nevertheless, adolescent MPH treatment does not seem to induce long-lasting 

depressive phenotypes in rodents in adulthood. 
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 In adulthood, in the ventral tegmental area (VTA), dopaminergic neurons 

increased their firing rates following chronic adolescent MPH exposure (Fig. 70A). The 

total number of spontaneously active dopamine neurons in the VTA was greater in 

MPH-treated animals (Fig. 70C). These results are in line with previous findings, where 

adolescent amphetamine exposure, followed by a washout period, led to increased firing 

rates of VTA dopamine neurons, without affecting burst activity (Labonte et al., 2012).   

 

Compared to controls, MPH-treated animals during adolescence showed a non 

significant (p=0.14) decrease of dopamine D2 receptor sensitivities to the 20 µg/kg dose 

of quinpirole (Fig. 71A,B), associated with a significantly lower proportion of neurons 

that were completely inactivated by the agonist. When apomorphine, another potent 

dopamine D2 receptor agonist routinely used in electrophysiology, was given 

intravenously to adult rats up to a total dose of 50 µg/kg, animals previously exposed to 

chronic MPH during adolescence displayed significantly lower firing rate reductions, 

proving a partial desensitisation of dopamine D2 autoreceptors following adolescent 

MPH treatment (Fig. 71C,D). It is possible that this partial desensitisation is responsible 

for the moderate increase in firing rate and population activity observed in the present 

study in MPH-treated animals. Indeed, these dopamine inhibitory autoreceptors are 

known to be particularly important to control and modulate the firing activity of VTA 

dopamine neurons (Eddine et al., 2015; Ford, 2014; Pothos et al., 1998). Both groups 

(controls and MPH-treated animals) were equally sensitive to intravenous MPH re-

challenges (2 mg/kg), inducing a reversible (eticlopride 0.2 mg/kg) strong reduction 

(50-65%) of firing rates, although the MPH-treated group tends to show a slightly 

reduced response to methylphenidate (Fig. 72). These results indicate that, contrary to 

what was previously observed following a chronic adult MPH treatment, adolescent 

MPH treatment, followed by a washout period, does not induce long-lasting dopamine 

transporter desensitisation (Chapter IV, Fig. 55-56) but may alter the binding properties 

of dopamine D2 receptor agonists onto D2 autoreceptors (Fig. 71). However, one could 

have expected a larger decrease in MPH-induced inhibition of firing activity in MPH-

treated animals, as we demonstrated that the dopamine D2 autoreceptor is partially 

desensitised in these animals. The reason for this discrepancy probably lies in the fact 

that dopamine D2 agonists target more potently a larger population of dopamine 

autoreceptors, with which they interact directly, unlike methylphenidate. Whether it is 

the total density of midbrain dopamine D2/D3 autoreceptors, or their intracellular 
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signalling capacity, that has been altered, needs to be addressed. In midbrain dopamine 

D2 receptor deficient mice (using conditional dopamine D2 receptor knockout), cocaine 

induced stronger locomotor activity than in wild-type animals (Bello et al., 2011). Very 

interestingly, another recent electrophysiological study has shown that obese mice (fed 

with a high-fat diet) present milder quinpirole-induced firing rate reduction than control 

mice (Koyama et al., 2014). Therefore, one could assume that chronic psychostimulant 

use can induce long-term dopamine D2 receptor desensitisation, which, in turn, could 

affect food and drug seeking behaviour. It would be particularly important to examine 

whether this partial desensitisation observed in our study is only observable on the 

dopamine autoreceptors found in the VTA, or if such a desensitisation can also affect 

other populations of dopamine D2 receptors, such as the post synaptic D2 autoreceptors 

found in striatal medium spiny neurons. 

 

Here, we also observed higher firing rates of VTA dopamine neurons in the 

majority of the recordings (79%) after the combination of both MPH and eticlopride 

administrations, regardless of previous adolescent exposure to MPH or not, suggesting 

that adolescent exposure to MPH does not prevent the later excitatory component of 

MPH (Fig. 72). Another study (Shen et al., 2006), using a similar protocol, did not 

observe any change in VTA dopamine neuron electrical activities following adolescent 

MPH administration (1 mg/kg for 21 days followed by extensive washout periods of 

either 30 or 60 days). Interestingly, this study also focused on intravenous dopamine D2 

receptor agonism challenges (apomorphine 20 µg/kg and quinpirole 0.1-70 µg/kg) and 

found no differences between controls and adolescent MPH-treated animals (Shen et al., 

2006). Another study showed that adolescent exposure to MPH (10 mg/kg for 7 days) 

increases significantly locomotor sensitivity to cocaine challenges following 14 days of 

washout (Brandon et al., 2001). 

 

We did not observe any changes in NMDA2B protein expression levels in the 

prefrontal cortex (PFC) of adult rats following adolescent exposure to 4-5 mg/kg/day of 

chronic MPH, regardless of the types of administration routes (Fig. 73). The study by 

Mao in 2009 using repetitive amphetamine exposure (4 mg/kg for 7 days, i.p., 14-60 

days washout) found a persisting downregulation of striatal NMDA receptor 2B protein 

levels (Mao et al., 2009). However, such differences can be explained by the use of 

higher doses, adult animals (175-200 g) and different administration routes, as well as 
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different molecular targets (MPH exerts blockade of extracellular dopamine reuptake 

while D-amphetamine blocks vesicular dopamine reuptake). It must be noted that 

NMDA receptor 2B protein levels in the prefrontal cortex are high at adulthood, 

compared to levels found in the striatum and are required for normal persistent activity 

(Monaco et al., 2015; Urban et al., 2014; Wang et al., 2008). Moreover, these studies 

suggested that the ratio between NMDA2B and NMDA2A is responsible for the 

establishment of both long-term potentiation and adaptation. The authors also reported 

decreased NMDA receptor 2B protein levels in the prefrontal cortex following a single 

(1 mg/kg, intraperitoneal) juvenile MPH administration (Urban et al., 2013b), a result 

opposite to what we observed in the present study (Chapter II, Fig. 37). Previously, we 

have found that chronic MPH treatment does not induce alterations of NMDA2B protein 

expression in the PFC of adult rats (Chapter IV, Fig. 63). Here, we also demonstrate that 

chronic adolescent exposure to MPH, followed by an extensive washout period, does 

not change cortical NMDA2B protein expression, which is consistent with our previous 

observations (Fig. 37). 

 

Finally, adolescent exposure to MPH induced behavioural sensitisation to D-

amphetamine, assessed by an immediate but relatively short-lasting increased number of 

rearing events induced by D-amphetamine (1 mg/kg, intraperitoneally) in adult animals 

previously exposed to MPH during adolescence (Fig. 74). Such cross-sensitisation 

between these two psychostimulants can underlie plastic mechanisms than occur 

following stimulant exposure during adolescence. Moreover, early MPH exposure may 

lay grounds for later substance abuse. This results stand in contrast to a previous study, 

where the authors found no relationship between adolescent exposure to MPH and 

sensitisation to methamphetamine in later life (Kuczenski et al., 2002). Nevertheless, 

our behavioural findings stand in complete concordance with our electrophysiological 

data showing partial desensitisations of dopamine D2 autoreceptors. As mentioned 

earlier, specific VTA inactivation of presynaptic dopamine D2 receptor has been found 

to be associated with increased sensitivities to cocaine (Bello et al., 2011). We therefore 

hypothesised that chronic MPH treatment during adolescence can induce persistent 

changes in dopamine D2 receptor sensitivity, which can then translate into increased 

sensitivities to addictive drugs. 
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In this fifth chapter, we have demonstrated that adolescent exposure to MPH, 

followed by 28 days of drug withdrawal, does not induce delayed growth, depression, or 

cortical NMDA2B protein expression variation. We have also reported that such 

treatment can induce long-term consequences on the electrical functions of DRN 

serotonin and VTA dopamine neurons. After drug withdrawal, midbrain dopaminergic 

neurons may display partial dopamine D2 autoreceptor desensitisation. It would also 

appear that adolescent exposure to MPH can induce sensitisation to later D-

amphetamine exposure in adulthood, which we believe to be associated with a partial 

desensitisation of dopamine D2 autoreceptors, within the midbrain. Further research will 

be necessary to understand other possible long-term modifications of brain functions 

that can arise following chronic adolescent psychostimulant exposure. 
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Chapter VI – The conjunction of caffeine or 

nicotine, two other freely available 

psychostimulants, with methylphenidate. 

 

 

VI-1- Introduction 

 

Caffeine and nicotine, two licit drugs, are widely consumed in the population, 

among other drugs, like alcohol (Crocq, 2003; Martin et al., 2008). Both drugs are 

easily available to the public. 

 

Caffeine, produced by the coffea plant genus and by tea plants, belongs to the 

Xanthine family and possesses psychoactive effects (Nehlig et al., 1992). Caffeine 

exerts non-specific blockade of A1, A2 and A3 adenosine receptors with widely ranging 

IC50 and Ki values (Table 1) (Daly, 2007; Hunter et al., 1990; Schwabe et al., 1985; 

Snyder et al., 1981). One cup of coffee, containing on average 80 mg of caffeine and 

therefore resulting in 0.4 to 2.5 mg/kg of caffeine intake, already significantly blocks 

adenosine receptors (Fredholm et al., 1999). In rats, caffeine binds to adenosine A1, A2A 

and A2B receptors with respective KD values of 20, 8.1 and 17 µM but also possesses 

low-affinity binding (190 µM) for A3 receptors (Fredholm et al., 1999). Because of its 

structural resemblance to strychnine, caffeine also mildly blocks ionotropic glycine 

receptors, with IC50 values below the millimolar range (Duan et al., 2009). In humans, 

caffeine is ingested to increase locomotor activity and combat fatigue (Glade, 2010; 

Nehlig et al., 1992), although some do not experience such effects. According to one 

study, adjunct methylphenidate therapy (10 mg) with a low dose of caffeine (10 mg) 

produced a stronger attenuation of behavioural symptoms in ADHD children, compared 

to methylphenidate alone (Garfinkel et al., 1981). Therefore, caffeine supplementation 

may be an effective tool to decrease total MPH intake. In young adults, caffeine use can 

modulate ADHD symptoms (Broderick et al., 2004), but a recent study has observed 

that caffeine can only be linked to ADHD if taken in combination with nicotine (Dosh 

et al., 2010). In young adolescents, one study reported a clear association between high 

caffeine consumption (4 or more beverages per day) and ADHD (Martin et al., 2008). 
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  Early caffeine consumption in young rats leads to increased locomotor activities 

following adult methylphenidate challenge, proving a cross-sensitisation between the 

two drugs (Boeck et al., 2009). However, some animal studies have reported the 

beneficial effects of caffeine on ADHD symptoms (Ioannidis et al., 2014). In an animal 

model of ADHD (juvenile administration of the dopamine and norepinephrine 

neurotoxin 6-hydroxy-dopamine), a 14-day chronic caffeine treatment improved spatial 

attention (Caballero et al., 2011), providing potential evidence for caffeine to be used as 

an adjuvant to psychostimulants, as shown previously (Garfinkel et al., 1981). Another 

study on adolescent spontaneous hypertensive rats (an animal model of ADHD) 

revealed that chronic caffeine administration (2 mg/kg, twice a day) for 21 days can 

normalize ADHD traits (Pandolfo et al., 2013). 

 

  Nicotine is a potent agonist of nicotine acetylcholine receptors. To date, 12 

subunits (α2-10, β2-4) can enter into the composition of neuronal nicotine acetylcholine 

receptors (Itier et al., 2001; McGehee et al., 1995; Sargent, 1993). Extracted from 

tobacco plants, nicotine also belongs to an alkaloid family. EC50 values for nicotine onto 

α7, α4β2 and α3β4 were found to be of 13.2, 0.1-2.5 and 87 µM (Table 1) (Papke et al., 

2007; Xiu et al., 2009). Although the legal age for nicotine consumption in the UK is 18 

years old, many abuses have been recorded in adolescents. In fact, a recent European 

study found that 17.3% of adolescents smoke every week in the UK (Pfortner et al., 

2015). Current literature on nicotine and ADHD remains contradictory. Some clinical 

studies reported increased craving for nicotine after methylphenidate intake in ADHD 

adults (Bron et al., 2013), while another study reported higher nicotine use among 

young adults with ADHD, compared to the background population (Symmes et al., 

2015). Contrary to what is observed in humans, one study did not find any correlation 

between adolescent MPH exposure (10 mg/kg per os once a day for 7 consecutive days) 

and adult nicotine sensitisation (0.4 mg/kg, subcutaneous) in rats (Justo et al., 2010). It 

is necessary to assess the questions regarding the fact that ADHD medication may lead 

to smoking. A Dutch study reported that smoking amongst ADHD patients is twice the 

national average and that methylphenidate use increases tobacco consumption (Bron et 

al., 2013). Acute methylphenidate is also responsible for increases in nicotine 

consumption in ADHD patients (Vansickel et al., 2011) and non-ADHD patients (Rush 

et al., 2005). However, some studies suggest that methylphenidate could be an efficient 

medication for reducing nicotine intake in ADHD patients (Covey et al., 2010; 
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Gehricke et al., 2011; Hammerness et al., 2013), but another study has proved its 

inefficiency (Hurt et al., 2011). 

 

 Findings concerning nicotine, ADHD and methylphenidate remain very 

contradictory and therefore require further investigation. In this final chapter, we will 

investigate how nicotine or caffeine could interfere with methylphenidate on 

dopaminergic neurons, using the same technique as described previously. A special 

focus will be placed upon neuronal sensitisation to MPH following pre or post-exposure 

to either nicotine of caffeine. 

 

VI-2- Material and Methods 

 

VI-2-A- Subjects and groups 

 

  Eighty-three male Sprague-Dawley rats were purchased from Charles 

River, UK. Animals were housed in groups of 2-4 per cage, maintained at 20-22
o
C with 

humidity rates above 40% under a 12:12 L/D cycle with lights ON at 07h00. Food and 

water were provided ad libitum. Animals were allowed a 3-day acclimatisation period 

after delivery. All experiments were performed during the light phase and with 

permission from the UK Home Office and De Montfort University Ethics Committee 

under the Project Licence 60/4333 and with the Personal Licence 60/13750.  

 

Animals belonged to one of the three groups: 

-  Naive animals 

- Animals voluntarily drinking 5 mg/kg/day of MPH (or vehicle alone) in 2 

ml/kg of a sucrose 10% (w/v) solution, orally and for 15 consecutive days, followed by 

a 28-day washout period. 

- Animals receiving 4 mg/kg/day of MPH (or vehicle alone) in 1.2 ml/kg of 

saline, intraperitoneally and for 15 consecutive days, followed by a 28-day washout 

period. 

 

 



170 

 

VI-2-B- In vivo extracellular single unit electrophysiology 

 

  Please refer to paragraph II-2-B. Here, only single barrel borosilicate 

electrodes were used. A total of 67 neurons were recorded within this chapter. 

 

VI-2-C- Behaviour 

 

  Sixteen naïve rats weighing 250 grams were housed individually at the 

beginning of the behavioural experiments. All drugs were dissolved into saline. Animals 

received a single intraperitoneal injection of either: 0.8 ml/kg of saline (NaCl 147 mM), 

0.1 mg/kg of nicotine, 3 mg/kg of D-amphetamine or a combination of both 3 mg/kg of 

D-amphetamine and 0.1 mg/kg of nicotine. Four animals were used within each group. 

Animals were then scored for behavioural parameters during 15 minute time periods 

and up to a total of 60 minutes. The counting of well-defined behavioural traits such as 

rearing, scratching, grooming, jumping, running, climbing, catalepsy and stereotypical 

movements was done manually. At the end of the 60 minute observation period, animals 

were sacrificed by cervical dislocation and the brains were quickly removed, dissected 

out and immersed into liquid nitrogen. Brain regions were kept at -80
o
C for further 

protein analysis. 

 

VI-2-D Data analysis 

 

  Please refer to the data analysis explained in paragraph II-2-E.  

 

VI-3- Results 

 

VI-3-A- Caffeine does not change baseline firing or burst activity of VTA 

dopamine neurons, or the efficiency of the combination of both MPH and eticlopride 

 

  When the adenosine antagonist caffeine was administered at 2 mg/kg 

increments and up to a cumulative dose of 10 mg/kg, no change in the firing or burst 

activity of midbrain dopamine neurons was observed in 6 out of 6 recordings (Fig. 75), 

although a small tendency to decreased firing rates were observed from 2 to 8 mg/kg. 
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Figure 75: Caffeine administration does not induce significant electrophysiological 

changes to midbrain dopamine neurons. 

(A): Caffeine intravenous administration, using progressive 2 mg/kg increments and up 

to a cumulative dose of 8 mg/kg, induces small but non-significant reductions of the 

firing rate of VTA dopamine neurons. (B): Similar results were observed on burst 

discharges. (C): Representative time course neuronal recording with progressive 

caffeine administration. Boxed is shown the typical action potential waveform of this 

neuron. 

 

  Pre-administration of caffeine (10 mg/kg) did not induce a significant 

change (firing: F(1,27)=0.05, p>0.8, bursts: F(1,27)=1.16, p>0.3) in the neuronal responses 

to subsequent MPH (2 mg/kg) and eticlopride (0.2 mg/kg) intravenous challenges (Fig. 

76). However, the excitatory effect induced by both drugs (MPH and eticlopride) was 

observed in all of the recordings after caffeine pre-treatment (100%, 6/6, Fig. 76), a 

result that does not differ from recordings performed without such pre-treatment (83% 

of all neurons, 19/23, p>0.54, Fisher exact test, Fig. 77). 
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Figure 76: Pre-treatment with caffeine does not prevent the excitatory component 

of methylphenidate following dopamine D2 receptor antagonism. 

Pre-treatment with 10 mg/kg of caffeine did not alter the excitatory component of MPH 

(2 mg/kg) on the firing rates (A) and burst activities (B) of VTA dopamine neurons 

following dopamine D2 receptor antagonism (eticlopride 0.2 mg/kg). (C): 

Representative time course recording of such protocol. Boxed is shown the typical 

action potential waveform of this neuron. **P<0.01, ***P<0.001 vs. respective 

baselines, Bonferroni after significant repeated measures two-way ANOVA. 
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Figure 77: Pre-treatment with caffeine tends to increase the excitatory component 

of methylphenidate following dopamine D2 receptor antagonism. 

Caffeine pre-exposure (10 mg/kg) tends to non-significantly increase the responses of 

VTA dopamine neurons to MPH/eticlopride administrations, assessed by the number of 

supplementary spikes (A) or burst activities (B) induced by the combination of MPH 

and eticlopride (respectively with p=0.36 and p=0.3, unpaired Student’s t-test). 
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increased firing rates in 6 and 7 neurons out of 20 (p<0.01 and p<0.001, respectively, 

compared to saline response, Fisher’s exact test) and significantly decreased firing rates 

in 5 and 9 neurons out of 20 (p<0.01, compared to saline response, Fisher’s exact test). 

Burst activities followed the same trend, except for the 100 µg/kg where it induced burst 

increases in 8/20 neurons while decreasing burst activities in 5/20 neurons. Compared to 

the 50 µg/kg dose, the 100 µg/kg dose did not induce significant changes in population 

responses (Fig. 78C,D, Fisher’s exact test). Typical recordings showing the three 

different responses of such neurons to nicotine administration (insensitivity, decreases 

and increases of firing rates) are respectively displayed in Fig. 78E. To be noted: 

following saline administration, both the burst and the firing activities increased in 1 out 

of 20 neurons, decreased in 1 out of 20 neurons and no significant changes in the 

electrical discharges were observed in the remaining 18 neurons. 
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Figure 78: Responses of midbrain dopamine neurons to intravenous nicotine 

challenges. 

In a neuronal population consisting of 20 neurons, cumulative intravenous doses of 

nicotine (50-100 µg/kg) did not significantly alter the spontaneous firing rates (A) or 

burst discharges (B) of such a neuronal population. (C, D): Following 50 and 100 µg/kg 

of nicotine, some neurons remained insensitive to progressive nicotine exposure, while 

others displayed firing rate/burst activations (increase of baseline activity by more than 

20%) or inhibitions (decrease of baseline activity by more than 20%). Numerical values 

indicate the number of neurons in each group. (E): Three neuronal populations could 

therefore be distinguished, based upon their responses to nicotine: neurons insensitive to 

nicotine, neurons responding by a decrease in firing rate and those responding by an 

increase in firing rate. (F): In one neuron (5%, 1/20), a transient decrease of firing rate 

was observed following nicotine exposure. **P<0.01, ***P<0.001, Fisher exact test 

when compared with the proportion of respective responses in the saline group. ns: non-

significant. 
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VI-3-C- Nicotine does not change the efficiency of the combination of both 

MPH and eticlopride 

 

  Nicotine pre-administration (100 µg/kg) did not reduce the efficiency of 

MPH (2 mg/kg) to induce firing rate decreases (Fig. 79A). Eticlopride (0.2 mg/kg) 

successfully recovered baseline firing rates in 6 out of 6 neurons (Fig. 79A,C). In this 

population of neurons, no significant change in burst activities was observed following 

either nicotine, MPH or eticlopride (Fig. 79B). Here, we conclude that the combination 

of nicotine with MPH, compared to MPH alone, neither enhances nor reduces the 

efficiency of MPH in inducing midbrain dopamine neuron electrical activity alterations. 

Moreover, the excitatory component of MPH/eticlopride still persists in animals pre-

treated with nicotine. 

 

 

 

Figure 79: Pre-treatment with nicotine does not alter the excitatory component of 

methylphenidate following dopamine D2 receptor antagonism. 

Nicotine pre-exposure (100 µg/kg) did not significantly modify the excitatory 

component of MPH (2 mg/kg) on the firing rates (A) and burst activities (B) of VTA 

dopamine neurons following dopamine D2 receptor antagonism (eticlopride 0.2 mg/kg). 

(C): Representative time course recording of such protocol. Boxed is shown the typical 

action potential waveform of this neuron. *P<0.05 vs. baseline or specified conditions, 

paired Student’s t-test. 
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  In these 6 neurons pre-treated with 100 µg/kg of nicotine, 4 neurons 

(67%) still presented higher firing rates following MPH/eticlopride (Fig. 80), providing 

evidence for the previously observed excitatory effect of both MPH and eticlopride on 

dopamine neurons, exactly as noted before in Chapter III. Nicotine pre-treatment did 

alter neuronal responses to MPH/eticlopride (Bonferroni after significant repeated 

measures two-way ANOVA). 

 

Figure 80: Pre-treatment with nicotine does not alter the methylphenidate-induced 

excitatory effects on midbrain dopamine neurons. 

(A, B, C, D): Nicotine pre-exposure (100 µg/kg) did not significantly modify the 

excitatory component of MPH (2 mg/kg) on the firing rates (F(1,27)=0.38, p>0.5) and 

burst activities (F(1,27)=0.21, p>0.6) of VTA dopamine neurons following dopamine D2 

receptor antagonism (eticlopride 0.2 mg/kg). *P<0.05, **P<0.01 vs. baseline, 

Bonferroni after significant repeated measures two-way ANOVA. 

 

VI-3-D- Adolescent exposure to MPH tends to reduce neuronal sensitivity to the 

combination of nicotine, MPH and eticlopride 

 

  In 9 adolescent animals that received 5 mg/kg/day of oral MPH for 15 

days followed by a 28-day washout period, nicotine pre-administration did not change 

neuronal responses to subsequent intravenous challenges with MPH and eticlopride 

(Fig. 81-82). Adolescent MPH exposure does not alter neuronal responses to nicotine, 

MPH and eticlopride (firing: F(1,21)=0.47, p>0.5, burst: F(1,21)=1.61, p>0.2, Bonferroni 

0

10

20

30

40

50

Nicotine 0.1
MPH 2

Eticlopride 0.2
(mg/kg)

-

-

-

-

+

+

+

-

-

+

+

+

n=23 n=6

**

S
p

ik
e
s/

1
0

 s
e
c

A B

0

5

10

15

20

Nicotine 0.1
MPH 2

Eticlopride 0.2
(mg/kg)

-
+
+

n=23

+
+
+

n=6

S
u

p
p

le
m

e
n

ta
r
y
 s

p
ik

e
s/

1
0

s

fr
o

m
 b

a
se

li
n

e

0

5

10

15

20

25

Nicotine 0.1
MPH 2

Eticlopride 0.2
(mg/kg)

-

+

+

n=23

+

+

+

n=6

S
u

p
p

le
m

e
n

ta
r
y
 b

u
r
st

 a
c
ti

v
it

y

fr
o

m
 b

a
se

li
n

e
 (

%
)

C D

0

10

20

30

40

50

Nicotine 0.1
MPH 2

Eticlopride 0.2
(mg/kg)

-

-

-

-

+

+

+

-

-

+

+

+

n=23 n=6

B
u

r
st

 A
c
ti

v
it

y
 (

%
) ***

*

no change in activity

activity decreased by 20% or more from baseline

activity increased by 20% or more from baseline



178 

 

after significant repeated measures two-way ANOVA). Administration of nicotine (100 

µg/kg) as a post-treatment (following MPH/eticlopride challenges) also failed to induce 

significant alterations in burst or firing activities (Fig. 83) in animals that received 

chronic adolescent MPH treatments (4 mg/kg/day, i.p. and for 15 days, followed by a 

28-day washout period). However, we observed a small reduction in neuronal 

sensitivity to nicotine, MPH and eticlopride when animals were previously exposed to 

chronic MPH treatment during adolescence. We pooled all data and observed lower 

excitatory effects of MPH following eticlopride and/or nicotine pre/post-treatments 

(Fig. 84). Therefore, nicotine does not alter neuronal responses to intravenous 

challenges of either MPH or eticlopride, in either naive or MPH-treated animals during 

adolescence, but adolescent exposure to MPH may lead to decreased sensitivity of VTA 

midbrain neurons in adulthood to intravenous challenges of the combination of nicotine, 

MPH and D2 receptor antagonism. 
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Figure 81: Absence of cross-sensitisation between adolescent exposure to 

methylphenidate and adult exposure to nicotine. 

(A, B): Adolescent exposure to chronic MPH did not alter the responses of VTA 

dopaminergic neurons to nicotine administrations in adulthood. (C, D): Firing rates and 

burst discharges alterations following cumulative nicotine administration (50 and 100 

µg/kg) in control and MPH-treated animals. As observed previously, some neurons 

remained insensitive to progressive nicotine exposure, while others displayed firing 

rate/burst activations or inhibitions. Based upon neuronal responses to nicotine, control 

and MPH-treated animals did not display significantly different responses. n values 

indicate the number of neurons in each group. Note that adolescent exposure to MPH 

tends to decrease the efficiency of nicotine to induce firing rate inhibitions (C). 

*P<0.05, **P<0.01 vs. baselines, Bonferroni after significant repeated measures two-

way ANOVA. ns indicates a non-significant difference using the Fisher exact test. 
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Figure 82: In vivo extracellular single cell recordings illustrating the absence of 

cross-sensitisation between adolescent exposure to methylphenidate and later 

exposure to nicotine. 

Representative time course recording of such a protocol in control animals (A) and 

MPH-treated animals (B). No differences between the two groups were observed. 

Boxed are shown the typical action potential waveforms of these two midbrain 

dopamine neurons. 
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Figure 83: In vivo extracellular single cell recordings illustrating the absence of 

cross-sensitisation between adolescent exposure to methylphenidate and post-

exposure to nicotine. 

Representative time course recording of such a protocol in control (n=2, A) and MPH-

treated animals (n=5, B). No significant differences between the two groups were 

observed. Boxed are shown the typical action potential waveforms of these two 

midbrain dopamine neurons. 

 

 

Figure 84: A possible tendency of adolescent methylphenidate exposure to induce 
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Adolescent exposure to MPH led to non-significantly decreased excitatory components 

of MPH in adulthood on the firing (A) and burst activities (B) of VTA dopaminergic 

neurons (respectively p=0.49 and p=0.12 vs. vehicles, unpaired Student’s t-test). 
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VI-3-E- Nicotine normalises amphetamine-induced high rearing activities 

 

  Nicotine administration (100 µg/kg), in combination with D-amph (3 

mg/kg), reduced D-amph-induced high rearing activities to similar levels observed with 

vehicle administration during the first 45 minutes, after which no further distinction 

could be seen between the two groups (D-amph vs D-amph combined with nicotine, 

Fig. 85). It is important to note that although the total number of rearing events of these 

animals was decreased (D-amph + nicotine), the time spent by each animal during such 

events was greatly enhanced, suggesting a tendency towards continuous rearing events. 

Nicotine alone does not induce any rearing activity, similarly to vehicle administration. 

These results suggest that nicotine may temporarily delay the effects of D-amphetamine 

on rearing behaviour. 

 

 

Figure 85: Nicotine normalises the rearing events induced by acute D-

amphetamine exposure. 

(A): Acute intraperitoneal exposure to 3 mg/kg of D-amphetamine increased rearing 

events in rats to levels significantly higher than 1 ml/kg of vehicle (F(1,6)=12.97, p<0.01) 

or 100 µg/kg of nicotine (F(1,6)=18.54, p<0.001). The adjunction of nicotine (100 µg/kg) 

to D-amphetamine (3 mg/kg) delayed the events induced by D-amph alone (F(1,6)=5.91, 

p<0.05). *P<0.05, **P<0.01 vs. vehicle, Bonferroni tests after significant repeated 

measures two-way ANOVA. (B): Adjunction of nicotine to D-amphetamine 

significantly reduced the number of rearing events, to similar levels to those observed 

following vehicle exposure, but the time spent during each rearing event was greater 

(not scored). ***P<0.001 vs. vehicle, $$$P<0.001 vs. D-amph, Newman–Keuls after 

significant one-way ANOVA. n.s., non-significant. n=4 in each group. 
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VI-4- Discussion 

 

 First, the present study observed the lack of effects of progressive caffeine 

exposures on VTA dopamine neurons (Fig. 75). This suggests that adenosine receptor 

antagonism does not influence the electrical discharges of midbrain dopaminergic 

neurons. However, a study by Stoner in 1988 revealed that caffeine strongly decreases 

neuronal activities in such neurons (Stoner et al., 1988), an effect that we only observed 

at its minimum. The authors also highlighted the importance of dopamine D2 receptors 

in the mediation of such effects, as haloperidol administration (dopamine D2 receptor 

antagonist) recovered the caffeine-induced firing rate depression, an effect that we never 

observed. Some studies suggested that caffeine (10 mg/kg, i.p.) triggers dopamine 

release in the nucleus accumbens via blockade of adenosine A1, but not A2 receptors, 

which can explain the amphetamine-like effects of caffeine in inducing firing rate 

decreases (Quarta et al., 2004; Solinas et al., 2002). Our results stand in contrast to 

these studies. Indeed, a cumulative dose of 10 mg/kg of caffeine failed to produce any 

significant change in the firing activities of VTA dopamine neurons, even with 

progressive 2 mg/kg increments (Fig. 75). Moreover, following caffeine administration, 

a subsequent dopamine D2 receptor antagonism (eticlopride 0.2 mg/kg) failed to reveal 

any hidden excitatory or inhibitory component of caffeine in all of the VTA midbrain 

dopamine neurons recorded this way (6/6 neurons, Fig. 76C). Such differences can be 

explained by the different sensitivities to caffeine of the VTA and nucleus accumbens. 

Indeed, intermediate doses of caffeine (2.5-5 mg/kg) induce neuronal activation in the 

VTA, the thalamus and the amygdala, while higher doses (10 mg/kg) activate the shell 

of the nucleus accumbens, responsible for reward pathways (Nehlig et al., 2000). 

Moreover, caffeine could stimulate meso-accumbens neurons, as suggested before 

(Solinas et al., 2002). In the present study, we did not observe any increased firing rate 

activities in midbrain dopamine neurons after caffeine administration. In another study, 

caffeine was found to prevent cocaine-induced dopamine release in the nucleus 

accumbens (Malave et al., 2014). Therefore, different mechanisms may take place in the 

VTA and nucleus accumbens, which could explain our results. 

 

 Acute caffeine pre-administration slightly enhanced the hidden excitatory effects 

of MPH on VTA dopaminergic neurons (Fig. 76-77). Indeed, we found that caffeine 

pre-treatment tends to increase the excitatory effect of MPH/eticlopride. Moreover, in 6 
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out of 6 neurons (100%), the firing and burst activities were significantly greater 

following the drug combination compared to neurons that did not receive caffeine pre-

treatment (13/23, 57%). Cross-sensitisation between acute caffeine and MPH is 

therefore unlikely using our experimental protocol, but chronic caffeine consumption is 

known to induce such an effect (Boeck et al., 2009; Holtzman, 1987). Co-localisation 

and functional interaction between adenosine A2A receptors and dopamine D2 receptors 

have been observed in rat striata (Ferre et al., 1994; Ferre et al., 2008; Fuxe et al., 2005; 

Torvinen et al., 2005). Dopamine D1 and adenosine A1 receptors also have antagonistic 

effects (Ferre et al., 1996; Lillrank et al., 1999; Rimondini et al., 1998), and can 

sometimes co-localise (Gines et al., 2000). If the excitatory effects of MPH on VTA 

dopamine neurons is triggered through dopamine D1 receptors, then one could assume 

that interactions between dopamine D1 receptors and adenosine A2 receptors could 

mediate such greater excitatory inputs following caffeine exposure. In other words, 

adenosine A2 receptor blockade by caffeine could promote dopamine D1 receptor 

activation that may be responsible for the excitatory inputs of MPH onto VTA 

dopamine neurons. Interestingly, the adenosine A1 receptor does not seem to be 

involved in the rewarding effects of caffeine (Sturgess et al., 2010). Finally, we did not 

observe any in vitro cross-sensitisation of caffeine and MPH in inducing tritiated 

dopamine release from cortical and striatal slices (not shown). 

 

 Nicotine is known to increase firing and burst activities of ventral tegmental area 

dopamine neurons. In rodents, such effects start at 30-50 µg/kg of intravenous nicotine 

and at 0.5-1 mg/kg of intraperitoneal nicotine (Grenhoff et al., 1986; Mameli-Engvall et 

al., 2006; Marti et al., 2011; Maskos et al., 2005; Panin et al., 2014). Taking the 

neuronal population as a whole (20 neurons), no firing rate or burst activities 

modifications were observed following nicotine intravenous administration in our study 

(100 µg/kg, Fig. 78A,B). To our knowledge, only very few studies have reported 

different possible modulations of dopamine neurons by nicotine, while the majority of 

studies seem to avoid mentioning neurons that were either insensitive to nicotine or that 

responded by a decrease of activity. However, two studies have carried out such an 

objective analysis and in remarkable details. Like in the recent studies by Eddine and 

Zhang, we found that while some neurons are activated by nicotine, some display clear 

firing rate reduction, suggesting different neuronal populations (Eddine et al., 2015; 

Zhang et al., 2012b) and confirming our current observations (Fig. 78C,D). Such 
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inhibitory effects of nicotine via dopamine release were found to be triggered by 

indirect activation of the inhibitory dopamine D2 autoreceptor by nicotine because of the 

efficiency of dopamine D2 antagonism pre-treatment to prevent such inhibitory effects, 

but not the excitatory effects (Eddine et al., 2015). As a matter of fact, we have also 

observed nicotine-induced firing rate inhibition following D2 antagonism in 5 out of 8 

neurons (62%), which is not in agreement with Eddine’s study. In addition, if nicotine 

had significantly inhibited the firing activity of dopaminergic neurons by stimulation of 

dopamine release, one would have expected to find a potentiation of the inhibitory 

effect of MPH, which was not found in our study. To explain this discrepancy, we 

suggest that partial activation of excitatory nicotinic receptors onto GABAergic 

interneurons can occur. In mice, the majority of neurons inhibited by nicotine were 

found to be located within the medial part of the VTA (Eddine et al., 2015), suggesting 

a distinct segregation, according to their responses to nicotine, of the dopamine neurons 

within this area. Besides, the VTA is populated by very heterogeneous neurons, 

responding differently to addictive drugs, such as nicotine (Lammel et al., 2014; 

Luscher et al., 2011). One can argue that these 3 neuronal populations (firing rate 

activated or inhibited by nicotine, or even no change of firing rate) can be distinguished 

by different receptor compositions. On the other hand, according to our own 

unpublished data as well as many studies, the excitatory effects of nicotine on some 

VTA dopamine neurons is thought to be mediated by direct stimulation of nicotinic 

acetylcholine receptors, most probably via α4β2 receptors, but not α7 receptors, as the 

potent nicotine acetylcholine receptor antagonist mecamylamine prevented nicotine-

induced firing rate activation, but not the alpha-7 receptor antagonist methyllycaconitine 

(Chen et al., 2012; Chen et al., 2003b; Grenhoff et al., 1986; McGranahan et al., 2011; 

Yin et al., 2000). In humans, pharmacotherapies for smoking cessation specifically 

target nicotine acetylcholine receptors containing α4β2 subunits (Picciotto et al., 2013). 

One study has reported that VTA dopamine neurons that are activated by nicotine (50 

µg/kg) display an initial firing rate decrease, an effect that is only temporary (Erhardt et 

al., 2002). Interestingly, iontophoretic application of nicotine has only marginal effects 

on the firing of dopamine neurons, while it powerfully stimulates GABA neurons 

(unpublished observations from our laboratory). 
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 Here, we also show that pre-administration of nicotine (100 µg/kg) does not 

induce sensitisation nor desensitisation to subsequent MPH and eticlopride 

administrations (Fig. 79-80). Moreover, nicotine pre-treatment does not alter the 

excitatory component of MPH following dopamine D2 receptor antagonism (Fig. 

80C,D). Besides, adolescent exposure to MPH fails to induce sensitisation to nicotine 

exposure in later life, although adolescent MPH exposure tends to decrease the 

excitatory effects of MPH following either pre- or post-administration of nicotine and 

eticlopride (Fig. 81-83). These results corroborate a previous observation in rodents 

where locomotor cross-sensitisation between chronic adolescent MPH and acute 

nicotine did not occur (Justo et al., 2010). In our study, we lack results due to the 

diversity of the responses observed in midbrain dopaminergic neurons. Therefore, 

further experiments should be performed to acquire a reasonable number of neurons in 

each population. Nevertheless, interactions between MPH and nicotine have been 

demonstrated in humans (Bron et al., 2013; Rush et al., 2005; Vansickel et al., 2011), 

suggesting great differences between species in the responses to both drugs. However, 

other clinical studies have reported no association (or beneficial effects) between 

nicotine and methylphenidate (Covey et al., 2010; Gehricke et al., 2011; Hammerness 

et al., 2013).  

 

 When administered intraperitoneally, 100 µg/kg of nicotine did not induce any 

rearing activity (Fig. 85), as suggested before. Indeed, high doses of nicotine (ranging 

from 0.03 up to 1 mg/kg) are known to inhibit rearing behaviour in rodents (Chalabi-

Yani et al., 2015; Iwamoto, 1984; Ksir, 1994; Rodgers, 1979). When administered in 

combination with D-amphetamine (3 mg/kg), nicotine (100 µg/kg) strongly reduced D-

amph-induced rearing activities (Fig. 85). This result differs slightly from a previous 

study, where both drugs had additive effects on rearing behaviour (Jutkiewicz et al., 

2008), although we observed in our study that animals spent more time during the 

rearing event itself. This puzzling result could be explained by a shift towards 

continuous stereotypy induced by the combination of D-amph and nicotine. Another 

study also observed similar results, where nicotine (0.1 mg/kg), given as a pre-treatment 

2 hours before D-amph (0.32 mg/kg), increased D-amph-induced rearing activity as 

well as total locomotion (Kim et al., 2011a). These differences, however, can be 

explained by the use of different doses as well as different genders and strains. 
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 In this final chapter, we have shown that caffeine and nicotine do not appear to 

dramatically alter the responses of VTA dopamine neurons to MPH and eticlopride 

challenges. However, subtle adaptations may settle in midbrain dopamine neurons in 

response to MPH, caffeine or nicotine exposure, or a combination of the above. While 

caffeine is devoid of action on baseline spike generation and burst activity, nicotine 

induces either firing rate enhancement, firing rate reduction, or has no consequences on 

the firing rates. According to our electrophysiological study, chronic MPH exposure 

during adolescence does not seem to induce cross-sensitisation to either nicotine or 

MPH in adulthood. However, it can induce subtle but persistent neuronal adaptations. 

Our results showing decreased sensitivity to nicotine following adolescent exposure to 

methylphenidate is of great interest. These results may explain the greater nicotine 

intake in previously-treated ADHD patients (Krause et al., 2006; Vansickel et al., 

2011). Finally, ADHD patients with a history of chronic nicotine use display lower 

striatal dopamine transporter densities compared to non-smoking ADHD patients 

(Krause et al., 2003). 
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Chapter VII – Concluding remarks and 

perspectives. 

 

 

  The global aims of this study were to examine the pharmacology of ADHD 

drugs and the long-term consequences, if any, of chronic psychostimulant exposure. To 

some extent, we have partly achieved such objectives. The conduction of this study has 

enhanced our understanding of the underlying mechanisms of the three majorly 

prescribed ADHD drugs. One must remember that 2.7 million children are prescribed 

ADHD medication per year (Spiller et al., 2013), with an average cost of 1500-2200$ 

(United States Dollars) per patient, depending on which type of medication is used 

(Marchetti et al., 2001). 

 

 Results from Chapter I indicate that atomoxetine triggers a massive dopamine 

efflux in the striatum. Such strong neurotransmitter efflux induced by ATX can be 

explained by the ability of the drug to bind to other targets rather than the 

norepinephrine reuptake transporter itself, which contradicts its specificity, claimed by 

the manufacturing company. In addition, we also observed significant dopamine 

outflow starting at 10 µM, which is close to some regimens used in clinics. Clinical 

studies have shown the usefulness of ATX in ADHD treatment (Garnock-Jones et al., 

2009; Harfterkamp et al., 2012; Svanborg et al., 2009; Wietecha et al., 2013a), but one 

can wonder if such therapeutic effects could be solely attributed to the blockade of the 

norepinephrine transporter. One could assume that the drug will bind to intracellular 

targets, which need to be formally identified. As a matter of fact, the addition of ATX to 

SSRIs (selective serotonin reuptake inhibitors) has been proven efficient in reducing 

depression levels in patients with or without ADHD (Berigan, 2004; Kratochvil et al., 

2005). Many antidepressants have been shown to interact with various potassium 

channels (Budni et al., 2012; Donato et al., 2015; Duncan et al., 2007; Lee et al., 2014; 

Terstappen et al., 2003; Thomas et al., 2002), particularly with Kv1.1 and Kv7 (Lodge et 

al., 2008; Yeung et al., 1999), which control cell excitability (Edwards et al., 1995; 

Humphries et al., 2015; Johnston et al., 2010; Misonou, 2010; Pongs, 2008). In our 

experiments, atomoxetine promoted vesicular neurotransmitter efflux, which seem to 



189 

 

mimick vesicular release following enhancement of neuronal excitability. Although we 

did not observe that this effect was dependent on KIR channels, which have been shown 

to interact with ATX (Kobayashi et al., 2010; Scherer et al., 2009), other potassium 

channels may be involved in this dopamine releasing process by ATX, a hypothesis that 

has, to our current knowledge, never yet been studied. One study has found that 

electrically-evoked striatal dopamine release is strongly modulated by Kv1 potassium 

channels (voltage-gated), while both KIR and KATP channels (respectively inwardly 

rectifying and ATP-gated potassium channels) have very limited impact on the 

dopamine releasing process (Martel et al., 2011). These results can partially corroborate 

our own observations, where blockade of KIR channels, using SCH23390, did not alter 

ATX-induced dopamine efflux. Besides, ATX induced specific dopamine outflows, 

while norepinephrine (partly shown) and serotonin outflows (not shown) were 

respectively mildly affected and not affected by ATX superfusions. We have also found 

that ATX increased the NMDA-induced electrical activities of the prefrontal cortex, a 

result that is contradictory to a previous in vitro study showing blockade of NMDA 

receptors by ATX (Ludolph et al., 2010). 

 

 Results from Chapter II show that all three ADHD drugs (methylphenidate, 

atomoxetine and D-amphetamine) increased the NMDA-induced electrical activities of 

prefrontal cortex pyramidal neurons, which can be interpreted as a possible common 

mechanism between these three drugs. The present study confirms the role of glutamate 

neurotransmission in ADHD. Impairments of such neurotransmission have been 

suspected in the physiopathology of ADHD (Carlsson, 2000; Chang et al., 2014). Here, 

we have shown that ADHD drugs improve glutamate-related neurotransmission, 

assessed using two very different techniques: electrophysiology and western blotting. At 

clinically relevant concentrations, these drugs may have a facilitating effect on NMDA 

neurotransmission, therefore enhancing the altered striatal connectivity observed in 

ADHD patients when attention deficits occur (Bush et al., 2013; Carrey et al., 2002). 

Enhancement of glutamatergic functions by ADHD drugs may not be without risk when 

used chronically. Indeed, high glutamate concentrations induce neurotoxicity (Choi et 

al., 1987; Sandhu et al., 2003) via calcium-dependent mechanisms (Choi, 1985), but 

such a neurotoxicity only occurs during very high intra-synaptic glutamate 

concentrations, as high glutamate concentrations cannot spread through the interstitial 

fluid (Obrenovitch et al., 1997). Moreover, clinical studies have shown that recreational 
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use of amphetamine derivatives (MDMA, methamphetamine and amphetamine) can 

induce neurotoxicity, especially when poly-drug use occurs (Gouzoulis-Mayfrank et al., 

2009). There is a strong need to further investigate whether long-term enhancement of 

NMDA neurotransmission can be deleterious in chronically treated ADHD patients. In 

our study, such increases of NMDA neurotransmission by acute ADHD drug 

administration could be due to the indirect activation of dopamine D1 receptors by 

ADHD drugs, as dopamine D1 agonists have been shown to increase NMDA currents in 

isolated PFC pyramidal neurons (Chen et al., 2004) and striatal neurons (Hallett et al., 

2006). 

 

 Interesting results from Chapter IV suggest that, following chronic 

methylphenidate, the increase of NMDA neurotransmission observed after acute ADHD 

drug exposure tends to disappear, as striatal NMDA neurotransmission was significantly 

decreased following adult treatment, assessed by both quantitative electrophysiology 

and western blotting. 

 

 Our study demonstrates that methylphenidate can exert a hidden excitatory 

effects on midbrain dopamine neurons when dopamine D2 autoreceptor function is 

inhibited (Chapter III). Such an effect may help to maintain adequate dopaminergic 

neurotransmission, by counteracting a possible dampening of dopamine neuron activity 

induced by the indirect action of methylphenidate at dopamine D2 inhibitory 

autoreceptors. Interestingly, this effect persists after chronic treatment with 

methylphenidate, at which point dopamine reuptake transporters became down-

regulated. Indeed, we found that in the midbrain, chronic MPH exposure induces 

tolerance to subsequent MPH administration, which could be attributed to some degree 

of plasticity of dopamine reuptake transporters. Synaptic reorganisations of dopamine 

transporters have been observed in clinical studies (Wang et al., 2013). How long this 

effect persists after the cessation of psychostimulant treatments, providing some 

therapeutic benefits, will be an interesting question to address. However, our results 

from Chapter V show no evidence of DAT down-regulation when the rats reach 

adulthood. 
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  Further research is needed to understand the impact of increased NR2B protein 

expression following acute psychostimulant exposure. Indeed, although the total NR2B 

protein expression increased in some regions, regulations of the functions and the 

activities of NR2B receptors also depend on receptor phosphorylation (Guo et al., 2002). 

Amongst all possible NMDA receptor phosphorylations, NR2B phosphorylation on 

tyrosine residues is crucial for receptor function and long term potentiation (Rosenblum 

et al., 1996; Rostas et al., 1996). Unfortunately, time constraints did not allow us to 

study the phosphorylation of NMDA receptors, although we have put forward the 

hypothesis that total NR2B protein expression can vary proportionately with receptor 

phosphorylation, as observed with increased expression of total as well as 

phosphorylated glutamate receptors (respectively GluA1 and GluA1-pSer
845

) following 

chronic cocaine exposure (Nic Dhonnchadha et al., 2013). It was also interesting to 

observe that this change in NMDA2B receptor expression occurred within a relatively 

short time interval. Whether this is associated with an increase in the total number of 

NR2B receptors present in the neurons or only a sub-cellular redistribution of the 

receptor needs to be further assessed. It is uncertain if increases in the transcription of 

new receptors could lead to the transposition of these receptors at the membrane surface 

within less than one hour. Following the activation of intracellular signals indirectly 

triggered by psychostimulants, additional receptors may rather arise from some 

intracellular pools and could therefore insert relatively quickly into the synaptic 

membrane. However, in 2013, Urban et al witnessed decreased total, intracellular as 

well as surface NR2B protein expressions following a single 1 mg/kg MPH 

administration (Urban et al., 2013b), suggesting down-regulation of NR2B through 

protein degradation. A similar protocol to the one used by Urban et al could be of great 

interest to determine precisely if NR2B redistribution occurs following psychostimulant 

exposure, or if receptor transcription increases. Alternatively, these additional receptors 

may have been synthesised following activation of RNA transcription by some 

psychostimulant-dependent pathways. Such a hypothesis has been validated by some in 

vitro experiments. Indeed, immediate (occurring after only 10 minutes of exposure) 

increases of NR2B expressions were observed after cocaine (1 µM) or SKF-81297 (D1 

agonist, 10 µM) applications, which was totally prevented by anisomycin (protein 

synthesis inhibitor) pre-treatments (Hu et al., 2010; Schilstrom et al., 2006). 
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  In one batch of animals, daily intraperitoneal injections for 15 days resulted in 

decreased weight gain. Although chronic treatment with methylphenidate did not 

significantly affect body weight gain, clinical studies have shown that chronic MPH use 

can induce loss of appetite (Wolraich et al., 2007). Attentive monitoring of possible side 

effects occurring during psychostimulant therapy is therefore required, especially for 

children and adolescents. As a matter of fact, a recent European guideline has been 

developed for the monitoring and the managing of such adverse effects (Graham et al., 

2011), which can be as extreme as sudden cardiac deaths or suicides (Alapati et al., 

2013; James et al., 2004). 

 

  Our observation that adolescent exposure to methylphenidate induces an 

increased behavioural sensitivity to D-amphetamine challenge in adulthood is of great 

interest (Chapter V). Evidence of cross-sensitisation (hypersensitivity) with other 

psychostimulants has been observed, using clinically-relevant doses (Valvassori et al., 

2007; Yang et al., 2011; Yang et al., 2003). Here, we present evidence showing that 

adolescent exposure to methylphenidate can induce partial dopamine D2 autoreceptor 

desensitisation in adulthood, suggesting that ADHD patients chronically treated with 

psychostimulants may be at higher risks of drug abuse compared to the background 

population. Moreover, this partial desensitisation of D2 autoreceptors following 

adolescent exposure to MPH may induce the hypersensitivity observed after D-

amphetamine challenge. These results are in total agreement with a previous study 

showing hypersensitivity to acute cocaine following adolescent methylphenidate 

exposure (Bello et al., 2011). Furthermore, we have also shown that MPH exposure 

may be used to prevent the effects of D-amphetamine (Chapter I), which indicates a 

possible useful effect of psychostimulants (preventing overdose). Some clinical studies 

have suggested the usefulness of psychostimulants (mainly MPH) to treat chronic 

substance abuse in patients (Khantzian, 1983; Khantzian et al., 1984; Miles et al., 2013) 

as well as ADHD patients with substance use disorder (Imbert et al., 2014; Levin et al., 

1998; Mariani et al., 2007; Somoza et al., 2004). However, this was contested by some 

other clinical studies, where ADHD pharmacotherapy using psychostimulants is not 

likely to induce substance abuse during later life (Biederman et al., 1999; Lambert et 

al., 1998; Wilens, 2004; Wilens et al., 2003).  
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  A correlation between daily sugar intake and ADHD has been hypothesised 

before (Johnson et al., 2011; Kim et al., 2011b; Millichap et al., 2012; Woo et al., 

2014). According to these studies, increased sugar consumption, originating from fizzy 

drinks and snacks, is directly associated with higher risk of ADHD, suggesting either 

altered food-seeking behaviour or altered metabolisms in these patients, which may 

constitute risk factors for addiction. Sugars are known to induce dopaminergic 

activation, triggering strong responses in reward-related brain regions (Avena et al., 

2008; Hajnal et al., 2004; Rada et al., 2005; Stice et al., 2013). Interestingly, addiction 

to sugar can be found in rats (Avena et al., 2008; Hoebel et al., 2009; Peters, 2011), but 

not in humans, although one study showed plausible arguments for sugar addiction in 

humans under continuous exposure to foods containing high sugar concentrations 

(Ahmed et al., 2013). Finally, ADHD patients also display significant increases in their 

caffeine consumption (Dosh et al., 2010; Pereira et al., 2004). Nicotine also seems to be 

positively associated with ADHD in adolescents and adults (Lambert et al., 1998; 

McClernon et al., 2008; Milberger et al., 1997; Molina et al., 2003; Pomerleau et al., 

1995; Tercyak et al., 2002; Whalen et al., 2002). Moreover, some studies have shown 

that nicotine may target striatal dopamine transporters in ADHD patients (Krause et al., 

2006; Krause et al., 2002).  

 

  Our behavioural study on sucrose preference did not find that a chronic 

treatment with methylphenidate during adolescence can cause a depressive phenotype in 

adulthood. Nevertheless, as previously  mentioned, we found the electrical 

characteristics of the serotonin neurons to be persistently altered. As serotonin neurons 

have a very important role in the control of mood and impulsivity, as well as in the 

therapeutic effects of antidepressant treatments, the behavioural correlates and the 

molecular mechanisms involved in this change in bursting activity needs to be 

addressed in more detail. Clinical studies can now focus on the interaction between 

methylphenidate treatment and depression in ADHD patients. Therefore, if 

methylphenidate induces depressive traits, concerns can arise from its chronic use, as 

observed in a 7-year-old patient (Lakic, 2012). When MPH is used as a recreational 

drug, depressive symptoms can occur (Garland, 1998; Jaffe, 1991; Morton et al., 2000). 
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We found no evidence for cross-sensitisation between nicotine and 

methylphenidate in our electrophysiological investigations. This lack of results may be 

the consequence of the very heterogeneous effects of nicotine on different populations 

of dopamine neurons. Indeed, acute nicotine (100 µg/kg) exerted an excitatory effect in 

35% of all neurons (7/20), an inhibitory effect in 45% of all neurons (9/20) or even no 

effect in the remaining 20% of all neurons (4/20). The fact that the present study 

observed significant firing rate reductions following nicotine exposure is very 

interesting. Indeed, only one study observed and explained such effects (Eddine et al., 

2015), while a strong consensus seems to persist in the literature, stating that nicotine 

exposure only induces activation of midbrain dopamine neurons. However, the study by 

Eddine in 2015 explained such nicotine-induced firing rate reductions by a D2-

dependent mechanism, a result that is in opposition to what we observed within the 

present study (as we observed nicotine-induced firing rate reduction even following D2 

receptor antagonism, using eticlopride). The fact that current literature has not taken 

into account such firing rate decreases following nicotine exposure remains very 

surprising and needs to be further clarified. Hopefully, future work will allow definite 

conclusions to be drawn regarding psychostimulant exposure and smoking. To further 

assess any possible cross-sensitisation between activation of acetylcholine receptors (by 

nicotine) and dopamine neurotransmission, future animal studies might focus on the 

impact of chronic nicotine exposure on dopaminergic neurotransmission. Indeed, one 

study has reported that dopamine clearance is activated by nicotine (Middleton et al., 

2004). Another study has observed that nicotine reward is dependent upon α4β2 

receptors located on dopamine neurons, suggesting a dialogue between dopaminergic 

and nicotinic pathways (McGranahan et al., 2011). Moreover, in the striatum, long-term 

depression depends upon interactions between dopamine and acetylcholine receptors 

(Partridge et al., 2002). Dopamine and norepinephrine release from hippocampal slices 

also depends on nicotine acetylcholine receptors (Cao et al., 2005). Finally, we have 

also observed that nicotine was able to interact with D-amphetamine-induced effects on 

locomotor activity. Nicotine may precipitate some of the motor effects of D-

amphetamine by inducing enhanced stereotypical events, while reducing locomotor 

agitation (rearing events). Whether it can be partially explained by the aforementioned 

effects of nicotine on dopamine transporters would be of great interest in the future. 
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