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ABSTRACT
Many modern communication systems generate graph data, for
example social networks and email networks. Such graph data
can be used for recommender systems and data mining. However,
because graph data contains sensitive information about individuals,
sharing or publishing graph data may pose privacy risks. To protect
graph privacy, data anonymization has been proposed to prevent
individual users in a graph from being identified by adversaries.
The effectiveness of both anonymization and de-anonymization
techniques is usually evaluated using the adversary’s success rate.
However, the success rate does not measure privacy for individual
users in a graph because it is an aggregate per-graph metric. In
addition, it is unclear whether the success rate is monotonic, i.e.
whether it indicates higher privacy for weaker adversaries, and
lower privacy for stronger adversaries. To address these gaps, we
propose a methodology to systematically evaluate the monotonicity
of graph privacy metrics, and present preliminary results for the
monotonicity of 25 graph privacy metrics.
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1 INTRODUCTION
Data that contains relationships between individuals is often rep-
resented in graphs where each node represents an individual and
each edge represents a relationship between two individuals. Many
graph data sets, for example from online social networks [4] and
email networks [6], have already been published for scientific or
commercial use. Graph data can help us understand social net-
works [3] and improve recommendations [5], but can also violate
the privacy of individuals because relationships can reveal sensitive
information.

Many anonymization algorithms have been proposed to protect
privacy in published graph data. Advanced adversaries, however,
may be able to re-identify nodes by analyzing the structure of the
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anonymized graph, and by drawing on knowledge about the origi-
nal graph and the relationships between the anonymized and origi-
nal graphs. Thus, anonymization algorithms and adversaries who
use de-anonymization algorithms are two parts of a protect-attack
relationship. To evaluate the effectiveness of both anonymization
and de-anonymization, researchers usually use privacy metrics.

The most common metric used to measure graph privacy is
the adversary’s success rate [2], i.e. the percentage of nodes the
adversary was able to re-identify correctly. However, the success
rate does not reveal much detail about the privacy of individual
nodes in the graph – they are either re-identified or not – which
may not be fine-grained enough to inform the development of new
privacy-enhancing technologies (PETs).

Many different privacy metrics have been proposed for other
domains [10]. These metrics associate privacy with different quan-
tities such as the adversary’s uncertainty, success rate, or error
rate. However, when evaluating a new PET, the choice of privacy
metrics is often arbitrary because it is not clear how strong different
privacy metrics are in specific domains such as graph privacy. Thus
understanding the strengths of different metrics will help us choose
suitable privacy metrics when evaluating new PETs.

In this poster, we argue that strong privacy metrics should be
monotonic, that is, that they indicate higher privacy levels for
weaker adversaries, and we evaluate the monotonicity of 25 metrics
for graph anonymization and de-anonymization.

Our preliminary results suggest that, although some metrics are
stronger than others, there is no single metric that is monotonic in
all situations. The best metrics are per-graph metrics, such as the
adversary’s success rate, which indicates that further research is
needed to develop strong per-node metrics for graph privacy.

2 PROPOSED METHODOLOGY
To evaluate the strength of privacy metrics for graph privacy, we
follow a similar methodology as in [8]. As Figure 1 shows, we first
define scenarios consisting of user data and adversary behavior.
Using the results of the adversary’s de-anonymization algorithm,
we then compute the values of different privacy metrics. Finally, we
analyze monotonicity as the strength indicator for each metric. We
have implemented this methodology in Python using NumPy, SciPy,
and scikit-learn, and use the anonymization and de-anonymization
algorithms implemented in SecGraph [2].

2.1 User Data
User data consists of published, real-world graphs where nodes rep-
resent users and edges represent connection or interaction between
users. We use four datasets for our experiments: a social network
(Facebook) [4], online contacts (PGP) [1], email communication
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Figure 1: The original graph Gor iд is processed by anonymization algorithms to produce the anonymized graph Ganon . The
auxiliary graph Gaux is a sub-graph of Gor iд . The adversary relies on seed mappings between some nodes (Vaux and Vanon ) in
Gaux and Ganon to bootstrap its mapping of the remaining nodes in Gaux to the nodes in Ganon .

(Manufacturing) [6] and message board communication (Irvine) [7].
We anonymize each dataset with five different anonymization al-
gorithms that are implemented in SecGraph: k-degree anonymity
(k-DA), differential privacy (DP), Switch, t-mean, and random walk
(RW).

2.2 Adversary
The adversary aims to re-identify users in the anonymized graph.
We use six de-anonymization algorithms from SecGraph: Adaptive
De-Anonymization (ADA), Distance Vector (DV), Ji/Li/Srivatsa/Beyah
(JLSB), Korula/Lattanzi (KL), Narayanan/Shmatikov (NS), and Yart-
seva/Grossglauser (YG). By default, SecGraph outputs the adver-
sary’s success rate for each algorithm. To be able to compute other
privacy metrics, we have modified SecGraph to additionally output
the adversary’s estimated probability distribution.

To evaluate the monotonicity of privacy metrics, we need to
calculate the metric values for a series of adversaries with ordered
strength levels. We study two types of adversary strength levels:
first, we vary the overlap of the auxiliary graph with the original
graph between 60% and 95%, and second, we vary the number of
seed mappings between 5 and 100.

2.3 Metrics for Graph Privacy
Based on our survey of privacy metrics [10], we selected 25 privacy
metrics to evaluate in our experiments. These metrics include met-
rics that have already been used in graph privacy and metrics from
other domains. We refer to [10] for formal definitions.

2.4 Monotonicity
To evaluate the strength of privacy metrics, we require that they are
monotonic, i.e. that they indicate higher privacy levels for weaker
adversaries. For example, we expect that, with increasing levels of
adversary strength, the values of the adversary’s success rate (as a
lower-better metric) increase, and that the values of entropy-based
metrics (as higher-better metrics) decrease.

Our algorithm to score the monotonicity of metrics [8] is based
on statistical tests for differences between the mean values of two
samples. We apply these tests to the metric values for each pair of
successive adversary strengths. If the difference between the means
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Figure 2: Detailed results for success rate and entropy.

is statistically significant and indicates a change in the expected
direction, the algorithm increases the metrics’ monotonicity score
by 1. If the difference indicates a change in the wrong direction, the
algorithm subtracts 1 from the monotonicity score. If the changes
in metric values change direction, e.g. increasing for one pair and
decreasing for the next, the algorithm subtracts 2 because such a
peak may indicate the same privacy levels for both strong and weak
adversaries and is thus undesirable. A metric’s final monotonicity
score is the average of the scores for two statistical tests (t-test and
rank-sum statistic), normalized to [0,1].

3 PRELIMINARY FINDINGS
We have performed 100 replications for each combination of user
data, anonymization algorithm, de-anonymization algorithm, and
adversary strength, and applied the algorithm described in Section
2.4 to summarize our experimental results into monotonicity scores.

Figure 2 shows detailed results for two metrics, adversary’s suc-
cess rate and entropy, in two example scenarios each (our experi-
ments generate results for 240 such plots per metric). Each violin
shows the distribution of metric values for one adversary strength
level, ordered from strongest (left) to weakest (right). In addition,
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Figure 3: Heat map visualizing monotonicity scores for
two privacy metrics, grouped by dataset, anonymizer, de-
anonymizer, and adversary strength type. Light yellow col-
ors indicate low monotonicity (weak metric), and dark blue
colors indicate high monotonicity (strong metric).

black horizontal lines indicate confidence intervals for the mean,
italic values on top of each violin indicate the mean value, and
the green line at the top (resp. bottom) indicates whether higher
(resp. lower) values indicate higher privacy. The metrics on the
left (Figures 2a and 2c) behave as expected by indicating higher
privacy for weaker adversaries, whereas the metrics on the right
(Figures 2b and 2d) indicate higher privacy for stronger adversaries.
This behavior is undesirable because it may lead to misjudging the
strength of a new PET.

Figure 3 summarizes all results for these two metrics in a heat
map. Each field in the heat map represents the monotonicity score
of one metric in one scenario. For example, Figure 2a corresponds to
the bottom-right field in the KL column. The heatmap shows that on
average, the adversary’s success rate has much higher monotonicity
than entropy. However, there are some combinations of dataset,
anonymization, and de-anonymization algorithms, for which en-
tropy is stronger than the adversary’s success rate. The fact that
monotonicity can vary depending on the dataset and algorithms in-
dicates that there is no single metric that is always best to measure
graph privacy.

To illustrate this point further, we aggregate all monotonicity
scores for each metric into a box plot (Figure 4). The ranking clearly
shows that the adversary’s success rate and amount of leaked infor-
mation are the strongest metrics. However, the figure also shows
that the whiskers for almost all metrics extend both to the high-
est and to the lowest monotonicity. This indicates that even the
strongest metrics are non-monotonic in some scenarios.

4 DISCUSSION AND OPEN ISSUES
Our evaluation of the strength of 25 graph privacy metrics shows
that the strongest metrics are per-graphmetrics, that is, metrics that
indicate privacy for the entire graph, but not for individual nodes.
Entropy-based metrics give detailed measurements of privacy for
individual nodes, but although entropy is monotonic in other do-
mains, e.g., vehicular communication [9], it is not monotonic in
most graph privacy scenarios.

Our preliminary results thus point to important future research
directions for graph privacy metrics: to study what conditions will
result in monotonic privacy metrics, to develop strong metrics that
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Figure 4: Ranking of privacy metrics according to their
monotonicity scores. Each box summarizes 240 data points
(4 datasets × 2 types of adversary strength × 5 anonymizers
× 6 de-anonymizers). Notches indicate 95% confidence inter-
vals. Per-graph metrics are bold.

measure the privacy of individual nodes, and to analyze whether
monotonicity is the only requirement for strong graph privacy
metrics.
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