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Abstract—Complex fuzzy sets come in two forms, the standard

form, postulated in 2002 by Ramot et al., and the 2011 innovation

of pure complex fuzzy sets, proposed by Tamir et al.. In this

paper we compare and contrast both forms of complex fuzzy set

with type-2 fuzzy sets, as regards their rationales, applications,

definitions, and structures. In addition, pure complex fuzzy

sets are compared with type-2 fuzzy sets in relation to their

inferencing operations.

Complex fuzzy sets and type-2 fuzzy sets differ in their roles

and applications. Their definitions differ also, though there is

equivalence between those of a pure complex fuzzy set and a

type-2 fuzzy set. Structural similarity is evident between these

three-dimensional sets. Complex fuzzy sets are represented by a

line, and type-2 fuzzy sets by a surface, but a surface is simply

a generalisation of a line. This similarity is particularly evident

between pure complex fuzzy sets and type-2 fuzzy sets, which

are both mappings from the domain onto the unit square. Type-

2 fuzzy sets were found not to be isomorphic to pure complex

fuzzy sets.

I. INTRODUCTION

Complex fuzzy sets are a relatively recent development in
fuzzy set theory, proposed by Ramot et al. in 2002 [1]. A
natural extension of real-valued (type-1) fuzzy sets, they differ
from them in so far as their membership grades are complex
numbers (of modulus < 1) [2].

Pure complex fuzzy sets are a very recent variation on
complex fuzzy sets proposed by Tamir et al. in 2011. Using
Cartesian coordinates, both the real and imaginary components
of the membership grade may take any value within the
interval [0, 1] [3, page 293]. Pure complex fuzzy sets may
also be represented using polar coordinates [3, page 294] in
a formalisation that is superficially similar to that of complex
fuzzy sets as defined by Ramot et al., but in which the phase
and modulus terms are interpreted differently.

In this paper, in order to distinguish between pure complex
fuzzy sets and the original complex fuzzy sets proposed
by Ramot et al., we shall refer to complex fuzzy sets as
first postulated as standard complex fuzzy sets. The phrase
‘complex fuzzy set’ will refer to either form.

Type-2 fuzzy sets are another extension of type-1 fuzzy sets
in which the sets’ membership grades are themselves type-1
fuzzy sets. The concept dates back to Zadeh’s seminal paper
of 1975 [4].

The purpose of this paper is to establish similarities and
differences firstly between complex fuzzy sets and type-2
fuzzy sets, and secondly between complex fuzzy inferencing
systems and type-2 fuzzy inferencing systems. The report is
structured as follows: After the introduction of this section,
Section II sets out the definitions of the fuzzy sets. In Section
III, the structures of the sets are discussed, and in Section IV,
the inferencing operations are investigated. The final section,
Section V, concludes the paper.

A. Fuzzy Inferencing Systems

It is via the Fuzzy Inferencing System (FIS)1 that fuzzy
sets are put to use. An FIS is a decision making program
which works by applying fuzzy logic operators to common-
sense linguistic rules. In this paper we are concerned with
the Mamdani FIS, in which a crisp numerical input passes
through three stages: fuzzification, inferencing, and finally
defuzzification. The output of inferencing is a fuzzy set known
as the aggregated set. During the defuzzification stage the
aggregated set is converted into a crisp number, which is
the output of the FIS. Figure 1 provides a representation of
a Mamdani-style type-2 FIS. A Mamdani-style complex FIS
differs from the type-2 version only in that defuzzification is
a one stage procedure. Defuzzification is beyond the scope of
this paper; the focus will be on the inferencing stages of the
FIS.

B. Complex Fuzzy Sets

Ramot et al. [1, page 171] see standard complex fuzzy sets
as an extension of type-1 fuzzy sets:

“... complex fuzzy set theory modifies the original
concept of fuzzy membership by asserting that, at
least in some instances, it is necessary to add a
second dimensions to the expression of membership.
. . . The novelty of complex fuzzy sets is manifested
in the additional dimension of membership: the
phase of the grade of membership, !

S

(x). ”
And what is the purpose of this additional phase term? It
permits complex fuzzy sets to intuitively represent fuzziness

1A fuzzy inferencing system is also known as a Fuzzy Logic System (FLS).
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Fig. 1. Mamdani-style Type-2 FIS (adapted from Mendel [5]).

in time series applications. Dick gives this example [2, page
413]:

“... consider traffic congestion in a major city. The
basic dynamics of traffic congestion are depressingly
well-known: there is a morning “rush hour” when
workers are trying to get to their jobs, causing
high congestion in one direction on major roads; in
the afternoon, there is a rush hour in the opposite
direction, as everyone goes home. In between, traffic
is lighter, and at night, the roads are nearly empty.
This situation is approximately periodic, but never
exactly repeats itself. Zadeh has recently [6] termed
this phenomenon “regularity,” . . . ”

Dick goes on to say that in his view,
“... the proper role for a complex fuzzy set is a
remarkably efficient representation of approximately
periodic phenomena, and as the underlying mathe-
matical foundation of regularity.”

Applications of complex fuzzy sets include analysing solar
activity as measured by the recorded number of sunspots [1],
Section III, signal processing [1], stock trading on the New
York Stock Exchange [7], and prediction of voter turnout in
elections [7]. The potential for further applications is immense.

C. Type-2 Fuzzy Sets

Type-1 membership functions are subject to uncertainty
arising from various sources [8]. Their accuracy is therefore
questionable; it seems counterintuitive to use real numbers,
possibly expressed to several decimal places, to represent
degrees of membership. Klir and Folger comment [9, page
12]:

“... it may seem problematical, if not paradoxical,
that a representation of fuzziness is made using
membership grades that are themselves precise real
numbers. Although this does not pose a serious
problem for many applications, it is nevertheless
possible to extend the concept of the fuzzy set to
allow the distinction between grades of membership
to become blurred. Sets described in this way are
known as type 2 fuzzy sets.”

Here Klir and Folger describe blurring a type-1 fuzzy set to
form an interval type-2 fuzzy set. Mendel and John take this
idea a stage further [8, page 118], describing the transition
from a type-1 fuzzy set to a generalised type-2 fuzzy set, again
by blurring the type-1 membership function:

“Imagine blurring the type-1 membership function
[. . . ] by shifting the points [. . . ] either to the left or
the right, and not necessarily by the same amounts,
[. . . ]. Then, at a specific value of x, say x

0, there no
longer is a single value for the membership func-
tion (u0); instead the membership function takes on
values wherever the vertical line [x = x

0] intersects
the blur. These values need not all be weighted the
same; hence, we can assign an amplitude distribution
to all of these points. Doing this for all x 2 X , we
create a three-dimensional membership function —
a type-2 membership function — that characterizes
a type-2 fuzzy set.”

Thus type-2 fuzzy sets take two forms, the interval, for
which all secondary membership grades are 1, and the gener-
alised, where the secondary membership grade may take any
value between 0 and 1. The tendency has been for developers
to opt [10, pages 7, 8, 16] for the computationally simpler
interval type-2 FISs [8], [11] for which applications have been
developed in areas such as control, simulation and optimisation
[12], [13], [14], [15], [16], [17]. In contrast, there are relatively
few, though varied, generalised type-2 fuzzy applications [18],
[8], [19], [20]. Since strategies have been and continue to
be developed that reduce the computational complexity of all
stages of the generalised type-2 FIS [21], [22], [23], it is to
be hoped that in the future there will be an increasing number
of generalised type-2 FIS applications.

For a complex fuzzy set, the third dimension reflects ad-
ditional information — that of phase. However, for a type-2
fuzzy set, the third dimension reflects the uncertainty arising
out of a deficit in information.

II. DEFINITIONS

A. Type-1 Fuzzy Sets

Since complex fuzzy sets and type-2 fuzzy sets are both
extensions of the basic type-1 fuzzy set, we begin by formally
defining the type-1 fuzzy set.

Definition 1 (Type-1 Fuzzy Set). Let X be a universe of dis-
course. A fuzzy set A in X is characterised by a membership
function µ

A

: X ! [0, 1], and can be expressed as follows:

A = {(x, µ
A

(x));µ

A

(x) 2 [0, 1] 8x 2 X}. (1)

Note that the membership grades of A are crisp, real
numbers.

B. Complex Fuzzy Sets

Standard complex fuzzy sets are defined using polar co-
ordinates.

Definition 2 (Standard Complex Fuzzy Set [1, page 172]). “A
complex fuzzy set S, defined on a universe of discourse U , is
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characterized by a membership function µ

S

(x) that assigns
any element x 2 U a complex-valued grade of membership in
S. By definition, the values µ

S

(x) may receive all lie within
the unit circle in the complex plane, and are thus of the form
r

S

(x) · ej!S

(x), where j =

p
�1, r

S

(x) and !

S

(x) are both
real-valued, and r

s

(x) 2 [0, 1].
The complex fuzzy set S may be represented as the set of

ordered pairs
S = (x, µ

S

(x))|x 2 U.

00

This definition employs polar coordinates. However conver-
sion between the polar form and the Cartesian form is straight-
forward; in Figure 4(b) the data displayed is in Cartesian form.

Tamir et al. comment on this definition [3, page 286],
“In the formalism of complex fuzzy sets proposed by Ramot
et al., fuzzy membership is represented in polar coordinates
and only the absolute value of the complex membership
function conveys fuzzy information.” In response, they define
pure complex fuzzy sets which use “. . . a Cartesian complex
fuzzy membership function where both the real part and the
imaginary part can be fuzzy functions.” [3, page 286]

Definition 3 (Pure Complex Fuzzy Set [3, pages 291–292]).
Let µ(V, z) be the pure complex grade of membership. Then

µ(V, z) = µ

r

(V ) + jµ

i

(z) (2)

where µ

r

(V ) and µ

i

(z) are real value fuzzy grades of mem-
bership in the interval [0, 1].

C. Type-2 Fuzzy Sets

Let X be a universe of discourse. Let ˜

P (X) be the set of
fuzzy sets in X . A type-2 fuzzy set ˜

A in X is a fuzzy set
whose membership grades are themselves fuzzy. This implies
that µ

Ã

(x) is a fuzzy set in [0, 1] for all x, i.e.

˜

A = {(x, µ
Ã

(x));µ

Ã

(x) 2 ˜

P ([0, 1]) 8x 2 X}. (3)

It follows that 8x 2 X 9J
x

✓ [0, 1] such that µ
Ã

(x) : J

x

!
[0, 1]. Applying (1), we have:

µ

A

(x) = {(u, µ
Ã

(x)(u));µ

Ã

(x)(u) 2 [0, 1]8u 2 J

x

✓ [0, 1]}.
(4)

J

x

is called the primary membership of x while µ

Ã

(x) is
called the secondary membership of x.

Putting (3) and (4) together we have

Definition 4 (Type-2 Fuzzy Set).

˜

A = {(x, (u, µ
Ã

(x)(u)))|µ
Ã

(x)(u) 2 [0, 1],

8x 2 X ^ 8u 2 J

x

✓ [0, 1]}, (5)

where X is a universe of discourse and ˜

A is a type-2 fuzzy
set in X .

Two concepts relating to type-2 fuzzy sets are the footprint
of uncertainty and the vertical slice.

Definition 5 (Footprint Of Uncertainty). The Footprint Of
Uncertainty (FOU) is the projection of the type-2 fuzzy set
onto the x� u plane.

Definition 6 (Vertical Slice). A vertical slice is a plane which
intersects the x-axis (primary domain) and is parallel to the
u-axis (secondary domain).

The notion of a vertical slice may be extended to complex
fuzzy sets in both the standard and pure forms.

III. STRUCTURE

Figure 2 shows a type-2 fuzzy set (from a MatlabTM

application), together with its FOU. Figure 3 shows the
conventional 2-D representation of the time series consisting
of sunspot numbers observed on a monthly basis [24]. Figure
4 shows the sunspot observations of Figure 3 [24] displayed
as a complex fuzzy set.
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Fig. 2. Aggregated type-2 fuzzy set created during the inference stage of a
type-2 FIS.

A standard complex fuzzy set is represented mathematically
by a mapping whose range is the unit disc, centre (0, 0). In
contrast, the mapping representing a pure complex fuzzy set
has the unit square, with vertices (0, 0), (1, 0), (1, 1), (0, 1), as
its range. Similarly, the range of the type-2 fuzzy set mapping
is the unit square.

What is the difference in structure between a complex fuzzy
set and a generalised type-2 fuzzy set? Might not a complex
fuzzy set be seen a special case of a generalised type-2 fuzzy
set? Graphically a type-2 fuzzy set is a surface in 3-D, whereas
a complex fuzzy set is a line in 3-D. But a line is a specific
sort of surface. So structurally a complex fuzzy set may be
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Fig. 3. Number of sunspots recorded on a monthly basis between 1994 and
2013.
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Fig. 4. Sunspot data represented as a complex fuzzy set. The modulus is
greater than 1 because the sunspot data has not been normalised.

considered to be a special form of generalised type-2 fuzzy
set (in the same way that an interval type-2 fuzzy set is a
specialisation of the generalised type-2 fuzzy set).

IV. OPERATIONS

Within a type-2 FIS, join and meet operations are used
extensively. Similarly, for a complex FIS, union and intersec-
tion operations are pervasive. For both type-2 and complex
FISs, all the computation occurring during the major stage of
inferencing is founded upon these operations. In this section
we will look at whether the type-2 fuzzy join and meet
operations are transferable to complex fuzzy sets.

To facilitate comparison between mappings, it is essential
that they take the same range, otherwise a bijective transfor-
mation between the ranges would need to be exhibited. As
this is not a trivial issue, we restrict our analysis to comparing
type-2 fuzzy sets with pure complex fuzzy sets.

Minimum (‘^’ or ‘�’) is the most frequently used t-norm;
in the analysis which follows, this t-norm is employed, as is
the maximum t-conorm (‘_’ or ‘�’).

A. Operations on Pure Complex Fuzzy Sets

1) Equation for Union: According to Tamir et al. [3, pages
299–300] there are three ways to construct the union of two
pure complex fuzzy classes2. They describe this (their third)
construction as “. . . sound, intuitive, and practical.”

Definition 7 (Union of Pure Complex Fuzzy Classes).
Let � = {V, z, µ�(V, z)|V 2 2

U

, z 2 U} and  =

{T, z, µ (T, z)|T 2 2

U

, z 2 U} be two complex fuzzy
classes such that V and T are fuzzy sets. Assume that �
and  are defined over a universe of discourse U , and let
2

U denote the power set of U . Further assume that the
degree of membership of an object z 2 V and an object
y 2 T is given by µ�(V, z) = µ�

r

(V ) + jµ�
i

(z) and
µ (T, y) = µ 

r

(T ) + jµ 
i

(y), respectively, where µ�
r

(↵),
µ 

r

(↵), µ�
i

(↵), and µ 
i

(↵) stand for the real and imaginary
parts of µ�(V, x) and µ (T, y). Finally, let W = 2

U , and let
� denote a t-conorm operation. Then

µ�[ (W, z) = (µ�
r

(V )�µ 
r

(T ))+j(µ�
i

(z)�µ 
i

(z)). (6)

2) Equation for Intersection: The position with respect
to intersection is analogous to that of union, and again the
definition presented here is described by Tamir et al. as
“. . . sound, intuitive, and practical” [3, pages 301–302].

Definition 8 (Intersection of Pure Complex Fuzzy Classes).
Let � = {V, z, µ�(V, z)|V 2 2

U

, z 2 U} and  =

{T, z, µ (T, z)|T 2 2

U

, z 2 U} be two complex fuzzy
classes such that V and T are fuzzy sets. Assume that �
and  are defined over a universe of discourse U , and let
2

U denote the power set of U . Further assume that the
degree of membership of an object z 2 V and an object
y 2 T is given by µ�(V, z) = µ�

r

(V ) + jµ�
i

(z) and
µ (T, y) = µ 

r

(T ) + jµ 
i

(y), respectively, where µ�
r

(↵),

2Tamir et al. present their analysis in terms of classes, but for the purposes
of this paper it can be assumed that classes and sets are equivalent.
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µ 
r

(↵), µ�
i

(↵), and µ 
i

(↵) stand for the real and imaginary
parts of µ�(V, x) and µ (T, y). Finally, let W = 2

U , and let
� denote a t-norm operation. Then

µ�\ (W, z) = (µ�
r

(V )�µ 
r

(T ))+j(µ�
i

(z)�µ 
i

(z)). (7)

3) Union and Intersection Performed Slice by Slice: Union
and intersection operations proceed slice by slice, so it is
sufficient to specify how these operations may be applied to
two slices. For union, Equation 6 requires that the t-conorm
operator be applied to both the real and imaginary components
of the membership grade i.e the max /max combination. For
intersection, Equation 7 indicates that the t-norm operator is
applicable to both the real and imaginary components of the
membership grade i.e the min /min combination.

B. Operations on Type-2 Fuzzy Sets

1) Equation for Join: The formula for the join operation
is:

µ

Ã[B̃

(x) =

Z

u2J

u

x

Z

w2J

w

x

f

x

(u) ? g

x

(w)/(u _ w) x 2 X,

where _ is the maximum operator, ? signifies a t-norm,
RR

represents union over J

u

x

⇥ J

w

x

, and f

x

(u) and g

x

(w) are
respectively the corresponding secondary grades of µ

Ã

(x) and
µ

B̃

(x) [5, pages 217–18].
2) Equation for Meet: The formula for the meet operation

is:

µ

Ã\B̃

(x) =

Z

u2J

u

x

Z

w2J

w

x

f

x

(u) ? g

x

(w)/(u ^ w) x 2 X,

where ^ is the minimum operator, ? signifies a t-norm,
RR

represents union over J

u

x

⇥ J

w

x

, and f

x

(u) and g

x

(w) are
respectively the corresponding secondary grades of µ

Ã

(x) and
µ

B̃

(x) [5, page 219].
3) Join and Meet Performed Slice by Slice: Join and meet

operations proceed slice by slice, so it is sufficient to specify
how these operations may be applied to two slices.

Let ˜

A and ˜

B be two type-2 fuzzy sets, in which the co-
domains are discretised into N slices, and the domains sliced
at the points x

Ã

and x

B̃

respectively. Two type-1 fuzzy sets,

S

Ã

= {z
A1/yA1 + z

A2/yA2 + · · ·+ z

A

N

/y

A

N

}

and

S

B̃

= {z
B1/yB1 + z

B2/yB2 + · · ·+ z

B

N

/y

B

N

},

are generated.
Join: The formula for join requires that

all N

2 possible min /max pairings of S

Ã

and
S

B̃

be created: min(z

A1 , zB1)/max(y

A1 , yB1) +

min(z

A1 , zB2)/max(y

A1 , yB2) + · · · + min(z

A

N

, z

B

N

)/

max(y

A

N

, y

B

N

).
Meet: Similarly, for meet, pairings are

generated as follows: min(z

A1 , zB1)/min(y

A1 , yB1) +

min(z

A1 , zB2)/min(y

A1 , yB2) + · · · + min(z

A

N

, z

B

N

)/

min(y

A

N

, y

B

N

).

Selection of Maximum Membership Grade: The next
stage is the same for join and meet. For every resultant domain
value (‘denominator’) generated, the maximum membership
grade (‘numerator’) is selected. The resultant set of pairs is
the join or meet of the two slices.

C. Applying Join and Meet of Slices to Complex Fuzzy Sets

What happens when the join and meet operations of type-
2 fuzzy sets are substituted for the union and intersection
operations of (pure) complex fuzzy sets? The complex fuzzy
set would be regarded as a type-2 fuzzy set whereby for each
vertical slice the co-domain is not discretised i.e. N = 1. It
follows that N2

= 1, indicating that there is only 1 min /max

pairings of S

Ã

and S

B̃

in the case of join (union) and only
1 min /min pairings in the case of meet (intersection). There
would be no need to select the maximum membership grade
as there would only be one pair; this stage is superfluous. The
resultant set of one pair is the join or meet of the two slices.

Is pure complex fuzzy inferencing isomorphic to type-2
fuzzy inferencing? The type-2 meet operation carries over
to the pure complex intersection operation as min /min.
However the type-2 join operation is not transferrable to
the pure complex union operation; the former is min /max,
whereas the latter is max /max. So there is no isomorphism
between pure complex fuzzy sets and type-2 fuzzy sets.

V. CONCLUSIONS

This paper has evaluated the similarities and distinctions
between complex fuzzy sets and systems and type-2 fuzzy
sets and systems in several respects:

a) Rationale: For a complex fuzzy set, the third di-
mension reflects additional information — that of phase.
However, for a type-2 fuzzy set, the third dimension reflects
the uncertainty arising out of a deficit in information.

b) Applications: Complex fuzzy sets are applicable to
the analysis of time series, where there is a phased regularity.
In contrast, type-2 fuzzy sets lend themselves to applications
in which there is a high degree of uncertainty, specifically
situations where there is uncertainty in multiple dimensions
[25].

c) Definitions: Complex fuzzy sets in both their forms
differ from type-2 fuzzy sets in terms of definition. However
there is equivalence between the definition of a pure complex
fuzzy set and that of a type-2 fuzzy set.

d) Structure: Structural similarity is evident between
these three-dimensional fuzzy sets. Complex fuzzy sets are
represented by a line in 3D, and type-2 fuzzy sets by a surface
in 3D. However a surface is a generalisation of a line. The
similarity between pure complex fuzzy sets and type-2 fuzzy
sets is striking, as both are mappings from the domain onto
the unit square.

e) Operations: Standard complex fuzzy sets were not
compared with type-2 fuzzy sets as regards inferencing op-
erations. A comparison was made of type-2 fuzzy inferencing
operations with those of pure complex fuzzy sets; an isomor-
phism was shown not to exist.
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Overall, the differences outweigh the similarities; despite
their shared three-dimensional nature, complex fuzzy sets and
type-2 fuzzy sets are two distinct entities, constructed for dif-
ferent purposes, and with different behaviour mathematically.

As further work, it might be profitable to investigate com-
bining (standard) complex fuzzy sets with type-2 fuzzy sets.
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