
IEEE TRANSACTIONS ON CYBERNETICS 1

DroidFusion: A Novel Multilevel Classifier Fusion
Approach for Android Malware Detection

Suleiman Y. Yerima, Member, IEEE, and Sakir Sezer, Member, IEEE,

Abstract—Android malware has continued to grow in volume
and complexity posing significant threats to the security of
mobile devices and the services they enable. This has prompted
increasing interest in employing machine learning to improve
Android malware detection. In this paper we present a novel
classifier fusion approach based on a multilevel architecture that
enables effective combination of machine learning algorithms
for improved accuracy. The framework (called DroidFusion),
generates a model by training base classifiers at a lower level
and then applies a set of ranking-based algorithms on their
predictive accuracies at the higher level in order to derive a
final classifier. The induced multilevel DroidFusion model can
then be utilized as an improved accuracy predictor for Android
malware detection. We present experimental results on four
separate datasets to demonstrate the effectiveness of our proposed
approach. Furthermore, we demonstrate that the DroidFusion
method can also effectively enable the fusion of ensemble learning
algorithms for improved accuracy. Finally, we show that the
prediction accuracy of DroidFusion, despite only utilizing a
computational approach in the higher level, can outperform
Stacked Generalization, a well-known classifier fusion method
that employs a meta-classifier approach in its higher level.

Index Terms—Android Malware Detection, Mobile Secu-
rity, Machine Learning, Classifier Fusion, Ensemble Learning,
Stacked Generalization.

I. INTRODUCTION

IN recent years, Android has become the leading mobile
operating system with a substantially higher percentage

of the global market share. Over 1 billion Android devices
have been sold with an estimated 65 billion app downloads
from Google Play alone [1]. The growth in popularity of
Android and the proliferation of third party app markets has
also made it a popular target for malware. Last year, McAfee
reported that there were more than 12 million Android mal-
ware samples with nearly 2.5 million new samples discovered
every year [2]. Android malware can be embedded in a
variety of applications such as banking apps, gaming apps,
lifestyle apps, educational apps, etc. These malware-infected
apps can then compromise security and privacy by allowing
unauthorized access to privacy- sensitive information, rooting
devices, turning devices into remotely controlled bots, etc.

Zero-day Android malware have the ability to evade tra-
ditional signature-based defences. Hence, there is an urgent
need to develop more effective detection methods. Recently,

S. Y. Yerima is with the Cyber Technology Institute, School of Computer
Science and Informatics, De Montfort University, Leicester, England. (e-mail:
syerima@dmu.ac.uk).

S. Sezer is with the Centre for Secure Information Technologies (CSIT),
Queen’s University Belfast, Northern Ireland, UK (e-mail: s.sezer@qub.ac.uk).

Manuscript received June 03, 2017; revised September 11, 2017, accepted
November 11 2017.

machine learning based methods are increasingly being ap-
plied to Android malware detection. However, classifier fusion
approaches have not been extensively explored as they have
been in other domains like network intrusion detection.

In this paper, we present and investigate a novel classifier
fusion approach that utilizes a multilevel architecture to in-
crease the predictive power of machine learning algorithms.
The framework, called DroidFusion, is designed to induce
a classification model for Android malware detection by
training a number of base classifiers at the lower level. A
set of ranking-based algorithms are then utilized to derive
combination schemes at the higher level, one of which is
selected to build a final model. The framework is capable
of leveraging not only traditional singular learning algorithms
like Decision Trees or Naive Bayes, but also ensemble learning
algorithms like Random Forest, Random Subspace, Boosting
etc. for improved classification accuracy.

In order to demonstrate the effectiveness of the DroidFu-
sion approach, we performed extensive experiments on four
datasets derived from extracting features from two publicly
available and widely used malware samples collection (i.e.
Android Malgenome project [3] and DREBIN [4]) and a
collection of samples provided by Intel Security (Formerly,
McAfee). The unique contributions of this paper can be
summarized as follows:
◦ We propose a novel general-purpose classifier fusion

approach (DroidFusion) and present its evaluation on
four different datasets. DroidFusion can be applied to
not only traditional learners but also ensemble learners.

◦ We propose four ranking-based algorithms that enable
classifier fusion within the DroidFusion framework.
The algorithms are utilized in building a final improved
classification model for Android malware detection.

◦ We present the results of extensive experiments to
demonstrate the effectiveness of our proposed approach.
The results of experiments with singular classifiers and
ensemble classifiers are presented.

◦ Furthermore, we present results of a performance com-
parison of DroidFusion with Stacked Generalization (or
Stacking), a well- known classifier fusion method that
is also based on a multilevel architecture.

◦ Datasets that we created from the feature extraction
process with DREBIN and Malgenome project malware
samples are released in the supplementary material.

The rest of the paper is structured as follows. Section II
discusses related work while section III presents the DroidFu-
sion framework. The investigation methodology is presented
in section IV, while section V presents results, with analyses
and discussions. Finally, the conclusion is given in section VI.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228199713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON CYBERNETICS 2

II. RELATED WORK

In this section we review related work on machine learn-
ing based Android malware detection. Static and/or dynamic
analysis is used to extract model training features, and both
methods have pros and cons. Static analysis is prone to
obfuscation [5], but is generally faster and less resource
intensive than dynamic analysis. Dynamic analysis is resistant
to obfuscation but can be hampered by anti-virtualization [6]–
[9] and code coverage limitations [10], [34].

A. Static analysis with traditional classifiers
Recent Android malware detection work that employ ma-

chine learning with static features include the following.
DroidMat [11] proposed applying k-means and k-NN algo-
rithms based on static features from permissions, intents and
API (application program interface) calls, to classify apps as
benign or malware. Arp et al. [4], proposed SVM based on
permissions, API calls, network access, etc. for lightweight
on-device detection. Yerima, et al. [12], [14] proposed an
Eigenpsace analysis approach, as well as Random Forest en-
semble learning models. The machine learning based detection
proposed in the papers were based on API calls, intents,
permissions and embedded commands. Varsha et al. [15]
investigated SVM, Random Forest and Rotation Forests on
three datasets; their detection method employed static features
extracted from the manifest and application executable files.

Sharma and Dash [16] utilized API calls and permissions
to build Naive Bayes and k-NN based detection systems.
In [17], API classes were used with Random Forest, J48 and
SVM classifiers. Wang et al. [18] evaluated the usefulness of
risky permissions for malware detection using SVM, Decision
Trees and Random Forest. DAPASA [19] focused on detecting
malware piggybacked onto benign apps by utilizing sensitive
subgraphs to construct five features depicting invocation pat-
terns. The features are fed into machine learning algorithms
i.e. Random Forest, Decision Tree, k- NN and PART, with
Random Forest yielding the best detection performance. Cen et
al. [20] proposed a detection method based on API calls from
decompiled code and permissions. Their proposed method
applies a probabilistic discriminative model based on regu-
larized logistic regression (RLR). RLR is compared to SVM,
Decision Tree, k-NN, Naive Bayes with information priors and
Hierarchical mixture of Naive Bayes.

Wang et al. [52] applied Logistic regression, Linear SVM,
Decision Tree and Random forest with static analysis for the
detection of malicious apps. They utilized app-specific static
features and platform-specific static features for training the
machine learning algorithms. The authors reported a maximum
true positive rate of 96% and false positive rate of 0.06%
with the Logistic Regression classifier based on experiments
conducted on 18,363 malware apps and 217,619 benign apps.

Other research papers that have investigated static features
with machine learning for Android malware detection in-
clude [21]–[23], [45], [47], [48] and [54].

B. Dynamic & hybrid analysis with traditional classifiers
Some of the detection methods utilized dynamic features

with machine learning, for example AntiMalDroid [24]. An-

tiMalDroid is a dynamic analysis behavior based malware
detection framework that uses logged behavior sequence as
features with SVM. DroidDolphin [25], also employed SVM
with dynamically obtained features. Afonso et al. [26] utilized
dynamic API calls and system call traces and investigated
SVM, J48, IBk (an instance based classifier), BayesNet K2,
BayesNet TAN, Random Forest and Naive Bayes. Alzaylaee
et al. [27] investigated SVM, Naive Bayes, PART, Random
Forest, J48, MLP (multi-layer perceptron), and Simple logistic
by comparing their performances on real phones vs. emulators
using dynamically obtained features. Ni et al. [46], proposed
a real-time malicious behavior detection system that records
API calls, permission uses, and other real-time features such
as user operations. In their paper, they used SVM and Naive
Bayes algorithms for detection with these run-time features.

Mahindru and Singh [53] extracted 123 dynamic permis-
sions from 11000 Android applications which were subse-
quently applied to several individual machine learning clas-
sifiers including Naive Bayes, Decision Tree, Random Forest,
Simple Logistic and k-star. In their experiments Simple Lo-
gistic was found to perform marginally better than the others
but the malware classification accuracy of Random Forest,
Decision Tree (J48) and Simple logistics were comparable.

Other works such as MARVIN [28], adopt a hybrid static
and dynamic feature based approach with machine learning
(SVM and L2 regularized linear classifer). MARVIN assesses
the risk associated with unknown Android apps in the form
of a malice score ranging from 0 to 10. Similarly, Su et
al. [49] adopted a hybrid static and dynamic feature approach
by performing experiments on 1200 (900 clean and 300
malware) samples. Several machine learning algorithms were
investigated including Bayes Net, Naive Bayes, K-NN, J48,
and SVM. The best overall accuracy of 91.1% was attained
with SVM.

C. Android malware detection with classifier fusion
Previous works in intrusion detection systems such as [29]–

[32] investigated classifier fusion for improving detection
accuracy. This method is also being applied to the detection
of Android malware. For example Milosevic et al. [50] in-
vestigated classifer fusion approach with static analysis based
on Android permissions and source code-based analysis. They
used SVM, C.45, Decision Trees, Random Tree, Random
Forests, JRip and linear regression classifiers. The authors
experimented with ensembles that contained odd combinations
of three and five classifiers using the majority voting fusion
method. The best fusion model achieved an accuracy rate of
95.6% using the source-code based features. However, the
number of samples used in the experiments were limited (387
samples for the permissions-based experiments and 368 for
source code-based analysis)

Yerima et al. [13] compared several classifier fusion meth-
ods i.e. Majority vote, Product of probabilities, Maximum
probability, and Average of probabilities using J48, Naive
Bayes, PART, RIDOR, and Simple Logistic classfiers. The
classifiers were trained with static features extracted from
6,863 app samples, and in the experiments presented, the fused
models performed better than the single classifiers.

IEEE TRANSACTIONS ON CYBERNETICS 3

TABLE I: Overview of some of the papers that apply classfier
fusion for Android malware detection. NB = Naive Bayes; SL=
Simple Logistic; LR= Linear Regression; DT = Decision Tree;
VP= Voted Perceptron. AveP = average of probabilities; ProdP
= product of probabilities; MaxP = maximum probability.

Paper/Year ML algorithms Fusion approach # samples

Yerima et. al
[13] (2014)

SVM, J48,
PART, Ridor,
NB, SL

Majority vote,
ProdP,
AveP, MaxP

6,863

Coronado-de-Alba
et. al [33] (2016)

Random Forest,
Random
Committee

Meta-ensembling
Random Forest in
Random Comm.

3,062

Milosevic
et. al [50] (2017)

SVM, C.45, RT
DT, JRip, LR,
Random Forest

Majority vote 387
368

Wang
et. al [51] (2017)

SVM, KNN,
NB, CART,
Random Forest

Majority vote 116,028

Idrees
et al. [55] (2017)

MLP, DT,
Decision Table

Majority vote,
AveP, ProdP 1,745

DroidFusion
(This paper)

RT, J48,
RepTree, VP,
Random Forest,
Random Comm.,
Random Sub.,
AdaBoost

Multilevel
weighted
Ranking-based
approach

3,799
15,036
36,183

Wang et al. [51] extracted 11 types of static features
and employ multiple classifiers in a majority vote fusion
approach. The classifiers include SVM, K-Nearest Neighbour,
Naive Bayes, Classification and Regression Tree (CART) and
Random Forest. Their experiments on 116,028 app samples
showed more robustness with the majority voting ensemble
than with the individual base classifiers.

Idrees et al. [55] utilize permissions and intents as features
to train machine learning models and applied classifier fusion
for improved perfromance. Their experiments were performed
on 1745 app samples starting with a performance comparison
between MLP, Decision Table, Decision Tree, Random Forest,
Naive Bayes and Sequential Minimal Optimization classifiers.
The Decision Table, MLP, and Decision Tree classfiers were
then combined using three schemes: average of probabilities,
product of probabilities and majority voting. Coronado-de-
Alba et al. [33] proposed and investigated a classifier fusion
method based on Random Forest and Random Committee
ensemble classifiers. Their approach embeds Random Forest
within Random Commitee to produce a meta-ensemble model.
The meta-model outperformed the individual classifiers in
experiments performed with 1531 malware and 1531 benign
samples. Table I summarizes papers that have investigated
classifier fusion for Android malware detection.

In contrast to all of the existing Android malware detection
works, this paper proposes a novel classifier fusion approach
that utilizes four ranking based algorithms within a multilevel
framework (DroidFusion). We evaluated DroidFusion exten-
sively and compared its performance to Stacking and other
classifer fusion methods. Next, we present DroidFusion.

III. DROIDFUSION: GENERAL PURPOSE FRAMEWORK FOR
CLASSIFIER FUSION

The DroidFusion framework consists of a multilevel ar-
chitecture for classifier fusion. It is designed as a general
purpose classifier fusion system, so that it can be applied to
both traditional singular classifiers and ensemble classifiers
(which themselves employ a base classifier usually to produce
different randomly induced models that are subsequently com-
bined). At the lower level, the (DroidFusion) base classifiers
are trained on a training set using a stratified N -fold cross
validation technique to estimate their relative predictive accu-
racies. The outcomes are utilized by four different ranking-
based algorithms (in the higher layer) that define certain
criteria for the selection and subsequent combination of a
subset (or all) of the applicable base classifiers. The outcomes
of the ranking algorithms are combined in pairs in order to find
the strongest pair, which is subsequently used to build the
final DroidFusion model (after testing against an unweighted
parallel combination of the base classifiers).

A. DroidFusion model construction

The model building i.e. training process is distinct from the
prediction or testing phase, as the former utilizes a training-
validation set to build a multilevel ensemble classifier which is
then evaluated on a separate test set in the latter phase. Figure
1, illustrates the 2-level architecture of DroidFusion. It shows
the training paths (solid arrows) and the testing/prediction
path (dashed arrows). First, at the lower level each base
classifier undergoes an N -fold cross validation based estimate
of class performance accuracies. Let the N -fold cross validated
predictive accuracies for K base classifiers be expressed by
Pbase, a K-tuple of the class accuracies of the K base
classifiers:

Pbase = {[P1m, P1b], [P2m, P2b], ..., [PKm, PKb]} (1)

The elements of Pbase are applied to the ranking based
algorithms AAB, CDB, RAPC and RACD described later
in section III-B. Let X be the total number of instances
with M malware and B benign instances, where the M
instances possess a label L=1 denoting malware and the B
instances from X possess a label L=0 denoting benign. All X
instances are also represented by feature vectors with f binary
representations, where f is the number of features extracted
from the given app. The features in the vectors take on 0
or 1 representing the absence or presence the given feature.
Additionally, after the N -fold cross validation process (as
shown in Fig. 1), a set of K-tuple class predictions are derived
for every instance x, given by:

V (x) = {v1, v2, ..., vk}, ∀k ∈ {1, ...,K} (2)

Note that v1,v2,...,vk could be crisp predictions or proba-
bility estimates from the base classifiers. Adding the original
(known) class label, l, we obtain:

V̇ (x) = {v1, v2, ..., vk, l}, ∀k ∈ {1, ...,K}, l ∈ {0, 1} (3)

IEEE TRANSACTIONS ON CYBERNETICS 4

Fig. 1: DroidFusion 2-layer model architecture.

Pbase and V̇ (x), ∀ x ∈ X will be utilized in the level-
2 computation during the DroidFusion model construction.
Let us denote the set of four ranking based schemes by
S = {S1, S2, S3, S4}. The pairwise combinations of the
elements of S will result in 6 possibilities:

φ = {S1S2, S1S3, S1S4, S2S3, S2S4, S3S4} (4)

Our goal is to select the best pair of ranking-based schemes
from S, and if its performance exceeds that of an unweighted
combination of the original base classifiers, it would be
selected to construct the final DroidFusion model. In the
event that the unweighted combination performance is greater,
DroidFusion will be configured to apply a majority vote (or
average of probabilities) of the base classifiers in the final con-
structed model. In order to estimate the accuracy performance
of each scheme in S or each pairwise combination in set φ, a
re- classification of the X instances (in the training-validation)
set is performed for each scheme or pair of schemes. The re-
classification is accomplished using V̇ (x), x ∈ X based on the
criteria defined by the schemes in S using Pbase. Each scheme
in S derives a set of Z weights that will be applied with V̇ (x),
x ∈ X for every instance during the re-classification process.

Let ωi, i ∈ {1, ..., Z}, Z ≤ K be the set of weights derived
for a particular scheme in S. Then, to reclassify an instance
x according to the schemes criterion, its class prediction will
be given by:

CSj(x) =

{
1 : if

∑Z
i=1 ωivi∑Z
i=1 ωi

≥ 0.5

0 : otherwise ∀j ∈ {1, 2, 3, 4}
(5)

Hence, the benign class accuracy performance for the given
scheme is calculated from:

P benSj =

∑X
x=1(CSj(x) + 1) | CSj(x) = 0, l(x) = 0

B
(6)

Where B is the number of benign instances, while the
malware accuracy performance is calculated from:

PmalSj =

∑X
x=1 CSj(x) | CSj(x) = 1, l(x) = 1

X −B
(7)

Thus the average performance accuracy is simply:

ṖSj =
B · P benSj + (X −B) · PmalSj

X
(8)

Likewise, to determine the performance of each pairwise
combination in φ:

Let ωi, i ∈ {1, ..., Z}, Z ≤ K be the first set of weights
derived for the first scheme in the pair, and let µi, i ∈
{1, ..., Z}, Z ≤ K be those derived for the second scheme
in the pair. Then, to reclassify the X instances in the training-
validation set according to the combination pair, the class
prediction of each instance x will be given by:

CSjSn(x) =

1 : if

∑Z
i=1 ωivi+

∑Z
i=1 µivi∑Z

i=1 ωi+
∑Z

i=1 µi
≥ 0.5

0 : otherwise
∀j ∈ {1, 2, 3, 4},∀n ∈ {1, 2, 3, 4},
j 6= n, SjSn ≡ SnSj

(9)

Therefore, computing benign class accuracy and malware class
accuracy will utilize:

IEEE TRANSACTIONS ON CYBERNETICS 5

P benSjSn =

∑X
x=1(CSjSn(x) + 1) | CSjSn(x) = 0, l(x) = 0

B
(10)

and

PmalSjSn =

∑X
x=1 CSjSn(x) | CSjSn(x) = 1, l(x) = 1

X −B
(11)

respectively. The average performance accuracy for the pair-
wise schemes will then be given by:

ṖSjSn =
B · P benSjSn + (X −B) · PmalSjSn

X
(12)

∀j ∈ {1, 2, 3, 4},∀n ∈ {1, 2, 3, 4}, j 6= n, SjSn ≡ SnSj.
Equivalently, the unweighted majority vote class predictions
for instance x is given by:

Cmv(x) =

{
1 : if

∑K
k=1 vi
K ≥ 0.5

0 : otherwise ∀k ∈ {1, ...,K}
(13)

Hence, the benign class accuracy performance for the un-
weighted scheme will be given by:

P benmv =

∑X
x=1(Cmv(x) + 1) | Cmv(x) = 0, l(x) = 0

B
(14)

Likewise, the malware class accuracy performance for the
unweighted scheme is given by:

Pmalmv =

∑X
x=1 Cmv(x) | Cmv(x) = 1, l(x) = 1

X −B
(15)

Finally, the average accuracy performance for the unweighted
scheme is given by:

Ṗmv =
B · P benmv + (X −B) · Pmalmv

X
(16)

After all the re-classifications are completed, and the average
accuracies computed, the applicable scheme that will be uti-
lized to construct the DroidFusion model is selected thus:{

argφmax(Ṗφ),

φ = {S1S2, S1S3, S1S4, S2S3, S2S4, S3S4,mv}
(17)

Suppose that S1 and S3 pair are selected by the operation in
Eq. (17), then the class of a given unlabeled instance during
the testing or unknown instances prediction (during model
deployment) will be computed by Equation (9) with j=1 and
n=3. Next, we describe the four ranking-based algorithms
underpinning the schemes in set S that utilize Pbase to
accomplish all of the above described DroidFusion level-2
steps.

B. Proposed ranking based algorithms

The design of our proposed algorithms is influenced by the
observation that most typical classifiers perform differently for
both classes. That is, class accuracy performance for benign
and malware are very rarely equal in magnitude. The proposed
ranking based algorithms include:

◦ An average accuracy based ranking scheme (AAB).
◦ A class differential based ranking scheme (CDB).
◦ A ranked aggregate of per class performance based

scheme (RAPC).
◦ A ranked aggregate of average accuracy and class

differential based scheme (RACD).
1) The Average Accuracy Based (AAB) ranking scheme :

With the AAB method, the ranking is designed to be directly
proportional to the average prediction accuracies across the
classes. In this case, base classifiers with larger overall ac-
curacy performance will rank higher. AAB doesnt take into
account how well a base classifier performs for a particular
class. Let AAB be the first scheme S1, from set S. The
algorithm is summarized as follows:

Let Pbase be the set of performance accuracies Pk,c ∈ Pbase
of K base classifiers. If m denotes malware and b, benign then
the average accuracy of the kth base classifier is given by:

ak = 0.5×
∑

c=m,b
Pk,c | k ∈ {1, ...,K}, 0 < Pk,c ≤ 1

(18)
Let A ← ak,∀k ∈ {1, ...,K} be a set of the average
predictive accuracies, to which a ranking function Rankdesc(.)
is applied:

Ā← Rankdesc(A) (19)

Thus, Ā contains an ordered ranking of the Level-1 base
classifiers average predictive accuracies in descending order.
Next, the top Z rankings are utilized in weight assignments
as follows:

ω1 = Z, ω2 = Z − 1, ..., ωZ = 1, Z ≤ K (20)

Thus, the AAB class prediction C(x) for instance x in the
training-validation set is given by Eq. (5) or given by Eq. (9)
when used in the pairwise combination with another scheme.

2) The Class Differential Based (CDB) ranking scheme:
With the CDB method, the ranking is directly proportional
to the average predictive accuracy and inversely proportional
to the absolute value of the performance difference between
the classes. Assuming a binary classification problem, this
approach will be less likely to favour the decision from a
base classifier that exhibits much higher accuracy in one
class over the other but will assign larger weights to good
classifiers that perform relatively well in both classes. The
CDB procedure is described as follows:

Suppose the CDB method is taken as scheme S2, let
the average accuracy of each base classifier be given by
ak in equation (18) and define D̄ with cardinality K as a
set of ordered rankings in descending order of magnitude.
Calculate dk proportional to average accuracies and inversely
proportional to absolute difference of inter-class accuracies:

dk =
ak

|Pk,m − Pk,b|
, k ∈ {1, ...,K} (21)

Let D ← dk, ∀k ∈ {1, ...,K} be a set of the dk values, to
which the ranking function Rankdesc(.) is applied:

D̄ ← Rankdesc(D) (22)

With D̄ containing the ordered rankings of dk values, the top
Z rankings are also utilized to assigned weights according to

IEEE TRANSACTIONS ON CYBERNETICS 6

Eq. (20). Thus, the S2=CDB class prediction for an instance
x is determined from Eq. (5). Whenever S2=CDB is used
(in conjunction with another scheme) within a pair in the set
expressed by Eq. (4), then equation Eq. (9) will be used for
the class prediction of the instance.

3) The Ranked Aggregate of Per Class accuracies (RAPC)
based scheme: In the RAPC method, the ranking is directly
proportional to the sum of the initial per class rankings of the
accuracies of the base classifiers. This method is more likely
to assign a larger weight to a base classifier that performs very
well in both classes. RAPC is summarized as follows.

With F̄ defined as the set of ordered rankings with cardi-
nality K, given the initial performance accuracies of Pk,c of
the K base classifiers :{
Pm ← Pk,c where c 6= b

Pb ← Pk,c where c 6= m
, k ∈ {1, ...,K}, c ∈ {m, b}

(23)
We then apply the ranking function Rankdesc(.) to both:{

P̄m ← Rankdesc(Pm)

P̄b ← Rankdesc(Pb)
(24)

The per-class rankings for each base classifier are aggregated
and then ranked again:{

fk ← P̄k,m + P̄k,b

F ← fk
,∀k ∈ {1, ...,K} (25)

F̄ ← Rankdesc(F) (26)

Finally, from the set F̄ comprising k ordered values of F ,
we select the top Z rankings and use them to assign weights
according to Eq. (20). Suppose the RAPC scheme is taken
as S3, we can determine the class prediction for an instance
x from Eq. (5). If S3=RAPC is used (in conjunction with
another scheme) within a pair in the set expressed by Eq. (4),
then equation Eq. (9) will be employed for the class prediction
of the instance.

4) The Ranked aggregate of Average accuracy and Class
Differential (RACD) scheme: With RACD, the ranking is
directly proportional to the sum of the initial rankings of the
average performance accuracies and the initial rankings of the
difference in performance between the classes. This method is
designed to assign a larger weight to the base classifiers with
good initial overall accuracy that also have a relatively smaller
difference in performance between the classes. The algorithm
is described as follows.

Suppose, we take the RACD method as scheme S4, define
a set H̄ for ordered values with cardinality K. Given A, the
set of computed average accuracies for each base classifier
(determined in the AAB scheme) compute the class differential
for each corresponding classifier as follows:

gk ← |Pk,m − Pk,b| , k ∈ {1, ...,K} (27)

Define G ← gk, ∀k ∈ {1, ...,K} as the ordered set of gk
values to which a ranking function Rankascen(.) is applied to
rank gk in ascending order of magnitude:

Ḡ← Rankascen(G) (28)

Then, for each base classifier, aggregate the values and apply
the ranking function Rankdesc(.):

{
hk ← Ak +Gk

H ← hk
, Ak ∈ Ā, Gk ∈ Ḡ,∀k ∈ {1, ...,K}

(29)

H̄ ← Rankdesc(H) (30)

Thus, H̄ is the set containing the ranked values of H in
descending order of magnitude. The top Z rankings are then
used according to Eq. 20 to assign the weights.

C. Model complexity

As mentioned earlier, the base classifiers initial accuracies
are estimated using a stratified N -fold cross validation tech-
nique. This procedure will be performed only once during
training (on the training-validation set) and the preliminary
predictions for all x instances in X for every base classifier
will be determined from the procedure. The configurations
(weights) computed from each algorithm is applied together
with these initial (base classifier) predictions to re-classify
each instance accordingly. Since level-2 training prediction of
instances requires only re-classification using V̇ (x), ∀x ∈ X
, the time complexity for utilizing R level 2 algorithms to
predict the classes of X instances using Eq. (5) will be given
by O(RX). The pairwise class predictions also involve re-
classification, thus the complexity involved for predicting the
class of X instances using Eq. (9) will be given by O(JX)
where J =

(
R
2

)
. Likewise, for the unweighted majority vote

the complexity will be O(X) as re-classification is involved
also. Since we utilize unweighted majority vote and pairwise
combinations for final model building (Eq. (17)) the total
training time complexity in level-2 is therefore given by
O(X) + O(JX) = O((J + 1)X) where J =

(
R
2

)
for the

R level 2 ranking-based algorithms.

IV. INVESTIGATION METHODOLOGY

A. Automated static analyzer for feature extraction

The features used in the experimental evaluation of the
DroidFusion system are obtained using an automated static
analysis tool developed with Python. The tool enables us to
extract permissions and intents from the application manifest
file after decompiling with AXMLprinter2 (a library for de-
compiling Android manifest files). In addition, API calls are
extracted through reverse engineering the .dex files by means
of Baksmali disassembler. The static analyzer also searches
for dangerous Linux commands from the application files
and checks for the presence of embedded .dex, .jar, .so, and
.exe files within the application. Previous works [35] have
shown that these set of static application attributes provide
discriminative features for machine learning based Android
malware detection, hence, we utilized them for DroidFusion
experiments. Furthermore, while extracting API calls, third
party libraries are excluded using the list of popular ad libraries
obtained from [36]. Fig. 2 shows an overview of the feature

IEEE TRANSACTIONS ON CYBERNETICS 7

Fig. 2: Overview of the python based static analyzer for
automated feature extraction.

extraction process using our the static app analyzer. The
features are represented in binary form and labelled with class
values in all the datasets.

B. Feature selection

Feature ranking and selection is usually applied for dimen-
sionality reduction which in turn lowers model computational
cost. The study in this paper utilized four datasets for evaluat-
ing DroidFusion. One of the datasets is derived from feature
reduction of an initial set of 350 features down to 100 by
applying the Information Gain (IG) feature ranking approach
to rank the features and then selecting the top n features.
IG evaluates the features by calculating the information gain
achieved by each feature. Specifically, given a feature X , IG
is expressed as:

IG = E(X)− E(X/Y) (31)

Where E(X) and E(X/Y) represent the entropy of the feature
X before and after observing the feature Y respectively. The
entropy of feature X is given by:

E(X) = −
∑

x∈X
p(x)log2(p(x)) (32)

Where p(x) is the marginal probability density function for
the random variable X . Similarly, the entropy of X relative
to Y is given by [38]:

E(X/Y) = −
∑

x∈X
p(x)

∑
x∈X

p(x|y)log2(p(x|y))

(33)
Where p(x|y) is the conditional probability of x given y. The
higher the reduction of the entropy of feature X , the greater
the significance of the feature.

C. Model Evaluation Metrics

The following performance metrics are considered in the
evaluation of the models:
◦ True positive ratio (TPR): The ratio of correctly clas-

sified malicious apps to the total number of malicious
apps. This is given by:

TPR =
TP

TP + FN
(34)

Where TP (true positives) is the number of correct
predictions of malware classification and FN (False
negatives) is the number of misclassified malware in-
stances in the set. TPR is also synonymous with recall
and sensitivity.

◦ False positive ratio (FPR): The ratio of incorrectly
classified benign instances to the total number of benign
instances, given by:

FPR =
FP

TN + FP
(35)

Where FP (false positives) is the number of incorrect
predictions of benign classifications while TN (true
negatives) is the number of correct predictions of be-
nign instances.

◦ Precision: also known as positive predictive rate is
calculated as follows:

Precision =
TP

TP + FP
(36)

◦ F-measure: This metric combines precision and recall
as follows:

FM =
2 · precision · recall
precision+ recall

(37)

In [20], is has been shown that (especially for unbal-
anced datasets) F-measure is a better metric than the
Area Under Cure (AUC) for the Receiver Operating
Cost (ROC) which uses values of TPR and FPR
to plot a graph for different thresholds. Thus, in our
experiments we utilize F-measure as the main indicator
of predictive power. Note that precision and recall can
be calculated for both malware and benign classes.
Hence, if Fm and Fb are the F-measures for malware
and benign classes respectively while Nm and Nb are
the number of instances in each class, the combined
metric known as weighted F-measure is the sum of F-
measures weighted by the number of instances in each
class, given by:

WFM =
Fm ·Nm + Fb ·Nb

Nm +Nb
(38)

◦ Time taken to test the model. This is the time in seconds
to test a constructed model from the testing set. All
models were evaluated on a Windows 7 Enterprise 64
bit PC with 32GB of RAM and Intel Xeon CPU 3.10
GHz speed.

D. Datasets description

The experiments performed to evaluate DroidFusion was
done using four datasets from three collections of Android app
samples. Table II shows the details of each of the datasets. The
first one (Malgenome-215) consists of feature vectors from
3,799 app samples where 2,539 were benign and 1,260 were
malware samples from the Android malware genome project
[3], a reference malware samples collection widely used by
the malware research community. This dataset contains 215
features. The second dataset (Drebin-215) also consists of
vectors of 215 features from 15,036 app samples; of these,

IEEE TRANSACTIONS ON CYBERNETICS 8

TABLE II: Datasets used for the DroidFusion evaluation
experiments.

Datasets #samples #malware #benign #features
Malgenome-215 3799 1260 2539 215
Drebin-215 15036 5560 9476 215
McAfee-350 36183 13805 22378 350
McAfee-100 36183 13805 22378 100

9476 were benign samples while the remaining 5,560 were
malware samples from the Drebin project [4]. The Drebin
samples are also publicly available and widely used in the
research community. Both Drebin-215 and Malgenome-215
datasets are made available as supplementary material.

The final two datasets come from the same source of
samples. These are McAfee-350 and McAfee-100 in the table.
They both have 36,183 instances of feature vectors derived
from 13,805 malware samples and 22,378 benign samples
made available to us by Intel Security (Formerly McAfee).
Dataset #3 has 350 features, while Dataset #4 has the top 100
features with the largest information gain from the original 350
features in Dataset #3. In the experiments presented, Dataset
#1, #2 and #3 are used to investigate DroidFusion with singular
base classifiers, while Dataset #4 is used to study the fusion
of ensemble base classifiers with DroidFusion. Note that all of
the features were extracted using our static app analysis tool
described in section IV-A.

V. RESULTS AND DISCUSSIONS

In this section, we present and discuss the results of four
sets of experiments performed to evaluate DroidFusion per-
formance. We utilized the open source Waikato Environment
for Knowledge Analysis (WEKA) toolkit [37] to implement
and evaluate DroidFusion. Feature ranking and reduction of
dataset #3 into dataset #4 was also done with WEKA. In
all the experiments we set K=5, i.e. five base classifiers are
utilized. Also, we take N=10 and Z=3 for the cross validation
and weight assignments respectively. In the first three sets of
experiments, non-ensemble base classifiers were used, which
were: J48, REPTree, Voted Perceptron and Random Tree. The
Random Tree learner was used to build two separate classifier
models using different configurations i.e. Random Tree-100
and Random Tree-9. With Random Trees, the number of
variables selected at each split during tree construction is
a configuration parameter which by default (in WEKA) is
given by: log2f + 1, where f is the number of features (#
variables = 9 for f =350 with the McAfee-350 dataset). The
same configuration is used in the Drebin-215 and Malgenome-
215 experiments for consistency. Thus, selecting 100 and 9 for
Random Tree-100 and Random Tree-9 respectively results in
two different base classifier models. Random Tree, REPTree,
J48 and Voted Perceptron were selected as example base clas-
sifiers (out of 12 base classifiers) because of their combined
accuracy and training time performance as determined from
preliminary investigation; a different set of learning algorithms
can be used with DroidFusion since it designed to be general-
purpose, and not specific to a particular type of machine
learning algorithm.

TABLE III: malgenome 215 train-validation set results and
Level-2 algorithm based rankings for the base classifiers (5 =
highest rank, 1 = lowest).

Classifier TPR TNR AAB CDB RAPC RACD
J48 0.975 0.983 4 4 5 5
REPTree 0.961 0.974 1 2 1 1
Random
Tree-100 0.972 0.982 3 3 3 2
Random
Tree-9 0.966 0.973 2 5 1 4
Voted
Perceptron 0.971 0.991 5 1 4 2

TABLE IV: malgenome 215 train-validation set Level-2 com-
bination schemes intermediate results.

Combination PrecM RecalM PrecB RecalB W-FM
AAB+CDB 0.980 0.985 0.993 0.990 0.9883
AAB+RAPC 0.984 0.984 0.992 0.992 0.9893
AAB+RACD 0.982 0.984 0.992 0.991 0.9887
CDB+RAPC 0.982 0.984 0.992 0.991 0.9887
CDB+RACD 0.976 0.983 0.992 0.988 0.9864
RAPC+RACD 0.982 0.984 0.992 0.991 0.9887

A. Performance of DroidFusion with the Malgenome-215
dataset.

In order to evaluate DroidFusion on the Malgenome- 215
dataset, we split the dataset into two parts, one for testing
and another for training-validation. The ratio was training-
validation: 80%, testing: 20%. The stratified 10- fold cross
validation approach was used to construct the DroidFusion
model using the training-validation set. Table III shows the
per-class accuracies of each of the 5 base classifiers resulting
from 10-fold cross-validation on the training-validation set.
The subsequent rankings determined from AAB, CDB, RAPC
and RACD are also presented. Each of the algorithms induced
a different set of rankings from the base classifiers accuracies.
After applying Eq.(9) to the instances in the training-validation
set and computing the accuracies with Eqs. (10)-(12), we
obtained the performances of the pairwise combinations of
the level-2 algorithms as shown in Table IV.

The results in Table IV clearly depict the overall per-
formance improvement achieved by the level-2 combination
schemes over the individual base classifiers. From Table III,
J48 has the best malware recall of 0.975 but its recall for
benign class is 0.983. On the other hand, Voted Perceptron
had the best recall of 0.991 for the benign class, but its
recall for the malware class is 0.971 (on the training-validation
set). On the training-validation set, the best combination is
AAB+RAPC (i.e. S1S3 pair) having 0.984 recall for mal-
ware and 0.992 recall for benign class, and a weighted F-
measure of 0.9893. J48 and Voted Perceptron had weighted
F-measures of 0.9804 and 0.9843 respectively. These were
below all of the weighted F-measures achieved by the combi-
nation schemes shown in Table IV. Hence, these intermediate
training-validation set results already show the capability of
the DroidFusion approach to produce stronger models from
the weaker base classifiers.

IEEE TRANSACTIONS ON CYBERNETICS 9

TABLE V: malgenome 215 Comparison of DroidFusion with
base classifiers and traditional combination schemes on test
set.

Classifier PrecM RecM PrecB RecB W-FM T(s)
J48 0.948 0.948 0.974 0.974 0.9654 0.02
REPTree 0.960 0.956 0.978 0.980 0.9720 0.01
Random
Tree-100 0.967 0.956 0.978 0.984 0.9747 0.03
Random
Tree-9 0.955 0.944 0.972 0.978 0.9667 0.02
Voted
Perceptron 0.971 0.956 0.978 0.986 0.9760 0.05
Maj. voting 0.988 0.960 0.980 0.994 0.9827 0.05
Average of
Probabilities 0.988 0.960 0.980 0.994 0.9827 0.06
Maximum
Probability 0.906 0.988 0.994 0.949 0.9623 0.04
MultiScheme 0.983 0.956 0.978 0.992 0.9800 0.07
DroidFusion 0.984 0.968 0.984 0.992 0.9840 0.07

After the model has been built with the help of the
training-validation set, the full DroidFusion model (featuring
AAB+RAPC in level-2) was evaluated on the test set. For
comparison, the base classifier models were re-trained on the
complete training-validation set and then tested on the same
test set. The results are shown in Table V. Figure 3, is a
graph of the respective weighted F- measures. The results of
DroidFusion are also compared to those of three classifier
combination methods: Majority Vote, Maximum Probability
and Average of Probabilities [13], and a meta learning method
known as MultiScheme. The MultiScheme approach evaluates
a given number of base classifiers in order to select the best
model. In WEKA, it can be configured to use cross-validation
or to build its model on the entire training set. In our exper-
iments we selected 10-fold cross validation configuration for
the MultiScheme learner to enable a comparative equivalent to
DroidFusion. Time T (s) depicts the testing time on the entire
instances in the test set for each of the methods in Table V.

On the test set, Random Tree-100 recorded the best
weighted F-measure out of the 5 base classifiers. Table V
shows that higher precision, recall (for both classes) and a
larger weighted F-measure was obtained with DroidFusion
compared to all of the base classifiers. DroidFusion also
performed better than MultiScheme and all the three com-
bination schemes. These results with Malgenome-215 dataset
demonstrate the effectiveness of the DroidFusion approach.

B. Performance of DroidFusion with the Drebin-215 dataset.

In this section, we present the evlaution of DroidFusion
on the Drebin-215 dataset.Table VI shows the predictive
accuracies on the 5 non- ensemble base classifiers on the
training-validation set during DroidFusion model training. The
split ratios for the training-validation and testing sets was
90%:10% and the 10-fold cross-validation procedure was
utilized during training. The rankings induced by AAB, CDB,
RAPC and RACD algorithms are also shown. Again, applying
Eq. (9) to the instances in the training-validation set and
computing accuracies with Eqs. (10)-(12) the performances of

Fig. 3: Weighted F-measure results from the Malgenome-215
dataset experiments.

TABLE VI: DREBIN 215 train-validation set results and
Level-2 algorithm based rankings for the base classifiers (5
= highest rank, 1 = lowest).

Classifier TPR TNR AAB CDB RAPC RACD
J48 0.959 0.983 4 3 5 4
REPTree 0.950 0.979 1 1 1 1
Random
Tree-100 0.968 0.981 5 5 4 5
Random
Tree-9 0.958 0.977 2 4 2 3
Voted
Perceptron 0.956 0.982 3 2 3 2

the pairwise combinations of the level-2 algorithms are shown
in Table VII.

From Table VI, Random Tree-100 had the best recall rate
for the malware class (i.e. 0.968) while J48 had the best recall
rate for the benign class (0.983). On the training-validation set,
the weighted F-measure for Random Tree-100 was 0.9762,
while that of J48 was 0.9741. Looking at Table VII, all of
the combination schemes had better Weighted F-measures
(than the base classifiers) indicating accuracy performance
enhancement potential at this stage. The best combination is
the RAPC+RACD (S3S4 pair) scheme, whose configuration
is selected to build the final DroidFusion model.

After the full DroidFusion model was built, it was then
evaluated on the test set. The base classifiers were re-trained
on the entire training-validation set and tested on the test set
for comparison. The results are presented in Table VIII, where
Random Tree-100 can be seen to have the best Weighted F-
measure (0.9824) out of the 5 base classifiers. The Droid-

TABLE VII: DREBIN 215 train-validation set Level-2 com-
bination schemes intermediate results.

Combination PrecM RecalM PrecB RecalB W-FM
AAB+CDB 0.966 0.972 0.984 0.980 0.9771
AAB+RAPC 0.984 0.972 0.984 0.991 0.9840
AAB+RACD 0.966 0.972 0.984 0.980 0.9771
CDB+RAPC 0.981 0.972 0.984 0.989 0.9827
CDB+RACD 0.966 0.972 0.984 0.980 0.9771
RAPC+RACD 0.981 0.976 0.986 0.989 0.9842

IEEE TRANSACTIONS ON CYBERNETICS 10

TABLE VIII: DREBIN 215 Comparison of DroidFusion with
base classifiers and traditional combination schemes on test
set.

Classifier PrecM RecM PrecB RecB W-FM T(s)
J48 0.972 0.964 0.979 0.984 0.9766 0.03
REPTree 0.976 0.951 0.972 0.986 0.9730 0.04
Random
Tree-100 0.975 0.978 0.987 0.985 0.9824 0.04
Random
Tree-9 0.947 0.971 0.983 0.968 0.9692 0.04
Voted
Perceptron 0.969 0.950 0.971 0.982 0.9701 0.37
Maj. voting 0.983 0.973 0.984 0.990 0.9837 0.32
Average of
Probabilities 0.983 0.973 0.984 0.990 0.9837 0.31
Maximum
Probability 0.908 0.996 0.998 0.941 0.9617 0.33
MultiScheme 0.984 0.969 0.982 0.984 0.9784 0.05
DroidFusion 0.981 0.984 0.991 0.989 0.9872 0.38

Fig. 4: Weighted F-measure results from the Drebin-215
dataset experiments.

Fusion model recorded the best precision and recall (for
both classes) compared to the base classifiers resulting in a
weighted F-measure of 0.9870. Figure 4 illustrates the graph
of F-measures for the test set results. DroidFusion can be
seen to also perform better than to Majority Vote, Maximum
Probability, Average of Probabilities and MultiScheme. These
results clearly demonstrate the effectiveness of the DroidFu-
sion approach.

C. Performance of DroidFusion with the McAfee-350 dataset.

In this section, the results of experiments on the McAfee-
350 dataset are presented. The same split ratios for training-
validation/testing and the procedures applied in the previous
experiment was adopted. The rankings from AAB, CDB,
RAPC and RACD are shown in Table IX alongside the
per-class accuracy performances on the validation set that
induced the rankings. Just like in the previous experiments,
we apply Eq.(9) to the instances in the training-validation set
and compute the accuracies with Eqs. (10)-(12). The resulting
performances of the pairwise combinations of the level-2
algorithms are shown in Table X.

From Table IX (training-validation set results for the base
classifiers), J48 had the best benign class recall of 0.973

TABLE IX: McAfee train-validation set results and Level-2
algorithm based rankings for the base classifiers (5 = highest
rank, 1 = lowest).

Classifier TPR TNR AAB CDB RAPC RACD
J48 0.941 0.973 4 3 4 3
REPTree 0.928 0.966 2 2 2 2
Random
Tree-100 0.948 0.968 5 5 4 5
Random
Tree-9 0.935 0.962 3 4 2 3
Voted
Perceptron 0.917 0.959 1 1 1 1

TABLE X: McAfee 350 train-validation set Level-2 combina-
tion schemes intermediate results.

Combination PrecM RecalM PrecB RecalB W-FM
AAB+CDB 0.945 0.955 0.972 0.966 0.9618
AAB+RAPC 0.970 0.956 0.973 0.982 0.9720
AAB+RACD 0.969 0.956 0.973 0.981 0.9714
CDB+RACD 0.969 0.955 0.972 0.981 0.9710
CDB+RACD 0.966 0.972 0.984 0.980 0.9771
RAPC+RACD 0.970 0.957 0.974 0.982 0.9724

amongst the 5 base classifiers. Random Tree-100 had the best
malware class recall of 0.948 out of the 5 base classifiers.
J48 had the highest Weighted F-measure of 0.9684. This is
less than the Weighted F-measure of all combination schemes
(shown in Table X) except the AAB+CDB scheme which
had a Weighed F-measure of 0.9618. These intermediate
results of the DroidFusion approach demonstrate the potential
performance improvement obtainable in the final model.

Table XI shows the results of the base classifiers and
the final DroidFusion model on the test set. The table, and
the graphs in Figure 5 clearly show that DroidFusion in-
creases performance accuracy over the single-algorithm base
classifiers. DroidFusion results are equal to that of Majority
vote and Average of Probabilities but perform better than
the Maximum probability and MultiScheme methods. This
is because, Eq. (17) selected mv as the strongest classifier
over any of the pairs based on the computations on the initial
N -fold cross validation predictions of the base classifiers.
The mv scheme in this case achieved a W-FM of 0.9735
compared to 0.9724 obtained by CDB+RAPC (S2S3 pair)
and RAPC+RACD (S3S4 pair). Therefore, DroidFusion was
configured to use Eqs. (13)-(16) on the test set. However,
if either of the strongest pairs had been used, it would
result in a Weighted F-measure performance of 0.9777 on
the test set; which still surpasses the Weighted F-measures
from Maximum probability (0.9423) and those of the five
original base classifiers. These results once again confirm the
effectiveness of the proposed DroidFusion approach. In the
next section we presents results obtained from experiments
investigating ensemble learners as base classifiers.

IEEE TRANSACTIONS ON CYBERNETICS 11

TABLE XI: McAfee 350 Comparison of DroidFusion with
base classifiers and traditional combination schemes on test
set.

Classifier PrecM RecM PrecB RecB W-FM T(s)
J48 0.967 0.950 0.969 0.980 0.9685 0.11
REPTree 0.942 0.943 0.965 0.964 0.9560 0.11
Random
Tree-100 0.954 0.951 0.970 0.972 0.9640 0.11
Random
Tree-9 0.952 0.936 0.961 0.971 0.9576 0.12
Voted
Perceptron 0.928 0.917 0.949 0.956 0.9411 6.76
Maj. voting 0.980 0.964 0.978 0.988 0.9788 6.76
Average of
Probabilities 0.980 0.964 0.978 0.988 0.9788 7.01
Maximum
Probability 0.874 0.990 0.993 0.912 0.9423 6.54
MultiScheme 0.967 0.950 0.969 0.980 0.9685 0.12
DroidFusion 0.980 0.964 0.978 0.988 0.9788 7.02

Fig. 5: Weighted F-measure results from the McAfee-350
dataset experiments.

D. Performance of DroidFusion with the McAfee-100 dataset
using ensemble learners as base classifiers.

In this section we present results of experiments performed
to investigate the feasibility of utilizing DroidFusion to en-
hance accuracy performance by combining ensemble clas-
sifiers rather than traditional singular classifiers. Ensemble
learners have been shown to perform well in classification
problems [14], [33]. Our goal is to investigate whether by
using DroidFusion for fusion of ensemble classifiers, further
accuracy improvements can be achieved. For our ensemble
learning based experiments, we reduced the number of features
from 350 down to 100 using the information gain feature
ranking technique (Eq. 31-33). The ensemble learners consid-
ered as example base classifiers include: Random Forest [39],
AdaBoost [40] (with Random Tree base classifier), Random
Committee (with Random Tree base classifier), Random Sub-
space [41] (with Random Tree base classifier), and Random
Subspace with REPTree base classifier. Note that the two
Random Subspace learners with different base classifiers yield
completely different models. In terms of number of iterations
for the ensemble learners the configurations used were: Ad-
aBoost (25 iterations), Random Forest, Random Committee,
and Random Subspace (10 iterations each). Our choice of

TABLE XII: McAfee 100 train-validation set results and
Level-2 algorithm based rankings for the (ensemble) base
classifiers (5 = highest rank, 1 = lowest).

Classifier TPR TNR AAB CDB RAPC RACD
Random Forest 0.959 0.979 4 4 2 4
Random Sub.
(REPTree) 0.923 0.984 1 1 2 1
AdaBoost:
(Random Tree) 0.949 0.979 2 3 1 2
Random Sub.
(Random Tree) 0.951 0.985 5 2 4 2
Random Comm.
(Random Tree) 0.961 0.980 3 5 4 5

TABLE XIII: McAfee-100 train-validation set Level-2 combi-
nation schemes intermediate results.

Combination PrecM RecalM PrecB RecalB W-FM
AAB+CDB 0.980 0.955 0.973 0.988 0.9753
AAB+RAPC 0.982 0.954 0.972 0.989 0.9756
AAB+RACD 0.980 0.955 0.973 0.988 0.9753
CDB+RAPC 0.980 0.955 0.973 0.988 0.9753
CDB+RACD 0.977 0.957 0.974 0.986 0.9749
RAPC+RACD 0.980 0.955 0.973 0.988 0.9753

Random Tree as base learner for the ensemble (base) classifiers
comes from our preliminary experiments (ommitted due to
space constraint) which also confirms previous suggestion
that it produces the strongest classifiers for most ensemble
methods [42]. In the preliminary experiments, it was also
found that by taking the top 100 features only a marginal
drop in performance was observed for the ensemble base clas-
sifiers. Hence, this enabled us undertake the experiments with
ensemble classifers using a significantly reduced dimension
while using the same number of instances (i.e. 36,183).

Table XII shows the accuracy performance of the 5 en-
semble models used as the DroidFusion base classifiers on
the training-validation set instances (using the 10-fold cross-
validation). The corresponding AAB, CDB, RAPC and RACD
rankings are also depicted. Similar to the previous experi-
ments, the level-2 combination schemes performance improves
on that of the individual ensemble classifiers. This is also
indicative of potential performance improvement obtainable
when the final model is constructed. In this case, AAB+RAPC
(S1S3 pair) is the recommended configuration as seen from
Table XIII results.

In Table XIV, the test set results of the ensemble classifiers
and those of DroidFusion are given. The results of Multi-
Scheme, Majority vote, Average of probabilities and maximum
probabilities are also shown. DroidFusion improves benign re-
call rates over all of the ensemble models in the base classifier
level. The overall weighted F-measure of DroidFusion is the
highest as shown in Table XIV and Figure 6 graphs. This
shows that the DroidFusion approach can also be effectively
applied for fusion of ensemble classifiers.

IEEE TRANSACTIONS ON CYBERNETICS 12

TABLE XIV: McAfee 100 Comparison of DroidFusion
with (ensemble) base classifiers and traditional combination
schemes on test set.

Classifier PrecM RecM PrecB RecB W-FM T(s)
Random Forest 0.960 0.965 0.978 0.975 0.9712 0.09
Random Sub.
(REPTree) 0.971 0.931 0.958 0.983 0.9630 0.05
AdaBoost
(Random Tree) 0.963 0.957 0.974 0.977 0.9694 0.11
Random Sub.
(Random Tree) 0.974 0.957 0.974 0.984 0.9737 0.06
Random Comm.
(Random Tree) 0.963 0.964 0.978 0.977 0.9720 0.08
Maj. voting 0.977 0.959 0.975 0.986 0.9757 0.24
Average of
Probabilities 0.978 0.958 0.974 0.987 0.9759 0.19
Maximum
Probability 0.972 0.958 0.974 0.983 0.9734 0.20
MultiScheme 0.960 0.968 0.980 0.975 0.9724 0.08
DroidFusion 0.983 0.958 0.974 0.990 0.9777 0.22

Fig. 6: Weighted F-measure results from the McAfee-100
dataset experiments with ensemble base classifiers.

E. Performance of DroidFusion vs. Stacked generalization.

Stacked Generalization [43], has a similar (multilevel) ar-
chitecture to DroidFusion. It is also a well-known framework
for classifier fusion which has been extensively studied and
applied to many machine learning problems. For this reason,
we compared our proposed approach to the Stacked Gen-
eralization method. One noticeable difference between our
approach and Stacked Generalization is that instead of training
with a meta- learner in level-2, we utilized a computational
approach where ranking algorithms are used to combine the
outcomes of the lower level classifiers. We used the StackingC
implementation in WEKA which uses a Linear Regression
meta classifier in level-2. Note that this is considered to be
the most effective Stacked Generalization configuration [44]
(given that any learning algorithm can be chosen as the meta
classifier). The StackingC learner is also configured to use
10-fold cross validation when combining the base learners.

Applying the Stacked generalization algorithm to the same
base classifiers and with the same four datasets the results
are given in Figure 7 and Table XV. From Figure 7, the
Weighted F-measures comparative results for the four datasets
showed that StackingC achieved a better performance only in

Fig. 7: DroidFusion vs. Stacking results (Weighted F-measure)

TABLE XV: DroidFusion vs. Stacked Generalization for the
four datasets.

Method/dataset PrecM RecalM PrecB RecalB W-FM
DroidFusion-
malgenome 0.984 0.968 0.984 0.992 0.9840
StackingC-
malgenome 0.992 0.964 0.982 0.996 0.9853
DroidFusion-
Drebin 0.981 0.984 0.991 0.989 0.9872
StackingC-
Drebin 0.988 0.969 0.982 0.993 0.9841
DroidFusion-
McAfee-350 0.980 0.964 0.978 0.988 0.9788
StackingC-
McAfee-350 0.974 0.967 0.980 0.984 0.9775
DroidFusion-
McAfee-100 0.983 0.958 0.974 0.990 0.9777
StackingC-
McAfee-100 0.978 0.958 0.974 0.987 0.9759

the case of the malgenome-215 dataset. On all the other three
datasets, DroidFusion performed better. A notable advantage
of DroidFusion over Stacking is that it provides a wider range
of criteria for weighting and fusion of base classifiers through
the use of four separate algorithms; by contrast, Stacking
(with liner regression meta classifier) effectively combines
classifiers based on only one criterion (i.e. weighting the
base classifiers according to their relative strengths (overall
performance accuracies) [44]).

F. Analysis of time performance

As mentioned earlier, the app processing to extract features
was done using our bespoke Python based tool described
in section IV-A. Table XVI presents an overview of app
processing time estimates. This is dependent on the size of
the app which can range between a few kilobytes to a several
megabytes. Hence, the average unzipping and disassembly
time was 0.739 seconds while the average time to analyse
the manifest and extract permissions, intents etc. was 0.0048
seconds. The rest of the processing involves mining the disas-
sembled files and scanning for other attributes. This took on
average 6.4 seconds. The total average processing time for the
apps was therefore approximately 7.145 seconds. During the
experiments the feature vectors were fed into trained models
for testing. The DroidFusion model testing times were 0.07

IEEE TRANSACTIONS ON CYBERNETICS 13

TABLE XVI: Analysis of app processing time

Task Lowest (s) Highest (s) Average (s)
Unzipping and
dissassemby 0.392 1.18 0.739
Manifest analysis 0.0013 0.0088 0.0048
Code analysis 3.428 15.47 6.4
Total 7.145

seconds (for 759 instances), 0.38 seconds (for 1503 instances),
7.02 seconds (for 3618 instances), and 0.22 seconds (for 3618
instances) in the four sets of experimental results presented
earlier. These figures clearly illustrate the scalability of static-
based features solution with only an average of just over 7
seconds required to process an app and classify it using a
trained DroidFusion model. Thus, it is feasible in practice to
deploy the system for scenarios requiring large scale vetting
of apps.

Note that although our study is based on specific static
features, classifiers trained from other types of features can
also be combined using DroidFusion. Basically, DroidFusion
is agnostic to the feature engineering process.

G. Limitations of DroidFusion

Although the proposed general-purpose DroidFusion ap-
proach has been demonstrated empirically to enable improved
accuracy performance by classifier fusion, there is scope
for further improvement. The current DroidFusion design is
aimed at binary classification. Future work could investigate
extending the algorithms in the DroidFusion framework to
handle multi-class problems.

VI. CONCLUSION

In this paper, we proposed a novel general purpose multi-
level classifier fusion approach (DroidFusion) for Android
malware detection. The DroidFusion framework is based on
four proposed ranking-based algorithms that enable higher-
level fusion using a computational approach rather than the
traditional meta classifier training that is used for example in
Stacked Generalization. We empirically evaluated DroidFusion
using four separate datasets. The results presented demon-
strates its effectiveness for improving performance using both
non-ensemble and ensemble base classifiers. Furthermore, we
showed that our proposed approach can outperform Stacked
Generalization whilst utilizing only computational processes
for model building rather than training a meta classifier at the
higher level.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council EPSRC grant EP/N508664/1
Centre for Secure Information Security (CSIT-2).

REFERENCES

[1] Smartphone OS market share worldwide 2009-2015
Statistic, Statista, Hamburg, Germany, 2017 [Online]
https://www.statista.com/statistics/263453/global-market- share-held-
by-smartphone-operating-systems

[2] McAfee Labs. McAfee Labs Threat Predictions Report. March 2016.
[3] Y. Zhou and X. Jiang, ”Dissecting android malware: Characterization and

evolution” In proc. 2012 IEEE Symposium on Security and Privacy (SP),
San Fransisco, CA, USA, 20-23 May, 2012 , pp. 95-109.

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck, ”Drebin:
Efficient and Explainable Detection of Android Malware in Your Pocket”
In proc. 20th Annual Network & Distributed System Security Symposium
(NDSS), San Diego, CA, USA, 23-26 Feb. 2014.

[5] A. Apvrille, and R. Nigam. Obfuscation in Android Malware, and
how to fight back. Virus Bulletin, July 2014. Available from:
https://www.virusbulletin.com/virusbulletin/2014/07/obfuscation-
android-malware-and-how-fight-back [Accessed Sept. 2017]

[6] Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu, ”Morpheus: Automatically
Generating Heuristics to Detect Android Emulators” In proc. 30th An-
nual Computer Security Applications Conference (ACSAC 2014),New
Orleans, Louisiana, USA, Dec. 8-12, 2014, pp. 216-225.

[7] T. Vidas and N. Christin, ”Evading Android runtime analysis via sandbox
detection” In proc. 9th ACM Symposium on Information, Computer and
Communications Security, Kyoto, Japan, June 04-06, 2014, pp. 447-458.

[8] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S.
Ioannidis, ”Rage against the virtual machine: hindering dynamic analysis
of android malware” In proc.7th European Workshop on System Security
(EuroSec ’14), Amsterdam, Netherlands, April 13, 2014.

[9] F. Matenaar and P. Schulz. Detecting android sandboxes.
http://dexlabs.org/blog/btdetect, August 2012. [Accessed: Sept. 2017].

[10] S. R. Choudhary, A. Gorla, A. Orso, ”Automated test input generation
for Android: are we there yet?” In proc. 30th IEEE/ACM international
conference on Automated Software Engineering (ASE 2015), Nov. 9-13,
2015, pp. 429-440.

[11] W. Dong-Jie, M. Ching-Hao, W. Te-En, L. Hahn-Ming, and W. Kuo-
Ping, ”DroidMat: Android malware detection through manifest and API
calls tracing,” In proc. Seventh Asia Joint Conference on Information
Security(Asia JCIS), 2012, pp. 62-69.

[12] S. Y. Yerima, S. Sezer, and I. Muttik. ”Android malware detection:
An eigenspace analysis approach” In proc. Science and Information
Conference (SAI 2015), London, UK, 28-30 July 2015, pp.1236-1242.

[13] S. Y. Yerima, S. Sezer, I. Muttik ”Android malware detection using
parallel machine learning classfiers” In proc. 8th Int. Conf. on Next
Generation Mobile Apps, Services and Technolgies (NGMAST 2014),
Oxford, UK, Sept. 10-12, 2014, pp. 37-42

[14] S. Y. Yerima, S. Sezer, and I. Muttik. High accuracy Android malware
detection using ensemble learning. IET Information Security, Vol 9, issue
6, 2015, pp. 313-320.

[15] M. Varsha, P. Vinod, & K. Dhanya. Identification of malicious Android
app using manifest and opcode features. Journal of Computer Virology
and Hacking Techniques, 2016, pp. 1-14.

[16] A. Sharma and S. Dash, ”Mining API calls and permissions for An-
droid malware detection” in Cryptology and Network Security. Springer
International Publishing, 2014, pp. 191205.

[17] P.P. K., Chan and W-K. Song, ”Static detection of Andoid malware by
using permissions and API calls” In proc. 2014 international Conference
on Machine Learning and Cybernetics, Lanzhou, July 13-16, 2014.

[18] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han and X. Zhang. Exploring
Permission-Induced Risk in Android applications for Malicious Applcica-
tion Detection. IEEE Transactions on Information Forensics and Security,
Vol. 9, No. 11, Nov. 2014, pp. 1869-1882.

[19] M. Fan, J. Liu, W. Wang, H. Li, Z. Tian and T. Liu. DAPASA: Detecting
Android Piggybacked Apps through Sensitive Subgraph Analysis. IEEE
Transactions on Information Forensics and Security, Vol. 12, Issue 8,
March 2016, pp. 1772-1785.

[20] L. Cen, C. S. Gates, L. Si, and N. Li. A Probabilistic Discriminative
Model for Android Malware Detection with Decompiled Source code.
IEEE Transactions on Secure and Dependable Computing, Vol. 12, No.
4, July/August 2015.

[21] Westyarian, Y. Rosmansyah, B. Dabarsyan, ”Malware detection on
Android Smartphones using API class and Machine learning” 2015 In-
ternational Conference on Electrical Enginnering and Informatics (ICEEI
2015), 10-11 Aug. 2015.

[22] F. Idrees, and M. Rajarajan. ”Investigating the Android intents and
permissions for malware detection”. In proc. 10th IEEE Int. Conf.
on Wireless and Mobile Computing, Networking and Communications
(WiMob), Oct. 2014, pp. 354-358).

[23] B. Kang, S. Y. Yerima, S. Sezer and K. McLaughlin. N-gram opcode
analysis for Android malware detection. International Journal of Cyber
Situational Awareness, Vol. 1, No. 1, Nov. 2016.

[24] M. Zhao, F. Ge, T. Zhang, and Z. Yuan, ”Antimaldroid: An efficient svm
based malware detection framework for android” In C. Liu, J. Chang, and

IEEE TRANSACTIONS ON CYBERNETICS 14

A. Yang, editors, ICICA (1), volume 243 of Communications in Computer
and Information Science, Springer, 2011. pp. 158166.

[25] W.-C. Wu and S.-H. Hung, ”Droiddolphin: A dynamic Android malware
detection framework using big data and machine learning” In proc. 2014
ACM conf. on Research in Adaptive and Convergent Systems, (RACS
’14), NY, USA, pp. 247-252.

[26] V. M. Afonso, M. F. de Amorim, A. R. A. Gregio, G. B. Junquera, and
P. L. de Geus. Identifying Android malware using dynamically obtained
features. Journal of Computer Virology and Hacking Techniques, 2014.

[27] M. K Alzaylaee, S. Y. Yerima, S. Sezer ”EMULATOR vs REAL
PHONE: Android Malware Detection Using Machine Learning” 3rd
ACM Int. Workshop on Security and Privacy Analytics (IWSPA ’17),
Co-located with ACM CODASPY 2017, Scotts., AZ, USA, March 2017.

[28] Lindorfer, M., Neugschwandtner, M., & Platzer, C. ”MARVIN: Efficient
and comprehensive mobile app classification through static and dynamic
analysis” In proc. IEEE 39th Annual Computer Software and Applications
Conference (COMPSAC), pp. 4223433.

[29] D. Gaikwad and R. Thool ”DAREnsemble: Decision Tree and Rule
Learner Based Ensemble for Network Intrusion Detection System” In
Proc. 1st Int. Conf. on Information and Communication Technology for
Intelligent Systems, Springer, 2016, pp. 185-193.

[30] A. Balon-Perlin and B. Gamback. Ensemble of Decision Trees for Net-
work Intrusion Detection. International Journal on Advances in Security,
Vol. 6. No. 1 and 2, 2013.

[31] M. Panda and M. R. Patra ”Ensembling rule based classifiers for detect-
ing network intrusions” Int. Conf.on Advances in Recent Technologies
in Communication and Computing, 2009, IEEE, DOI 10.1109/ART-
Com.2009.121.

[32] A. Zainal, M. A. Maarof, S. M. Shamsuddin and A. Abraham Ensemble
of one-class classifiers for network intrusion detection system In proc.
Fourth international conference on information assurance and security,
2008, IEEE, DOI 10.1109/IAS.2008.35

[33] L. D. Coronado-De-Alba, A. Rodriguez-Mota, P. J. Escamilla- Ambrosio
Feature Selection and ensemble of classifiers for Android malware detec-
tion In proc. 8th IEEE Latin-American Conference on Communications
(LATINCOM 2016), 15-17 Nov. 2016.

[34] M. K Alzaylaee, S. Y. Yerima, S. Sezer ”Improving Dynamic Analysis of
Android Apps Using Hybrid Input Test Generation” In proc. Int. Conf. on
CyberSecurity and Protection of Digital Services (Cyber Security 2017),
London, UK, June 19-20, 2017.

[35] Y. Aafer, W. Du, and H. Yin, ”DroidAPIMiner: Mining API-level fea-
tures for robust malware detection in Android” In proc. 9th Int.Conference
on Security and Privacy in Communication Networks (SecureComm
2013). Sydney, Australia, Sep. 25-27, 2013.

[36] T. Book, A. Pridgen, and D. S. Wallach, ”Longitudinal Analysis of
Android Ad Library Permissions” In proc. Mobile Security Technologies
conference (MoST 13), San Fransisco, CA, May 2013.

[37] M. Hall, E. Frank, G. Holmes, B. Pfahriger, P. Reutermann and I. H.
Witten. The WEKA data mining software: an update. ACM SIGKDD
Explorations, Vol.11, No.1. June 2009.pp 10-18.

[38] T. M. Cover, J. A. Thomas, Elements of Information Theory, 2nd
Edition, John Wiley & Sons, inc., Hoboken, New Jersey, 2006, pp. 41.

[39] L. Breiman. Random forests. Machine Learning, 45, 2001, pp 5-32.
[40] Y. Freund and R. E. Schapire, ”Experiments with a new boosting

algorithm” In proc. 13th Int. Conf. on Machine Learning, San Francisco,
1996, pp. 148-156.

[41] T. K. Ho. The Random Subspace Method for Constructing Decision
Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence.
Vol 20 (8), 1998, pp. 832-844, 1998

[42] T. Ho, ”Random Decision Forests”, Proc. of the 3rd Int. Conf. on
Document Analysis and Recognition, 1995, pp. 278-282.

[43] David H. Wolpert. Stacked generalization. Neural Networks. 1992, pp,
241-259.

[44] K. M. Ting and I. H. Witten. Issues in Stacked Generilization. Journal
of Artificial Intelligence Research, 10, May 1999, pp. 271-289.

[45] T. Ban, T. Takahashi and S. Guo ”Integration of Multi-modal Features
for Android Malware Detection Using Linear SVM” In proc. 11th Asia
Joint Conference on Information Security, 2016.

[46] Z. Ni, M. Yang, Z. Ling, J. N. Wu and J. Luo, ”Real-Time Detection of
Malicious Behavior in Android Apps,” In proc. Int. Conf. on Advanced
Cloud and Big Data (CBD), Chengdu, 2016, pp. 221-227.

[47] Z. Wang, J. Chai, S. Chen and W. Li, ”DroidDeepLearner: Identifying
Android malware using deep learning” IEEE 37th Sarnoff Symposium,
Newark, NJ, 2016, pp. 160-165.

[48] S. Wu, P. Wang, X. Li, Y. Zhang. Effective detection of android malware
based on the usage of data flow APIs and machine learning. Information
and Software Technology, Vol.75, 2016, Pages 17-25, ISSN 0950-5849.

[49] M.-Y. Su, J.-Y. Chang, and K.-T. Fung ”Machine Learning on Merging
Static and Dynamic Features to identify malicious mobile apps” In proc.
9th Int. Conf. on Ubiquitous and Future Networks (ICUFN), 2017, Milan,
Italy, 4-7 July 2017. pp. 863-867.

[50] N. Milosevic, A. Dehghantanha, K.-K. R. Choo ”Machine Learning
aided Android malware classification” Computers & Electrical Engineer-
ing, Volume 61, July 2017, pp 266-274.

[51] W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang ”Detecting Android
malicious apps and categorizing benign apps with ensemble classifiers”
Future Generation Computer Systems, 2017, ISSN 0167-739X.

[52] X. Wang, W. Wang, Y. He, J. Liu, Z. Han, X. Zhang ”Characterizing
Android apps behaviour for effective detection of malapps at large scale”
Future Generation Computer Systems, Volume 75, Oct. 2017, pp. 30-45.

[53] A. Mahindru and P. Singh ”Dynamic Permissions based Android
malware detection using machine learning techniques” In proc. 10th
Innovations in Software Engineering Conference, Jaipur, India, Feb. 5-7,
2017. pp 202-210.

[54] M. Yang, S. Wang, Z. Ling,, Y. Liu, Z. Ni. Detection of ma-
licious behaviour in Android apps through API calls and permis-
sion uses analysis. Concurrency Computed: Pract Exper. 2017: e4172.
https://doi.org/10.1002/cpe.4172

[55] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, Y. Rahulamathavan.
PIndroid: A novel Android malware detection system using ensemble
learning methods. Computers & Security, Vol 68, July 2017, pp. 36-46.

Suleiman Y. Yerima (M’04) received the B.Eng.
degree (first Class) in electrical and computer engi-
neering from the Federal University of Technology,
Minna, Nigeria, the M.Sc, degree (with distinction)
in personal, mobile and satellite communications
from the University of Bradford, Bradford, U.K.,
and the Ph.D. degree in mobile computing and
communications from the University of South Wales,
Pontypridd, U.K. (formerly, the University of Glam-
organ) in 2009.

He is currently a Senior Lecturer of Cyber Se-
curity in the Faculty of Technology, at De Montfort University, Leicester,
United Kingdom. He was previously a Research Fellow at the Centre for
Secure Information Technologies (CSIT), Queens University Belfast, UK,
where he led the mobile security research theme from 2012 until 2017. He
was a member of the Mobile Computing Communications and Networking
(MoCoNet) Research group at Glamorgan from 2005 to 2009. From 2010 to
2012, he was with the UK- India Advanced Technology Centre of excellence
in Next Generation Networks, Systems and Services (IU-ATC), University of
Ulster, Coleraine, Northern Ireland .

Dr. Yerima is a member of the IAENG, and (ISC)2 professional societies.
He is a Certified Information Systems Security Professional (CISSP) and
a Certified Ethical Hacker (CEH). He was the recepient of the 2017 IET
Information Security premium (best paper) award.

Sakir Sezer (M ’00) received the Dipl. Ing. degree
in electrical and electronic engineering from RWTH
Aachen University, Germany, and the Ph.D. degree
in 1999 from Queens University Belfast, U.K. Prof.
Sezer is currently Secure Digital Systems Research
Director and Head of Network Security Research
in the School of Electronics Electrical Engineering
and Computer Science at Queens University Belfast.
His research is leading major (patented) advances in
the field of high-performance content processing and
is currently commercialized by Titan IC Systems.

He has co- authored over 120 conference and journal papers in the area of
high-performance network, content processing, and System on Chip. Prof.
Sezer has been awarded a number of prestigious awards including InvestNI,
Enterprise Ireland and Intertrade Ireland innovation and enterprise awards,
and the InvestNI Enterprise Fellowship. He is also cofounder and CTO of
Titan IC Systems and a member of the IEEE International System- on-Chip
Conference executive committee.

