RANGE EXTENDED ENGINE MANAGEMENT SYSTEM FOR ELECTRIC VEHICLES Daniel Paluszczyszyn, Moath Al-Doori, Warren Manning, David Elizondo, Rupert Gammon and Eric Goodyer

De Montfort University Interdisciplinary Group in Intelligent Transport Systems (DIGITS) The Gateway, Leicester, LE1 9BH, UK

1: Aims and description

Aimed to improve the mechanical performance models used to establish a range-extension methodology, and to introduce the use of computational intelligence (CI) to operate a real-time range extension engine management system to replace the current algorithmic approach.

The vehicle will be instrumented to obtain the required input parameters.

Multi-objective non-linea optimization problem wit multiple input variables and multiple constraints.

Aimed to help to overcome market resistance to electric vehicles take-up. The performance model will be based on real-tim analysis of the vehicle operation, and will be tuned to each vehicle.

Artificial neural networks will be developed that will represent the optimum drive characteristics, using a range of live inputs and results of the mechanical modelling study.

3: Range-extension methodology

Stage 1: Equipment selection

Rotary engine

Motorcycle engine

Nissan

Transport iNet east midlands innovation

Development Fund Investing in your future

2: Approach

ar th	The proposed system will include a journey
	planner, with real-time trip analysis that will
	take account of road conditions for the whole journey and driver profile.
l ne	A test laboratory will be developed capable of monitoring and analysing the real-time

performance vehicles

Stage 4: Evaluation via simulations

ADVISOR:

Advance Vehicle Simulator

Driver profile

Vehicle parameters and states

Contact: paluszcol@dmu.ac.uk, +441162078939