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ABSTRACT 

Individuals with a family history of hypertension are thought to be at greater 

risk from developing hypertension. A hyper-reactive response to stress has been 

demonstrated in offspring of hypertensive families that suggests heightened stress 

reactivity plays a role in the pathogenesis of hypertension. Although aerobic exercise 

is now commonly used as a non-pharmacological intervention for the treatment of 

essential hypertension, there is a paucity of research that has examined the 

relationship between exercise and risk markers of hypertension in offspring of 

hypertensive families. Thus, three studies were designed to examine this relationship. 

Study I examined the cardiovascular response to orthostatic stress, mental 

stress, and a cold pressor test in highly (n =8) and moderately physically active (n = 

10) males with a family history of hypertension. In Study II forearm blood flow 

reactivity and renal responses to mental stress were examined in highly (n =9) and 

moderately active (n = 9) males with a family history of hypertension. Study III 

examined the effects of acute exercise on stress reactivity in males with a family 

history of hypertension (n = 12). Impedance cardiography, an electrocardiogram, a 

Finapres blood pressure monitor, and plethysmography were used to examine 

cardiovascular variables. 

In Study I the moderately active demonstrated significantly greater 

cardiopulmonary baroreceptor activity, forearm blood flow, and heart rate responses 

to mental stress compared to the highly active. In Study 11 the forearm blood flow 

response to mental stress was again significantly greater in the moderately active 

although there were no differences in renal responses. In Study III a post-exercise 

hypotensive response during recovery and stress was demonstrated. Also, the post- 

exercise forearm blood flow response to stress was significantly blunted. 
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The findings suggest that chronic and acute aerobic exercise is associated with 

lower forearm blood flow stress reactivity in males with a family history of 

hypertension. This may have implications for the risk of developing hypertension in 

genetically predisposed individuals. 
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CHAPTER 1 

INTRODUCTION 

Hypertension is generally defined as blood pressure persistently above 140/90 

mmHg and is prevalent in 15-25% of the adult population in most countries (World 

Health Organisation, 1992). Cardiovascular risk and blood pressure are positively 

correlated with the higher the blood pressure the higher the risk of both stroke and 

coronary events (MacMahon, Petro, Cutler, & Collins 1990). Thus the control of 

hypertension is a major concern to world wide health organisations. 

The lowering of blood pressure in hypertensive patients through the use of 

pharmacological treatment has been shown to significantly reduce the risk of stroke 

and myocardial infarction (Collins, Petro, MacMahon, & Cutler, 1990). However, 

there is evidence to suggest that some of these drugs have adverse effects which 

counteract the benefits of blood pressure reduction, such as increased LDL cholesterol 

(see Table 1.1). Therefore, non-pharmacological treatment of hypertension seems an 

attractive option. Whilst the majority of intervention studies have focused on reducing 

blood pressure in hypertensive patients, an increasing effort has been made to identify 

risk markers of hypertension that may be present in offspring of hypertensive parents. 

Thus, developing an effective non-pharmacological intervention to eliminate such 

markers before the disease develops may provide an attractive strategy in the early 

control of hypertension. 



Table 1.1. Reductions in estimated 12-year risk of coronary heart disease resulting 

from different interventions in hypertensive patients. (Adapted from Hagberg & 

Brown, 1995). 

Characteristics after intervention 

Initial Diuretic Diuretic plus ß- blocker Exercise 
Characteristics* ß-blocker training 

Blood Pressure (mmHg) 160/100 140/90 140/90 140/90 150/90 

Total Cholesterol (mol. 1"') 6.2 6.6 6.6 6.2 5.9 

HDL Cholesterol (mol. 1-1) 1.0 1.0 0.9 0.9 1.2 

Estimated 12-year CHD 32 30 33 31 25.5 

risk** (%) 

*Based on 55-yr old male smokers with no evidence of diabetes or left ventricular 

hypertrophy. 

**Calculated from the equation of Anderson, Wilson, Odell, and Kannel (1991). 
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1.1 Rationale 

1.1.1 The Role of Hyper-reactivity in Hypertension Development 

The sympathetic nervous system (SNS) plays a pivotal role in rapid, short- 

term alterations in cardiovascular function during mental and physical stress. 

Specifically, during the `defence' response a number of physiological changes are 

initiated in order to prepare the body for `flight' or `fight'. These include elevating 

cardiac output, through increasing heart rate, and skeletal muscle vasodilatation in 

order to provide the muscles with oxygen rich blood. Other changes involve 

activation of the renin-angiotensin system (RAS) in order to conserve sodium and 

thus promote conservation of water. Also, the defence response elicits insulin 

resistance in order to sustain adequate levels of blood sugar for the brain to function. 

These responses are thought to be driven by the SNS. However, although once vital to 

the survival of the organism, a hyper-responsivity of the defence reaction has been 

implicated in the development of hypertension, with the notion that repeated pressor 

episodes may elicit permanent hypertension (see Figure 1.1). 

The elevated early risk of hypertension may be largely due to structural 

changes before the rise in blood pressure. Julius (1993) describes a `hyperkinetic' 

circulation in the early developmental stages of hypertension that is characterised by 

an elevated heart rate, cardiac output, and plasma catecholamines. However, once the 

disease progresses into the hypertensive stage these central adaptations are no longer 

present, but instead an elevated peripheral resistance is observed. Vascular 

hypertrophy is thought to form the basis of this structural adaptation through genetic 

and structural reinforcement. Folkow (1987,1990) proposed a process whereby minor 

overactivity of a pressor mechanism raises blood pressure and may initiate an 

abnormal hypertrophic response through genetic or trophic factors. Once the wall 
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thickness/ inner radius ratio of the vessel is increased this gives rise to an amplifier 

effect when the vessel is subjected to vasoconstrictor stimuli. Thus, luminal 

narrowing is accentuated in proportion to the wall/inner radius increase. Three 

elements of this hypothesis are supported by clear evidence: the existence of vascular 

hypertrophy in hypertension; the ability of increased pressure to cause hypertrophy; 

and the ability of hypertrophy to amplify a pressor signal in preparations of isolated 

perfused vessels. 

A further factor in the development of hypertension through a hyper-reactive 

mechanism is the role of the kidney. High levels of renal sympathetic nervous activity 

(SNA) can shift the pressure natriuresis curve and facilitate the maintenance of 

hypertension by interfering with the ability of the kidney to compensate for an 

increase in arterial pressure through pressure natriuresis. 

There is no direct evidence to support a causative role for hyper-reactivity in 

the development of hypertension but there is indirect evidence that hyper-reactivity 

may play some role, for example in combination with another pathological factor or 

may impact only in those individuals who are genetically predisposed. The suggestion 

that hyper-reactivity might play a greater role in the development of hypertension in 

individuals that are genetically vulnerable is supported by findings of increased 

reactivity in offspring hypertensives (Turner, 1994). Mall (1971) suggested that 

family history of hypertension is a key risk factor, identifying familial factors as 

accounting for a third of the variance of systolic pressure and a fifth of that of 

diastolic. Longitudinal studies have further underlined the importance of family 

history as a risk factor of hypertension. For example, Falkner, Kushner, Onesti, and 

Angelakos (1981) followed up 50 adolescents who met the initial criteria of 

borderline hypertension (blood pressures in the range of 90`h to 95th percentile). 

4 



Within 4 years 56% progressed to a state of sustained hypertension (blood pressures 

repeatedly above the 95th percentile for more than 3 months), of which all had a 

positive family history of hypertension. Thus, hyper-reactivity to mental stress in 

individuals with a family history of hypertension may be a key risk marker in the 

early development of hypertension. 

1.1.2 Role of Exercise in Reducing Risk Markers of Hypertension 

One of the largest epidemiological studies carried out in the United States 

(Paffenbarger, Wing, Hyde, & Jung, 1983) provided compelling evidence that 

normotensive individuals with a low level of physical activity or fitness have an 

increased risk of developing hypertension. Further, longitudinal evidence suggests 

that former endurance trained athletes have significantly lower resting systolic blood 

pressure (SBP) and diastolic blood pressure (DBP) than their more sedentary 

counterparts (Pyörälä et al., 1967). A large number of intervention studies have been 

performed on the effects of exercise on blood pressure. The overall consensus in the 

literature published to date is that endurance exercise reduces both SBP and DBP in 

75% of hypertensive patients. These reductions average approximately 10 mmHg for 

both SBP and DBP (see Table 1.2). Meta-analyses that only include studies 

employing randomised trials (Halbert, Silagy, & Finucane, 1997; Kelly & McClellan, 

1994) have shown reductions in SBP of 7-4 mmHg and DBP of 6-4 mmHg. It has 

been shown that a reduction in DBP of 5-6 mmHg by pharmacological treatment is 

associated with a 42% reduction in the incidence of stroke and a 14% reduction in 

coronary heart disease (Collins et al., 1990). Thus, taking into account unknown 

individual and environmental factors, exercise training seems to be an affective 

strategy to both reduce the risks associated with hypertension and reduce the potential 

risk to develop hypertension. However, the mechanisms associated with the anti- 
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hypertensive and potential protective effects of exercise training are not clearly 

understood. 



Table 1.2. Dose-response relationships between exercise and blood pressure 

according to the intensity and duration of exercise-training programme. (Adapted 

from Hagberg & Brown, 1995). 

Training intensity (VO2. ) Exercise training duration (weeks) 

< 70% >70% 1-10 11-20 21+ 

Systolic blood pressure 

Average reduction (mmHg)t 9.5 6.8 9.5 11.1 10.9 

Groups with significant 
reductions (%) 64 75 

Total sample size 383 286 

Diastolic blood pressure 

71 65 64 

336 440 145 

Average reduction (mmHg)$ 7.0 6.8 7.1 9.3 9.6 

Groups with significant 
reductions (%) 78 73 79 74 75 

Total sample size 477 237 357 418 159 

Average across studies whose participants initially had SBP in excess of 140 

mmHg. 

$ Average across studies whose participants initially had DBP in excess of 90 mmHg. 

The average was computed by weighting for the sample size of each study. Studies 

with a non-significant reduction in blood pressure were entered as zero change, and 

their sample size was added into the final sample size. 
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Current anti-hypertensive mechanisms of exercise have focused on adaptations 

to the SNS (see Chapter 2 for more detail). If exercise is to play a role in reducing the 

risk of hypertension in offspring hypertensives then this may involve an exercise 

induced mechanism that results in a reduction in SNS hyper-reactivity. Therefore, 

three studies were designed to investigate the effects of physical activity and acute 

exercise on hypertension risk markers in offspring hypertensives. Previous research 

has identified the detrimental effects of a hyper-reactive SNS on the cardiovascular 

system as a potential risk for the development of hypertension (see Chapter 2). Thus, 

Study I assessed cardiovascular functioning in moderately and highly active offspring 

hypertensives during a number of physical and mental stressors designed to activate 

different aspects of the SNS. It was predicted that the moderately active offspring 

hypertensives would demonstrate hyper-reactive responses to the various challenges 

in comparison with the highly active offspring hypertensives. In Study II 

cardiovascular and renal responses to mental challenge were investigated. It was 

predicted that the moderately active offspring hypertensives would be more reactive 

to the mental challenge and also display sodium retention due to a higher activation of 

the RAS. Study III examined the effect of acute exercise on the cardiovascular 

response to mental challenge in moderately active offspring hypertensives. It was 

predicted that acute exercise would significantly lower cardiovascular reactivity to 

mental challenge. Throughout the studies a common theme was to focus on the effects 

of acute exercise/physical activity and not components of fitness such as maximal 

oxygen uptake as this has a high genetic component. It was postulated that using 

physical activity measures as opposed to fitness scores to determine the different 

groups in the cross-sectional designs would infer that the effects of acute exercise 
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may be a more important determinant of the stress response than genetic fitness or 

chronic training adaptations. 

1.2 Aims 

The specific aims of these studies are to: 

I. a) Compare cardiopulmonary baroreceptor function in moderately and highly active 

offspring hypertensives. 

I. b) Compare cardiovascular reactivity to mental challenge and cold pressor test in 

moderately and highly active offspring hypertensives. 

II. a) Compare cardiovascular reactivity to an extended mental challenge in 

moderately and highly active offspring hypertensives. 

II. b) Compare renal responses to mental challenge in moderately and highly active 

offspring hypertensives. 

III. a) Examine the effects of acute exercise on cardiovascular reactivity to mental 

challenge in moderately active offspring hypertensives. 

1.3 Hypotheses 

It is hypothesised that: 

I. a) Moderately active offspring hypertensives will display significantly augmented 

cardiopulmonary baroreceptor function in comparison with highly active offspring 

hypertensives. 

I. b) Moderately active offspring hypertensives will display significantly higher levels 

of cardiovascular reactivity to mental challenge and cold pressor test in comparison 

with highly active offspring hypertensives. 

II. a) Moderately active offspring hypertensives will display significantly higher levels 

of sustained cardiovascular reactivity to an extended mental challenge in comparison 

with highly active offspring hypertensives. 
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ll. b) Moderately active offspring hypertensives will display sodium retention in 

response to mental challenge in comparison with highly active offspring 

hypertensives who will display sodium excretion. 

III. a) Acute exercise will significantly lower the cardiovascular reactivity response to 

mental challenge in moderately active offspring hypertensives. 
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CHAPTER 2 

REVIEW OF LITERATURE 

In order to elucidate potential risk markers of hypertension in offspring 

hypertensives it is important to consider possible factors involved in the 

pathophysiology of essential hypertension. Therefore, the first part of the review will 

focus on the role of sympathetic nervous activity (SNA) in the early development of 

hypertension covering the importance of SNA in the pathogenesis of hypertension, 

evidence for heightened SNA in offspring hypertensives, and potential mechanisms 

for increased SNA. The second part of the review will consider the potential 

interaction between genetic predisposition for hypertension and the environment 

covering the role of diet, stress, and exercise in hypertension risk. Finally, the third 

section will review the anti-hypertensive and stress reactivity reducing mechanisms of 

exercise in order to identify a potential exercise related mechanism for eliminating 

hypertension development. 

2.1 The Sympathetic Nervous System and Hypertension Development 

2.1.1. Anatomy and Neurotransmitters 

The sympathetic nervous system (SNS) together with the parasympathetic 

nervous system forms the autonomic nervous system (ANS). Sympathetic nerve fibres 

originate in the thoracic and lumbar regions of the spinal cord (see Figure 2.1). Each 

sympathetic pathway extending from the central nervous system to an innervated 

organ consists of a two-neurone chain. Preganglionic fibres release acetylcholine and 

postganglionic fibres release norepinephrine. Most preganglionic axons of the 

sympathetic branch synapse with postganglionic axons within the sympathetic 

ganglion chain, however, some run to collateral ganglion located near to the effector 
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organ. Another important sympathetic neurotransmitter is epinephrine that is released 

into the blood by the adrenal gland. The adrenal gland is considered to be a modified 

sympathetic ganglion that does not give rise to post ganglionic fibres. Instead, it 

secretes hormones into the blood (80% epinephrine, 20% norepinephrine) upon 

stimulation by preganglionic fibres that originate in the central nervous system. 

Epinephrine and norepinephrine bind to specific adrenergic receptor sites at the 

effector organ. a and (3-1 adrenergic receptors bind with both epinephrine and 

norepinephrine, whereas ß-2 receptors bind primarily with epinephrine. 
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2.1.2. Importance of the Sympathetic Nervous System in the Pathogenesis of 

Hypertension 

The SNS plays a pivotal role in rapid, short term alterations in cardiovascular 

function during mental and physical stress, orthostatic stress, and pathophysiological 

states such as hemorrhagic hypotension. A number of investigators have attempted to 

bring about chronic hypertension using neurogenic methods, such as direct 

stimulation of the defence area in the brain (Folkow & Rubinstein, 1966), exposing 

rats to noise (Rothlin, Cerletti, & Emmenegger, 1956), and operant conditioning of 

primates (Herd, Morse, Kelleher, & Jones, 1969). However, only temporary 

elevations in blood pressure were observed, thus suggesting that the SNS is important 

in the short term regulation of cardiovascular function but not in long term control of 

arterial pressure. It has been argued that the hypertensive effects of neurogenic 

vasoconstriction would be mitigated by long term arterial pressure control systems, 

such as the renal body fluid system. This system, which is one of the most important 

mechanisms for long term control of arterial pressure, works by causing increases in 

kidney output of water and salt in response to rises in arterial pressure (pressure 

diuresis and natriuresis). This in turn causes decreased extracellular fluid volume and 

decreased blood volume. The reduced blood volume acts to reduce cardiac output 

through a reduced stroke volume, thereby reducing arterial pressure. Further research 

has implicated the role of hyper-reactivity in the development of hypertension, with 

the notion that repeated pressor episodes may bring about permanent hypertension. 

There is no direct evidence to support a causative role for hyper-reactivity in the 

development of hypertension, but there is indirect evidence that hyper-reactivity may 

play some role, for example in combination with another pathological factor, or may 

impact only in those individuals who are genetically predisposed. The suggestion that 
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hyper-reactivity might only play a significant role in the development of hypertension 

in individuals that are genetically vulnerable is supported by findings of increased 

reactivity in offspring hypertensives (Turner, 1994). 

There are a number of other neuroeffector mechanisms that may influence the 

long term regulation of blood pressure. The renal sympathetic nerves not only cause 

renal vasoconstriction but also enhance the release of renin and promote reabsorption 

of sodium and water from the renal tubules. Thus, high levels of renal SNA can shift 

the pressure natriuresis curve and facilitate the maintenance of hypertension by 

interfering with the ability of the kidney to compensate for an increase in arterial 

pressure through pressure natriuresis. The SNS can also exert long term trophic 

effects on vascular muscle (Bevan, 1984; Lever, 1986), thus causing structural 

changes in blood vessels that increase vascular resistance and the vasomotor response 

to vasoconstrictor stimuli. 

2.1.3 Evidence of Heightened Sympathetic Nervous Activity in Offspring 

Hypertensives 

The detrimental effects of psychological stress are generally ascribed to SNA 

and its concurrent effects on cardiac rhythmicity (Verner, 1987), the vascular 

endothelium (Clarkson, Kaplan, Adams, & Manuck, 1987), arterial blood pressure 

(Folkow, 1978), and lipid mobilisation (Eliot, 1987). There is an increasing body of 

evidence to support heightened SNA in offspring hypertensives during mental and 

physical stressors (see review by Muldoon, Terrell, Bunker, & Manuck , 1993). 

However, the majority of research in this area is equivocal. 

2.1.3.1 Heart rate and blood pressure reactivity. Out of the 51 family history 

studies in hypertension that specifically looked at heart rate and blood pressure 

reactivity to mental stress (reviewed by Muldoon et al., 1993) only a third of the 
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studies documented greater reactivity in white males with positive family history 

compared to those with negative family history. Additionally, among black males, 

blood pressure reactivity to a psychological stressor has failed to differentiate 

individuals with and without family history of hypertension in nearly all comparisons 

reported. Similarly, when examined in relation to family history of hypertension, the 

cold pressor test yields equivocal results, with only 6 of 15 reviewed investigations 

reporting greater blood pressure or heart rate responses in subjects with a positive 

history. Moreover, reactivity to physical stressors has produced a similar pattern of 

findings; heart rate and blood pressure responses to sustained handgrip (isometric 

exercise) at loads ranging from 20 to 60% of maximum voluntary contraction and 

over intervals of 90 s to 5 min have produced positive findings in four of nine 

reviewed studies. Of these positive findings the results have shown a larger systolic 

blood pressure rise (Manuck & Proietti, 1982), a larger diastolic blood pressure rise 

(McCann & Matthews, 1988; Stoney & Matthews, 1988), and a larger heart rate 

response (Allen, Lawler, & Mitchell, 1987) in offspring hypertensives. Responses to 

dynamic exercise, including treadmill, supine and upright bicycle ergometry exercise 

have produced positive findings in four of eight reviewed studies. The positive 

findings suggest an increased systolic blood pressure response during submaximal or 

maximal exercise in offspring hypertensives (Alli, Avanzini, & DiTullio, 1990; 

Molineux & Steptoe, 1988; Nielson, Gram, & Pederson, 1989; Saito, Koshibu, & Kai, 

1989). These inconsistencies may be due to weak study design, such as failure to 

confirm and report blood pressures of family members. Also, the stronger studies 

have employed the more powerful comparison of strong versus absent family history 

(biparental hypertension versus biparental normotension). 
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2.1.3.2 Cardiovascular patterning. A further point to consider when analysing 

the studies documenting reactivity to a psychological stressor is the different type of 

stressors that are employed, and the specific cardiovascular patterns that they elicit. 

All the stressors employed are designed to increase blood pressure, but the majority of 

studies do not consider the different combinations of changes in cardiac output and 

vascular resistance which give rise to the increased blood pressure. For example, a 

memory search reaction time task is intended to evoke a predominantly ß-adrenergic 

cardiac response, whereas a visual search reaction time task is intended to evoke both 

ß-adrenergic and a-adrenergic vascular responses. De Visser et al. (1995) employed 

these two types of mental stressor to study cardiovascular responses in 56 offspring 

hypertensives (all with two hypertensive parents) and 43 control subjects (all with two 

normotensive parents). All subjects were healthy with normal blood pressure (mean 

age 22± 0.7 years). They found no evidence to support the presence of 

hyperadrenergic activation of the heart in offspring hypertensives during the memory 

task. However, during the visual search task, offspring hypertensives were 

characterised by enhanced peripheral vascular resistance. Stoney and Matthews 

(1988) observed an exaggerated diastolic blood pressure response in middle aged 

male and female offspring hypertensives during a variety of stressors, which included 

a memory task, visual search task, and isometric hand grip. The authors concluded 

that the greater diastolic blood pressure response was related to an exaggerated a- 

adrenergic peripheral resistance response. 

2.1.3.3 Vascular reactivity. Other researchers have employed the 

plethysmographic method to measure limb blood flow during mental challenge. 

Ohlsson (1982) observed a decreased hand blood flow in offspring hypertensive 

subjects, using a tone reaction task. Also, a number of researchers (Anderson, 
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Mahoney, Lauer, & Clarke, 1987; Miller & Ditto, 1991) have observed an 

exaggerated forearm blood flow response during mental challenge in offspring 

hypertensives. The results from Miller and Ditto (1991) strongly implicated the 

sympathetic nervous system in the exaggerated cardiovascular response to stress in 

offspring hypertensives. Their study employed the use of selective pharmacological 

blockade, a 0-1 adrenergic blocker and an a-1 adrenergic blocker. The study 

compared heart rate and forearm blood flow response between offspring 

hypertensives and controls during a 1x-hr active coping psychological stressor under a 

placebo and two drug conditions. Under the placebo condition the offspring 

hypertensives demonstrated exaggerated heart rate and forearm blood flow responses 

to the stressor. Under the 0-1 adrenergic blocking condition only differences in heart 

rate response were abolished. Under the a-1 adrenergic blocker the responses were 

similar to that observed under the placebo condition for the first 15 min although 

during the last 15 min, the a-1 blocker eliminated the rise in forearm vascular 

resistance observed in offspring hypertensives under the placebo condition. These 

results suggest that the initial forearm vasodilatory response to stress and the 

reductions in forearm vascular resistance are reinforced by ß-2 adrenergic or 

cholinergic activity and that later increases in forearm vascular resistance may reflect 

increasing a-1 adrenergic activity. Further studies indicate exaggerated vascular or 

pressor responses, or lower threshold response to infused norepinephrine in offspring 

hypertensives (Bianchetti, Weidmann, Beretta-Piccoli, 1984; De Lima, Dias, 

Bernardes-Silva, & Belloti, 1990; Doyle & Fracerm, 1961). Thus, overall results 

confirm that offspring hypertensives exhibit a-1 and ß-adrenergic hypersensitivity. 

2.1.3.4 Renal haemodynamics. Differences in renal functioning between 

offspring hypertensives and controls both at rest (van Hooft et al., 1991) and during 
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mild mental challenge (Hollenburg, Williams, & Adams, 1981) have been observed. 

Van Hooft et al. (1991) observed lower renal blood flow and suppressed renin and 

aldosterone concentrations in offspring hypertensives at rest. Hollenburg et al. (1981) 

observed reduced renal blood flow and increases in renin, aldosterone, and 

angiotensin during mental stress in offspring hypertensives, which were even more 

pronounced in hypertensive subjects. Altered renal functioning has been closely 

related to vascular reactivity and the potential development of hypertension. 

Activation of the renal a-adrenergic receptors is thought to induce sodium retention 

through activation of the renin-angiotensin-aldosterone system causing renal 

constriction (DiBona, 1982,1985). An altered sodium balance may result in enhanced 

vascular responsiveness to sympathetic nervous activation due to disturbed 

endothelial mechanisms (Blaustein & Hamlyn, 1984; Haddy, 1974). The exaggerated 

sodium re-absorption results in a tendency towards sodium, water, and extracellular 

fluid volume expansion that is compensated for by the secretion of a natriuretic 

hormone. This hormone promotes sodium excretion by inhibiting sodium pumps in 

the kidney tubules and is also responsible for the inhibition of the sodium pump in 

vascular smooth muscle cells. Increases in intracellular sodium are then followed by 

increases in intracellular free calcium concentrations, resulting in elevated vascular 

tone and an exaggerated vascular responsiveness to endogenous vasoconstrictive 

agents. Such a response over time may result in vascular hypertrophy that would 

cause increases in vascular resistance. These resistance type changes are identifiable 

in established hypertension, whilst in contrast, an increased cardiac output is more 

characteristic in the early phases of hypertension development (Julius, 1991). 
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2.1.4 Potential Mechanisms for Heightened Sympathetic Nervous Activity in Offspring 

Hypertensives 

There are a number of mechanisms that may explain the findings of 

heightened SNA which include an increased release of the sympathetic 

neurotransmitters, and/or increased tissue sensitivity. Resting plasma catecholamine 

concentrations are not consistently elevated in offspring hypertensives compared with 

controls (see Muldoon et al., 1993). However, it remains questionable whether 

catecholamine plasma levels are a good indicator of SNA. Using microneurographic 

recordings, which is perhaps more representative of SNA, Yamada et al., (1988) 

showed that resting muscle sympathetic nerve activity (MSNA) was higher in 

offspring hypertensives than in controls. 

A widely held belief is that elevated levels of SNA may result from impaired 

baroreceptor restraint on sympathetic neural outflow. Matsukawa et al., (1988) found 

that the slopes of the relations between arterial pressure and muscle SNA after 

phenylephrine injections are lower in hypertensives than in normotensive subjects. 

Also, in borderline hypertensives, increased levels of MSNA are related inversely to 

vagal baroreflex slopes. However, abnormalities in baroreceptor control of 

parasympathetic activity (heart rate) do not necessarily indicate abnormalities in 

baroreceptor control of SNA and vascular resistance, as shown by Guo, Thames, and 

Abboud (1983). Parmer, Cervenka, and Stone (1992) measured baroreflex control of 

the heart rate in offspring hypertensives and controls and found that baroreflex 

sensitivity was lower in offspring hypertensives. Offspring hypertensives have also 

been found to display abnormalities in cardiopulmonary (C-P) baroreceptor function, 

shown by an exaggerated forearm vasoconstrictor response when the C-P 

baroreceptors are unloaded during mild levels of lower body negative pressure (Ueda 
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et al., 1989). Thus, it has been suggested that the C-P baroreceptors may act to buffer 

a heightened sympathetic neural drive caused by arterial baroreceptor dysfunction 

(Mark & Kerber, 1982). 

A second important mechanism is sensitivity to adrenergic stimulation. Using 

radioligand binding techniques, Michel, Galal, Stoermer, Block, and Brodde (1989) 

showed that platelet a-2 adrenoceptor density was significantly increased in children 

with family history of hypertension (9.19 ± 0.73 years) compared with controls. This 

provides strong evidence to support a model for the pathogenesis of genetically 

determined hypertension. 

2.2 Interaction of Genetic Predisposition and the Environment 

There is substantial evidence to suggest that exaggerated reactivity to 

psychological stress in combination with an interaction of genetic and environmental 

factors may be a potential risk marker of hypertension. The following section will 

review the interaction of family history of hypertension, diet, exercise, and stress. 

2.2.1 Hypertension Risk and Diet 

Miller, Friese, and Sita (1995) studied the effect of sodium loading and 

parental history of hypertension on the cardiovascular response to stress. In offspring 

hypertensives sodium loading elevated total peripheral resistance and norepinephrine 

response to stress relative to placebo conditions and compared with controls. 

However, the relationship between dietary salt intake and the development of 

hypertension has been the subject of continuing debate. Despite abundant 

epidemiological, experimental, and interventional observations demonstrating a link 

between salt and hypertension, scepticism remains. This is based on the observation 

that not all individuals have demonstrable changes in blood pressure after ingestion of 

increased or decreased amounts of sodium chloride (Weinburger, 1996). Brum, 
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Tramposch, and Ferrario (1991) have also suggested that sodium may play no direct 

role in the pathogenesis of hypertension but may be a marker of an underlying 

activation of central neural and endocrine mechanisms. 

2.2.2 Hypertension Risk and Exercise 

A number of studies have examined whether a high level of cardiovascular 

fitness/ chronic exercise training and acute exercise may prevent daily stress from 

exerting its negative influence on cardiovascular health by reducing SNA. 

2.2.2.1 Chronic exercise effects on stress reactivity. Research to date, using 

both cross-sectional and longitudinal designs, in normal populations is equivocal. A 

review of the cross-sectional research comparing reactivity of trained and untrained 

subjects suggests that about half of the studies show a reduced heart rate reactivity to 

a variety of laboratory stressors in the trained (Holmes & McGilley, 1987; Holmes & 

Roth, 1985; Light, Obrist, James, & Strogatz, 1987; Turner, Costello, Carroll, & 

Sims, 1987; van Doornen & de Geus, 1989), whereas others found no differences 

(Brooke & Long, 1987; Cox, Evans, & Jamieson, 1979; Dorheim, Ruddel, & Elliot, 

1984; Hollander & Seraganian, 1984; Hull, Young, & Ziegler, 1984; Plante & 

Karpowitz, 1987; Sinyor, Peronnet, Brisson, & Seraganian, 1986; Sothmann, Horn, 

Hart, & Gustafson, 1987). However, an ongoing issue in the literature is whether heart 

rate responsivity or absolute heart rate level during stress is more important. All of the 

aforementioned studies report a lower absolute heart rate level during stress in the 

high fit subjects. This finding has been hugely overlooked and may be a key factor. 

Lower heart rates in the trained are thought to be due to an enhanced cardiac 

parasympathetic influence and the relative balance of autonomic control between 

parasympathetic and sympathetic may be important during stress. Boutcher, Nugent, 

McClaren and Weltman (1998) reported that trained males exhibited a greater phasic 
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decrease in respiratory sinus arrhythmia (RSA), compared to untrained, during the 

Stroop mental challenge. This suggests that trained individuals possibly have a lower 

activation of the SNS during stress, and show a greater reliance on the 

parasympathetic system. 

Longitudinal designs in this area have provided no clear evidence to suggest 

exercise training reduces stress reactivity. However, there are a number of issues to be 

considered in the comparison of cross-sectional and longitudinal design. First, the 

selection of highly fit versus low fit individuals may confound the psychological 

effects of aerobic fitness on autonomic functioning per se with the psychological 

effects of sport and exercise participation on the appraisal of the stressor. Secondly, 

aerobic fitness has a large genetic component, and therefore the causal role of exercise 

training per se, on stress reactivity, using a cross-sectional design is questionable. It 

may be that stress reactivity also has a strong genetic component. These issues were 

raised by de Geus, van Doornen, De Visser, and Orlebeke (1990), when they studied 

the effect of existing and training induced differences in aerobic fitness on reactivity 

to stress. The authors firstly used a correlational design to study the relationship 

between aerobic fitness (VOA.. ) and cardiovascular reactivity to a series of stressors. 

They found that the decrease in RSA during tasks was smaller in more fit subjects (r 

= 0.4, P<0.05), suggesting that vagal inhibitory influences on the heart remained 

more intact. However, changes in heart rate, cardiac output, stroke volume, total 

peripheral resistance, and blood pressure during tasks were not significantly related to 

fitness level. Subjects were then randomly assigned to a running and indoor fitness 

training programme (1.5 hr, 4 day-week-1,7 weeks), or a wait-listed control group. 

The results showed no effect of endurance training on the reactivity of any variables. 

That pre-existing levels of aerobic fitness, in a sample of sedentary subjects, was 
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more highly related to reactivity levels, compared with the effects of regular exercise 

training suggests that stress reactivity is pre-disposed. However, the findings may be 

explained in light of the relatively low training induced increases in 'O2 m.. of 5 

ml. kg"l. min"1, compared with the larger range of 30 ml. kg'. miri' in the correlational 

analysis. Subjects in the training group also seemed to start with a moderate level of 

fitness ("O2.: 46.6 ± 5.6 ml. kg"1. min-', heart rate: 62.8 ± 6.4 b. min"1), which may 

suggest that training will only induce reactivity changes in low fit subjects, or 

possibly only in those who are highly reactive, such as hypertensive patients and 

offspring hypertensives. Indeed, subjects in the aforementioned studies have all been 

healthy, young, normotensive individuals. In one of the few studies that has examined 

the effect of chronic exercise on stress reactivity in hypertensive subjects, systolic and 

diastolic blood pressure, total peripheral resistance, and heart rate were significantly 

reduced during mental stress after six months of aerobic exercise training in 

comparison with the control subjects (Georgiades et al., 2000). 

2.2.2.2 Acute exercise effects on stress reactivity. The rationale behind 

studying the effects of acute exercise on stress reactivity is that acute effects may 

accumulate over a training programme to generate sustained differences. The acute 

reduction of blood pressure that follows vigorous exercise is well documented (for 

review see Kenney & Seals, 1993). Repeated exposure to hypotensive episodes 

through exercise training are hypothesised to reduce total hemodynamic load 

producing cardiovascular benefits. However, in the case of stress reactivity, the 

research to date is again equivocal. There seems to be more evidence though to 

support an acute exercise stress reactivity lowering effect than that of chronic 

exercise. This is possibly due to the absence of the confounding variable genetic 

fitness that has been problematic in the case of chronic exercise studies. Out of the 10 
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studies reviewed, eight showed a stress reactivity lowering effect to mental challenge 

after an acute bout of exercise (Boone, Probst, Rogers, & Berger, 1993; Ebbesen, 

Prkachin, Mills, & Green, 1992; Probst, Bulbulian, & Knapp, 1997; Roy & Steptoe, 

1991; Rejeski, Gregg, Thompson, & Berry, 1991; Rejeski, Thompson, Brubaker, & 

Miller, 1992; Steptoe, Kearsley, & Walters, 1993; West, Brownley, & Light, 1998), 

whereas the remainder of studies showed no effect (Perronet, Massicotte, Paquet, 

Brisson, & de Champlain, 1989; Roth, 1989). The stress reactivity lowering effects of 

acute exercise have mainly been observed as a reduction in blood pressure reactivity, 

although West et al. (1998) also noted a post exercise reduction in total peripheral 

resistance which persisted during the stress period. Also, Probst et al. (1997) noted a 

reduction in heart rate reactivity to stress in the post exercise condition. However, this 

may have been due to the higher initial pre-stress heart rate level from the exercise, 

which may have blunted the response. The lack of significant findings in some studies 

may be related to the intensity and duration of exercise employed and the variation in 

timing of the post exercise reactivity test. It seems those studies reporting significant 

findings have generally employed higher intensity exercise (>60% VO2) for at least 

20 minutes and completed reactivity testing within the first hour of exercise recovery. 

For example, Steptoe et al. (1993) employed two different exercise intensities (50 and 

70% VOA) but only found a significant stress reactivity lowering effect for the 

higher intensity. 

2.2.2.3 Exercise effects in offspring hypertensives. There is a paucity of 

research that has specifically looked at the effects of fitness and exercise training on 

stress reactivity in individuals with a familial history of hypertension. Holmes and 

Cappo (1987) provided evidence to suggest that aerobic fitness may play a role in 

preventing high levels of stress reactivity in offspring hypertensives. The research 
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employed a cross-sectional design with a cohort of 70 normotensive collegiate males, 

which were split into three categories; the ten most fit offspring hypertensives 

(VO2MU : 50.13 ml. kg'. miri 1), the 10 least fit offspring hypertensives (VO2ý : 26.88 

ml. kg'. min"'), and 21 controls with normotensive parents (VO=_: 38.98 ml. kg"1. 

min-'). Heart rate and blood pressure reactivity were measured during a series of 

mental challenges, which included recall of digits backwards, a vocabulary test, 

mental arithmetic, Stroop colour/word naming, and a mathematical information task. 

The authors found that during the stress period, offspring hypertensives who were 

classified as high fit demonstrated similar levels of reactivity compared with the 

controls, and both of these groups demonstrated lower levels of reactivity compared 

with the offspring hypertensive low fit group. However, the offspring hypertensive 

low fit group had a significantly lower fitness level compared with the controls 

(VOA : 26.88 versus 38.98 ml-kg-'. min-1 respectively) that may have confounded the 

findings. Thus, whether the higher level of cardiovascular stress reactivity observed in 

the offspring hypertensive low fit group was attributable to low fitness per se or the 

effect of family history cannot be reliably ascertained. Nevertheless, the findings are 

supportive of a role for moderate levels of fitness in the protection against risk 

markers of hypertension. It is important to note that although the "most fit" 

individuals were classified as a "high fit" group, the mean maximal oxygen uptake 

score was only 50.13 ml. kg-l. min' which represents a highly active but not highly 

trained level of aerobic fitness. The dose response relationship between exercise and 

reduction of hypertension risk may be an important issue considering the problems of 

adherence to an exercise programme. 

Two other studies have attempted to examine the moderating effects of 

aerobic fitness on the autonomic nervous system in offspring hypertensives 
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(Buckworth, Convertino, Cureton, & Dishman, 1997; Buckworth, Dishman, & 

Cureton, 1994). Buckworth et al. (1994) recruited 31 offspring hypertensive females 

(18 to 30 years old) and classified them by fitness and also activity level. Fitness was 

estimated from a graded maximal treadmill test, and subjects were assigned to either 

the highly fit group (VO2Z : 46.62 ± 6.5 ml. kg"'. min-', range 39.1 to 60.9 ml. kg"'. 

min-1), or the moderately fit group (''O2.: 35.89 ± 1.9 ml. kg l. min 1, range 33.3 to 

38.9 ml. kg'l. min-1). Subjects were also separately assigned into a highly active (1217 

± 98.4 J. kg"l. week-1) or moderately active (1015.5 ± 49.4 J. kg l. week-1) group, 

estimated from the recall of the previous weeks physical activity. Heart rate and blood 

pressure were measured during mental arithmetic and cold face testing, and on a 

separate occasion the same tests were performed whilst the carotid-cardiac baroreflex 

was stimulated. In contrast to Holmes and Cappo (1987), no differences were 

observed in heart rate or blood pressure reactivity responses to mental arithmetic or 

the cold-face test between groups representing different levels of fitness and physical 

activity. This discrepancy is possibly due to the smaller separation in fitness levels in 

the Buckworth et al. study. However, despite the lack of difference in reactivity, the 

highly fit women had longer R-R intervals compared with the moderately fit women 

during stimulation of the carotid-cardiac baroreflex at rest. Also, the carotid-cardiac 

baroreflex was attenuated during mental arithmetic compared with rest in both the 

moderately active and moderately fit women but not in the highly active and highly fit 

groups. Thus, the latter findings suggest that physical activity and cardiorespiratory 

fitness may help regulate blood pressure during stress by enhancing parasympathetic 

tone. More specifically, these findings provide evidence to suggest physical activity 

or exercise training may prevent the abnormalities in baroreflex control that have been 

observed among offspring hypertensives. 
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In a follow up study by Buckworth et al. (1997), again using offspring 

hypertensive females, an experimental design was employed to further substantiate a 

causal role of exercise training in reducing stress reactivity. Subjects in the 

experimental group (n = 11) were exercise trained for eight weeks (25-30 min, 3 

day. week"1,60-75% heart rate reserve), and then detrained for a further six to eight 

weeks. Heart rate and blood pressure response to mental arithmetic and forehead cold 

exposure and the carotid-cardiac vagal baroreflex after the training period were 

compared with responses after the detraining. The control group (n = 9) were matched 

on peak oxygen uptake and selected physiological and psychological factors that 

influence blood pressure and heart rate. The rationale of the study design was based 

upon the assumption that a six to eight week period of detraining is sufficient for the 

reversal of autonomic adaptations to exercise. Following an 11.5% decrease in VO,. 

in the experimental group, after detraining, mean arterial blood pressure response to 

the mental arithmetic task, and systolic blood pressure response during cold head 

exposure were both elevated. However, despite higher submaximal exercise heart 

rates after detraining, the experimental group showed no change in the carotid-cardiac 

vagal baroreflex, or heart rate response to the autonomic challenges. The lack of 

significant findings may be due to the length of training period employed - Raven and 

Pawelczyk (1993) have suggested that cardiovascular adaptations associated with 

exercise training take far longer than an eight to ten week training period, which is 

commonly reported in the literature. The other notable finding was that resting blood 

pressure was significantly elevated after detraining in the experimental group [systolic 

blood pressure (SBP): 113 ± 8.9 to 121.2 ± 9.0 mmHg; diastolic blood pressure 

(DBP): 63.0 ± 8.4 to 68.3 ± 6.8 mmHg). None of the above changes occurred in the 

sedentary matched control subjects. The authors suggested that the increases in SBP 
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response during cold head exposure, after detraining, were possibly due to a strong ß- 

adrenergic activation, implying that the mechanisms involved in the stress reactivity 

lowering effects of exercise may be more strongly ß-adrenergically mediated. 

However, van Doornen, de Geus, and Orlebeke (1988) suggested that heart rate 

reactivity and catecholamine release might not be as important as the resulting effects 

on net cardiac and vascular responses. Using a tone-avoidance reaction time task, van 

Doomen and de Geus (1989) showed that endurance athletes were distinguished from 

sedentary subjects mainly by a smaller increase in peripheral vascular resistance in 

response to stress, and to a lesser extent by a reduced cardiac response. Thus, there is 

a need to examine the effects of fitness and exercise on the specific cardiovascular 

patterning responses to stressors in offspring hypertensives, because previous research 

has focused on gross measures of heart rate and blood pressure reactivity. Also, 

measuring autonomic balance of the responses is vital to understand the potential 

mechanisms. 

In summary, there is emerging evidence to suggest that fitness and physical 

activity may decrease stress reactivity, thus decreasing the risk of hypertension among 

normotensive individuals who are already at risk because of familial history of 

hypertension. 

2.2.3 Coping Mechanisms and Personality 

A possible further point to consider in looking at the interaction of stress, 

lifestyle, and hypertension development is how personality factors are involved with 

an individuals ability to cope with stress. Beilin (1997) has suggested that the 

relationship between stress and blood pressure might be mediated or confounded by 

coping mechanisms influencing lifestyle factors known to directly affect blood 

pressure (see Figure 2.2). Beilin's research involved an assessment of work stress, 
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identification of coping strategies, details of lifestyle factors (obesity level, drinking, 

smoking, exercise, dietary habits), and resting blood pressure measures in 654 male 

and female subjects at a government workplace. The main findings demonstrated no 

direct association between measures of work stress and blood pressure but both body 

mass index and lifestyle factors were the major contributors to blood pressure levels 

in men and women. Also, five adaptive and maladaptive coping mechanisms were 

identified which were likely to be either beneficial or deleterious to physical or mental 

health. These coping mechanisms were independently related to both job stress and 

blood pressure levels. Maladaptive coping behaviours reported in response to stress 

were in the form of excessive drinking, excessive consumption of foodstuffs and/or 

cigarettes, and avoidance or denial of stressful work situations. 

Miller, Dolgoy, Friese, and Sita (1998) have also shown that personality and 

family history of hypertension moderate the cardiovascular stress reactivity response. 

They showed that offspring hypertensives that were classed as ̀ high hostile' 

displayed a significantly higher level of cardiovascular reactivity to an ̀ harassment 

stressor' compared with offspring hypertensives that were ̀ low hostile' and controls 

that were high and low hostile. Miller et al. also reported that hostile subjects reported 

an anger-expression style that is a tendency to hold anger in, which has also been 

linked to the hypertensive disease process (Diamond, 1982). 
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Figure 2.2. A conceptual model to illustrate the relationship between work stress, 

coping, lifestyle, and hypertension (Beilin, 1997). 
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2.3 Anti-hypertensive/Stress Reactivity Lowering Mechanisms of Exercise 

There is a strong body of evidence to support the anti-hypertensive effects of 

exercise (see Chapter 1), and also the role of exercise in reducing stress reactivity, 

which may play a role in lowering risk of hypertension. However, the mechanisms 

underlying these effects are largely unknown, and probably multi-factoral. The effects 

of acute exercise may be related to different mechanisms compared with chronic 

training adaptations. At the onset of exercise substantial cardiovascular adjustments 

are needed in order to sustain an exercise bout. These adjustments are primarily to 

increase metabolism in the contracting muscle and focus on increasing oxygen 

delivery. This is achieved in part by increasing cardiac output and by pronounced 

dilatation in the vasculature of exercising skeletal muscle. There are several important 

physiological changes resulting from a bout of acute exercise that may be linked to 

hypotensive and stress reactivity lowering mechanisms. These include increases in the 

catecholamines and other hormones such as growth hormone and cortisol; increases in 

chemical by-products, such as lactate, adenosine, potassium; increases in carbon 

dioxide and reduced oxygen; increases in temperature. This is in contrast to chronic 

training adaptations where mechanisms are related to long term structural changes 

such as vascular capillarisation, cardiac adaptations, changes in lipid profiles, changes 

in hormone balance, and so forth. 

A mechanism that reduces blood pressure must be integrally involved with the 

control of total peripheral resistance and/or cardiac output, although research is 

equivocal. For example, a number of researchers have demonstrated that 

antihypertensive effects of exercise are related to a post-exercise fall in myocardial 

performance (Bennett, Wilcox, & Macdonald, 1984; Hagberg, Montain, & Martin, 

1987), whereas others have suggested that reductions in peripheral vascular resistance 
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are responsible (Cleroux, Kouame, Nadeau, Coulombe, & LaCourciere, 1992a, 

1992b; West et al., 1998). It is likely that a mechanism involved in both the anti- 

hypertensive and stress reactivity lowering effects of exercise is closely related to 

SNA. There are currently a number of mechanisms that have been proposed (for 

review see Tipton, 1991) which include autonomic, metabolic, electrolyte and renal, 

and myocardial and vessel structural mechanisms. 

2.3.1 Autonomic Mechanisms 

Longitudinal studies (Duncan et al., 1985; Jennings et al., 1986; Meredith et 

al., 1991; Urata et al., 1987) that have employed plasma catecholamine concentration 

as an index of SNA have consistently shown that endurance training reduces plasma 

norepinephrine concentration. Jennings et al. (1986) observed a 65% reduction in 

norepinephrine spillover rate in 10 out of 12 subjects who exercised 40 min, 7 

day. week"1,4 weeks, and a decrease in resting peripheral vascular resistance. Duncan 

et al. (1985) trained subjects for 16 weeks, 60 min, 3 day. week'I, and reported that 

hypertensive patients with elevated baseline plasma catecholamine levels had greater 

reductions in blood pressures after exercise training than did patients with normal 

catecholamine levels. Furthermore, Urata et al. (1987), using a training intervention 

of 65 min, 3 day-week-', 10 weeks, found a significant correlation between changes in 

plasma norepinephrine and changes in mean blood pressure (r = 0.69, P<0.05). 

However, because plasma catecholamine levels represent a measure of average 

sympathetic neural activity, it is difficult to determine whether central, peripheral, or 

local mechanisms are primarily or secondarily responsible for the changes. That a 

reduction in blood pressure, through training, was observed before any reductions in 

plasma norepinephrine (Jennings et al., 1986), suggests that a central mechanism may 

not influence the initial fall in blood pressure. Although there is no evidence to 
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suggest the possibility of down regulation of adrenergic receptors after chronic 

exercise training in humans, results from animal studies show that after an acute bout 

of exercise vascular responsiveness was reduced (Howard & DiCarlo, 1992). Using 

vasoactive agonists infused into the hindlimb of the conscious rabbit, blood flow 

responses in the isolated hindlimb were markedly reduced following a bout of 

treadmill exercise to exhaustion. The authors suggested that this might be due to an 

exercise-induced down regulation of a and/or ß-adrenergic receptors. Since it has 

been suggested that offspring hypertensives are hyper-reactive in the ß-adrenergic 

pathways during stress, then a down regulation of these receptors may be a possible 

mechanism in a stress reactivity lowering effect of exercise. 

2.3.2 Baroreceptor Function 

The sensitivity and functioning of the baroreceptors are integrally involved 

with the SNS. Therefore, as the baroreceptors have already been identified as a 

mechanism for heightened SNA in offspring hypertensives, alterations to baroreceptor 

control through exercise training may be a key mechanism. Evidence regarding the 

effects of exercise training on cardiac (arterial) baroreceptor control is conflicting; in 

some studies baroreflex control is enhanced by training in normals (McDonald, 

Sanfilippo, & Savard, 1993), and in borderline hypertensive patients (Somers, 

Conway, Johnston, & Sleight, 1991), but in other studies it was unchanged 

(Buckworth et al., 1997; Lightfoot, Claytor, Torok, Journell, & Fortney, 1989; Seals 

& Chase, 1989), or depressed (Bedford & Tipton, 1987; Smith, Graitzer, Hudson, & 

Raven, 1988). However, these studies were limited to the baroreceptor reflex ability 

to change heart rate via vagal and sympathetic modulation of the sinus node. Grassi, 

Seravalle, Calhoun, and Mancia, (1994) studied the effect of physical training on 

baroreceptor control of sympathetic nerve traffic and heart rate in healthy, young 
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normotensive humans. Postganglionic MSNA and heart rate were measured during 

intravenous infusion of vasoactive drugs in order to estimate baroreceptor sensitivity. 

The measurements were taken from the experimental group (n = 9) before and after a 

10-week endurance exercise training intervention (2 hr, 5 day. week-1) consisting of 

long distance running, and also from sedentary control subjects (n = 4). The training 

resulted in an increased VO2-, from 34.8 ± 2.1 ml. kg"'. min"' to 40.4 ± 1.8 ml. kg" 

'. min-', significantly reduced mean arterial blood pressure (97.5 ± 1.8 to 86.5 ± 2.6 

mmHg, P<0.05), and MSNA (21.2 ± 2.3 to 14.0 ± 1.8 bursts. min"1). Also, mean 

blood pressure increases, induced by phenylephrine infusion, caused significantly 

greater reductions in MSNA, but not heart rate, after training. Furthermore, mean 

blood pressure decreases induced by nitroprusside infusion caused significantly 

greater increases in MSNA and heart rate after training. No changes occurred in the 

age-matched sedentary controls. From these findings, the authors suggested that the 

reduction in SNA originates from a central effect of training. This is because the 

reduction in plasma norepinephrine induced by training is not accounted for by factors 

attenuating the release of this substance from nerve terminals, but by an actual 

reduction in neural sympathetic discharge. Also, because the training intervention 

seemed to predominantly influence MSNA, and in light of previous evidence, the 

authors concluded that the effects of physical training on the baroreceptor control of 

the systemic circulation, via the SNS, may be different from the concomitant effect of 

training on baroreceptor control of cardiac sympathetic activity. 

The C-P baroreceptors are integrally involved with the control of the systemic 

circulation, and evidence regarding the effects of endurance training on these 

baroreceptors is equally equivocal. Using mild levels of lower body negative pressure 

(LBNP) (0 to -20 mmHg) to selectively `unload' the C-P baroreceptors, a number of 
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researchers have found that moderate intensity endurance training attenuates the C-P 

baroreflex control of skeletal muscle vascular resistance, both in hypertensive subjects 

(Kouame, Nadeau, Lacourciere, & Cleroux, 1995), and in normal subjects (Mack, 

Thompson, Doerr, Nadel, & Convertino 1991; Seals & Chase, 1989; Stevens, 

Foresman, Shi, Stern, & Raven, 1992), whereas others have found it to be unchanged 

(Lightfoot et al., 1989; McDonald et al., 1993). Furthermore, when employing a low 

intensity training intervention some have found an augmented baroreflex response, in 

hypertensives (Jingu et al., 1988), and also an unchanged response (Kouame et al., 

1995). It is quite clear that training intensity is an important factor, but other 

inconsistencies may be related to the frequency and length of the overall training 

period. It is noticeable that the authors who reported an attenuated baroreflex all 

employed training interventions of 20-30 weeks [with the exception of Mack et al. 

(1991) who used a 10-week programme], whereas those who found no change used a 

shorter 10-week programme. Furthermore, Lightfoot et al. (1989) suggested that 

differences in the methods used to measure C-P baroreceptor functioning may have 

been responsible for the discrepancies; a number of authors have used an 

"incremental" LBNP protocol, which provides sequential increases in LBNP exposure 

(Lightfoot et al., 1989; Mack et al., 1991; Stevens et al., 1992), whereas others have 

used "jump" protocols, where the negative pressure stages are separated by periods of 

no pressure (Kouamt et al., 1995; Seals & Chase, 1989). The discrepancy between 

"jump" and "incremental" protocols may be in the amount of fluid that is pooled, as 

suggested by Woithuis, Hoffler, and Johnson (1970). However, in light of these 

assertions there seems to be no clear consistency between the type of protocol used 

and the effects of training on the baroreflex functioning. A further methodological 

discrepancy in this area is the importance of relating the forearm vasoconstrictor 
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response to the physiological stimulus of C-P baroreflex unloading (i. e., central 

venous pressure), as opposed to the level of LBNP. 

From the findings that have suggested an attenuated C-P baroreflex response 

after training, it is interesting to speculate on the potential mechanism. A number of 

mechanisms have been implicated: 1) a possible resetting of the C-P baroreceptor's 

operational point, 2) alterations at the afferent level, central integration level, and at 

the efferent level. There is no evidence to support a resetting process because the 

baseline level of the reflexly changed variables (mean arterial pressure, forearm 

vascular resistance, and changes in estimated central venous pressure during LBNP) 

remain similar before and after training. Thus, the mechanism is most likely related to 

alterations in the cardiovascular reflex arc. Two studies (Mack et al., 1991; Stevens et 

al., 1992) have associated the reduction in C-P baroreflex sensitivity with an exercise 

induced hypervolemia, and thus have suggested that a mechanism may be related to 

an interaction between reflexes that regulate intravascular volume and baroreflexes 

that regulate vascular resistance. There is also evidence to suggest that structural 

changes to the cardiovascular system may be integrally involved. For example, 

Levine, Buckley, and Fritsch (1991) reported that maximal calf conductance was a 

strong independent predictor of LBNP tolerance. However, Kouame et al. (1995) 

reported that a decreased C-P baroreflex response after training was not related to a 

mechanism pertaining to hypervolemia, as blood volume was not modified in their 

subjects after training. Also, plasma norepinephrine levels during LBNP stimulation 

were similar before and after training, suggesting that efferent sympathetic nervous 

activity was not modified. Instead, they suggested that the reduced forearm vascular 

resistance response was related to alterations at the effector organ level, that is the 

vascular smooth muscle. That the minimal vascular resistance in the forearm after 
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training was unchanged suggests that the structure of the vessels was unaffected 

during the short 10-week training period and therefore alterations to the a-adrenergic 

receptors were implicated. A training induced alteration of a-receptor function was 

also supported by Stevens et al. (1992), who found that after training subjects elicited 

an average 4 mmHg decrease in DBP during LBNP, whilst before training DBP 

increased by 2 mmHg during LBNP. Thus, it seems likely that the mechanism may be 

multifactorial, and involve adaptations at the afferent, central, and efferent levels of 

the reflex arc, dependent on the length and intensity of the exercise stimulus. 

2.3.3 Renal Depressor Mechanisms 

Due to the disturbed renal hemodynamics and handling of sodium that is often 

associated with hypertension a number of researchers have investigated the effect of 

exercise training on renal functioning in hypertensive patients (Kinoshita et al., 1991; 

Kohno et al., 1997; Sakai et al., 1998). Kohno et al. (1997) evaluated 24 hr blood 

pressure, glomerular filtration rate, renal blood flow, filtration fraction, plasma renin, 

aldosterone, norepinephrine activity, and fractional excretion of sodium in subjects 

with mild to moderate hypertension before and after a three week exercise training 

programme (four 6-min sessions daily at 75% VO2 ). After the training period 

subjects were then classified as responders (those with significantly reduced 24 hr 

blood pressure) and non-responders (those who had not reduced blood pressure). 

Before training the responders had significantly higher renal vascular resistance, 

plasma renin and aldosterone activity, and lower fractional excretion of sodium than 

non-responders, suggesting a more activated renin-aldosterone system with higher 

renal artery tone in responders. However, with exercise the responders' renin 

angiotensin system and sympathetic nervous system were suppressed (significant 

reductions in plasma renin and norepinephrine activity), resulting in a reduced renal 

39 



vascular resistance and filtration fraction. Fractional excretion of sodium was also 

increased in responders, although this was not significant. That there was no 

significant reduction in resting heart rate after training suggests the blood pressure 

lowering mechanism may have been related to reductions in vascular resistance. 

Indeed, significant correlations between change in mean arterial pressure and the 

changes in filtration fraction and renal vascular resistance suggests that the specific 

mechanism may be linked with a reduction in renal vascular resistance through a 

reduction in regional sympathetic activity. These findings are in agreement with 

Meredith et al. (1991) who showed that after 4 weeks of exercise training (40 min, 3 

day. week"1,60-70% VO2) a fall in blood pressure was mainly explained by a 41 % 

decrease in renal norepinephrine spillover and an increase in renal vascular 

conductance of 10%. They also found no change in cardiac norepinephrine spillover 

rate. Thus, the findings of Kohno et al. provide evidence to suggest that exercise may 

be more beneficial in lowering blood pressure in hypertensives with higher renal 

vascular resistance. 

Further studies have focused on the role of plasma volume depletion 

mechanisms. These mechanisms are thought to promote natriuresis and diuresis by 

inducing sodium excretion. There are a number of potential hormones and other 

factors that may be involved with this process. These include atrial natriuretic peptide 

(ANP) that is released from the cardiac atria when the extra cellular fluid volume is 

expanded. The primary action of ANP is to inhibit sodium re-absorption in the distal 

parts of the nephron, thus increasing sodium excretion in the urine. ANP also acts on 

two other sodium conserving mechanisms that include inhibiting renin secretion in the 

kidney and aldosterone secretion from the adrenal cortex. ANP is also thought to 

inhibit SNA thus decreasing renal vascular resistance. Tanaka et al. (1986) showed 
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that ANP levels increased during acute exercise in young healthy volunteers. 

However, Kinoshita et al. (1991) did not find any increase in plasma ANP factor 

levels at rest after 10 weeks of mild (lactic threshold) exercise in middle aged 

hypertensives. That Kinoshita found a correlation between decrease in ANP with both 

decrease in SBP (r = 0.56, P<0.05) and 24 hr urinary sodium excretion (r = 0.64, 

P<0.05) suggests other factors promoting natriuresis may be involved. Other factors 

that may be involved include the dopamine system and taurine, which are both found 

to be suppressed in hypertensives (Lee, 1981; Ogawa, Takahara, Ishijima, & Tazaki, 

1985). Kinoshita et al. (1991) and Sakai et al. (1998) both observed increases in 

urinary dopamine excretion in hypertensives after 4 weeks of exercise training, which 

was significantly correlated with decrease in blood pressure and urinary sodium 

excretion. Tanabe et al. (1989) showed that mild exercise for 10 weeks in 

hypertensives increased serum taurine concentration by 26%, which was correlated to 

a decrease in plasma norepinephrine. Thus, there is a body of evidence to support the 

role of exercise in a blood pressure reducing mechanism that relates to changes in 

renal function. However, more causal evidence is needed to implicate the role of 

specific factors in renal depressor mechanisms because previous studies have only 

provided correlations. Also, when looking at renal blood pressure lowering 

mechanisms it is important to still consider not just peripheral mechanisms but also 

central adaptations. For example, Sakai et al. (1998) stated that a post-exercise 

natriuresis effect was the main cause for lower blood pressure despite their findings of 

a significantly reduced cardiac index. 

2.4 Summary 

In summary, the present literature suggests that the interaction of genetic pre- 

disposition and the environment are integrally involved with the early development of 
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hypertension. In particular, heightened cardiovascular reactivity to psychological 

stress has been identified as a key marker for the future development of hypertension. 

The sympathetic nervous system seems to be involved with heightened cardiovascular 

reactivity in offspring hypertensives and may also be involved with an exercise 

induced reactivity lowering effect. 
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CHAPTER 3 

METHODOLOGY 

3.1 Overview 

Three studies were designed in order to investigate the effects of physical 

activity and acute exercise on risk markers of hypertension in offspring hypertensives. 

For Studies I and II a cross-sectional design was employed for which highly and 

moderately active male offspring hypertensives were recruited. This design was 

adapted from Buckworth et al. (1994) who were also interested in the effects of 

physical activity and fitness on autonomic responses in offspring hypertensives. The 

decision was made not to employ a control group of subjects without family history of 

hypertension because: 1) previous research has already documented cardiovascular 

reactivity patterns using offspring hypertensives compared with offspring 

normotensives and clearly demonstrated a strong effect for family history of 

hypertension; 2) a certain proportion of the population may unknowingly suffer from 

undiagnosed hypertension, which may produce a number of false negative offspring 

hypertensive subjects in the control group contributing to a type II error. In Study III 

an exercise intervention strategy was used with moderately active male offspring 

hypertensives where subjects acted as their own control. 

In Study I the relationship between physical activity level and cardiovascular 

function during a number of physical and mental stressors was assessed. In Study II 

cardiovascular reactivity and renal responses to mental challenge were investigated. 

Then, in Study III the effect of acute exercise on cardiovascular reactivity to mental 

challenge was examined. The design employed in the final study allowed a possible 

causal relationship between acute exercise and stress reactivity to be determined. 
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In all studies the cardiac variables stroke volume and cardiac output were 

assessed using impedance cardiography, whereas heart rate was assessed using 

electrocardiography. Blood pressure was measured on a beat-to-beat basis using an 

Omeda Finapres blood pressure monitor. Forearm blood flow was assessed using 

Hokanson Plethysmography with the venous occlusion technique. Maximal oxygen 

uptake was assessed using the Douglas bag collection method. In Study II urinary 

sodium and potassium were measured using a flame photometer and creatinine using 

a spectrophotometer. 

3.2 Subjects 

Subjects were considered suitable for participation in the study if the 

following criteria were met: male; aged 18-30 years; general good health; 

normotensive blood pressure (systolic blood pressure (SBP) below 140 mmHg, 

diastolic blood pressure (DBP) below 90 mmHg); and a family history of 

hypertension. Family history of hypertension was defined as having biological parents 

or grandparents diagnosed with essential hypertension (systolic blood pressure > 140 

mmHg, diastolic blood pressure > 90 mmHg). The researcher was confident as to the 

reliability of reports on family history of hypertension because previous research has 

demonstrated that adolescents were able to report accurately on the hypertensive 

status of their family (Matthews, Manuck, & Saab, 1986). 

3.2.1 Sample Size 

On the basis of prior research in aerobic fitness and reactivity to psychosocial 

stressors, meta-analysis work by Crews and Landers (1987) has suggested medium 

sized effects of 0.5. Effect size has been defined as the difference in means between 

groups (Ml- M2) divided by the standard deviation (SD) (Cohen, 1969). 

ES = (M1- M2)/ SD 
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However, recent research comparing stress reactivity responses in offspring 

hypertensives with offspring normotensives has produced larger effect sizes of 0.9 

(Anderson et al., 1987). A recommended appropriate power in behavioural research is 

0.8 (Green, 1991). Thus, based on a large effect size, sample sizes of 10-12 subjects 

per group for Studies I and II would provide a statistical power of 0.8 at an a of P< 

0.05 (Thomas & Nelson, 1996). Recent research examining the effects of acute 

exercise on cardiovascular responses have shown moderate effects of 0.6 for blood 

pressure response in normal healthy subjects (Steptoe et al., 1993). Thus based on this 

effect size a sample size of 12-15 subjects would be required to complete both control 

and exercise conditions in Study III. 

3.3 Equipment and Measures 

3.3.1 Subject Screening 

3.3.1.1 Informed consent. Subjects recruited for the study all signed written 

informed consent that was approved by the University human ethics committee 

(Appendix IA) and all subjects were provided with information concerning 

experimental procedures (Appendix IB, IIA, IIIA). 

3.3.1.2 Health questionnaires. Subjects were administered a medical history 

questionnaire (Appendix IC) and the Physical Activity Readiness Questionnaire 

(Appendix ID). 

3.3.1.3 Psychological state. To account for the potential influence of anxiety 

on autonomic responsiveness, the State-Trait Anxiety Inventory Form X-1 (STAI: 

Spielberger, Gorsuch, & Lushene, 1970) was administered (Appendix IE). 

3.3.1.4 Physical activity and fitness. Levels of physical activity were estimated 

(kcal. kg-l. d-') through a semi-structured interview, using the seven-day Physical 

Activity Recall (PAR: Sallis, Haskell, & Wood, 1985) - Appendix IF. The PAR is 
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designed to include a variety of physical activities, but only those of moderate 

intensity and greater are counted. Dishman and Steinhardt (1988) established 

reliability and concurrent validity for the PAR; using 163 college students, a 

significant relationship between the first test and a nine week re-test was obtained (r = 

0.42). Also, using 24 male students, a significant relationship between the 7-day PAR 

and past year activity questionnaire (r = 0.83) and maximum oxygen consumption (r 

= 0.61) was found. 

Cardiorespiratory fitness was assessed through a maximal oxygen uptake 

( VOA) test using Douglas bags for the collection of gases. Gases were analysed 

using a zirconia oxide 02 analyzer, and an infra-red CO2 analyzer. Subjects exercised 

in the upright position on a stationary electronic ergometer (Excalibur Sport) at a 

cadence of 70 rpm until volitional exhaustion. The initial load was 30 W for the first 

2-min and was increased incrementally by 1W every 2s thereafter. VOA was 

determined as the highest 15 s average oxygen consumption in l. min-1. The end point 

was achieved when the subject was unable to continue. Other indicators included 

heart rate at age-estimated maximum, plateau of oxygen consumption, and a 

respiratory exchange ratio greater than 1.10. 

3.3.1.5 Physical measures. Body height and weight were measured with 

subjects wearing only light clothes without shoes. Skin folds were measured from 

four sites using callipers, and body fat calculated from the Dumin and Wormsley 

(1974) formula. Baseline blood pressure was measured after a 10-min period of 

supine rest, taken at the left brachial artery by the auscultatory method using a 

mercury sphygmanometer. 
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SV = rho. (L/Zo). LVET. dZ/dT max 

Where: 

SV = stroke volume 

rho = resistivity of blood (135 ohm. sec'1) 

L= distance between voltage electrode (cm) 

Zo = basal impedance' 

LVET = left ventricular ejection time 

d7JdT max = maximum rate of change of impedance during cardiac systole 

(ohm. sec"1). 

The value of Zo influences the height of the dZ/dT signal such that subjects with lower ZO values have 
smaller dZtdT deflections. Thus, the inclusion of Zo in the denominator of the stroke volume equation 
normalizes its effect on dZIdT. 
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Figure 3.1 Tetrapolar configuration of aluminium electrodes used in impedance 
cardiography. The two inner electrodes (2 and 3) were measured and entered into 
Kubicek (1970) equation to calculate stroke volume. 
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Figure 3.2. Impedance cardiogram waveform components shown are the ECG Q- 
wave (Q), dZdT B-point (B), and dZJdT X-point M. Electrocardiogram (ECG), first 
derivative of the pulsatile thoracic impedance signal (dZJdT), and phonocardiogram 
(PCG) recorded during electromechanical systole of cardiac cycle (from Sherwood et 
al., 1990). The B-point occurs immediately after the aortic valve opens and the X- 
point coincides with the closing of the aortic and pulmonary valves. 

49 



There are three main assumptions that underlie the derivation of the 

impedance SV equation. First, the decrease in impedance during systole is due to a 

change in aortic blood volume; second, the thorax is a cylindrical conductor 

composed of two parallel conducting paths, one path through the tissues and the other 

through the blood; third, there is no significant arterial run off from the thorax during 

systole. Most investigators agree that dZ/dT is primarily the result of the ejection of 

blood from the left ventricle, however it is unclear whether this change in impedance 

is solely due to a change in aortic blood volume. Lamberts, Visser, and Zijlstra (1984) 

have demonstrated that 60% of dZ/dT is generated by the velocity of the ejected 

blood. This velocity-dependent change in blood resistivity as reflected in dZ/dT is 

possibly related to the reorientation of erythrocytes as blood begins to flow (Lamberts 

et al., 1984). The second assumption relating to the thorax being modelled as a 

cylindrical conductor has been tested by Visser, Lamberts, and Zijlstra (1987) in a 

series of experiments involving exchange transfusion with stroma-free hemoglobin. 

The findings of Visser et al. (1987) suggest that this aspect of the SV equation is 

valid. However, the final assumption that there is no significant arterial run off from 

the thorax during systole is problematic because blood continues to flow into and out 

of the thorax throughout the cardiac cycle. This particular aspect of the SV equation 

has not been fully evaluated. 

In an attempt to validate impedance cardiography, the measurement of CO 

during rest, using impedance, has been compared with other methods to assess CO, 

such as thermodilution technique (Donovan, Dobb, Woods, & Hockings, 1986), M- 

mode echocardiography (Aust, Belz, Belz, & Koch, 1982), Doppler ultrasound 

(Barbacki, Gluck & Sandhage, 1981), left ventriculography (Ebert, Eckberg, 

Vetrovec, & Cowley, 1984), electromagnetic flow probe (Ehiert & Schmidt, 1982), 
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direct Fick (Miles et al., 1988), dye dilution (Milsom, Forssman, Biber, Dottori, & 

Silvertsson, 1983), isotope dilution (Williams & Caird, 1980), and radionuclide 

angiocardiography (Williams & Caird, 1985). The correlation between impedance 

cardiography and other methods has generally been greater than 0.70, showing that 

this is a valid measure of CO. The Minnesota impedance cardiograph, used in the 

present study, was compared during exercise against carbon dioxide re-breathing and 

found to be valid (McLaren, 1995). The method was also found to be reliable [r = 

0.98; p<0.01, two measurements on two different occasions in six subjects (McLaren, 

1995)1. Thus, the majority of investigators agree that the impedance technique can 

accurately track the magnitude and direction of changes in CO. Although some 

controversy exists on whether the absolute values are accurate, a review of studies 

evaluating impedance cardiography (Miles and Gotshall, 1989) demonstrated that 14 

of the 18 studies supported the accuracy of the impedance technique. Miles and 

Gotshall (1989) suggested that CO measured by impedance at rest is usually within t 

15% of the more standard invasive techniques. 

The close correlation of the impedance technique with other techniques for 

estimating SV suggests that the assumption of no arterial run-off does not normally 

present significant error and may only be problematic in circumstances when the 

ejection pattern is altered (e. g., valvular disease, heart failure). Several improvements 

in the methodology of impedance measures have been proposed that include a 

modified SV equation (Bernstein, 1986) that takes into account the morphology of the 

subjects and reduces the effect of changes in ZO on the calculation. Also, in order to 

reduce the effect of respiration on the dZIdT a short period of apnea is frequently 

employed. However, the development of ensemble-averaging that is designed to 
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cancel out non-periodic waveforms such as respiratory-induced baseline shifts, 

motion artefacts, and electrical noise was employed in the present study. 

3.3.2.3 Blood pressure. Blood pressure was monitored on a beat-to-beat basis 

using a 2300 Finapres blood pressure monitor (Ohmeda Monitoring Systems) with the 

pressure cuff placed on the middle finger of the subject's left hand maintained at heart 

level. Beat-to-beat blood pressure measures from the Finapres have been validated 

against simultaneous intra-arterial monitoring (Parati, Casadei, Groppelli, Di Rienzo, 

& Mancia, 1989). 

3.3.2.4 Heart period variability. Parasympathetic influence on the heart was 

assessed through time series analysis of heart period variability (HPVU) in the high 

frequency (0.12 - 0.4 Hz) and medium frequency (0.07 - 0.11 Hz) domain using the 

Mxedit software package (Delta-Biometrics, Inc, Bethesda, MD). Time-based data 

was converted from inter-beat-intervals (IBIs) by sampling successive 200 ms 

intervals. IBIs were plotted and edited to remove and interpolate artefact and outlying 

values. A band pass filter was used in order to remove sources of variance below the 

two major oscillatory heart rate spectral components. One of these components, 

termed high frequency, typically occurs at frequencies of 0.12 Hz and above, and the 

other, termed medium frequency, typically occurs at frequencies of 0.10 Hz and 

below. The natural logarithm of the band-passed variance (in ms2) were then 

calculated and used as high and medium frequency measures of HPV15. Thus, HPVt, 

appear as a linear scale ranging from 0 (minimal HPVt, ) to 10 (maximal HPVM: 

Porges, 1985). 

3.3.2.5 Data processing. ICG signals were processed using ensemble 

averaging to filter artefact from the ICG every 25 s, and cardiac cycle timing was 

verified from heart sounds recorded by a phonograph microphone (the 
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phoncardiogram). Each impedance wave was edited through the edit mode of the 

COP software (COP, Microtronics, Chapel Hill, NC). Blood pressure data was 

averaged every 25 s then entered through the blood pressure edit mode to enable mean 

arterial pressure (MAP) and total peripheral resistance (TPR) to be calculated. 

3.3.2.6 Derived measures. Heart rate (HR) was computed as the total number 

of IBIs (R-R interval) divided by the measuring time, expressed as b. min"'. CO was 

computed by multiplying HR by SV, expressed as l. min"'. Pre-ejection period (PEP) 

was computed as the interval from the ECG Q wave onset to the dZ/dT B point in ms 

(Sherwood et al., 1990). Left ventricular ejection time (LVET) was computed as the 

interval from the dZJdT B point to the dZ/dT X point in ms (Sherwood et al., 1990). 

MAP was calculated using the COP software, using the equation 1/3 x pulse pressure 

[systolic blood pressure (SBP) - diastolic blood pressure (DBP)] + DBP. TPR was 

calculated from MAP/CO x 80, expressed as dyne-s. CM-5 . Rate pressure product 

(RPP), an indicant of myocardial oxygen consumption, was calculated as HR x SBP/ 

100. 

3.3.3 Blood Flow Measurement 

Forearm blood flow (FBF) was measured using the venous occlusion 

technique. This technique is based on the principle that during venous occlusion the 

compression of the veins result in arterial swelling that result in changes in the arterial 

volume. At this time the rate of arterial inflow is measured. The change in 

circumference of the forearm, due to arterial inflow, is recorded as a change in 

electrical resistance of a mercury-in-silastic strain gauge placed around the forearm. 

3.3.3.1 Plethysmography. Mercury in silastic-strain gauge plethysmography 

(Model EC-4, D. E. Hokanson, Inc, Bellevue, WA, USA) was used to measure FBF. A 

cuff inflator air source (AG101) and rapid cuff inflator (Model E20) were used to 

53 



inflate the venous occlusion cuffs (see Figure 3.3). The plethysmograph was 

interfaced with a Pentium PC to store the data generated by the Labview software 

(Version 4.0). Ten data points were recorded in Labview every second, which was 

later exported to Microsoft Excel software to perform further analysis. 
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Figure 3.3 Strain gauge I lokanson Plethysmograph with a cuff inflator air 
source (AG 10 1) and rapid cuff inflator (Model E20). 
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3.3.3.2 Measurement procedures. Prior to data collection calibration was 

performed by attaching the selected strain gauge to the plethysmograph and then 

adjusting the voltage range so that it was between -1 and 1 V. With subjects in the 

supine position a mercury strain gauge (2-3 cm less than the circumference of the 

widest part of the forearm) was then attached 5 cm distal from the anticubical vein 

and secured using surgical tape to prevent any movement of the gauge (Figure 3.4). 

Circulation to the hand was occluded with an arterial wrist cuff (Hokanson) inflated to 

suprasystolic pressure (180 mmHg) at least 1 min before the measurement period in 

order to avoid disturbance of limb arterial inflow in the first minute. A number of 

researchers (Lenders, Janssen, Smits, & Thien, 1991; Williams, 1984) have suggested 

that the blood flow to the hand is mainly determined by skin blood flow, thus if the 

hand is not occluded during FBF measurement then this may lead to erroneously high 

values for forearm muscle blood flow. A venous occlusion cuff around the upper arm 

was then inflated to 50 mmHg for 5 of every 15 s providing one blood flow 

measurement every 15 s. The gradient of the blood flow wave was representative of 

change in forearm volume and thus arterial inflow (see Figure 3.5), which was 

calibrated for equivalent changes in voltage from the strain gauge. The blood flow 

was determined by calculating the gradient and intercept using a regression line 

formula that was programmed into Excel. The first second was disregarded to avoid 

errors from movement artefact. A minimum of six blood flow measurements was used 

to calculate average FBF for each block of measures. Forearm vascular resistance 

(FVR) was calculated by dividing MAP by FBF and forearm vascular conductance 

(FVC) by dividing FBF by MAP. FVR and FVC reflect changes to the radius of the 

vessel. FVC exhibits a linear relationship with flow whereas FVR is curvilinear. 
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Figure 3.5. Measurement of forearm blood flow from the gradient of the blood flow 

wave. 
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3.3.3.3 Validity, reliability, and reproducibility of plethysmography. There are 

four basic assumptions that have been proposed by Formel and Doyle (1957) in 

regard to the validity of venous occlusion plethysmography. Firstly, the arterial 

pressure or the arterial inflow is not affected by the collecting (venous) cuff; secondly, 

the complete venous tamponade is effected for a finite period; thirdly, the rate of 

arterial inflow is not reduced by increasing venous pressure; lastly, the rate of arterial 

inflow is proportional to the swelling of the limb segment, which is caused by the 

impediment of the blood. 

Strain gauge plethysmography has been validated against machine flow 

(Englung, Hallbook, & Ling, 1972) and Doppler ultrasound (Tschakovsky, 

Shoemaker, & Hughson, 1995; van Leeuwen, Barendsen, Lubbers, & De Pater, 1992). 

There is also fair agreement between water and strain gauge plethysmography (Clarke 

& Hellon, 1957; Whitney, 1953). The main criticism of the strain-gauge technique is 

that, unlike the air-filled or water-filled plethysmograph, the volume changes 

associated with circulatory events are not directly recorded, but are deduced from 

linear changes (or girth) which are presumed to be directly related to the volume 

changes. It has been shown that the percentage change in volume of a cylinder that 

enlarges by increasing its circumference but not its length can be accurately 

approximated by twice the percentage change in circumference (Whitney, 1953). 

Strain gauge plethysmography has been found to be highly reproducible. 

Roberts, Tsao, and Breckenridge (1986) found that the coefficient of variation for the 

measurement of FBF in six subjects over six visits was 10.5%. Reproducibility 

studies performed with the strain gauge plethysmography equipment used in the 

present study (Nurhayati, 2001) showed that the coefficient of variation for FBF in six 
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males (aged 18-25years) measured both over consecutive and alternate days was 

10.5%. 

3.3.4 Urinary Measures 

Urine samples were analysed for sodium and potassium using a flame 

photometer (Gallenkamp FGA-350-L). Sodium and potassium measures were 

corrected for urinary creatinine concentration and expressed as mmol. mgCr"' because 

24 hr urine collection was not carried out. Urinary creatinine concentration was 

measured based on the Jaffe reaction. A simplified technique was employed using a 

spectrophotometer to detect the difference in colour intensity measured at or near 500 

nm before and after acidification, which is proportional to creatinine concentration 

(Heinegard & Tiderstrom, 1973). 

3.4 Stressors 

3.4.1 Lower Body Negative Pressure 

The application of mild levels of lower body negative pressure (LBNP) was 

used to study the cardiopulmonary (C-P) baroreceptor control of FVR. LBNP was 

applied through the use of a LBNP chamber in order to unload the C-P baroreceptors 

through the reduction in central venous pressure (CVP), caused by a redistribution of 

central blood volume. Unloading of the C-P baroreceptors is thought to reduce 

inhibition of sympathetic outflow to the periphery, thus producing a vasoconstriction 

response. The chamber consisted of a box made of plywood, designed so that 

subjects' legs would be encapsulated up to the waistline, sealed at the iliac crest. A 

vacuum pump was sealed into the box in order to create negative pressures, which 

was measured using a digital pressure sensor (Sunx, Japan, model DP2-40E). The 

pressure sensor possesses repeatability of within 0.2%, and a response time of 2.5 ms 

or less. Reproducibility of pressure readings for a range of fixed power settings on the 
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vacuum pump with the chamber fully sealed at one end was examined. The mean 

coefficient of variation of pressure readings for four power settings performed on five 

separate occasions over a period of three months was 3.5%. 

Changes in CVP are thought to reflect changes in venous return, which are 

detected by the C-P receptors. Thus, the slope of the linear relationship between 

change in FVR and change in CVP is commonly used as an index of cardiopulmonary 

baroreflex function, which is termed the cardiopulmonary slope (CPS). However, 

because a direct measure of CVP was not possible using the present experimental 

procedures, change in SV was used. The use of change in SV to indicate change in 

CVP assumes that the cardiac pressure-volume relationship (Starling curve) is linear 

over the range of pressure changes elicited by the present LBNP protocol. Reese 

(1991) evaluated the relationship between change in SV, measured by impedance 

cardiography, and change in CVP, estimated by measuring venous pressure changes 

in an arm vein in the lateral decubitus position, during 0 to -40 mmHg of LBNP. The 

results indicated a strong linear relationship (r = 0.87) between change in SV and 

estimated change in CVP. Therefore, for the purposes of present research the CPS 

was defined as the change in FVR divided by the change in SV (L FVRIL'SV). 

3.4.2 Stroop Word Colour Task 

The Stroop is an active coping task (Stroop, 1935) which can be grouped with 

other tasks, such as mental arithmetic, as a cognitive stressor. Prior research has 

suggested that cognitive stress induces primarily ß-adrenergic activity (Montoya, 

Brody, Beck, Veit, & Rau, 1997). The Stroop task consisted of a series of slides that 

were presented on a PowerPoint presentation, on a laptop computer. Each slide 

contained a word denoting a colour, such as RED, but the ink colour of each word 
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was printed in a different colour, such as PURPLE. Subjects were instructed to state 

the ink colour of each word. Slides appeared at a rate of one per second. 

3.4.3 Forehead Cold Pressor Test 

The forehead cold pressor has been shown to induce primarily a-adrenergic 

activity, resulting in a characteristic increase in TPR (Montoya et al., 1997). In the 

present study, a leakproof gel refrigerant (BHD Laboratory Supplies, Dorset, UK) at a 

temperature of approximately 0°C was applied to the forehead. 
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CHAPTER 4 

STUDY I. CARDIOVASCULAR RESPONSES TO PHYSICAL AND MENTAL 
STRESSORS IN HIGHLY AND MODERATELY ACTIVE MALES WITH A 
FAMILY HISTORY OF HYPERTENSION. 

The aim of Study I was to conduct cross-sectional research using highly active. 

and moderately active offspring hypertensives in order to identify differences in 

cardiovascular functioning between the groups during a number of tasks designed to 

activate the sympathetic nervous system (SNS). This firstly provided an opportunity 

to identify possible risk markers of hypertension, and secondly to formulate a 

rationale to conduct further research into the role of exercise in eliminating these 

markers. Based on previous research it was hypothesised that highly active offspring 

hypertensives would demonstrate reduced sympathetic outflow responses to 

orthostatic challenge and reduced cardiovascular reactivity to mental challenge, in 

comparison with their less active counterparts. 

4.1 Protocol 

Two groups were formed that comprised moderately active (MOD: <40 

kcal. kg-l. d"I) and highly active male offspring hypertensives (HIGH: >40 kcal. kg"'. 

d-1). The HIGH group consisted of eight aerobically trained subjects engaged in daily 

aerobic physical activity, whereas the MOD group comprised of 10 subjects who were 

involved with recreational physical activities (e. g., soccer) no more than three times 

per week. The experimental procedures were performed in a laboratory at a constant 

room temperature of 24°C. All subjects were instructed to refrain from eating, 

smoking, and drinking alcohol or caffeine at least three hours before the experiment. 

All subjects were first screened, then prepared for the experiment, and sealed in the 

lower body negative pressure (LBNP) chamber (see Figure 4.1). 
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Figure 4.1. The experimental set-up. 
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4.1.1 Baseline 

After a period of 10-min supine rest, blood pressure (BP) was measured 

manually, and the collection of cardiovascular data was initiated. Baseline measures 

were taken for 6 min, of which minutes four to six involved paced breathing (ten 

cycles per min). 

4.1.2 Lower Body Negative Pressure 

Following the baseline period a graded LBNP protocol, 0 to -20 mmHg, was 

used that consisted of -5 mmHg increments, 90 s at each stage. During this period 

forearm blood flow (FBF) was measured every 10 s over a5s sampling period, whilst 

cardiovascular measures and BP were recorded continuously. After the completion of 

the last stage, LBNP was adjusted in a graded fashion (1 mmHg/ 2 s) back to 0 

mmHg, and subjects were given a 5-min recovery period. 

4.1.3 Stress 

The Stroop task was performed for a period of 2-min for which all errors were 

recorded. During a 1-min recovery period subjects were asked to rate the task using 

the rating of perceived exertion scale (Borg, 1962). After this recovery the forehead 

cold pressor test was performed for 1 min. A further 1-min recovery period was then 

given. FBF, cardiovascular measures, and BP were recorded continuously throughout. 

4.1.4 Lower Body Negative Pressure and Stress 

After a 5-min period of rest where no blood flow recordings were taken, the 

final stage was performed. This involved the subjects performing the stress protocol, 

as above, whilst a LBNP of -20 mmHg was applied during each task. One minute 

before the start of each task, LBNP was adjusted to -20 mmHg in a graded fashion (-1 

mmHg/ 2 s). A 2-min recovery period was given between the Stroop and forehead 

cold pressor test (with no LBNP). 

64 



4.1.5 Maximal Oxygen Uptake 

This was measured at the end of the protocol (see Chapter 3). See Appendix 

IG for a detailed protocol of Study I. 

4.2 Statistical Analysis 

A two factor mixed factorial analysis of variance (ANOVA) was conducted to 

identify main effects and interactions of the within and between subjects factors for 

cardiovascular variables. Analysis was conducted separately for each of the three 

protocols. For the LBNP protocol the within subjects factor consisted of five levels 

(baseline, and LBNP at -5, -10, -15, -20 mmHg) and the between subjects factor two 

levels (HIGH and MOD groups). For the stress and LBNP/stress protocols the within 

subjects factor also consisted of five levels (baseline, Stroop, recovery, cold pressor, 

recovery) and the between subjects factor two levels (HIGH and MOD groups). 

The Mauchly sphericity test was performed to test for homogeneity of 

covariance in the within subjects factor. Non-homogeneity was corrected by 

employing the Greenhouse-Geisser test (Kinnear & Gray, 1999). 

Following a significant simple main effect of the within subjects factor 

Bonferroni t-tests were then applied to make pairwise comparisons among the 

different levels. Significant main effects of the between subjects factor were tested by 

performing one-way ANOVAs on selected levels of the within subjects factors. 

Statistical significance was assumed at a value of P<0.05. All statistical procedures 

were performed using the SPSS computer software package. 

4.3 Results 

4.3.1 Subject Characteristics 

Subject characteristics are displayed in Table 4.1. Eight subjects were assigned 

to the highly active group (HIGH) and 10 to the moderately active group (MOD). The 
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HIGH group was significantly older and displayed significantly higher levels of 

physical activity and VO2- scores. The HIGH group also displayed significantly 

lower resting heart rate (RHR). 

All subjects reported a history of hypertension that was apparent in first degree 

relatives. In the HIGH group all subjects reported a parental history of hypertension, 

seven of which reported a hypertensive father and one a hypertensive mother. In the 

MOD group six subjects reported parental history of hypertension, five of which 

reported a hypertensive father and one a hypertensive mother. The remainder of the 

MOD group reported family history of hypertension that was apparent in all subjects' 

grandmothers. 
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Table 4.1. Descriptive characteristics of moderately active (MOD; n= 10) and highly 

active (HIGH; n= 8) subjects with family history of hypertension (mean ± SEM). 

Variable MOD HIGH 

Age (years) 20.1±0.6 25.5 t 1.6 

Body mass (kg) 74.3 ± 3.5 74.0 ± 3.5 

Height (cm) 179.5 ± 2.3 179.5 ± 3.8 

Bodyfat% 15.1±1.0 13.1±1.3 

Physical activity (kcal. kg''. d-') 35.6 ± 0.7 42.3 ± 1.0 * 

VOA (ml. kg'. miri') 46.2 ± 2.4 53.2 ± 3.0 * 

State anxiety 30.1 ± 2.3 30.4 ± 2.6 

RHR (b. min"') 60.7 ±2 50.7 ±4* 

SBP (mmHg) 116.9 ± 5.9 110.4 ± 9.3 

DBP (mmHg) 60.9 ± 3.3 59.6 ± 5.6 

* significant difference between groups. 
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4.3.2 Response to Lower Body Negative Pressure 

During the graded LBNP protocol there was a significant main effect within 

subjects for forearm blood flow (FBF) [F (4,64) = 16.19, P<0.05], forearm vascular 

resistance (FVR) [F (4,64) = 10.87, P<0.05], stroke volume (SV) [F (4,64) = 17.87, 

P<0.05], heart rate (HR) [F (4,64) = 4.87, P<0.05], but not for mean arterial pressure 

(MAP). On closer inspection, FBF was significantly decreased and FVR increased 

during each stage of the graded LBNP protocol in comparison with baseline. SV was 

significantly decreased at all LBNP stages, except at -5 mmHg, compared with 

baseline. HR was significantly decreased at all LBNP stages, except at -20 mmHg, 

compared with baseline (see Table 4.2). There were no significant interaction or 

between subject effects. There were also no significant main effects within or between 

subjects for the cardiopulmonary slope (CPS). However, the MOD group seemed to 

display consistently greater CPS values compared with the HIGH during all LBNP 

stages except at -20 mmHg, although differences were not significant (see Figure 4.2 

and Table 4.2). The lack of significant findings for the CPS may have due to the 

reduced n at some of the LBNP stages. This was because some individuals showed no 

change in SV at certain stages of the LBNP protocol thus making it impossible to 

calculate an individual's CPS for that specific LBNP stage. 
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Table 4.2. Response to lower body negative pressure in moderately active (MOD; n= 

10) and highly active (HIGH; n= 8) individuals with family history of hypertension 

(mean ± SEM). 

Variable Condition 

Baseline -5 mmHg -10 mmHg -15 mmHg - 20 mmHg 

MOD HIGH MOD HIGH MOD HIGH MOD HIGH MOD HIGH 

HR (b. miri-1) 60.7±2 50.7±4 57.1±3* 49.3±3* 56.5±2" 49.1±3"57.6±2# 50.4±3"58.7±3 49.3±3 

Sv (ml) 107.0±7 129.6±16 104.3±7 125.6±15 1 04.1±7" 122.4±14" 99.3±6" 118.9±14" 94.5±6" 118.6±14" 

MAP (mmHg) 79.3±4 81.2±3 72.0±4 81.5±5 75.4±4 82.7±5 76.6±5 81.0±4 78.1±5 81.1±5 

FBF 3.1±. 5 2.8±. 4 2.3±. 3" 2.1±. 2" 2.4±. 3" 2.2±. 3* 2.3±. 3" 2.2±. 4" 2.2±. 2' 1.9±. 3" 
(ml. 100 ml tissue"-min-) 

FAIR 26.2±2 34.0±5 36.7±6" 42.5±6" 34.3±3" 43.7±6" 38.1±6" 44.3±7" 39.1±4" 51.5±9" 
(mmHg. ml"'. 100 ml tissue-) 

CPS -- 2.2±1.3 1.6±. 6 2.1±. 6 0.7±. 3 0.9±. 3 0.6±. 2 2.0±. 6 2.1±. 9 

" significantly different from baseline. 
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4.3.3. Response to Stroop and Forehead Cold Pressor 

During the Stroop mental challenge there was no significant differences in 

perceived task difficulty (mean ± SEM: 14.6 ± 0.6 versus 14.2 ± 0.5) or mistakes 

(15.2 ± 3.4 versus 15.0 ± 2.5) for the MOD and HIGH groups respectively. 

4.3.3.1. Central cardiovascular responses. For HR there was a significant 

main effect [F (4,64) = 52.14, P<0.05], interaction over time [F (4,64) = 4.31, 

P<0.05], and between subjects effect [F (1,16) = 11.65, P<0.05]. HR was 

significantly increased during Stroop, during recovery from Stroop, and significantly 

reduced during the cold pressor in comparison with baseline. Further analysis 

revealed that the MOD group displayed significantly greater increases in HR during 

Stroop compared with the HIGH group [F (1,16) = 17.28, P<0.05, ES = 0.86] and also 

that the HIGH displayed significantly greater recovery in HR after the Stroop [F 

(1,16) = 14.26, P<0.05, ES = 0.48] (see Figure 4.3a and Table 4.3). There were no 

group differences in response to the cold pressor or recovery from this task. 

There was a significant main effect within subjects for cardiac output (CO) [F 

(4,64) = 18.57, P<0.05], but no interaction or between subject effects. CO was 

significantly increased during Stroop and recovery from Stroop (see Figure 4.3b and 

Table 4.3). 

There was a significant main effect within subjects for SV [F (4,64) = 6.79, 

P<0.05], but no interaction or between subject effects. SV was significantly reduced 

during Stroop and significantly increased during the cold pressor (see Figure 4.3c and 

Table 4.3). 
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Figures 4.3 a-c. Central cardiovascular responses to mental challenge and 

forehead cold pressor in highly active (HIGH) and moderately active (MOD) 

offspring hypertensives. * Significant difference in change score between groups. 
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4.3.3.2 Cardiac autonomic responses. There was a significant main effect 

within subjects for time series analysis of heart period variability (HPVts) in the high 

frequency domain (0.12-0.4 Hz) [F (4,64) = 9.47, P<0.05], but no interaction or 

between subject effects. HPVt, was significantly reduced during Stroop, recovery 

from Stroop, and during recovery from the cold pressor in comparison with baseline. 

However, HPVS was not significantly reduced during the cold pressor. There was no 

significant main effect or interaction within subjects and no between subjects effect 

for HPVa in the medium frequency domain (0.07-0.11 Hz). See Figures 4.4a and b 

and Table 4.3. 
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Figures 4.4a and b. Cardiac autonomic responses to mental challenge and 

forehead cold pressor in highly active (HIGH) and moderately active (MOD) 

offspring hypertensives. 
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4.3.3.3 Cardiac contractility. There a significant main effect [F (4,64) = 3.15, 

P<0.05], interaction over time [F (4,64) = 2.59, P<0.05], and between subject effects 

[F (1,16) = 4.55, P<0.05] for pre-ejection period (PEP). There was a trend for a 

decrease in PEP during the Stroop and PEP was significantly reduced during recovery 

from the Stroop in comparison with baseline. There were significant differences in 

PEP change during the Stroop and cold pressor between the groups. The MOD group 

demonstrated greater decreases in PEP during the Stroop in comparison with the 

HIGH. Also, during the cold pressor PEP was slightly reduced in the MOD but 

increased in the HIGH in comparison with baseline (see Figure 4.5a and Table 4.3). 

There was a significant main effect over time for left ventricular ejection time 

(LVET) [F (4,64) = 24.04, P<0.05], and between subject effects [F (1,16) = 7.66, 

P<0.05], but no significant interaction over time. LVET was significantly reduced 

during the Stroop but increased during the cold pressor and recovery from this in 

comparison with baseline (see Figure 4.5b and Table 4.3). 

There was a significant main effect for PEP/LVET (PL) ratio over time [F (4, 

64) = 3.84, P<0.05]. PL ratio was significantly decreased during recovery from the 

cold pressor in comparison with baseline (see Figure 4.5c and Table 4.3). 

There was no significant main effect although there was a significant 

interaction over time for Heather Index (HI) [F (4,64) = 2.28, P<0.05]. The HIGH 

group displayed decreases in HI during the Stroop whereas the MOD group displayed 

increases in HI (see Figure 4.5d and Table 4.3). 
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Figures 4.5 a-d. Cardiac contractility responses to mental challenge and 

forehead cold pressor in highly active (HIGH) and moderately active (MOD) 

offspring hypertensives. * Significant difference in change between groups. 
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4.3.3.4 Blood pressure. There was a significant main effect within subjects for 

systolic blood pressure (SBP) [F (4,64) = 3.76, P<0.05], diastolic blood pressure 

(DBP) [F (4,64) = 5.13, P<0.05], and MAP [F (4,64) = 13.75, P<0.05], but no 

interaction or between subject effects. SBP was elevated during Stroop and the cold 

pressor test but after applying Bonferonni adjustments, the elevations were not 

significant. However, both DBP and MAP were significantly elevated during Stroop, 

recovery from Stroop, cold pressor, and recovery from cold pressor (see Figures 4.6a- 

c and Table 4.3). 
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Figures 4.6a-c. Blood pressure response to mental challenge and forehead 

cold pressor in highly active (HIGH) and moderately active (MOD) offspring 

hypertensives. 
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4.3.3.5 Peripheral vascular responses. There was a significant main effect 

within subjects for total peripheral resistance (TPR) [F (4,64) = 6.17, P<0.05), but no 

interaction or between subject effects. TPR was significantly elevated during the cold 

pressor only (see Figure 4.7a and Table 4.3). 

There was a significant main effect [F (4,64) = 45.8, P<0.05], and interaction 

[F (4,64) = 4.9, P<0.05] for within subject factors for FBF. FBF was significantly 

increased during Stroop and significantly reduced during the cold pressor in 

comparison with baseline. Subsequent analysis revealed that during Stroop the MOD 

group displayed a significantly greater increase in FBF compared with HIGH [F (1, 

16) = 6.7, P<0.05, ES =1.2) (see Figure 4.7b and Table 4.3). 

There was a significant main effect within subjects for FVR [F (4,64) = 

21.43, P<0.051, but no interaction or between subject effects. FVR was significantly 

reduced during Stroop and significantly increased during the cold pressor in 

comparison with baseline (see Figure 4.7c and Table 4.3). 
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Figures 4.7a-c. Peripheral vascular responses to mental challenge and 

forehead cold pressor in highly active (HIGH) and moderately active (MOD) 

offspring hypertensives. * Significant difference in change score between groups. 

80 

Base Stroop Recovery Cold Recovery Base Stroop Recovery Cold Recovery 



4.3.3.6 Overall patterning responses. Although the rise in blood pressure 

during Stroop was not significantly different between groups, each group 

demonstrated different cardiovascular patterning responses during Stroop; the MOD 

responded through elevated HR and CO (central responses), whereas the HIGH 

responded by elevated TPR (see Figures 4.3,4.6, and 4.7). 
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Table 4.3. Response to mental challenge (Stroop) and forehead cold pressor test in 

moderately active (MOD; n= 10) and highly active (HIGH; n= 8) individuals with 

family history of hypertension (mean ± SEM). 

Variable Condition 

Baseline Stroop Recovery Cold pressor Recovery 

MOD HIGH MOD HIGH MOD HIGH MOD HIGH MOD HIGH 

HR (b. min"1) 60.7±3 50.7±3 76.0±3 58.4±3* 65.0±2 52.0±2* 56.8±2 46.9±3 60.2±3 50.3±3 

SV (m1) 106.9±6 129.6±16 98.2±7 120.9±11 110.0±7 129.2±13 114.3±7 133.8±16 108.8±7 132.4±16 

CO (1. miri') 6.4±. 5 6.4±. 5 7.4±. 6 7.0±. 5 7.2±. 6 6.7±. 6 6.5±. 6 6.1±. 5 6.5±. 5 6.5±. 5 

BPV, (. 12-. 4 Hz) 8.3±. 3 8.0±. 3 6.5±. 3 7.1±. 3 7.3±. 3 7.4±. 3 7.5±. 3 7.3±. 3 7.6±. 3 7.3±. 4 

HPV, (. 07-. 11 Hz) 3.4±. 2 3.2±. 3 3.1±. 3 3.4±. 3 3.7±. 2 3.7±. 2 3.7±. 3 3.2±. 3 3.8±. 3 3.2±. 4 

PEP (ms) 106.2±2 108.2±3 99.5±2 109.2±3* 101.2±2 106.8±3 104.0±2 111.9±3* 104.1±1 107.6±3 

LVET (ms) 312.5±6 329.0±5 294.3±7 322.4±7 305.5±6 332.5±6 324.3±6 341.4±6 319.5±7 342.6±6 

PL ratio . 34±. 01 . 32±. 01 . 34±. 01 . 34±. 01 . 33±. 01 . 33±. 01 . 32±. 01 . 33±. 01 . 33±. 01.31±. 01 

HI (Ohm. S-2) 11.2±1 10.5±1 11.6±1 10.2±1 12.2±1 10.5±1 11.4±1 10.5±1 11.2±1 10.5±1 

SBP (mmHg) 116.9±6 110.4±9 122.1±5 128.3±8 121.4±5 128.3±8 116.2±4 124.3±9 118.2±3 124.1±8 

DBP (mmHg) 60.9±3 59.6±6 76.0±4 78.0±6 70.0±3 73.2±5 71.5±3 72.1±5 71.0±3 72.1±5 

bW (mmHg) 79.3±4 76.1±5 91.1±4 94.5±6 86.9±4 90.8±6 86.0±3 89.1±6 86.5±3 89.1±6 

TR 1031±721005±117 1045±105 1128±87 1029±93 1134±98 1132±112 1224±118 1117±92 1149±99 

(dyne-s. cm"S) 

PBF 3.2±. 2 2.8±. 4 6.3±. 6 4.2±. 5* 3.5±. 4 2.8±. 5 2.5±. 3 2.1±. 3 3.31.3 2.9±. 4 
(m1.100 ml tissue -'. min-1) 

FVR 25.0±3 34.3±5 15.3±2 26.5±4 27.7±3 41.3±7 41.1±7 49.6±8 29.0±435.9±5 
(mmHg. ml''. 100 ml tissue-) 

* significant difference in change between groups in comparison with baseline. 

82 



4.3.4. Effects of Lower Body Negative Pressure During Response to Stroop and Cold 

Pressor 

The rationale for the final part of the protocol was to examine 

cardiopulmonary (C-P) baroreceptor function during stress. Comparisons were made 

between FBF responses to Stroop and cold pressor with and without LBNP for each 

group (MOD and HIGH) separately. It can be seen from Figures 4.8a and b that in 

both groups LBNP attenuated but did not abolish the forearm vasodilatation response 

to Stroop. In MOD and HIGH groups FBF was increased by 71.5 ± 10.6% and 38.9 ± 

14.0% respectively during Stroop only and 36.1 ± 20.6% and 24.2 ± 20.6% during 

Stropp plus LBNP. In the MOD group there was a significant interaction over time 

between the two conditions for FBF [F (4,72) = 6.19, P<0.05]. Further analysis 

revealed that FBF was significantly reduced during LBNP and Stroop compared with 

Stroop alone [F (1,18) = 11.51, P<0.011. There were no significant interaction 

effects over time in the HIGH group suggesting that the LBNP did not have as 

pronounced an effect compared with the MOD group. There was no significant 

interaction or main effects for the cold pressor for either group suggesting that the 

involvement of the cardiopulmonary baroreceptors was specific to the mental 

challenge. 
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Figure 4.8a. The effect of lower body negative pressure on 
forearm blood flow response to Stroop and cold pressor in 
moderately active offspring hypertensives. 
* Significant difference between conditions. 
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Figure 4.8b. The effect of lower body negative pressure 
on forearm blood flow response to Stroop and cold pressor 
in highly active offspring hypertensives. 
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4.4 Discussion 

The purpose of the present study was to assess cardiovascular functioning in 

moderately and highly active offspring hypertensives during a number of tasks 

designed to activate the SNS. As predicted, the less active offspring hypertensives 

demonstrated an exaggerated HR and vascular response to mental challenge in 

comparison with the highly active. These differences in cardiovascular reactivity 

existed despite all subjects perceiving the task to have a similar level of difficulty and 

also being normotensive, healthy, and aerobically fit individuals. The results confirm 

previous findings by Holmes and Cappo (1987) who also showed an exaggerated HR 

response to mental challenge in less fit offspring hypertensives in comparison with 

their highly fit counterparts and controls. However, to the knowledge of the present 

investigator there is no research to date that has shown a reduced FBF reactivity to 

mental challenge in highly active compared with less active offspring hypertensives. 

Although a control group of subjects without family history of hypertension was not 

employed in the present study, the absolute FBF response demonstrated by the HIGH 

group was comparable to responses demonstrated by subjects without family history 

of hypertension in other studies during mental challenge (Anderson et al., 1987; 

Halliwill et al., 1997). This, therefore, suggests that the FBF response to stress 

demonstrated by the MOD was an exaggerated response compared to that of the 

HIGH, which was normal. 

4.4.1 Hyper-reactive Stress Response 

The sympathetic nervous system has been implicated in the hyper-reactive 

response to stress in offspring hypertensives. Familial differences in HR response to 

an active coping stressor have been reported to be abolished following ß-adrenergic 

blockade (Miller & Ditto, 1991). Further research by Miller (1994) has indicated that 
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the parasympathetic nervous system (vagal withdrawal) plays little role in the 

exaggerated HR response and that it is primarily mediated by the SNS. This is in 

agreement with the present findings because the greater HR response in the 

moderately active group was accompanied by significantly greater decreases in PEP. 

Because loading conditions on the heart and the level of vagal withdrawal during 

mental challenge was not different between the two groups this, therefore, suggests a 

greater level of cardiac sympathetic activation in the moderately active. Miller and 

Ditto (1991) have also shown by selective pharmacological blockade that the forearm 

vasodilatation response to stress is reinforced by 0-2 adrenergic or cholinergic 

activity. 

4.4.2 Vascular Remodelling 

The impact of repeated episodes of vascular hyper-reactivity may contribute to 

the development of hypertension. An over perfusion in certain vascular beds may be 

responsible for a remodelling process involving hypertrophy of vascular smooth 

muscle that would eventually cause permanent increases in vascular resistance 

(Folkow, 1990). Recently, Macnair (2000) described the link between a vascular 

remodelling process and low levels of physical activity. It was suggested that over 

perfusion of inactive muscle, with a low requirement for oxygen, would produce a 

chain of events resulting in the production of angiotensin II, which is one of the 

strongest vasoconstricting hormones in the human body. This would lead to a vascular 

remodelling process with the vasomotor system becoming hypersensitive to 

vasoconstrictor stimuli resulting in the resistance change described by Folkow (1990). 

4.4.3 Renal Hemodynamics 

A further explanation for the exaggerated forearm vasodilatation response to 

stress may be differences in regional blood flow because CO and BP were not 
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significantly different between the groups. The findings by Hollenburg et al. (1981) 

who showed a reduced kidney blood flow during mental stress in offspring 

hypertensives suggest that those individuals demonstrating a large forearm vasodilator 

response to stress may experience a large vasoconstrictor response in other vascular 

beds such as the kidney. Activation of the renal a-adrenergic receptors is thought to 

induce sodium retention through activation of the renn-angiotensin-aldosterone 

system (RAS) causing renal constriction (DiBona, 1982). Thus, the interaction of a 

kidney vasoconstrictor response with the RAS may be an important early contributor 

to the development of hypertension. This is because the RAS is integrally involved 

with sodium and fluid balance in the body and the retention of sodium is thought to 

play a role in both the development and maintenance of hypertension. Light, Koepke, 

Obrist, and Willis (1983) showed that in offspring hypertensive men, the degree of 

retention was directly related to the magnitude of HR increase during stress 

suggesting common mediation by way of the SNS. 

4.4.4 Stress Reactivity Lowering Mechanisms of Physical Activity 

That the highly active offspring hypertensives demonstrated a reduced cardiac 

and vascular reactivity to mental challenge suggests habitual physical activity may be 

associated with a reduced cardiovascular reactivity to mental challenge. The 

mechanism is most likely linked with the SNS. Possible explanations include altered 

sympatho-adrenal activation (releasing reduced amounts of epinephrine into the 

blood) or sensitivity of the ß-adrenergic receptors. 

A number of longitudinal training studies have observed a significant 

reduction in plasma catecholamine level after the training period (Duncan et al., 1985; 

Jennings et al., 1986). However, because plasma catecholamine levels represent a 

measure of average sympathetic neural activity it is difficult to determine whether 
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central, peripheral, or local mechanisms are primarily or secondarily responsible for 

the changes. Baroreceptor functioning has also been implicated as a mechanism in 

reducing sympathetic activity through exercise training. 

4.4.5 Cardiopulmonary Baroreceptor Activity at Rest and During Stress 

There were no significant differences in C-P baroreceptor function at rest 

between the two groups in the present study despite the trend for lower 

cardiopulmonary slopes in the highly active. This was unexpected as Mack et al. 

(1987; 1991) have shown that C-P baroreceptor function is depressed in trained 

compared to untrained individuals and this effect was also apparent after a 

longitudinal training study. Also Ueda et al. (1989) have shown that C-P baroreceptor 

function is augmented in offspring hypertensives. 

However, there was evidence to suggest different C-P baroreceptor 

functioning during mental stress between the MOD and HIGH. The forearm 

vasodilatation response to mental stress in humans is thought to be mediated by 

sympathetic withdrawal and ß-adrenergic mechanisms (Halliwill et al., 1997). The 

present findings suggest that during mental stress the C-P baroreceptors are excited 

because when these receptors are inhibited, by LBNP, the vasodilatation response to 

stress is attenuated, but responses to the cold pressor are unaffected. Thus, 

sympathetic withdrawal during stress-induced vasodilatation may be due to excitation 

of C-P baroreceptors producing an increased inhibition of sympathetic neural outflow. 

That the MOD demonstrated a greater attenuation in FBF response to the Stroop 

during LBNP compared with the HIGH suggests they may have greater C-P 

baroreceptor excitation and hence more sympathetic withdrawal during stress. Mark 

and Kerber (1982) have suggested that an augmented inhibitory influence of C-P 

baroreceptors is related to impairment of arterial baroreceptor function. A number of 
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authors have found a damping of the arterial baroreceptor reflex during mental stress 

(Ditto & France, 1990; Sleight, 1978; Steptoe & Sawada, 1989). Thus, during stress 

an augmented C-P baroreceptor activity may be related to diminished arterial 

baroreceptor sensitivity. Buckworth et al. (1994) found that the carotid-cardiac 

baroreflex was attenuated during mental arithmetic compared with rest in moderately 

active offspring hypertensive women but not in the highly active group. Thus, these 

findings support the present results, which demonstrate augmented C-P baroreceptor 

function during stress in the moderately active offspring hypertensives. Ditto and 

France (1990) have also shown that diminished arterial baroreceptor sensitivity during 

stress may be a characteristic of offspring hypertensives. Given that strong 

correlations between baroreflex sensitivity and daily BP variability have been found 

(Sleight, 1983), these mechanisms may be related to the enhanced stress reactivity 

displayed by offspring hypertensives. Therefore, baroreceptor dysfunction in 

offspring hypertensives may be more important during stress. 

4.4.6 Cardiovascular Recovery from Stress 

A recent meta-analytic review to evaluate the effect of various hypertension 

risk factors on cardiovascular recovery from stress identified that high-risk individuals 

exhibited delayed cardiovascular recovery in comparison with low-risk individuals 

(Schuler & O'Brien, 1997). In particular, delayed HR recovery was associated with 

lack of physical fitness. This is in agreement with the present findings because the 

moderately active offspring hypertensives displayed significantly delayed HR 

recovery following mental challenge in comparison with the highly active offspring 

hypertensives. Gerin and Pickering (1995) have also shown that offspring 

hypertensives have significantly elevated SBP following recovery from mental 

challenge, in comparison with controls. However, this trend was not apparent in the 
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present study comparing BP recovery from mental challenge in moderately and highly 

active offspring hypertensives. Cardiovascular recovery from stress may be another 

important aspect of reducing hypertension risk because individuals who can recover 

more quickly from the stressor will have lower exposure to the damaging effects of 

the SNS on the cardiovascular system. Thus, physical activity level may be associated 

with greater cardiovascular recovery from stress. 

4.4.7 Pressor Responses 

No significant differences between the groups in response to the cold pressor 

test were observed. This is in agreement with the majority of previous research (see 

Muldoon review). Thus, these findings suggest cardiovascular responses to the cold 

pressor test are not strong risk markers in offspring hypertensives. However, two 

studies (Menkes, Matthews, & Krantz, 1989; Wood, Sheps, Elveback, & Schirger, 

1984) have shown that large pressor responses to the cold pressor test predict 

development of hypertension over follow-up intervals of 47 and 20-36 years. This 

relationship persisted after adjustment for age, resting BP, body mass, cigarette 

smoking, and family history of hypertension. 

In contrast to the pressor responses elicited by the cold pressor test, some 

studies have indicated exaggerated vascular or pressor responses, or lower threshold 

response to infused norepinephrine in offspring hypertensives (Bianchetti et al., 1984; 

De lima et al., 1990; Doyle & Fracerm, 1961). Other researchers have demonstrated 

an exaggerated sympathetic neural outflow in offspring hypertensives (Yamada et al., 

1988). 

4.4.8 Cardiovascular Pattering Responses 

A further difference between the groups was their different cardiovascular 

patterning response during mental challenge. Julius (1993) has described a 
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hyperkinetic circulation that is thought to represent an early phase in the development 

of hypertension. This is characterised by higher HR and CO, which was the pattern of 

response demonstrated by the moderately active group during mental challenge. In 

comparison, the rise in BP in the highly active group was mainly characterised by an 

increase in TPR. This hyperkinetic response may be a strong predictor for the future 

development of hypertension because it has been previously observed in offspring 

hypertensives during exercise (Nho, Tanake, Kim, Watanabe, & Hiyama, 1998; van 

den Bree, Schieken, Moskowitz, & Eaves, 1996). The SNS is again thought to play a 

key role in the hyperkinetic circulation response. 

4.4.9 Summary 

In summary, this study provides evidence for an association between high 

levels of physical activity and a lower stress reactivity response in male offspring 

hypertensives. Heightened HR, FBF reactivity, and hyperkinetic patterning responses 

to mental challenge have been identified in healthy, moderately active males with a 

family history of hypertension. 
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CHAPTER 5 

STUDY H. CARDIOVASCULAR REACTIVITY AND RENAL RESPONSES 
TO MENTAL CHALLENGE IN HIGHLY AND MODERATELY ACTIVE 
MALES WITH A FAMILY HISTORY OF HYPERTENSION. 

In Study I, enhanced forearm blood flow (FBF) reactivity to mental challenge 

in the moderately active offspring hypertensives was identified as a possible risk 

marker for the development of hypertension. Analysis of the cardiovascular patterning 

responses to mental challenge suggests that enhanced FBF reactivity may be 

indicative of differences in regional blood flow response. Hollenburg et al. (1981) 

have shown that blood flow to the kidney is significantly reduced during mental 

challenge in offspring hypertensives. Thus, the skeletal muscle vasodilatory response 

to stress may be matched by renal vasoconstriction. Activation of the renal a- 

adrenergic receptors is thought to induce sodium retention through activation of the 

renin-angiotensin-aldosterone system (RAS) causing renal constriction (DiBona, 

1982,1985). Therefore, if the skeletal muscle vasodilatory response is accompanied 

by renal vasoconstriction then subjects displaying high levels of FBF reactivity should 

also be sodium retainers. 

A critical factor in the development of hypertension is the failure of the 

kidneys to maintain blood pressure (BP) within normal limits by excreting sufficient 

salt and water. However, stress-induced sodium retention may be an important 

contributor to the pathogenic process, particularly in genetically predisposed 

individuals. Kohno et al. (1997) have shown that the RAS and sympathetic nervous 

system (SNS) were suppressed (significant reductions in plasma renin and 

norepinephrine activity) after 4 weeks of exercise training in hypertensive subjects, 

resulting in reduced renal vascular resistance and filtration fraction. However, no 

research has investigated the effect of exercise on stress induced sodium retention in 

92 



offspring hypertensives. Given that exercise training has been shown to alter renal 

haemodynamics in hypertensives, Study H was designed to investigate the hypothesis 

that there will be greater renal vasoconstriction, and thus sodium retention, in 

moderately active compared with highly active offspring hypertensives during mental 

challenge. 

5.1 Protocol 

Eighteen healthy normotensive males with a family history of hypertension 

were recruited from a student population and from local athletic clubs. The study was 

approved by a University human ethics committee and all subjects were provided 

written informed consent before participation. All subjects were screened as described 

in Chapter 3. 

Subjects were required to follow dietary guidelines 24 hr prior to testing 

(Appendix IIB), which included abstaining from alcohol and caffeine. Dietary 

guidelines were employed mainly to control for salt intake as this is known to effect 

the cardiovascular stress reactivity response (Miller et al., 1995). Subjects provided a 

record of what they had actually consumed and this was later analysed for nutrient 

content using the computer software package COMP-EAT (Bengston Consultants Ltd, 

1995). Subjects were also instructed to abstain from rigorous physical activity 24 hr 

before testing. Two groups comprised of nine moderately active offspring 

hypertensives (MOD: <40 kcal. kg l. d"1) who were involved with recreational physical 

activity no more than three times per week and nine highly active offspring 

hypertensives (HIGH: >40 kcal. kg"l. d-1) who were aerobic athletes involved with 

daily aerobic physical training. 
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All testing was performed early morning after an overnight fast. The testing 

was in a quiet, air-conditioned laboratory held at constant room temperature of 24°C 

with subjects in the supine position. 

5.1.1 Baseline 

Subjects were instructed to provide a baseline urine sample immediately on 

awakening on the morning of testing. After 20 min of quiet rest subjects were 

required to void their bladder. Then a 6-min baseline period of data collection was 

initiated. This consisted of 3 min of normal breathing and 3 min of paced breathing 

(10 cycles. min"i). During minutes 6-8 baseline FBF was measured. 

5.1.2 Mental Challenge 

This consisted of the Stroop word/colour task (Stroop, 1935) for 10 min as 

described in Chapter 3. Subjects' perceived difficulty of the task, using the Borg 6-20 

scale (Borg, 1962), together with mistakes were recorded. Subjects were encouraged 

to make as few mistakes as possible. FBF was measured during minutes 0-2 and 9-10 

of the mental challenge, but all other cardiovascular variables were measured 

continuously. 

5.1.3 Recovery 

After the mental challenge there was a 2-min recovery period in the supine 

position, during which all variables were continuously measured. Then, after a 15-min 

period of seated upright recovery subjects were instructed to provide another urine 

sample. Both urine samples were immediately frozen for subsequent analysis. 

5.1.4 Maximal oxygen uptake 

This was measured at the end of the protocol (see Chapter 3). See Appendix 

IIC for a detailed protocol of Study H. 
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5.2 Statistical Analysis 

A2x5 repeated measures analysis of variance (ANOVA) was employed to 

identify changes in cardiovascular variables over time and group differences. The 

within subject factor comprised of baseline, minutes 0-2,5-6, and 9-10 of Stroop, and 

recovery. The between subject factor was the two groups (highly and moderately 

active). A2x4 repeated measures ANOVA was employed to identify changes in 

FBF that comprised of four within subjects factors (baseline, minutes 0-2 and 9-10 of 

Stroop, and recovery). 

A dependent t-test was employed to identify changes in urinary variables pre 

and post stressor within each group and an independent t-test was used to identify 

differences in change scores between groups. 

Pearson correlation analysis was performed to investigate the relationship 

between change in urinary variables and heart rate (HR) change during Stroop, 

change in urinary variables and change in FBF, and change in HR and change in FBF 

during Stroop. 

5.3 Results 

5.3.1 Subject Characteristics and 24 hour Dietary Intake 

Subject characteristics and 24 hr dietary intake details are displayed in Table 

5.1. The HIGH group was significantly older and displayed significantly higher 

physical activity and VOA values. The HIGH group also displayed significantly 

lower resting heart rate (RHR). Both groups displayed normotensive resting BP and 

also normal state anxiety. All subjects adhered to dietary guidelines, although the 

HIGH group displayed a non-significant trend for higher calorie consumption, which 

accounted for their significantly greater total salt intake. 
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Table 5.1. Descriptive characteristics and 24 hour dietary intake details of moderately 

active (MOD; n= 9) and highly active (HIGH; n= 9) subjects with family history of 

hypertension (mean ± SEM). 

Variable MOD HIGH 

Age (years) 20.1 ± 0.5 25.3 ± 1.5 

Body mass (kg) 73.1 ± 2.5 75.1 ± 2.5 

Height (cm) 179.6±2.5 182.9±3.0 

Bodyfat% 14.4±1.0 12.6±1.0 

Physical activity (kcal. kg-l. d"1) 35.0 ± 0.2 45.0 ± 1.8 * 

VOA (ml. kg l. min-1) 48.3 ± 1.9 55.3 ± 2.4 * 

State anxiety 30.7 ± 2.4 30.8 ± 1.5 

RHR (b. min'1) 65.4 ± 3.1 49.8 ± 2.9 * 

SBP (mmHg) 122.1 ± 3.3 127.8 ± 4.3 

DBP (mmHg) 62.4 t 2.5 60.0 t 2.8 

Calorie consumption (kcal) 1571 t 121 2002 t 186 

Salt intake (g. 100 kcal"') 0.28 t 0.03 0.40 t 0.05 

Total salt intake (g) 4.4 ± 0.5 7.7 ± 0.9 * 

Total sodium intake (mg) 1724 ± 205 3025 ± 354 

* significant difference between groups. 
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5.3.2. Response to Stroop Mental Challenge 

During the Stroop mental challenge there was no significant differences in 

perceived task difficulty (mean ±SEM: 14.6 ± 0.6 versus 14.3 ± 0.4) or mistakes (70 

± 12 versus 56 ± 14) for the MOD and HIGH groups respectively. 

5.3.2.1. Central cardiovascular responses. For HR there was a significant 

main effect over time [F (4,64) = 10.79, P<0.05], but no interaction or between 

subject effects. HR was significantly increased during the first 2 min of Stroop in 

comparison with baseline (unpaced breathing). See Figure 5.1a and Table 5.2. 

There was no significant main effect over time within subjects or between 

subject effects for cardiac output (CO) [F (4,64) = 0.82, P>0.05]. See Figure 5. lb and 

Table 5.2. 

There was a significant main effect over time within subjects for stroke 

volume (SV) [F (4,64) = 13.77, P<0.05], and between subject effects [F (1,16) = 

6.43, P<0.05], but no group interaction over time. SV was significantly reduced 

during all stages of the Stroop with respect to baseline (see Figure 5.1c). 
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Figure 5.1a Heart rate response to Stroop mental 
challenge in highly (HIGH) and moderately active (MOD) 
offspring hypertensives. 
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Figure 5. lb. Cardiac output response to Stroop mental 
challenge in highly (HIGH) and moderately active (MOD) 
offspring hypertensives. 
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5.3.2.2 Cardiac autonomic responses. There was a significant main effect over 

time within subjects for time series analysis of heart period variability (HPVts) in the 

high frequency domain (0.12-0.4 Hz) [F (5,80) = 45.8, P<0.05], but no interaction or 

between subject effects. HPV was significantly reduced during all stages of the 

Stroop and recovery from Stroop in comparison with baseline (paced breathing). See 

Figure 5.2a and Table 5.2 

There a significant main effect over time for HPVt, in the medium frequency 

domain (0.07-0.11 Hz) [F (5,80) = 11.04, P<0.05], but no interaction or between 

subject effects. HPV. was significantly reduced during minutes 0-3 and 5-8 of the 

Stroop in comparison with baseline (paced breathing). See Figure 5.2b and Table 5.2. 
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Figure 5.2a. Heart period variability response to Stroop mental 
challenge in highly (HIGH) and moderately active (MOD) 
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Figure 5.2b. Heart period variability response to Stroop mental 
challenge in highly (HIGH) and moderately active (MOD) 
offspring hypertensives. 
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5.3.2.3 Cardiac contractility. There was a significant main effect over time for 

pre-ejection period (PEP) [F (4,64) = 4.27, P<0.05], but no interaction or between 

subject effects. PEP was significantly reduced during the first 2 min of the Stroop in 

comparison with baseline. Although not significant, there was a trend for greater 

decreases in PEP during the Stroop in the MOD group in comparison with the HIGH 

(see Figure 5.3a and Table 5.2). 

There a significant main effect over time for left ventricular ejection time 

(LVET) [F (4,64) = 20.81, P<0.05], and between subject effects [F (1,16) = 12.54, 

P<0.05], but no significant interaction over time. LVET was significantly reduced 

throughout the Stroop in comparison with baseline (see Figure 5.3b and Table 5.2). 

There were no significant effects for PEP/LVET (PL) ratio over time (see 

Figure 5.3c and Table 5.2). 

There was a significant main effect [F (4,64) = 3.84, P<0.05] and interaction 

over time for Heather Index (HI) [F (4,64) = 2.69, P<0.05]. HI was reduced during 

the first two minutes of Stroop, although after applying Bonferoni adjustments this 

reduction was no longer significant. However, the HIGH displayed greater decreases 

in HI during the first 2 min of Stroop in comparison with the MOD group (see Figure 

5.3d and Table 5.2). 

Because both groups displayed comparatively constant loading conditions 

throughout (i. e., a similar trend in SV), the trend for a greater reduction in PEP during 

Stroop in the MOD group suggests a greater level of cardiac sympathetic activation in 

the MOD group. 
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Figure 5.3a. Pre-ejection period in response to Stroop mental 

challenge in highly (HIGH) and moderately active (MOD) 
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Figure 5.3b. Left ventricular ejection time in response to Stroop 

mental challenge in highly (HIGH) and moderately active (MOD) 

offspring hypertensives. 
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Figure 5.3c. PEP/LVET ratio in response to Stroop mental 
challenge in highly (HIGH) and moderately active (MOD) 
offspring hypertensives. 
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5.3.2.4 Blood pressure. There was a significant main effect over time within 

subjects for systolic blood pressure (SBP) [F (4,64) = 41.97, P<0.05], diastolic blood 

pressure (DBP) [F (4,64) = 71.01, P<0.05], and mean arterial blood pressure (MAP) 

[F (4,64) = 60.95, P<0.05], but no interaction or between subject effects. SBP, DBP, 

and MAP were elevated during all stages of Stroop and recovery in comparison to 

baseline (see Figures 5.4a-c and Table 5.2). 

103 



16 

15 
m 

114 
V 

p 13 

12, 

Figure 5.4a. Systolic blood pressure response to Stroop 

mental challenge in highly (HIGH) and moderately active (MOD) 
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Figure 5.4b. Diastolic blood pressure response to Stroop 

mental challenge in highly (HIGH) and moderately active (MOD) 

offspring hypertensives. 
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5.3.2.5 Peripheral vascular responses. There was a significant main effect 

within subjects for total peripheral resistance (TPR) [F (4,64) = 10.53, P<0.05], but 

no interaction or between subject effects. TPR was significantly elevated during all 

stages of Stroop and recovery in comparison to baseline (see Figure 5.5a and Table 

5.2). 

There was a significant main effect [F (3,48) = 50.75, P<0.05], and 

interaction [F (3,48) = 7.3, P<0.05] over time for within subject factors for FBF. FBF 

was significantly increased during both the first and last 2 min of Stroop in 

comparison with baseline. Subsequent analysis revealed that during the first 2 min of 

Stroop the MOD group displayed a significantly greater increase in FBF compared 

with HIGH [F (1,16) = 7.9, P<0.05, ES = 1.25] (see Figure 5.5b and Table 5.2). 

There was a significant main effect for forearm vascular resistance (FVR) [F 

(3,48) = 20.39, P<0.05], and a trend for an interaction over time [F (3,48) = 2.69, P= 

0.09]. FVR was significantly reduced during both the first and last 2 min of Stroop in 

comparison with baseline. Also, during the first 2 min of Stroop the MOD group 

displayed a significantly greater reduction in FVR compared with HIGH [F (1,16) _ 

9.09, P<0.05] (see Figure 5.5c and Table 5.2). 
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Figure 5.5b. Forearm blood flow response to Stroop 

mental challenge in highly (HIGH) and moderately active (MOD) 

offspring hypertensives. * Significantly different change 
between groups from baseline. 
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5.3.2.6 Renal responses. There was a significant increase in urinary sodium [t 

(1,17) = 3.65, P<0.05] and potassium levels [t (1,17) = 4.77, P<0.05], post stress in 

comparison with baseline. The change in sodium and potassium levels from pre to 

post stressor were, however, not significantly different between groups (see Figures 

5.6a and b). 
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5.3.2.7 Pearson correlations. There was no significant relationship between 

urinary sodium change and HR change (r = -0.33, P>0.05) or urinary potassium 

change and HR change (r = -0.24, P>0.05). Nor was there a relationship between 

urinary sodium change and FBF change (r = -0.09, P>0.05) or urinary potassium 

change and FBF change (r = -0.11, P>0.05). There was, however, a significant 

correlation (r = 0.75, P<0.01) between HR change and FBF change during the first 2 

min of the Stroop mental challenge (see Figure 5.7). 
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Table 5.2. Response to Stroup mental challenge in moderately active (MOD; n= 9) 

and highly active (HIGH; n= 9) males with family history of hypertension (mean ± 

SEM). 

Variable Condition 

Baseline Stroop Stroop Stroop Recovery 
(0-2 min) (4-6 min) (8-10 min) 

MOD HIGH MOD HIGH MOD HIGH MOD HIGH MOD HIGH 

HR (b. min-') 67.6±3# 50.7±3" 78.4±6 64.6±4 69.3±8 60.5±4 70.4±6 59.2±4 58.6±7 51.5±3 

SV (ml) 92.4±6 119.8±10 73.2±7 98.0±7 78.6±9 105.5±8 82.5±7 108.9±8 87.5±9 120.0±10 

CO (1. miri-') 6.1±. 5 5.9±. 5 6.1±. 8 6.2±. 5 5.9±. 9 6.3±. 6 6.2±. 7 6.4±. 6 5.5±. 8 6.1±. 6 

HPV, s (. 12-. 4 Hz) 8.2±. 3" 8.4±. 3" 5.9±. 3 6.5±. 3 6.3±. 3 6.7±. 3 6.5±. 3 7.0±. 3 7.6±. 3 7.6±. 4 

HPV, S (. 07-. 11 Hz) 4.0±. 2# 3.6±. 3" 2.7±. 3 3.2±. 3 3.0±. 2 3.4±. 2 3.3±. 3 3.4±. 3 4.1±. 3 3.9±. 4 

PEP (ms) 77.9±5 78.3±5 70.4±6 75.1±5 72.8±6 76.9±5 73.9±6 75.6±5 74.9±5 77.3±5 

LVET (ms) 304.4±7 333.0±5 283.6±7 319.1±6 295.3±6 324.1±6 295.9±6 327.5±6 307.1±8 333.1±6 

PL ratio . 
26±. 02 . 

23±. 01 
. 
25±. 06 

. 
23±. 04.25±. 02 

. 
24±. 01 

. 
25±. 02 

. 
23±. 01 

. 25±. 02 
. 
23±. 01 

HI (Ohm. S-2) 13.2±1 14.1±1 13.2±1 12.5±1 13.1±1 13.3±1 13.0±1 13.4±1 13.4±1 14.4±1 

SBP (mmHg) 122.1±3 127.8±4 142.3±5 142.6±5 152.0±6 153.4±6 151.4±5 149.5±6 143.2±5 141.1±6 

DBP (mmHg) 62.4±3 60.0±3 77.3±4 73.0±3 82.9±4 77.4±3 80.5±3 75.8±3 73.3±3 69.7±4 

MAP (mmHg) 81.2±3 82.4±5 98.8±4 95.6±3 105.1±4 102.6±4 103.4±4 99.1±4 96.3±4 92.1±4 

TPR 1132±101 1197±128 1242±99 1296±117 1326±116 1376±122 1273±96 1338±135 1294±124 1325±155 
(dyne-s. cm 5) 

FBF 4.5±1 3.6±. 4 9.0±. 8 5.8±. 9* --7.5±1 5.6±. 7 4.0±. 9 3.8±. 5 
(m1.100 ml tissue-'. min"') 

FVR 23.2±4 26.5±3 11.4±. 9 19.9±3* -- 16.3±2 20.4±3 31.4±5 28.5±5 
(mmHg. ml"'. 100 ml tissue'l ) 

* significant difference in change between groups in comparison with baseline. 

# baseline cardiac data for paced breathing. 
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5.4 Discussion 

The purpose of Study II was to investigate the association between physical 

activity level and cardiovascular and renal responses to mental challenge in offspring 

hypertensives. It was predicted that if exaggerated FBF during mental challenge was 

due to a renal vasoconstrictor response then high forearm vascular responsiveness 

should be characterised by sodium retention. Because the moderately active offspring 

hypertensives displayed greater FBF reactivity to mental challenge it was expected 

that this group would also retain sodium. However, this was not the case, despite 

similar CO and BP responses to mental challenge between the high (MOD group) and 

low FBF reactors (HIGH group). This suggests there may still be regional blood flow 

differences in other vascular beds. It is possible that all of the major skeletal muscle 

vascular beds do not react in a similar way to mental challenge. However, Halliwill 

(2001) has suggested there is a strong correlation between the skeletal muscle 

vascular reactivity of the forearm and calf. Research using spontaneously 

hypertensive rats (SHR) and normotensive controls, the Wistar-Kyoto (WKY), has 

shown that although both strains demonstrate similar BP changes to the defence 

response, regional blood flow changes are different (Kirby, Woodworth, Woodworth, 

& Johnson, 1991). Specifically, SHR demonstrated increases in mesenteric vascular 

resistance that appeared to be offset by more pronounced decreases in hindquarter 

vascular resistance (increased skeletal muscle vasodilatation). 

5.4.1 Vascular Stress-reactivity Mechanism 

The finding that HR change and FBF during mental challenge were 

significantly correlated supports the notion that one mechanism underlies cardiac and 

vascular reactivity. It is plausible that this mechanism may involve sympathetic 

activation of 0-1 and 0-2 adrenergic receptors producing increased HR and skeletal 
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muscle vasodilatation, respectively. This is supported by the findings of Miller and 

Ditto (1991) that strongly implicate the SNS in the exaggerated cardiovascular 

response to stress in offspring hypertensives. Their study employed the use of 

selective pharmacological blockade, a ß-1 adrenergic blocker, and an a-1 adrenergic 

blocker. The study compared HR and FBF response between offspring hypertensives 

and controls during a 1-hr active coping psychological stressor under a placebo and 

two drug conditions. Under the placebo condition the offspring hypertensives 

demonstrated exaggerated HR and FBF responses to the stressor. Under the ß-1 

adrenergic blocking condition only differences in HR response were abolished. Under 

the a-1 adrenergic blocker the responses were similar to that observed under the 

placebo condition for the first 15-min although during the last 15-min, the a-blocker 

eliminated the rise in FVR observed in offspring hypertensives under the placebo 

condition. These results suggest that the initial forearm vasodilatation response to 

stress and the reductions in FVR are reinforced by ß-2 adrenergic or cholinergic 

activity and that later increases in FVR may reflect increasing a-adrenergic activity. 

Furthermore, Halliwill et al. (1997) examined skeletal muscle vasodilatation to mental 

stress in order to determine the extent to which this response was due to sympathetic 

withdrawal, active neurogenic vasodilatation, or ß-adrenergically mediated 

vasodilatation. Firstly, they found that muscle sympathetic nerve activity to the 

forearm was inhibited during mental stress (a 2.5-min Stroop task), suggesting that 

sympathetic vasoconstrictor withdrawal may contribute to the vasodilatation response. 

However, the vasodilatation during mental stress continued to occur after either 

selective blockade of a-adrenergic neurotransmission or local anaesthetic blockade of 

the stellate ganglion. Also, after administration of propanolol ((3-2 blocker) the 

vasodilatation response to stress was reduced but not completely abolished. Thus, the 
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authors concluded that sympathetic withdrawal, through a reduction in discharge of 

norepinephrine from the autonomic nervous system, might mediate the initial 

vasodilatation. Then the response could be further augmented by both epinephrine, 

secreted from the adrenal gland, acting via 0-2 adrenergic receptors and also 

activation of local mechanisms that release nitric oxide. Such local mechanisms may 

include the release of acetylcholine from selected endothelial cells stimulated 

mechanically by increases in blood flow and rises in arterial BP. The locally released 

acetylcholine is then thought to act on muscarinic receptors and cause nitric oxide 

release producing vasodilatation (Dietz et al., 1994). 

5.4.2 Exercise-induced Reactivity Lowering Mechanism 

Differences in sympathetic withdrawal, 0-2 adrenergic receptor activation, 

and/or local vasodilatation mechanisms may explain the difference in FBF reactivity 

to mental challenge between the moderately and highly active offspring 

hypertensives. However, it is interesting to note that the forearm vasodilatation 

response was only significantly different between the groups during the first 2-min of 

the mental challenge. This, therefore, suggests that differences in the response are 

more likely to be due to sympathetic withdrawal and 0-2 adrenergic mechanisms 

because local mechanisms are thought to sustain the response later on. Results from 

animal studies show that after an acute bout of exercise vascular responsiveness was 

reduced (Howard & DiCarlo, 1992). Using vasoactive agonists infused into the 

hindlimb of the conscious rabbit, blood flow responses in the isolated hindlimb were 

markedly reduced following a bout of treadmill exercise to exhaustion. The authors 

suggested that this might be due to an exercise induced down regulation of a and/or 

ß-adrenergic receptors. Furthermore, longitudinal studies (Duncan et al., 1985; 

Jennings et al., 1986; Meredith et al., 1991; Urata et al., 1987) have consistently 
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shown that endurance training reduces plasma catecholamine concentration. However, 

because plasma catecholamine levels represent a measure of average sympathetic 

neural activity, it is difficult to determine whether central, peripheral, or local 

mechanisms are primarily or secondarily responsible for the changes. Studies 

employing methods to measure post-ganglionic sympathetic nerve traffic have 

suggested that the reduction in sympathetic nervous activity from training originates 

from a central effect of training (Grassi et al., 1994). 

Therefore, the mechanism responsible for a possible exercise induced vascular 

stress reactivity lowering effect may be a reduction in the sympathetic withdrawal 

response to stress. Also a down regulation of 0-2 adrenergic receptors and/or 

reductions in sympatho-adrenal activation, reducing epinephrine discharge, thus 

reducing the 0-2 adrenergic vasodilatation response. Evidence from the spontaneously 

hypertensive rat model (Kirby et al., 1991) suggests that the enhanced 0-2 adrenergic 

vasodilatation in the SHR during the defence response is due to an increased release 

of epinephrine as opposed to greater sensitivity of the receptors. Research studying 

plasma catecholamine concentration during mental stress in human offspring 

hypertensives also supports findings from the SHR study. Falkner, Onesti, and 

Angelakos (1979) have shown that post-stress plasma catecholamines were higher in 

offspring hypertensives compared with controls. Also, Horikoshi et al., (1985) found 

that offspring hypertensives who were high BP responders to mental stress also 

displayed significantly higher levels of epinephrine throughout the stress. 

5.4.3 Renal Responses to Stress 

That sodium retention was not displayed in the offspring hypertensives 

recruited for the present study is in contrast with the findings of Light et al. (1983) 

who found that out of a sample of 13 offspring hypertensives, those who displayed 
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high HR reactivity to mental challenge (n = 7) had reductions in sodium and water 

excretion of 27% and 35% respectively. This was in comparison with the low HR 

reactors with family history of hypertension (n = 6) who demonstrated increases in 

sodium and fluid excretion of 4%, and individuals with no family history 

demonstrating 8% increases. Given the high correlation between HR reactivity and 

sodium retention (r = 0.64, P< 0.05) in the Light et al study, a common mediation by 

the SNS for the cardiac and renal reactivity responses was suggested. This 

relationship has also been shown in the spontaneously hypertensive rat where renal 

denervation reduces sodium retention and delays the pathogenic process (Winterritz 

et al., 1980). There are a number of reasons to explain why subjects in the present 

study reacted in a similar manner to the low risk group in the Light study (i. e., 

displayed sodium excretion responses to stress), despite the presence of significant 

cardiac reactivity in the present subjects. Firstly, although Light et al employed a 

similar type of mental stress (cognitive processing task), their task lasted for a period 

of 1 hr compared with 10 min in the present study. Miller and Ditto (1991) 

demonstrated that during an extended 1-hr active-coping stressor a pattern of 

increasing vascular resistance was observed that is thought to be due to increased a- 

adrenergic involvement. Thus, extended periods of stress may be required to produce 

renal vasoconstriction responses and sodium retention. Secondly, because all subjects 

in the present study were physically active, a moderate level of physical activity may 

be adequate to reduce a familial tendency to retain sodium. It should be noted that 

subjects in the moderately active group were in fact all physically fit with an average 

VO,. of 47.88 ml. kg'. min"'. Lastly, in another study (Parfrey, Wright, & 

Ledingham, 1981) that investigated the effect of prolonged isometric exercise on renal 

excretion of sodium and potassium, there were no differences in this response 
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between offspring hypertensives and controls. Therefore, because sodium retention 

following isometric exercise is seen in hypertensive patients, it is possible that the 

sodium retention response to stressors is a consequence of, rather than a predisposing 

factor to hypertension. 

5.4.4 Summary 

Both the highly and moderately active offspring hypertensives have displayed 

a sodium excretion response to stress. Although neither group appear to have 

demonstrated disturbed renal responses during mental challenge, which has 

previously been identified as a significant risk marker for hypertension development, 

the moderately active group demonstrated an enhanced FBF reactivity response to 

mental challenge in comparison with highly active offspring hypertensives. Repeated 

episodes of a hyper-reactive vascular response to stress has in itself been linked to the 

development of hypertension through a vascular re-modelling process (Folkow, 

1978). Thus physical activity level may be associated with vascular reactivity to a 

laboratory stressor in offspring hypertensives. That differences in renal response to 

mental challenge between highly and moderately active groups have not been 

observed suggests that either a moderate level of physical activity may alleviate 

familial abnormalities in renal functioning, or that physical activity level is not 

associated with renal responses to stress in offspring hypertensives. 
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CHAPTER 6 

STUDY III. THE EFFECT OF ACUTE EXERCISE ON CARDIOVASCULAR 
RESPONSES DURING RECOVERY AND MENTAL CHALLENGE IN 
MALES WITH A FAMILY HISTORY OF HYPERTENSION. 

Studies I and II have provided strong evidence for an association between 

physical activity and forearm blood flow (FBF) reactivity to mental challenge. 

However, in order to infer a causal relationship between exercise and stress reactivity 

Study III has been designed to investigate the short term effects of acute exercise on 

the cardiovascular stress reactivity response. Previous researchers have documented 

the phenomenon of post-exercise hypotension as a possible blood pressure lowering 

mechanism of exercise (Bennett et al., 1984; Floras et al., 1989; Hagberg et al., 

1987). It is thought that repeated exposure to regular physical activity and the 

resulting multiple episodes of lower blood pressure (BP) may translate into 

permanently lower BP. Similarly, BP reactivity to stress is blunted following an acute 

bout of exercise (Boone et al., 1993; Ebbesen et al., 1992; Probst et al., 1997; Rejeski 

et al., 1991; Rejeski et al., 1992; Roy & Steptoe, 1991; Steptoe et al., 1993; West et 

al., 1998). Thus, the stress reactivity lowering mechanisms of acute exercise may play 

a more important role than that of long term chronic training adaptations. 

The effect of acute exercise on cardiovascular reactivity to stress in offspring 

hypertensives has not been investigated before. Also, the effect of acute exercise on 

FBF reactivity to stress does not appear to have been studied at all. Therefore, the 

purpose of Study III was to investigate the effect of acute exercise on cardiovascular 

and FBF reactivity to mental challenge in males with a family history of hypertension. 

Based on the findings of Studies I and II it was hypothesised that acute exercise 

would reduce the cardiovascular and FBF response to mental challenge. 
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6.1 Protocol 

Twelve healthy normotensive males with a family history of hypertension 

were recruited from a student population. The study was approved by a University 

human ethics committee and all subjects were provided written informed consent 

before participation. A within subjects study design was employed, where subjects 

acted as their own controls. The protocol was split into three separate days (see 

Appendix IIIB for a detailed protocol). The first day consisted of medical screening, 

explanation of the protocol, and a maximal oxygen uptake test (see Chapter 3). The 

second day consisted of either the exercise-stroop condition or control-Stroop 

condition. The third and final day consisted of the remaining condition depending on 

which one had been selected for day two. The order of days two and three for the 

exercise-Stroop condition or control-Stroop condition was counterbalanced between 

subjects. That is, subjects were randomly assigned to either the exercise-Stroop 

condition on day two and the control-Stroop condition on day three or the control- 

Stroop condition on day two and the exercise-Stroop condition on day three. 

6.1.1 Medical Screening and Maximal Oxygen Uptake 

Subjects were required to complete a full medical questionnaire and physical 

activity readiness questionnaire (Appendix IC, ID). Subjects were then provided with 

details on dietary guidelines (Appendix IIB) and information on the experimental 

protocol (Appendix IIIA). A maximal oxygen uptake (VOýf ) test was then 

performed on a cycle ergometer (previously described in Chapter 3). 

6.1.2 General Protocol 

Subjects were required to follow dietary guidelines 24 hr prior to the second 

and third sessions, which included abstaining from alcohol and caffeine. Dietary 

guidelines were employed mainly to control for salt intake as this is known to effect 
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the cardiovascular stress reactivity response (Miller et al., 1995) and may have 

provided a confounding variable. Subjects were also instructed to abstain from 

rigorous physical activity 24 hr before testing. Both sessions were performed in the 

morning after an overnight fast. 

The basic protocol consisted of two stages for each condition; either an acute 

bout of cycle ergometry exercise followed by a 10-min Stroop mental challenge 

(exercise-Stroop condition) or a control period followed by a 10-min Stroop mental 

challenge (control-Stroop condition). 

6.1.3. Exercise Session 

The exercise session was performed on a stationary electronic ergometer 

(Excalibur Sport) in an air-conditioned laboratory held at constant room temperature 

of 19°C. To begin with subjects were instructed to perform a 5-min warm-up at a 

workload of 80 W and pedal cadence of 70-80 rev. min-1. At the end of the warm-up 

period the load was adjusted to 60% of the subject's maximum workload that was 

designed to bring about an exercise intensity of 60-70% VO2-. Subjects were then 

required to cycle for 20 min at this intensity. HR was continuously monitored using a 

Polar heart rate monitor and gases were collected intermittently, every 5 min, using 

Douglas bags and later analysed for oxygen uptake. Rating of perceived exertion 

(Borg, 1962) was also attained every 5 min. If necessary, the load was adjusted in 

order to maintain an exercise intensity of 70-80% of heart rate reserve (calculated 

from the Karvonen formula). Afterwards, subjects were instructed to perform a 5-min 

cool-down period at a workload of 50 W and pedal cadence of 70-80 rev. min-1. 

6.1.4 Control Session 

The control session was conducted in the same laboratory as the exercise 

session and consisted of body composition and dietary analysis for the duration of 30 
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min. Skin folds were measured from four sites using callipers, and body fat calculated 

from the Durnin and Wormsley (1974) formula. With the subject present, analysis 

was then performed on their dietary intake from the previous 24 hr using the computer 

software package COMP-EAT (Benson, 1989). 

6.1.5 Stroop Mental Challenge 

After the exercise or control session subjects were transferred to a separate 

laboratory that was quiet and air-conditioned, held at a constant room temperature of 

24°C. Firstly, subjects were required to complete the STAI and then requested to lie 

down on a bed in the supine position. Subjects then rested quietly for approximately 

25 min whilst they were prepared for the collection of data. An 8-min baseline period 

of data collection was then initiated. This consisted of 3 min of normal breathing and 

3 min of paced breathing (10 cycles. min-I). During minutes 6-8 baseline FBF was 

measured. After the baseline period the 10-min Stroop word/colour task (Stroop, 

1935), described in the Chapter 3, was started. Subjects' perceived difficulty of the 

task, using the Borg 6-20 scale (Borg, 1962), together with mistakes were recorded. 

Subjects were encouraged to make as few mistakes as possible. FBF was measured 

during minutes 0-2 and 9-10 of the mental challenge, but all other cardiovascular 

variables were measured continuously. Five minutes of recovery in the supine 

position followed the mental challenge, during which FBF was measured for the first 

2 min but all other variables were measured continuously. 

6.2 Statistical Analysis 

A2x5 repeated measures analysis of variance (ANOVA) was employed to 

identify changes in cardiovascular variables over time and condition. The within 

subject factor comprised of baseline, minutes 0-2,5-6, and 9-10 of Stroop, and 

recovery. The between subject factor was the two conditions (exercise and control). A 
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2x4 repeated measures ANOVA was employed to identify changes in FBF, forearm 

vascular resistance (FVR), and forearm vascular conductance (FVC) that comprised 

of four within subject factors (baseline, minutes 0-2 and 9-10 of Stroop, and 

recovery). Bonferonni post-hoc analysis was performed where required and statistical 

significance was assumed at a value of P<0.05. 

6.3 Results 

6.3.1 Subject Characteristics, Dietary Intake, and Exercise Details 

Physical characteristics of subjects and dietary intake details are displayed in 

Table 6.1. All subjects were moderately active displaying above average levels of 

physical fitness and were in the normal range for body fat values. 

All subjects completed the sub-maximal exercise protocol that was performed 

at a workload of (mean ± SEM; 199 ± 7.7 W), corresponding to an exercise intensity 

of 67.3 ± 3.5% VO2- 
,a heart rate reserve of 81.5 ± 1.8%, and a mean heart rate of 

168 ± 3.5 b. min-l. The exercise was perceived as "hard" on the Borg 6-20 scale (15.7 

± 0.4) and subjects demonstrated post-exercise reductions in body mass (0.18 ± 0.05 

kg). 

All subjects reported a history of hypertension that was apparent in first- 

degree relatives. Five subjects reported a single hypertensive parent, whilst two 

subjects reported a biparental history of hypertension. The remainder of the subjects 

reported family history of hypertension that was apparent in their grandparents. 
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Table 6.1. Descriptive characteristics and 24 hour dietary intake (mean ± SEM). 

Variable 

Age (years) 

Body mass (kg) 

Height (cm) 

Body fat % 

V02ý (ml. kg"1. min-1) 

Calorie consumption (kcal) 

Total salt intake (g) 

19.2 ± 0.4 

78.6 ± 2.6 

180.5 ± 1.2 

16.7 ± 1.0 

41.6 ± 2.6 

1863 ± 118 

7.8 ± 0.7 
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6.3.2 Psychological Responses 

There were no significant differences in state anxiety (35.0 ± 2.2 versus 30.0 ± 

1.9) between exercise and control days respectively. During the Stroop mental 

challenge there was no significant differences in perceived task difficulty (13.3 ± 0.4 

versus 13.6 ± 0.7) or mistakes (44.8 ± 9.5 versus 60.0 ± 13.4) between exercise and 

control conditions respectively. 

6.3.3 Cardiovascular Responses 

6.3.3.1 Central cardiovascular responses. For heart rate (HR) there was a 

significant main effect [F (4,88) = 79.3, P<0.05], and effect between conditions [F 

(1,22) = 15.68, P<0.05]. HR was significantly increased throughout Stroop in 

comparison with baseline. Subjects displayed a significantly elevated post-exercise 

HR at baseline, Stroop, and recovery in comparison with control conditions. When 

comparing HR change scores there was a significant effect between conditions [F (1, 

22) = 6.5, P<0.05]. Subsequent analysis revealed significantly lower post-exercise 

change scores at minutes 5-6 and 9-10 of the Stroop, and during recovery, with 

respect to baseline, and in comparison with control (see Figure 6.1a and Table 6.2). 

There were no significant effects for cardiac output (CO) (see Figure 6.1b and 

Table 6.2) although there was a trend for an elevated post-exercise CO at baseline. 

There was a significant main effect for stroke volume (SV) [F (4,88) = 37.1, 

P<0.05], but no interaction or between subject effects. SV was significantly reduced 

during Stroop and there was a trend for lower post-exercise SV at baseline and 

throughout (see Figure 6.1c and Table 6.2). 
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Figure 6.1c. The effect of acute exercise on stroke 
volume response during Stroop. 
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6.3.3.2 Cardiac autonomic responses. There was a significant main effect 

within subjects for time series analysis of heart period variability (HPVt, ) in the high 

frequency domain (0.12-0.4 Hz) [F (4,88) = 9.47, P<0.05] and an effect between 

conditions [F (1,22) = 12.68, P<0.05]. HPVts was significantly reduced during Stroop 

and recovery across time in comparison with baseline (paced breathing). Also there 

was a significant reduction in post-exercise HPVt, in comparison with control, which 

reflected the significantly elevated post-exercise HR (see Figure 6.2a and Table 6.2). 

There was a significant effect between conditions [F (1,22) = 13.49, P<0.05] 

for HPVt, in the medium frequency domain (0.07-0.11 Hz). HPVt, in the medium 

frequency domain was significantly blunted post-exercise in comparison with control 

(see Figure 6.2b and Table 6.2). 
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6.3.3.3 Cardiac contractility. There was a significant main effect over time for 

pre-ejection period (PEP) [F (4,88) = 3.38, P<0.05] but no effects between condition. 

PEP was significantly reduced during Stroop with respect to baseline. There were no 

differences in change scores between conditions (see Figure 6.3a and Table 6.2). 

There was a significant main time effect [F (4,88) = 48.2, P<0.051 and effect 

between conditions [F (1,22) = 5.95, P<0.05] for left ventricular ejection time 

(LVET). LVET was significantly reduced during Stroop with respect to baseline. 

Also, post-exercise LVET was significantly lower across time compared with control 

reflecting an elevated post-exercise HR. There were no significant differences in 

change scores between conditions (see Figure 6.3b and Table 6.2). 
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6.3.3.4 Blood pressure and rate pressure product responses. There was a 

significant main effect across time for systolic blood pressure (SBP) [F (4,88) = 38.8, 

P<0.05], diastolic blood pressure (DBP) [F (4,88) = 67.35, P<0.051, and mean 

arterial pressure (MAP) [F (4,88) = 61.9, P<0.05]. SBP, DBP, and MAP were 

significantly increased during Stroop and recovery with respect to baseline. There was 

a significant effect between conditions for SBP [F (1,22) = 4.49, P<0.05] and further 

analysis showed that post-exercise SBP was significantly reduced at baseline [F (1, 

22) = 4.78, P<0.05, ES = 0.9], Stroop (9-10 min) [F (1,22) = 4.5, P<0.05, ES = 0.9], 

and recovery [F (1,22) = 4.6, P<0.05, ES = 0.9] in comparison with control. For DBP 

and MAP there was a trend for a post-exercise hypotensive effect. 

There was a significant main effect across time for rate pressure product (RPP) 

[F (4,88) = 78.7, P<0.051. RPP, which is an indicant of myocardial oxygen 

consumption, was significantly increased during Stroop and recovery with respect to 

baseline. There were no significant differences between condition (see Figures 6.4a, 

b, c, d and Table 6.2). 
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3.3.2 Cardiovascular Measures 

3.3.2.1 The electrocardiogram (ECG). A three lead ECG was recorded using 

an Amlab physiograph (Model 1.7) system, which was linked to a 386 PC computer. 

R-R interval was recorded at a sampling rate of 1000 Hz. 

3.3.2.2 The impedance cardiogram (ICG). The impedance technique was 

employed to measure stroke volume (SV) and cardiac output (CO). ICG was recorded 

with a Minnesota impedance cardiograph (model 304B), from four silver tape band 

electrodes. Two of the bands were attached around the neck, a third around the thorax, 

and the fourth was placed around the abdomen between the xiphoid and umbilicus 

(see Figure 3.1). The two outer electrodes (electrode #1 cephalad, and electrode #4 

caudal) were spaced at least 3 cm from the inner electrodes to avoid nonlinearities in 

the electrical field. A constant, sinusoidal ac current was applied through electrodes 

one and four, which establishes an electric field between the outer electrodes while 

the inner electrodes detect change in voltage with which to determine changes in 

impedance. The decrease in thoracic impedance, denoted by an up stroke of the 

impedance signal and thought to be generated by the ejection of blood from the heart 

has been quantitatively related to the volume of blood ejected. The impedance signal 

is composed of three components relevant to the determination of stroke volume; the 

largest is basal thoracic impedance and reflects the conductance of the total thoracic 

mass (tissues, fluid, and air). Respiratory activity induces approximately a 3% change 

in the thoracic impedance signal, whilst cardiac activity comprises less than 1% of the 

basic impedance signal. The differentiated impedance cardiogram (dZ/dt waveform - 

see Figure 3.2) was used to calculate SV using the formula proposed by Kubicek et al. 

(1966; 1970) shown below: - 

47 



6.3.3.5 Peripheral vascular responses. There was a significant main effect 

over time for total peripheral resistance (TPR) [F (4,88) = 12.96, P<0.05]. TPR was 

significantly increased during Stroop and recovery with respect to baseline. Although 

there were no significant effects between condition there was a trend for post-exercise 

reductions in TPR across time in comparison with control (see Figure 6.5a and Table 

6.2). 

There was a significant main effect over time for FBF [F (3,66) = 28.9, 

P<0.05J. FBF was significantly increased during Stroop and recovery with respect to 

baseline. When comparing FBF change scores there was a significant effect between 

conditions [F (1,22) = 7.9, P<0.05]. Subsequent analysis revealed significantly lower 

post-exercise change scores during the Stroop, with respect to baseline, and in 

comparison with control. Thus suggesting lower FBF reactivity post-exercise (see 

Figures 6.5b, c and Table 6.2). 

There was a significant main effect over time [F (3,66) = 13.7, P<0.05], 

interaction [F (3,66) = 7.6, P<0.05], and effect between condition [F (1,22) = 8.7, 

P<0.05] for FVR. FVR was significantly decreased during Stroop and recovery with 

respect to baseline. Also, when comparing FVR change scores there was a significant 

effect between conditions [F (1,22) = 7.9, P<0.05]. Subsequent analysis revealed 

significantly lower post-exercise change scores during the Stroop, with respect to 

baseline, and in comparison with control (see Figures 6.5d, e and Table 6.2). 

Similarly, for FVC there was a significant main effect over time [F (3,66) _ 

10.1, P<0.051 and effect between condition [F (1,22) = 4.9, P<0.05]. FVC was 

significantly increased during Stroop and recovery with respect to baseline. Also, 

when comparing FVC change scores there was a significant effect between conditions 

[F (1,22) = 9.7, P<0.05]. Subsequent analysis revealed significantly lower post- 
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exercise change scores during the Stroop, with respect to baseline, and in comparison 

with control (see Figures 6.5f, g and Table 6.2). 
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6.3.3.6. Pearson correlations. There was a significant correlation between 

post-exercise percentage change in FVR, in comparison with control, and control 

FVR (r = -0.72, P<0.05), indicating subjects with higher FVR on the control day 

demonstrated a greater percentage decrease in FVR post exercise. Similarly, for FVC, 

subjects with lower FVC on the control day demonstrated greater percentage 

increases in FVC post-exercise (r = -0.64, P<0.05) (see Figures 6.6a and b). 

There was a significant correlation between post-exercise percentage change 

in FVR, in comparison with control, and exercise intensity (r = -0.80, P<0.05), 

indicating subjects who worked at a higher percentage of their V10, 
.. demonstrated a 

greater percentage decrease in FVR post exercise. Similarly, for FVC, subjects who 

worked at a higher percentage of their VOA. demonstrated greater percentage 

increases in FVC post-exercise (r = 0.71, P<0.05) (see Figures 6.6c and d). 
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Table 6.2. Cardiovascular responses at rest and during Stroop mental challenge after 

acute exercise (Post-ex) and control (Cntrl) conditions in males with a family history 

of hypertension (mean ± SEM). 

Variable Condition 

Baseline Stroop Stroop Stroop Recovery 
(0-2 min) (5-6 min) (9-10 min) 

Post-ex Cntrl Post-ex Cntrl Post-ex Cntrl Post-ex Cntrl Post-ex Cntrl 

HR (b. miri-') 76.1±3 61.6±2" 89.1±3 74.0±2" 83.6±3 71.2±2"* 81.6±3 70.0±2"*74.1±3 62.0±2"* 

SV (ml) 80.4±4 92.5±5 67.1±4 78.3±4 73.4±5 83.7±5 75.7±5 85.6±5 82.0±4 93.8±4 

CO (l. min") 6.1±. 3 5.6±. 3 5.9±. 3 5.8±. 3 6.0±. 3 5.9±. 3 6.1±. 3 5.9±. 4 6.0±. 3 5.8±. 3 

HPV15 (. 12-. 4 Hz) 6.5±. 4 8.2±. 2" 4.6±. 4 6.2±. 3" 5.2±. 4 6.6±. 3" 5.3±. 4 6.6±. 3" 5.8±. 3 7.2±. 2" 

HPV1S (. 07-. 11 Hz) 2.5±. 4 3.8±. 2 1.8±. 3 3.1±. 2 2.2±. 3 3.3±. 2 2.3±. 3 3.4±. 2 2.7±. 2 3.8±. 2 

PEP (ms) 80.5±3 77.4±3 77.4±4 73.9±3 76 . 9±3 74.0±3 75.8±3 75.1±4 7 6.9±3 76.2±4 

LVET (ms) 291.3±6 311.3±5 274.2±6 295.5±4 28 2.5±8 300.9±5 285.0±7301.7±5 295.5±6 312.2±5 

PL ratio 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 0.3±. 01 

HI (ohm. s'2) 11.4±. 8 12.7±. 7 10.6±. 8 11.7±. 9 11.2±. 8 12.3±. 9 11.3±. 8 12.2±. 9 11.6±. 8 12.5±. 8 

SBP (mmHg) 108.1±4 119.8±4" 126.7±4 133.7±4 126.5±4 137.8±5 124.3±3 136.4±5" 116.2±3 127.3±4" 

DBP (mmHg) 58.1±3 64.5±3 71.7±3 75.3±2 71.5±2 77.8±3 70.8±2 76.0±3 65.2±2 70.2±3 

MAP (mmHg) 74.4±3 82.6±3 89.7±3 94.5±3 89.5±3 97.4±4 88.4±2 95.9±3 81.9±2 88.9±3 

Rpp 82.2±3 73.9±4 112.5±4 98.9±3 105.5±4 98.2±5 101.1±4 95.4±4 85.7±3 79.2±4 
(b. min'l. mmHg) 

TPR 1027.7±85 1236.8±92 1257.3±80 1354.8±82 1236.2±85 1374.8±98 1212.1±82 1351.9±98 1138.2±79 1283.7±88 
(dyne-s. cm 5) 

FBF 5.1±. 5 3.1±. 5 6.7±. 6 5.6±. 7* --6.8±. 7 5.4±. 8* 5.6±. 5 3.9±. 6 
(mi. 100 ml tissue'l. min'') 

FVR 15.9±1 32.5±5" 14.6±1 19.8±2** -- 14.3±1 22.7±3"* 16.4±2 28.5±4" 
(mmHg. ml"'. 100 ml tissue-') 

pvC 070±. 01 039±. 01" . 074±. 01 
. 060±. 01 *-- 

. 078±. 01 . 059±. 01 * . 069±. 01 . 045±. 01 
(ml. 100 ml tissue-'. mmHg ) 

* Significant difference in absolute values between conditions. 
*Significant difference in change relative to baseline between conditions 
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6.4 Discussion 

The purpose of Study III was to investigate the effect of acute exercise on 

hemodynamic variables at rest and during mental stress in males with family history 

of hypertension. The major findings were a significant post-exercise hypotension 

response during recovery and a trend for lower BP during mental stress, which was 

characterised by a consistent reduction in FVR. Also, a post-exercise blunted 

vasodilatation reactivity response to stress was observed. 

6.4.1 Effect of Acute Exercise on Resting Hemodynamics 

Although post-exercise hypotension has been consistently demonstrated 

among hypertensive subjects (Bennett et al., 1984; Cleroux et al., 1992b; Floras et al., 

1989; Hagberg et al., 1987; Quinn, 2000), a number of studies in normotensives have 

not displayed this response (Brownley et al., 1995; Cleroux et al., 1992b; Perronet et 

al., 1989; Quinn, 2000; Rejeski et al., 1992; Roy & Steptoe, 1991). For example, 

Cleroux et al. 1992b examined systemic hemodynamics for 3 hr after cycle ergometry 

exercise (30 min, 50% VO2max) in hypertensive and normotensive subjects. The 

hypertensive subjects demonstrated significant reductions in both SBP and DBP 

persisting for 3 hr post-exercise while the post-exercise BP of the normotensive 

subjects was unchanged. The major post-exercise hemodynamic differences between 

the groups was a lower TPR and FVR in the hypertensives, that was correlated with 

lower post-exercise plasma norepinephrine. That post-exercise hypotension, 

characterised by lower SBP, has been displayed in the present cohort of males with a 

family history of hypertension suggests that the response may only be apparent in 

individuals who are predisposed to certain patterns of cardiovascular functioning or 

have a specific response to exercise. For example, a number of studies have 

demonstrated that individuals with a family history of hypertension, compared to 
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those without, have a higher SBP response (Molineux & Steptoe, 1988; Nielson et al., 

1989; Saito et al., 1989) and significantly higher venous norepinephrine levels 

(Wilson, Sung, Pincomb, & Lovallo, 1990) during submaximal exercise. The 

cardiovascular patterning responses closely related with hypertensives and offspring 

hypertensives is elevated levels of sympathetic nervous activity (SNA) that may 

explain why the mechanism most commonly associated with post-exercise 

hypotension is sympathoinhibition. Thus, it may only be in individuals with 

heightened sympathetic drive that a significant post-exercise hypotensive effect is 

observed. 

6.4.1.1 Sympathoinhibition. Post-exercise sympathoinhibition is thought to 

involve both neural and local mechanisms. Although the present study did not employ 

any measures to directly assess sympathetic outflow to the vasculature, HPV" at 

medium frequencies was examined, which is thought to provide a measure of cardiac 

sympathetic activation. That HPVm at the medium frequencies was significantly 

blunted post-exercise suggests a cardiac sympathoinhibition response. Also, that 

HPV,, at the high frequencies, thought to signify cardiac parasympathetic influence, 

was significantly blunted post-exercise suggests that elevated post-exercise HR was 

due to vagal withdrawal and not sympathetic activation. Floras et al. (1989) reported a 

decreased post-exercise SNA to the skeletal muscles of the leg measured with 

microneurography, in hypertensive subjects. A possible neural mechanism is an 

increased sympatho-inhibitory input from cardiopulmonary (C-P) baroreceptors post- 

exercise. Collins and DiCarlo (1993) showed that post-exercise hypotension was 

reversed in rats after blocking C-P afferents. Also, Bennett et al. (1984) examined 

FVR responses to LBNP before and after exercise. These authors reported greater 

increases in FVR during LBNP after exercise, suggesting that C-P baroreceptors exert 
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a greater inhibitory influence on the vasculature after exercise. Because dysfunction to 

the C-P baroreceptors has been reported in borderline hypertensives (Mark & Kerber, 

1982) and offspring hypertensives (Ueda et al., 1989) it is possible that exercise may 

have a greater effect on the baroreceptors in these groups. 

The reduction in FVR observed post-exercise is similar to the findings of West 

et al. (1998) who observed consistent reductions in a vascular resistance index post- 

exercise that was greater in individuals with higher vascular resistance on the control 

day. That a post-exercise increase in baseline FBF was observed despite employing 

leg exercise is also in agreement with previous work (Cleroux et al., 1992b). This 

suggests that local ischemic metabolites are not the only mechanism responsible for 

decreased vascular tone. In addition to reductions in neurally mediated sympathetic 

outflow, vascular responsiveness to a-adrenergic receptor stimulation is impaired 

after exercise (Halliwill, Taylor, & Eckberg, 1996). Local mechanisms that effect the 

transduction of sympathetic outflow at the level of arterial smooth muscle may 

include release of vasodilator substances, or by modulation of the a-adrenergic 

pathway (presynaptic or postsynaptic inhibiton), see Figure 6.7. Nitric oxide is a 

prime candidate as a local vasodilator because studies have shown it to be increased 

after acute exercise (Jungersten, Ambring, & Wennmalm, 1997) and it is also known 

to attenuate the vasoconstrictor response to a-adrenergic receptor stimulation (Patil, 

DiCarlo, & Collins 1993). Down-regulaton of a-adrenergic responsiveness may be 

important in hypertensives and offspring hypertensives because they have 

demonstrated exaggerated vascular or pressor responses, or lower threshold response 

to infused norepinephrine (Doyle & Fracerm, 1961; De Lima et al., 1990). 
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6.4.1.2 Plasma volume. A significant decrease in post-exercise body mass 

demonstrated by all subjects suggests that the exercise employed in the present study 

produced reductions in plasma volume due to the sweating response. Hypovolemia 

would account for the significantly elevated post-exercise HR and reduced SV. 

Greenleaf, Sciaraffa, Shvartz, Keil, and Brock (1981) have suggested the activity of 

the renin-angiotensin-aldosterone (RAA) system and concomitant regulation of 

plasma volume, sodium, and potassium appear to be intimately involved in the control 

of peripheral resistance and blood pressure. During exercise, the hypovolemia coupled 

with the lower DBP is thought to activate vasopressin and increase plasma renin 

activity (PRA) to help retain plasma volume by retaining sodium and water in the 

kidney. Increases in PRA also activates angiotensin II that is a strong vasoconstricting 

hormone, which acts on vascular smooth muscle to produce increases in peripheral 

resistance. The continued stimulation of the vascular vasoconstrictive mechanism by 

the RAA system, helping to maintain plasma volume and prevent further decreases of 

DBP during exercise, may result in a diminished post-exercise vasoconstrictive 

response, thus accounting for post-exercise hypotension. That is, most physiological 

systems demonstrate a characteristic over compensation in order to restore 

homeostasis. 

6.4.1.3 Thermoregulatory vasodilatation. Another possible mechanism 

involved in the post-exercise hypotensive response is thermoregulatory vasodilatation. 

An increased vasodilatation response in the skin could have contributed to a reduced 

post-exercise vascular resistance. The method employed in the present study 

specifically measured forearm muscle blood flow and it is therefore difficult to make 

inferences concerning forearm skin blood flow because the muscle and skin 

circulation are thought to be under different regulatory control. However, Cleroux et 
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al. (1992b) evaluated post-exercise forearm skin blood flow in hypertensive and 

normotensive subjects by measuring blood flow to the hand, as most of the blood flow 

to the hand is distributed to the skin. That only the hypertensive group demonstrated 

post-exercise hypotension, yet both groups demonstrated similar post-exercise 

reductions in hand vascular resistance, suggests that the skin vasodilatation response 

does not play a major role in post-exercise hypotension. In contrast, Franklin, Green, 

and Cable (1993) demonstrated that the magnitude of post-exercise hypotension was 

dependent on the environmental conditions during recovery from exercise. Post- 

exercise hypotension was greater when subjects recovered in warm conditions 

compared with neutral and cool climates suggesting that part of the hypotensive effect 

may be dependent upon thermoregulatory-induced changes in skin blood flow. That 

subjects in the present study recovered from exercise in a warm climate (24°C) 

suggests that thermoregulatory vasodilatation may have played some part in the post- 

exercise hypotension response. 

6.4.2 Hypotensive Effects and Exercise Intensity 

The present findings suggest that there is a strong relationship between post- 

exercise reduction in FVR and exercise intensity. Previous work by Steptoe et al. 

(1993) examined the effect of high (70% VO2_ ) and moderate intensity (50% 

VOz. ) exercise on cardiovascular responses following exercise. The authors 

demonstrated that both exercise intensities significantly reduced SBP in comparison 

with baseline by similar levels (10.2 versus 6.9 mmHg reductions in SBP for 70 and 

50% exercise intensities respectively). However, baroreflex sensitivity, assessed from 

the naturally occurring covariations of SBP and pulse interval, was significantly lower 

following exercise in the 70% condition compared with both 50% and control 

conditions. Cleroux et al. (1992a) speculated that post-exercise facilitation of an 
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inhibitory C-P reflex effect might be responsible for resetting the arterial baroreflex. 

That is, enhanced neural activity from C-P baroreceptors entering the central nervous 

system may alter the operating point of the arterial baroreflex. Thus, this supports the 

notion that at higher exercise intensities arterial baroreflex sensitivity may be 

depressed post-exercise due to increased C-P baroreceptor input, causing enhanced 

reductions in FVR. Factors contributing to the facilitation of inhibitory C-P reflexes 

following exercise are thought to be largely through changes in contractility mediated 

through changes in circulating catecholamine concentration and the SNS (DiCarlo et 

al., 1994). Thus, an enhanced level of C-P input post-exercise, as a result of higher 

exercise intensities may be due to an increase in cardiac contractility induced by 

increases in circulating catecholamines. 

Hard exercise is also associated with a greater depletion of plasma volume and 

that the catecholamines are also known to stimulate PRA suggests that at higher 

exercise intensities the RAA system response might be exaggerated. Thus, greater 

vasconstrictive effects might be produced during exercise promoting larger decreases 

in FVR post-exercise. 

6.4.3 Effect of Acute Exercise on Stress Reactivity 

The present findings of a blunted BP response to the mental stress, post- 

exercise are consistent with previous research (Probst et al., 1997; Rejeski et al., 

1991; Roy & Steptoe, 1991; Steptoe et al., 1993; West et al., 1998). The 

cardiovascular patterning suggests that the blunted BP response was not due to a 

central mechanism, as the post-exercise absolute HR levels were significantly 

elevated throughout the Stroop. Although data from the present study demonstrates a 

significantly lower HR reactivity to the second part of Stroop post-exercise, compared 

with control, this may have been confounded by an already elevated post-exercise 
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HR. This data is similar to that of Probst et al. (1997) who also observed a blunted 

HR response to the Stroop post-exercise, but also had elevated post-exercise HR. 

Although the present findings and those of Probst et al. (1997) may have been 

confounded by elevated baseline post-exercise HR, there is evidence to suggest HR 

responsiveness is reduced after acute exercise in dogs (Friedman, Ordway, & 

Williams, 1987). Friedman et al. (1987) showed that after 60 min of treadmill running 

at 60-80% maximum HR, dogs exhibited functional desensitisation of 0-1 adrenergic 

receptors evidenced by a three-fold increase in the dose of isoproterenol required to 

produce a 25 b. min-' increase in HR. However, data from the present study is more 

supportive of a peripheral mechanism to explain the blunted BP response. This was 

demonstrated by a significantly reduced FVR throughout Stroop, post-exercise. That 

the percentage change in FBF during Stroop was significantly lower post-exercise in 

comparison with control suggests an exercise-induced reduction in vascular reactivity. 

The skeletal muscle vasodilatation response to mental stress is thought to 

involve both sympathetic withdrawal and 0-2 adrenergically mediated vasodilatation 

(Halliwill et al., 1997). That a post-exercise vasodilatation response was already 

apparent before the start of the stress task, which was probably due to reductions in a- 

adrenergic tone (sympathetic withdrawal), suggest that the post-exercise 

vasodilatation response to stress was possibly completely mediated by 0-2 adrenergic 

pathways. Therefore, a blunted vasodilatation stress response post-exercise was 

possibly due to a combination of reduced sympathetic withdrawal and down 

regulation of ß-2 adrenergic receptors. The data from Study I supports a role for the 

C-P baroreptors in the vasodilatation stress response because when LBNP was used to 

unload these receptors the vasodilatation stress response was attenuated. In the present 

study, as previously discussed, C-P baroreceptor input was probably already increased 

146 



as a result of acute exercise and therefore this may have negated any further increases 

in baroreceptor activity during stress. There is also strong evidence for down 

regulation of the (3-2 adrenergic receptors. Butler, Kelly, O'Mally, and Pidgeon 

(1983) showed that an acute bout of exercise in man resulted in an immediate increase 

in ß-2 adrenoceptor responsiveness that was rapidly followed by a desensitisation 25 

min post-exercise. Howard and DiCarlo (1992) also demonstrated an attenuated 

response of the vasculature to 0-2 adrenergic receptor mediated vasodilatation after 

acute exercise in rabbits. Howard and DiCarlo (1992) suggested the mechanism may 

be related to high levels of active hormones, increased body temperature, local 

acidosis, and increasing levels of PC02 as these factors are known to occur as a result 

of acute exercise. For example, exposure of target cells to high concentrations of a 

hormone results in subsequent decreases in sensitivity (Lefkowitz, Caron, & Stiles, 

1984). Thus, during exercise when epinephrine is significantly increased, this may 

result in a functional downregulation of the 0-2 adrenergic receptor post-exercise. 

Also, researchers have reported attenuated adrenergic receptor sensitivity at 

temperatures above 23°C (Roberts, Chilgren, & Zygmunt, 1989) and under conditions 

of acidosis (Stokke et al., 1984). A reduction in epinephrine discharge from the 

adrenal medulla, post-exercise, may further reduce the ß-adrenergically mediated 

vasodilatation stress response. Peronnet et al. (1989) demonstrated a 50% reduction in 

plasma epinephrine post-exercise during the Stroop mental challenge. See Figure 6.8. 
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6.4.4 Interaction of the Opioid Pathways 

Another possible mechanism that has been linked to post-exercise 

sympathoinhibition and reduced stress reactivity is the opioid receptor pathways in 

the central nervous system (Thoren, 1990). Morris et al. (1990) showed that an opiate 

antagonist enhanced HR reactivity to a mental stress task, although it had no effect on 

blood pressure response or plasma catecholamine levels. Schobel, Oren, Mark, and 

Ferguson (1992) showed that the opioid antagonist, naloxone, selectively potentiates 

C-P baroreflex regulation of sympathetic neural activity during lower body negative 

pressure from 0 to -15 mmHg in humans. Weinstock and Weksler-Zangen (1989) 

have also shown that low baroreflex sensitivity was due to deficient opioid inhibition 

of sympathetic outflow in rabbits. However, further studies have indicated that post- 

exercise SNA is not altered using an opiate antagonist (Hara & Floras, 1992) which 

casts doubts on the mechanism. 

6.4.5 Implications 

Reducing vascular reactivity in individuals at risk from hypertension may be 

particularly important because numerous daily episodes of excessive regional blood 

flow may be responsible for a vascular re-modelling process that has been linked to 

the development of hypertension. That the catecholamines are thought to possess 

trophic properties, which may enhance the growth of vascular smooth muscle (Blaes 

& Boissel, 1983) suggests that hyper-reactivity of the SNS may play a significant role 

in the vascular remodelling process. The administration of ß-blockers in man and 

animals is associated with regression of vascular hypertrophy (Franklin, Morris, & 

Loveday, 1982; Hansson & Sivertsson, 1984). This suggests (3-blockers may interrupt 

the adrenergic mechanism causing hypertrophy. This is supported by findings that 

show (3-blockers prevent growth of smooth muscle cells in culture (Yamori et al., 
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1984) and that denervation reduces the extent of vascular hypertrophy in hypertension 

by a mechanism independent of pressure (Hart, Heistad, & Brody, 1980). Thus, an 

exercise-induced sympathoinhibition and down regulation of ß-adrenergic receptors 

may play an important role in preventing changes to cardiovascular functioning 

associated with early stages in the developmental process of hypertension. 

6.4.6 Summary 

A bout of strenuous acute exercise has produced a hypotensive BP response 

during recovery and a trend for lower BP during mental stress, which was 

characterised by a consistent reduction in FVR. Also, a blunted FBF reactivity 

response to stress, post-exercise, has been demonstrated. 
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CHAPTER 7 

GENERAL DISCUSSION AND FURTHER RESEARCH 

Three studies have been completed that have investigated the effects of 

physical activity and acute exercise on risk markers of hypertension in male offspring 

hypertensives. This general discussion will firstly summarise the major findings by 

reviewing the hypotheses, then outline the implications and importance of the results, 

and finally make overall conclusions and suggestions for further work. 

7.1 Review of Hypotheses 

7.1.1 Study I 

The hypothesis stating that moderately active offspring hypertensives would 

display augmented cardiopulmonary baroreceptor function compared with highly 

active offspring hypertensives was partially accepted because although augmented 

function was not observed at rest, it was observed during mental stress. The second 

hypothesis that stated moderately active offspring hypertensives would display a 

higher level of cardiovascular reactivity in comparison with the highly active 

offspring hypertensives was accepted. Specifically, the moderately active group 

displayed greater levels of cardiac and forearm blood flow (FBF) reactivity to mental 

challenge. These findings were related to hyper-reactivity of the sympathetic nervous 

system. 

7.1.2 Study II 

The hypothesis stating moderately active offspring hypertensives would 

display urinary sodium retention during mental challenge in comparison with the 

highly active offspring hypertensives was not accepted. However, the second 

hypothesis stating that moderately active offspring hypertensives would display a 

higher level of cardiovascular reactivity to an extended mental challenge in 
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comparison with the highly active offspring hypertensives was accepted. Specifically, 

FBF reactivity was greater in the moderately active during the initial stages of the 

stress, although both groups displayed enhanced FBF for the whole stress period. 

Differences in sympatho-adrenal responses and/or ß-2 adrenergic receptor sensitivity 

between the moderately and highly active groups were implicated in these findings. 

7.1.3 Study III 

The hypothesis stating that acute exercise would lower cardiovascular 

reactivity to mental challenge in offspring hypertensives was accepted. Specifically, 

there was a trend for lower blood pressure (BP) during stress post-exercise and FBF 

reactivity was diminished following acute exercise in comparison with control 

conditions. Post-exercise sympathoinhibition and a possible down regulation of ß-2 

adrenoceptors were implicated in these findings. 

7.2 Implications and Importance of Findings 

The 0-2 adrenoceptors have been identified in the present research as playing 

a key role in the hyper-reactive response to stress and have been strongly implicated 

in a pathological vascular re-modelling process. Recent work has tested the 

hypothesis that genetic variation in the 0-2 adrenoceptor gene is associated with a 

genetic predisposition to hypertension. Timmermann et al. (1998) demonstrated that 

the Arg16 variant of the 0-2 adrenoceptor was associated with parental hypertension 

and higher BP in a sample of 23 hypertensive and 22 normotensive northern European 

families. Bengtsson et al. (2001) also showed that individuals with type II diabetes 

who possessed the Arg16 variant of the 0-2 adrenoceptor appeared to be at increased 

risk of hypertension in a sample of hypertensive patients with and without type II 

diabetes, and healthy control subjects. The functional importance of the Arg16 variant 

has been demonstrated in two contrasting studies. Firstly, Hoit, Suresh, Craft, Walsh, 

152 



and Liggett (2000) studied the vasodilatation response to the 0-2 agonist terbutaline in 

individuals who possessed the Arg16 variant or the G1y16 variant of the 0-2 

adrenoceptor gene. They concluded that in individuals possessing the G1y16 variant 

the vasodilatation response to catecholamines was attenuated in comparison with the 

Arg16 variant. However, in contrast Cockcroft et al. (2000) demonstrated that 

individuals with Arg16 variant of the 03-2 adrenoceptor gene had attenuated 

vasodilatation responses to 0-2 agonists in comparison with individuals possessing the 

G1y16 variant. Although this is a developing area of research that clearly needs further 

work, these studies confirm that there may be an important link between adrenoceptor 

polymorphisms and hypertension development. Specifically, there is evidence to 

suggest the Arg16 variant of the 0-2 adrenoceptor gene is related to hypertension 

development and this variant may also be involved with exaggerated vasodilatation 

responses. 

The possible interaction of exercise with the ß-adrenoceptor at a molecular 

level was highlighted by Fujii et al. (1997) who examined the effect of acute exercise 

on ß-adrenoceptor gene expression. The authors found that immediately after an 

incremental exercise test to exhaustion there was a significant increase in ß- 

adrenoceptor number that was correlated to ß-adrenoceptor mRNA level. Thus with 

future technological advancements in this area, research may identify specific effects 

of exercise on adrenoceptor polymorphisms. 

7.3 Conclusions 

Previous research has demonstrated that only 30-40% of offspring 

hypertensives actually develop hypertension (Watt, Foy, Holton, & Edwards, 1991). 

Although this figure increases with a bi-parental history of hypertension this suggests 

that despite the existence of certain risk markers, there are possibly a cluster of factors 
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that trigger the initial onset of hypertension development. For example, Dluhy, 

Hopkins, Hollenburg, Williams, and Williams (1988) have referred to "non- 

modulators" who are individuals that fail to modulate their renal blood flow and 

aldosterone responsiveness when dietary sodium is changed. Furthermore, non- 

modulation was also found to significantly aggregate in families with a history of 

hypertension. Other researchers (Miller et al., 1995) have also shown an elevated total 

peripheral resistance and norepinephrine response to stress during sodium loading 

relative to placebo, in offspring hypertensives relative to controls. Therefore, it may 

be the combination of a number of lifestyle factors, such as a high sodium diet, lack of 

physical activity, and stress that provide the trigger for the development of 

hypertension in genetically predisposed individuals. 

The present series of studies have clearly shown a strong association between 

aerobic exercise and cardiovascular reactivity to mental challenge in offspring 

hypertensives. The results suggest that exercise may be a suitable non- 

pharmacological intervention to reduce cardiovascular reactivity to stress, which has 

been linked to the development of hypertension. The present findings are supportive 

of a mechanism that is related to an acute as opposed to a chronic exercise stimulus, 

which may have important implications for future research. 

7.4 Suggestions for Further Research 

7.4.1 Acute Exercise Dose-response and Modality 

The majority of research to date that has examined the anti-hypertensive and 

stress reactivity reducing effects of exercise has focused on chronic exercise training. 

Thus, although the optimal dose-response relationship between exercise and BP 

reduction is seemingly established for chronic exercise training, this is not the case for 

acute exercise. Two studies that have addressed the issue of dose-response 
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relationship and acute exercise in normal subjects (Rejeski et al., 1991; Steptoe et al., 

1993) have suggested that rigorous exercise (70-80% VOz-) is more effective in 

attenuating psychophysiological reactivity during stress in comparison with moderate 

exercise (50% VOzm ). However, both exercise intensities seemed to produce similar 

post-exercise hypotensive effects. Similarly, Quinn (2000) demonstrated that bouts of 

exercise at 50 and 75% VO2_ produced the same degree of post-exercise hypotension 

in hypertensive subjects. However, 24 hr ambulatory BP monitoring after the exercise 

bout demonstrated that both systolic and diastolic BP were reduced for a significantly 

longer period of time after the higher intensity exercise. This seems to be in contrast 

to the chronic training literature where a recent meta-analysis by Hagberg and Brown 

(1995) suggested that mild-moderate exercise is more effective for reducing high 

blood pressure. Thus, more research that addresses the dose-response relationship 

between acute exercise and attenuation of BP in hypertensive patients should be 

performed to identify potential mechanisms. Also, there is presently no other research 

in the literature, to the knowledge of the present author, which has examined the 

effects of acute exercise on FBF reactivity to stress. Thus, the current findings on the 

effects of acute exercise on FBF stress reactivity should be expanded. For example, 

the dose response relationship between acute exercise and FBF stress reactivity 

should be examined. 

There is also little research that has examined the effect of exercise modality 

on the BP and stress reactivity lowering mechanisms of acute exercise. For example, 

the majority of exercise programmes currently prescribed in the health and fitness 

setting involve a combination of aerobic dynamic exercise and resistance exercises. 

However, there are few studies that have compared the acute effects of resistance 

training and aerobic exercise on post-exercise BP responses. MacDonald et al (1999) 
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showed that the post-exercise hypotension response was independent of exercise 

modality when comparing cycle ergometry exercise (15 min, 65% VO2_) with 

unilateral leg press resistance exercise (15 min, 65% of 1 repetition maximum), 

although employing a weak experimental design. MacDonald, MacDougall, and 

Hogben (2000) also demonstrated similar findings when comparing arm versus leg 

ergometry exercise (30 min, 65% VOým ). However, there is no research that has 

examined the acute effect of exercise modality on stress reactivity. Therefore, further 

research is clearly needed in this area firstly to confirm the findings of MacDonald et 

al (1999) that resistance exercise contributes to an antihypertensive effect. Secondly, 

further research is needed to examine the antihypertensive mechanisms for different 

types of exercise that will contribute to the overall understanding of the effects of 

acute exercise on the cardiovascular responses. 

7.4.2 Population Specific Research 

Previous research has suggested that hypertensive subjects demonstrate 

significantly greater post-exercise reductions in BP compared with normotensive 

subjects, who sometimes do not demonstrate any significant reduction at all (Cleroux 

et al., 1992b; Quinn, 2000). However, although the present research is the first to 

examine the post-exercise BP response in individuals with a family history of 

hypertension, further research should compare the response in both offspring 

hypertensives and offspring normotensives. This would provide further insight into 

individual variations in post-exercise cardiovascular responses. 

7.4.3 Longitudinal Research and Risk Markers 

Longitudinal research that follows families with a history of hypertension is of 

prime importance in order to elucidate the cluster of risk markers that are responsible 

for the early development of hypertension. 
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SUBJECT INFORMED CONSENT 

The researchers conducting this project support the principles governing both the 
ethical conduct of research, and the protection at all times of the interests, comfort, 
and safety of subjects. 

This form and the accompanying "Information for Subjects" leaflet are given to you 
so that you may be fully informed of the experimental procedures and possible risks 
that accompany participation in this study. 

Your signature below indicates six things: 
(1) you have received the "Information for Subjects" leaflet; 
(2) you have read its contents; 
(3) you have been given the opportunity to discuss the contents with one of 
the researchers prior to commencing the experiment; 
(4) you clearly understand the procedures and possible risks of participation 
in the study; 
(5) you voluntarily agree to participate in the project; and 
(6) your participation may be terminated at any point in time without 
jeopardising in any way your involvement with De Montfort University, or 
your assessment for any course undertaken through this university. 

Any concerns, complaints, or further questions may be directed to Mark Hamer 
(The Physical Activity & Health Research Unit: phone 01234 793465), or Dr. Steve 
Boutcher (research supervisor: phone 01234 793353). Subsequent inquiries may be 
directed to Simon Eassom (Director of the Human Ethics Committee: phone 01234 
793373). 

Signed: Date: 
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THE PHYSICAL ACTIVITY AND HEALTH RESEARCH UNIT 
DE MONTFORT UNIVERSITY, BEDFORD 

INFORMATION FOR SUBJECTS 
1. Project Objectives. To identify risk markers of hypertension in high risk 

individuals. 

2. Rationale. Hypertension presents a serious health concern to the worldwide 
population. The identification of early risk markers to predict the future 
development of hypertension is therefore an important and ongoing area of 
research. 

3. Test Procedures. Testing will involve the application of surface electrodes and 
electrode band tape to the upper body, a blood pressure cuff on the left arm, wrist, 
arm cuffs and a mercury strain gauge on the right arm. The collection of data will 
involve lying down in a supine position, with the lower body sealed in a lower 
body negative pressure chamber. Measurements of heart rate, cardiac output, 
stroke volume, blood pressure and forearm blood flow will be taken. The 
experimental procedure will involve the application of mild levels of lower body 
negative pressure (stimulates standing up from sitting), a word colour 
identification test, and a cold pressor test involving application of ice to the 
forehead for 1-min. Subjects will be required to undergo a maximal oxygen 
uptake test on a bicycle ergometer, lasting approximately 10-min. 

4. Risks and Discomforts. During the experimental session it is anticipated that your 
heart rate and blood pressure will rise, although not to levels higher than you 
would commonly experience. Application of lower body negative pressure will 
produce sensations similar to standing up from a supine position. The word-colour 
identification task may induce mild psychological stress, and the cold pressor test 
may cause a certain degree of discomfort. During the maximal exercise test you 
may feel a certain amount of discomfort in the legs and chest, but this is quite 
normal. 

5. Inquires. Questions concerning the procedures and/or rationale used in this study 
are welcome at any time. All initial inquiries should be directed to the investigator 
conducting this project (Mark Hamer, The Physical Activity & Health Research 
Unit: phone 01234 793465), or Dr. Steve Boutcher (research supervisor: phone 
01234 793353). 

6. Freedom of Consent. Participation in this project is entirely voluntary. You are 
free to deny consent before or during the experiment. In the latter case such 
withdrawal of consent should be made at the time you specify, and not at the end 
of a particular trial. Your participation and/or withdrawal of consent will not 
influence your present and/or future involvement with De Montfort University. In 
the case of student involvement it will not influence grades awarded by the 
University. 

7. Confidentiality. All questions, answers, and results of this study will be treated 
with absolute confidentiality. Subjects will be identified in the resultant 
manuscripts, reports or publications by the use of subject codes only. 
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Physiology of Exercise Laboratories 
Alexander Sports Hall 
Sidney Road 

DE MONTFORT 

BEDFORD MK40 2BQ 
UNIVERSITY 

BEDFORD 

PRE-TEST MEDICAL QUESTIONNAIRE 

Name: ................................................................................................. 
Date of Birth ............................... Age: 

............. Sex: .... ...... ........... 

Please answer the following questions by putting a circle round the appropriate 
response or filling in the blank. 

How would you describe your present level of activity? 
Sedentary / Moderately active / Active / Highly active 

2. How would you describe your present level of fitness? 
Unfit / Moderately fit / Trained / Highly trained 

3. How would you consider your present body weight? 
Underweight / Ideal / Slightly over / Very overweight 

4. Smoking Habits: Are you currently a non-smoker? Yes/No 
Are you a previous smoker? Yes/No 
How long is it since you stopped? ... years 
Were you an occasional smoker? Yes / No 

... per day 
Were you a regular smoker? Yes/ No 

... per day 

5. Do you drink alcohol? Yes / No 
If you answered Yes, do you have: 
An occasional drink /a drink every day / more than one drink a day? 

6. Have you had to consult your doctor within the last six months? Yes / No 
If you answered Yes, please give details to the tester. 

7. Are you presently taking any form of medication? Yes / No 
If you answered Yes, please give details to the tester. 
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8. As far as you are aware, do you suffer or have you ever suffered from: 

a. Diabetes? Yes /No b. Asthma? Yes /No 

c. Epilepsy? Yes /No d. Bronchitis? Yes /No 

e. Any form of heart complaint? Yes /No f. Serious back or neck injury? Yes/No 

g. High blood pressure Yes /No h. Aneurysm or embolism? Yes/No 

g. Is there a history of heart disease in your family? 

10. Do you currently have any form of muscle or joint injury? Yes / No 

11. Have you had to suspend your normal training in the last two weeks? Yes / No 

12. As far as you are aware, is there anything that might prevent you from 
successfully completing the tests that have been outlined to you? Yes / No 

13. As far as you are aware: 

a. Are you suffering from any known active, serious infection? 

b. Have you had jaundice within the previous year? 

c. Have you ever had any form of hepatitis? 
d. Are you HIV antibody positive? 

e. Have you ever been involved in intravenous drug use? 
f. Are you a man who has had any sexual contact with another man? 
g. Have you had unprotected sexual intercourse with any person from an HIV 

high risk population e. g. Africa, Thailand, Miami since 1977? 

h. Are you a haemophiliac? 

i. Have you ever been a prostitute? (male or female) 

j. Have you had sexual partners of categories d-i above? 

If you can answer yes to any of questions a-i, please sign here: 

........................................ 
If you have answered no to all of questions a-i, please sign here: 

If there is any change in circumstances outlined above, it is your responsibility to the 
person administering the test immediately. 
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ANEWW" 

pOYSIC. U ACM M RFADh'TSS QLNlaNN. AIRE (PAR4 ) 
A Sel1"administered Questioanaire for adults 

IF 
YOU 

ANSWERED 

PARnCIPANT IDENTIMA DI 

Jý : iTL ! JW: ý'L " 

PAR-C s designed to neic you neic yourself Mary rearth : enems are assccated wrtn 

regular exerese, and the comoienor. ct F An-O is a sensoie first step to : axed you are cam ng 
to increase the amount of ;: nysical acsv ry in your life. 

For most pecoie oMysroat acavity should net pose any orcotem or ha; arr. PAR-C has been 

designed to ieennry the small numoer or adults for whom Dnysrcai acrvrty migrt be inaaaroon" 
ate or those who sncuf have meorcal advice concerning the type et acsvIty most suit=e for 

them. 

Common sense is your best guide in answering these few ouesnons. -'lease read tern 
carefully arte c+ect the YE or NO c00esne the cuesnon if it anoues to ycu. 

YES NO 

s Has your ccc: r ever said you rave near, trotzie? 

2 Do you freouernty nave pains in your heart and crest" 
]D'. Do you afters feel faatt or have spells of severe cz ness' 

A Has a doc. cr ever said your blood pressure was too m 9r, 
]Q.. Has your eocr ever tole you mat you nave a bone or point orcolem sucn as srmnrs 

irret has been aggravated by exerese. or mignt be mace worse with exer=e? 
6. Is there a good onysd reason not mentioned mere why you should +o; tow an 

a=viry prop ar. even if you wanteb to! 

Q 7. Are you over ape 65 and not ac: stomee to vicomus exerc"se? 

it you nave not recenttv cone so. : onsut w, tn your 

Per3or at Pnv$ c an by teleonone or n per3on 
3E=ORE 1=easing your Pnyv=w ac-Ty arwcr 

a)unq a mess test. Teil him wmat ouesnon, you 

,; r; werMC YES on PAR-C or snow him your -coy. 

+^er mecrgl evaluation seen acvrca from your 
Lrymcan as to your susia3rfN ior 

" unrestnccea Onysrcat acn iry. proaaoty on a qna, - 
alh increasing oasis. 

' 'eStrCt90 of SUOervtse0 ac9Vrry to mot your soe- 
-tlc ne. as. at least on an nmai basis. Cheer n 

munrry 10r So. Cal Orc; rams a ". r.. ... - 

i! you answered P4F":, a^JraleIv vw n'ave r0, 
sonacle assurance Ot yOur D(esenf ssCIIDIM IDC 

A ý-, RAOUATED EYERC! SE PgOGRAM" A qraº 

-a1 in=@aS@ In OtOON e7IrCitt 7t ? fl q3ld 
fllr, S$ OWMOOmMI wnda minunIDnq at eummº 

: n" ^ISCOmIOrt. 

" AN ExS;; CISC' ES-. übe tests ct Less l; td 

dS '&, e Canacia^ Hore ý"IneSi ro r' man 

=mclei rvpes may oil uncer, a. en :f rm So visa 

temc04ry minor dlnea suFa as 

Figanr 3.1 The Physical A=wry Readiness Queoonnaire (PAR-Q) is uaerv) in health fairer mas. 
tom+S nnasnonsror screening cue u+div+duals at risk for ordlo"ncvlar of meaboitc diatase. ' 
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SELF EVALUATION QUESTIONNAIRE 
Developed by C. D. Spielberger, R L. Gorsuch and R Lushene 

STAI FORM X-1 

NAME 

CODE: DATE: 

DIRECTIONS: A mmnber of statements which people have M 
used to describe themselves are given below. Read each C7 

stmemýn: t and then Wad= in the appropriate circle to the right 
-< 

of the statement to indicate how you feel right now. that is. at C 

this moment. There are no right or wrong answers. Do not 
y m 

spend too mach time on any one smftmew but give the answer Ö 
to describe your present feelings best. Ö 

1. I feel calm O ® ® 

2. I feel secure. m ® ® m 

3. I am tense ........................... 
m (i ® m 

4.1 am regcetfnl ........ 
T 12 (M T 

5. I feel at ease... D Ch i m 

6. I feel upset.. Cß ý` 

7.1 am presently worrying over possible misfortunes. ................... 
m 2) (3) 4) 

8. I feel rested... 

9. I feel anxious. l; ® m 

14. I feel comfortable. ( "2 ® m 

11. I feel self-confident...... ® ® " m 

12. I feel nervous m lý 

13.1 am jittezy. 
........ 

® ® m 

14.1 feel "high stnmg" m ® ® m 

15. I am relaxed......... 

16. I fed content. (D @ ® m 

17. I am worried.. m m 

18. I feel over-excited and "tattled"... ® ® Q 

19. I feel joyful..... m m ® m 

20.1 f e1 pleasant. 

CONSULTING PSYCHOLOGISTS PRESS 
577 College Avenue, Palo Alto, California 94306 
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V. 29, No. 6 Supplement Official Journal of the American College of Sports Medicine S91 

The Seven-Day Recall 

7 

Today's Date_ 

0. No (Skip to Q#4) 1. Yes 

_ days 

- 
hours last week 

mfl IcuccT n6V4M 

SLEEP 1_ 2_ 3 4_ 5_ 6_ 7- 

M Moderate 
0 
R 
N Hard 

N 
G Very Hard 

A 
F Moderate 
T 
E 
R Hard 
N 
0 
O Very Hard 
N 

E Moderate 
V 
E 
N Hard 

N 
0 Very Hard 

Total Strength: 
Min 
Per Day Flexibilit : 

4a. Compared to your physical activity over the past three months, was last week's physical activity 
more, less or about the same? 1. More 

2. Lass 
3. About the same 

Worksheet Key: Rounding: 10-22 min.  . 25 1: 08-1: 22 
hr/min. =1.25 

An asterisk (') denotes a work-related activity. 23-37 min. =. 50 
A squiggly line through a column (day) denotes a weekend day. 38-52 min . a. 75 

53-1: 07 hr/min. =1.0 
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Notes 

Example calculation 

Sleep: 60.0 hr x1 MET = 60 kcal. kg-' 

Light: 99.5 hr x 1.5 MET = 149 kcal. kg"' 

Moderate: 3.5 hr x4 MET = 14 kcal. kg-' 

Hard: 2.5 hr x6 MET = 15 kcal. kg"' 

Very hard: 2.5 hr x 10 MET = 25 kcal. kg-' 

Total weekly energy expenditure = 263 kcal. kg"'. wk"1 

Total daily energy expenditure = 37.8 kcal. kg"l. d'1 

Activity Intensity Classification 

Sleep: defined as the time you get into bed to the time you get out of bed. 

Moderate: similar to how you would feel when walking at a normal pace. 

Hard: harder than walking but not as strenuous as running. 

Very hard: similar to how you would feel when running. 

Light: the remainder of time spent when not physically active or sleeping. 
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STUDY I: EXPERIMENTAL PROTOCOL 

Activity Time 

Warm-up/check & calibrate equipment ihr pre-test 
(COP, AMLAB, Impedance, Plethysmograph, 
Mass Spectrometer, LBNP chamber) 

Subject physical screening (20 min) 
Informed consent, PAR-Q, medical questionnaire, STAI, 7-d. PAR 
Outline procedures of experiment and familiarise with Stroop 
Measurement of height, weight, body fat 

Subject preparation (20 min) 
Standing: fit impedance tape, ECG electrodes 
Supine: seal subject in LBNP chamber, measure BP (manually) 
attach ECG and impedance leads, 

attach Finapress and start (left hand) 

attach forearm strain gauge and occlusion cuffs (right arm positioned at 201) 
Supine rest (10 min) 

Baseline measurements (supine) 00-06 min 
Start Collection of HR, BP, CO 00: 00 
Normal breathing 00: 00-03: 00 
Paced breathing 03: 00-06: 00 

LBNP protocol 06-15 min 
Inflate wrist cuff to 180 mmHg 06: 00 
Start arm occlusion 06: 50 
Collection of first 5s FBF data 07: 00 
(collected for 5 s, every 10 s thereafter) 
Baseline 07: 00-08: 00 
LBNP @ -5 mm Hg 08: 00-09: 30 
LBNP @ -10 mm Hg 09: 30-11: 00 
LBNP @ -15 mmHg 11: 00-12: 30 
LBNP @ -20 mm Hg 12: 30-14: 00 
Release cuff pressure and stop collection of FBF data 14: 00 
Graded I LBNP back to baseline (-I mmHg /2 s) 14: 00-15: 00 

Recovery 15-20 min 

Stress protocol 20-27 min 
Inflate wrist cuff to 180 mmHg 20: 00 
Arm occlusion 20: 50 
Start collection of FBF data 21: 00 
Baseline 21: 00-22: 00 
Stroop task 22: 00-24: 00 
Recovery 24: 00-25: 00 
Forehead Cold Pressor 25: 00-26: 00 
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Recovery 26: 00-27: 00 
Release cuff pressure and stop collection of FBF data 27: 00 

Recovery 27-32 min 

LBNP/stress protocol 32-43 min 
Inflate wrist cuff to 180 mmHg 32: 00 
Arm occlusion 32: 50 
Start collection of BF data 33: 00 
Graded T in LBNP to -20 mmHg (-1 mmHg/2 s) 33: 15 
Stroop task + LBNP 34: 00-36: 00 
Graded !. LBNP back to baseline 36: 00-37: 00 
Graded T in LBNP to -20 mm Hg (-1 mmHg/2 s) 37: 15 
Forehead Cold Pressor + LBNP 38: 00-39: 00 
Recovery (during Graded I. LBNP back to baseline) 39: 00-40: 00 
Release cuff pressure and stop collection of FBF data 40: 00 

Break 40-50 min 
Stop all data collection 
Remove subject from LBNP chamber 
Prepare subject for VOm test 

Incremental VO2-test (cycle ergometer) 50-65 min 

Monitor subject and finish 65-80 min 
(recovery BP, HR) 

193 



Appendix HA Study II Information Sheet 

194 



THE PHYSICAL ACTIVITY AND HEALTH RESEARCH UNIT 
DE MONTFORT UNIVERSITY, BEDFORD 

INFORMATION FOR SUBJECTS 
1. Project Objectives. To identify risk markers of hypertension in high risk 

individuals. 

2. Rationale. Hypertension presents a serious health concern to the worldwide 
population. The identification of early risk markers to predict the future 
development of hypertension is therefore an important and ongoing area of 
research. 

3. Test Procedures. Testing will involve the application of surface electrodes and 
electrode band tape to the upper body, a blood pressure cuff on the left arm, wrist, 
arm cuffs and a mercury strain gauge on the right arm. Subjects will be required to 
comply with a set dietary intake 24 hrs prior to testing. Also, subjects will be 
required to provide two urine samples (one in the morning, pre-test, and one post 
test). Measurements of heart rate, cardiac output, stroke volume, blood pressure 
and forearm blood flow will be taken. The experimental procedure will involve a 
10-min word colour identification task. Subjects will be required to undergo a 
maximal oxygen uptake test on a bicycle ergometer, lasting approximately 10-min 
(if not already tested from first study). 

4. Risks and discomforts. During the experimental session it is anticipated that your 
heart rate and blood pressure will rise, although not to levels higher than you 
would commonly experience. The word-colour identification task may induce 
mild psychological stress. During the maximal exercise test you may feel a certain 
amount of discomfort in the legs and chest, but this is quite normal. 

5. Inquires. Questions concerning the procedures and/or rationale used in this study 
are welcome at any time. All initial inquiries should be directed to the investigator 
conducting this project (Mark Hamer, The Physical Activity & Health Research 
Unit: phone 01234 793465), or Dr. Steve Boutcher (research supervisor: phone 
01234 793291). 

6. Freedom of consent. Participation in this project is entirely voluntary. You are free 
to deny consent before or during the experiment. In the latter case such 
withdrawal of consent should be made at the time you specify, and not at the end 
of a particular trial. Your participation and/or withdrawal of consent will not 
influence your present and/or future involvement with De Montfort University. In 
the case of student involvement it will not influence grades awarded by the 
University. 

7. Confidentiality. All questions, answers, and results of this study will be treated 
with absolute confidentiality. Subjects will be identified in the resultant 
manuscripts, reports or publications by the use of subject codes only. 
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DE MONTFORT UNIVERSITY 
THE PHYSICAL ACTIVITY & HEALTH RESEARCH UNIT 

DIET AND FLUID INTAKE GUIDELINES 

Please adhere to the following guidelines as closely as possible the day before testing. 
Record food intake on the next page. 

Breakfast: 
Bowl of porridge/ or bowl of muesli with semi-skimmed/skimmed milk 
And 
2 slices toast with jam or marmalade (no spread) 
And/or 
1 piece of fruit 

Glass of fruit juice/water 

Lunch: 
Sandwich or roll (choose from following fillings: chicken, cheese, or egg salad). 
And 
Yoghurt or fruit 

Glass of fruit juice/water 

Dinner: 
125g Lean meat (chicken or turkey breast)*/or fish (tuna, salmon, cod)* 
And 
75-1008 pasta or rice 
And 
Vegetables or salad 
And 
Yoghurt or fruit desert 

Glass of fruit juice/water 

* Try to grill or bake meattfish. 

Fluid intake 
Try to consume a litre of fluid during the day (in addition to that at meal times). This 
should preferably be water. Please DO NOT drink any CAFFEINE DRINKS (eg, 
coffee, tea, coke, etc) or ALCOHOL. 
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DIET AND FLUID INTAKE RECORD SHEET 

NAME ........................................ DATE.............. . 

Breakfast: 

Lunch: 

Dinner: 

Additional notes: 
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EXAMPLE -I 

NUTRIENT CONTENT 

Amount RNI %RNI 

Energy kcal 1571.77 2733.5 57.5% 
Protein g 87.915 55.5 158.5% 

Fat, total g 30.43 (57.63) 52.8% 
Polyunsaturate$ g 4.43 (10.48) 42.2% 
Monounsaturates g 8.92 

Saturates q 14.37 (17.46) 82.3% 

Carbohydrate g 252.32 (196.86) 128.2% 
Sugars, total g 113.59 

Starch g 138.08 
Fibre (Englyst) g 5.73* 24.0 23.9% 

Calcium mg 1042.18 700.0 148.9% 
Phosphorus mg 1393.83 550.0 253.4% 

Magnesium mg 215.73 300.0 71.9% 
Sodium mg 1392.59 1600.0 87.0% 

Potassium mg 2199.81 3500.0 62.9% 
Chloride mg 2241.52 2500.0 89.7% 

Iron mg 6.25 8.7 71.9% 
Zinc mg 6.76 9.5 71.1% 

Copper mg 0.78 1.2 64.8% 
Selenium pg 75.68* 75.0 100.9% 

Iodine pg 141.07* 140.0 100.8% 
Thiamin (B1) mg 0.91 (0.63) 144.0% 

Riboflavin (B2) mg 1.18 1.3 90.8% 

Nicotinic Acid eq mg 49.05 (10.37) 472.8% 

Vitamin B6 mg 1.93 (1.32) 146.0% 
Vitamin B12 pg 2.52 1.5 167.91 

Folate pg 151.97 200.0 76.0% 
Vitamin C mg 81.81 40.0 204.5% 
Vitamin A pg 287.03* 700.0 41.0% 
Vitamin D Ng 0.54 

vitamin E equivalents mg 3.66* (1.77) 206.6% 
Cholesterol mg 183.42 

Alcohol g 0.0* 
Water q 757.93 

* mis is an saLnrsro, as foods Provi6n9 dais uraunr yve incompbte Wernmfon. 
0 Calculated 0RV VMuss, shown in p. r n hssls, we based an levels of other nuhla is in the d* 

. 

% Energy 

17% 

60% 
EUPROT 

FAT 
LJCHO 
RALC 

% energy FAT 17.42 
% energy MOFA 5.11 
% energy PUFA 2.53 
% energy SFA 8.23 

Na /K ratio 0.63 
Poly/Sat Fat ratio 0.31 
Na as Sell in gms 3.54 
% energy Carbohydrate 60.2 

% energy Starch 32.94 
%energy Supers 27.1 

% energy PROTEIN 22.39 
% energy ALCOHOL 0.0 

o Carbon Bengston Consultants Limited Nutrient Databar* (c) RSC 1988-1996 (c) Crown copyrplk 18761986 

199 



Appendix IIC Study II Protocol 

200 



STUDY II: EXPERIMENTAL PROTOCOL 

Activity Time 
Pre-meeting 72-48 hrs pre-test 
Provide subjects with dietary guidelines and containers for urine collection 

Dietary control 24 hrs pre-test 
Subjects to adhere to dietary and fluid intake guidelines 

Baseline urine collection Bam on day of testing 
Subjects to collect a urine sample immediately after awakening 

Warm-up/check & calibrate equipment 1 hr pre-test 
(COP, AMLAB, Impedance, Plethysmograph) 

Subject physical screening 9 am 
Informed consent, PAR-Q, medical questionnaire, STAI, 7-d. PAR 
Outline procedures of experiment and familiarise with Stroop 
Measurement of height, weight, body fat 

Subject preparation 
Standing: fit impedance tape, ECG electrodes 
Subjects required to empty bladder before taking the supine position 
Supine (in LBNP chamber): measure BP (manually) 

attach ECG and impedance leads 

attach Finapress and start (left hand) 

attach forearm strain gauge and occlusion cuffs (right arm positioned at 20°) 

Baseline measurements (supine) 00-06 min 
Start Collection of COP, AMLAB, BP 00: 00 
Normal breathing 00: 00-03: 00 
Paced breathing 03: 00-06: 00 

Stress protocol 06-15 min 
Inflate wrist cuff to 180 mmHg 06: 00 
Start FBF data collection (baseline) 07: 00 
(collected for 5 s, every 10 s thereafter) 
Start Stroop 08: 00 
Stop collection of FBF data 10: 00 
Inflate wrist cuff to 180 mmHg 15: 00 
Start FBF collection 16: 00 
Finish Stroop 18: 00 
Stop collection of FBF, COP, AMLAB, BP 20: 00 

Recovery (sitting upright) 20-35 min 

Post-stress urine collection 35 min 

freeze urine samples (-20°C) immediately after testing. 
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THE PHYSICAL ACTIVITY AND HEALTH RESEARCH UNIT 
DE MONTFORT UNIVERSITY, BEDFORD 

INFORMATION FOR SUBJECTS 
1. Project objectives. To investigate the effects of acute exercise on cardiovascular 

responses to mental stress in offspring hypertensives. 

2. Rationale. Hyper-reactive responses to stress have been linked with the 
development of hypertension. Thus, it is important to investigate methods of 
reducing hyper-reactivity to stress in individuals at high risk. 

3. Test procedures. Testing will involve three separate visits to the laboratory. 
Firstly, Subjects will be required to undergo a maximal oxygen uptake test on a 
bicycle ergometer, lasting approximately 10 min (if not already tested from 
previous studies). The next two sessions will involve performing a 10-min word 
colour identification task while measurements of heart rate, cardiac output, stroke 
volume, blood pressure and forearm blood flow are taken. These measures require 
the application of surface electrodes and electrode band tape to the upper body; a 
blood pressure monitor attached to a finger of the left hand; a wrist cuff, upper 
arm cuff and a mercury strain gauge on the right arm. Before one of these sessions 
subjects will be required to perform 30 min of sub-maximal cycle ergometry 
exercise. Subjects will be required to comply with a set dietary intake 24 hr prior 
to each session and testing will be performed after an overnight fast. 

4. Risks and discomforts. During the testing sessions it is anticipated that your heart 
rate and blood pressure will rise, although not to levels higher than you would 
commonly experience. The word-colour identification task may induce mild 
psychological stress. During the 30-min submaximal exercise session and 
maximal exercise test you may feel a certain amount of discomfort in the legs and 
chest, but this is quite normal. 

S. Inquiries. Questions concerning the procedures and/or rationale used in this study 
are welcome at any time. All initial inquiries should be directed to the investigator 
conducting this project (Mark Hamer, The Physical Activity & Health Research 
Unit: phone 01234 793465), or Dr. Steve Boutcher (supervisor: phone 01234 
793291). 

6. Freedom of consent. Participation in this project is entirely voluntary. You are free 
to deny consent before or during the experiment. In the latter case such 
withdrawal of consent should be made at the time you specify, and not at the end 
of a particular trial. Your participation and/or withdrawal of consent will not 
influence your present and/or future involvement with De Montfort University. In 
the case of student involvement it will not influence grades awarded by the 
University. 

7. Confidentiality. All questions, answers, and results of this study will be treated 
with absolute confidentiality. Subjects will be identified in the resultant 
manuscripts, reports or publications by the use of subject codes only. 
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STUDY III: EXPERIMENTAL PROTOCOL 

Activity Time allocated 

Day 1: Initial screening 30 min 
(Medical history, informed consent, maximal oxygen uptake test, 
explanation of protocol and dietary information) 

Day 2 or 3: Treatment A (exercise) Begin 9 am 
Cycling Ergometry 0-30 min 
Record pre-exercise body mass 
Set up subject on cycle ergometer, attach HR monitor 
Gentle warm-up (80 W, 60-80 rev. min-') 0-5 min 
Adjust intensity to 60% of maximum load (whilst maintaining pedalling) on 5 min 
Collect first gas sample/ record RPE, HR* 9-10 min 
Collect second gas sample/ record RPE, HR* 14-15 min 
Collect third gas sample/ record RPE, HR* 19-20 min 
Collect final gas sample/ record RPE, HR* 24-25 min 
Gentle cool-down (50 W, 60-80 rev. min'') 25-30 min 
Record post-exercise body mass 
* Maintain HR at 75-85% FIR reserve. 

Exercise Recovery Period 30-63 min 
STAI form 
Preparation of subject with ECG electrodes/ impedance band tape 
Attach strain gauge, arm cuffs, heart sounds, ECG, ICG leads, 
and Finapres whilst lying on bed. (verify BP manually) 30-55 min 
baseline data collection (COP, AMLAB, BP) begin on 55 min 
Normal breathing 55-58 min 
Paced breathing 58-61 min 
Begin baseline FBF data collection 61-63 min 
(inflate wrist cuff @ 60 min) 

Stress Protocol 63-73 min 
Begin Stroop on 63 min 
Stop collection of FBF data on 65 min 
Re-start collection of FBF data on 71 min 
(inflate wrist cuff @ 70 min) 
Stop Stroop on 73 min 
Stress Recovery 73-78 min 
Stop collection of FBF 75 min 
Stop COP, AMLAB, Finapres 78 min 
Ask subjects to rate Stroop task on Borg scale 

Day 2 or 3: Treatment B (attention control task) 
Repeat protocol for treatment A, except substituting cycling ergometry with a 30-min 
control attention task to involve dietary analysis and measurement of height, weight, 
and four site skinfold. Treatments A and B to be administered in a counterbalanced 
order between subjects, with at least 48 hr recovery between treatments. 
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Journal of Human Hypertension (2002) 16,319-326 
2002 Nature Publishing Group All rights reserved 0950-9240/02 $25.00 

DRIGINAL ARTICLE 
www. nature. com/jhh 

Cardiovascular and renal responses to 
mental challenge in highly and moderately 
active males with a family history of 
hypertension 

Hamer, Y Boutcher and SH Boutcher 
ph, physical Activity and Health Research Unit, De Montfort University, Bedford, UK 

he Objective of this study was to compare FBF and 
' nal responses to mental challenge in highly and mod- 
tately active males with a family history of hyperten- 
Won. Normotensive, healthy males with a family history 
4 hypertension 

(n= 18) were recruited into moderately 
dive and highly active groups. Cardiovascular, FBF, 
ýd renal responses to a 10-min Stroop mental chal- 
Q9e Were 

potassium pre and post st essoro odium as an indi- 

ant of renal blood flow. The results were that the mod- 
*tely active males demonstrated a significantly higher 

del of FBF reactivity to mental challenge compared 

1t that of the highly active. Heart rate change and FBF 

change during the stressor were positively correlated 
(r= 0.75, P<0.01). Both groups, however, demonstrated 
a similar pattern of sodium excretion to mental chal- 
lenge. These findings suggest that physical activity 
level is associated with FBF reactivity but not renal reac- 
tivity to mental challenge in offspring hypertensives. 
That sodium excretion was no different post-stressor in 
the moderately active group suggests that the exagger- 
ated forearm vasodilatation response was not due to 
renal vasoconstriction. 
Journal of Human Hypertension (2002) 16,319-326. DOI: 
10.1038/sj/j h h/ 1001396 

L--Words: sodium retention; vascular reactivity; physical activity; familial hypertension; mental stress 
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Thus, continued exposure to mental stress may be 
an important contributor to the early development 
of hypertension in individuals with a genetic predis- 
position to retain sodium. Although Holmes and 
Cappo" have shown that highly fit offspring hyper- 
tensives demonstrate reduced heart rate and blood 
pressure reactivity to mental challenge compared 
with less fit offspring hypertensives, the effect of 
fitness/physical activity level on the renal responses 
to stress in genetically predisposed individuals 
appear to be undetermined. 

An exaggerated skeletal muscle vasodilatation 
response to mental stress is also thought to play a 
key role in the development of hypertension by init- 
iating a vascular re-modelling process. " Anderson et 
al"" suggested that a possible explanation for the 
enhanced forearm blood flow (FBF) response to 
stress in offspring hypertensives may have been due 
to differences in regional blood flow. This hypoth- 
esis is supported by a number of researchers'-" who 
have shown that during mental challenge offspring 
hypertensives have significantly reduced blood flow 
to the kidney. Activation of the renal a-adrenergic 
receptors is thought to induce sodium retention 
through activation of the renin-angiotensin-aldos- 
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terone system causing renal constriction (altering 
glomerular filtration rate) and/or altering the tubular 
re-absorption of sodium. " Thus, if exaggerated FBF 
reactivity to mental challenge is in part due to a 
renal vasoconstrictor response then FBF reactors 
should also display sodium retention. However, no 
research as yet has examined this relationship. 

Thus, given the possible renal depressor effects of 
regular aerobic exercise, it was hypothesised that 
highly active offspring hypertensives would demon- 
strate little or no change in urinary sodium excretion 
during mental challenge and would also 
demonstrate reduced FBF reactivity. In contrast it 
was predicted that moderately active offspring 
hypertensives would demonstrate sodium retention 
and exaggerated FBF reactivity to mental challenge. 

Methods 
Subjects 
Eighteen healthy normotensive males with a family 
history of hypertension were recruited from a stud- 
ent population and from local athletic clubs. The 
study was approved by a university human ethics 
committee and all subjects were provided written 
informed consent before participation. 

Subjects were provided with dietary guidelines 
24-h prior to testing in order to control for salt 
intake, which has previously been linked with 
enhanced cardiovascular reactivity to stress. 1213 
Subjects were also required to abstain from alcohol, 
caffeine, and rigorous physical activity. Subjects 
completed a full medical history questionnaire, 
physical activity readiness questionnaire, the State- 
Trait Anxiety questionnaire'14 and were questioned 
concerning their physical activity levels using the 7- 
day Physical Activity Recall (PAR). " The PAR is a 
semi-structured interview designed to examine sub- 
jects' physical activity during the previous 7 days. 
Total daily energy expenditure is estimated from the 
amount of time spent: sleeping (1 MET/h); light 
activity such as working at a desk (1.5 MET/h); mod- 
erate activity such as brisk walking (4 MET/h); hard 
activity such as playing tennis (6 MET/h); and very 
hard activity such as running (10 MET/h). Nine 
males involved with recreational physical activities 
up to three times per week (eg, football) were 
recruited for the moderately active group (MOD) 
whereas nine males who were all aerobic athletes 
involved with daily aerobic training were recruited 
for the highly active group (HIGH). Subjects were 
also asked to provide details of their family history 
of hypertension which was defined as treated essen- 
tial hypertension in parents or grandparents. 
Although subject recall of family history of hyper- 
tension has been found to be a reliable method to 
identify offspring hypertensives in America" 
reliability of the method has not been assessed with 
UK populations. Thus future research should be 
directed toward establishing the accuracy of reports 
of family health history in the UK. 

Measures 

Impedance cardiology was used (Minnesota Imped- 
ance Cardiograph, Model 304B: Instrumentation for b 
Medicine, Greenwich, CN, USA) to estimate stroke t 
volume (SV) using the formula proposed by Kubicek 4 
et al, " and an electrocardiogram (Amlab 
Physiograph) was used to measure heart rate (HR). 
Blood pressure (BP) was monitored continuously on t 
a beat-to-beat basis by a Finapres (Model Ohmeda t; 
2300: Ohmeda, Madison, WI, USA). FBF was meas- 
ured using strain gauge plethysmography. 'ß Urine aj 
samples were analysed for sodium and potassium 
content using flame photometry (Gallenkamp FGA- 
350-L, England). Sodium and potassium measures ai 
were corrected for urinary creatinine concentration, 
and expressed as mmol/mgCr. Urinary creatinine 
concentration was measured using a spectrophoto- 
meter (Model UV-150-02: Shimadzu, Japan) to t 
detect the difference in colour intensity measured at 
or near 500 nm before and after acidification, which 
is proportional to creatinine concentration. 19 yi 

Experimental protocol 

All testing started at 9 am, after an overnight fast, 15 
and was performed in a quiet, air-conditioned lab- t, 
oratory held at a constant room temperature of 24°C. pi 

Baseline: Subjects were instructed to provide a 
baseline urine sample immediately on awakening on 
the morning of testing. After 20-min of quiet rest 
subjects were required to void their bladder. Then 
an 8-min baseline period of data collection was 
initiated. During minutes 6-8 baseline FBF was 
measured. 

Mental challenge: This consisted of the Stroop 
word/colour task. Z° Briefly, subjects were presented 
with one slide every second on a computer screen 
for a period of 10 min. Each slide had the name of 
a colour printed in a contrasting coloured ink for 
which subjects were requested to identify the colour it 
of the ink, not the name of the colour. Subjects' per- 
ceived difficulty of the task, using the Borg 6-20 
scale, 21 together with mistakes were recorded. Sub- 
jects were encouraged to make as few mistakes as 
possible. FBF was measured during minutes 0-2 
and 8-10 of the mental challenge, but all other car- 
diovascular variables were measured continuously. 

Pit 
Recovery: Two minutes of recovery in the supine '; 
position followed the mental challenge during 
which all variables were continuously measured. 

0iß 

After a further 15-min period of seated upright tä 
recovery subjects were instructed to provide another 
urine sample. Both urine samples were immediately 
frozen for subsequent analysis. (lý 

4iß 
Maximal oxygen uptake (VO2i,,,, 

x): Finally, subjects 
were required to undergo an incremental exercise t 

( 
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ýst to volitional exhaustion in order to measure car- 
d- ko-respiratory fitness. V02-ax was assessed using 

ar Ite Douglas bag collection method and gases were 

ce tialysed using a zirconia oxide OZ analyser, and an 

'k 9fra-red CO2 analyser. Subjects exercised in the 

ib bright position on a stationary electronic ergometer 
)" xcalibur 

Sport. The Netherlands) at a cadence of 

in '0 rpm until volitional exhaustion. The initial load 

la as 30 W for the first 2 min and was increased by 

s- JW every 2s thereafter. The end point was achieved 

le hen the subject was unable to continue, and/or 

m It-art rate at age-estimated maximum, plateau of 
7cygern consumption, and a respiratory exchange 

s $tio greater than 1.10. 
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h h. 
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cardiograph every 25 s, and cardiac h be i 
Ycle timing was verified from heart sounds 

acorded 
by a phonograph microphone. Each imped- 

4ce wave was edited through the edit mode of the 
kp software 

(COP, Microtronics, Chapel Hill, NC, 

t' Cardiac SV 
and HR and total 

derived 
resist 

dd'i 
(TPR) 

was calculated from 
peripheral 

Tessed as dyne-seconds per cm-5. 

ah arterial occlusion wrist cuff was continuously 
An d to suprasystolic pressures (180 mm Hg) dur- 

taFF measurements, while a venous occlusion Barm 
cuff was inflated to 50 mmHg for 5 of 

n )per 
, 15 s providing one blood flow measurement 

Is 1 
s. The gradient of the blood flow wave was 

IS r1 tative of change in forearm volume, which 
re allbrate 

d for equivalent changes in voltage 
Is 

e strain gauge. The first second was disre- 
Ptri to avoid errors from movement artefact. A 
dded of six blood flow measurements was used 
n lm Mate average FBF for each 2-min block of 
if Calf es, Forearm vascular resistance (FVR) was 
r asü uently derived by dividing mean arterial 
r 141eq MAP) by FBF. 
,_ ýSSUre 

tilt-C 
analysis 

2 N? -"'to 
d measures analysis of variance (ANOVA) 

semployed 
to identify changes in cardiovascular 

over time and group differences. The 
Tables 

ubject factor comprised of baseline, minutes 
thin S 

and 8-10 of Stroop, and recovery (2 min). 
2 between 

subject factor was the two groups 
and moderately active). A similar analysis 

t 
äg ls 

I. 

ed for FBF and FVR, except no data was col- 
d for minutes 4-6 of Stroop for these variables. 

to dependent t-test was employed to identify 

es in urinary variables pre and post stressor h4ri 
each group and an independent t-test was ýthlnto identify differences in change scores 

t ree11 
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investigate the relationship between change in uri- 
nary variables and HR change during Stroop, change 
in urinary variables and FBF change, and HR change 
and FBF change during Stroop. Also, all subjects 
were classified into three groups according to the 
extent of their family history of hypertension. Sub- 
jects were put into the highest risk group if they had 
one parent and one grandparent of hypertensive 
status, the moderate risk group consisted of off- 
spring with one hypertensive parent, and the low 
risk group consisted of offspring with a hypertensive 
grandparent. Correlations were then performed to 
examine the relationship between risk status with 
resting blood pressure and reactivity variables. 

Results 
Physical characteristics and baseline 

Subjects' physical characteristics and 24-h dietary 
intake summary are displayed in Table 1. Three sub- 
jects were classified as high risk (a hypertensive par- 
ent and grandparent), 11 subjects as moderate risk 
(a hypertensive parent), and four subjects as low risk 
(a hypertensive grandparent). The HIGH group dis- 
played significantly higher levels of physical 
activity and higher VO2i ax. Although the HIGH 
group had higher caloric intake, salt intake was 
comparatively similar for both groups. Baseline 
cardiovascular values are shown in Table 2. The 
HIGH displayed significantly lower resting HR and 
greater resting SV. 

Response to mental challenge 
During the Stroop mental challenge there was no 
significant differences in perceived task difficulty 
(mean ± SE: 14.6 ± 0.6 vs 14.3 ± 0.4) or mistakes 
(70 ± 12 vs 56 ± 14) for the MOD and HIGH groups 
respectively. 

Central cardiovascular responses: For HR there 
was a significant main effect over time (F (4, 

Table 1 Descriptive characteristics and 24-h dietary intake 
details of moderately active (MOD; n= 9) and highly active 
(HIGH; n= 9) subjects with family history of hypertension 
(mean ± s. e. ) 

Variable MOD HIGH 

Age (yrs) 20.1 ± 0.5 25.3 ± 1.5 * 
Body mass (kg) 73.1 ± 2.5 75.1 ± 2.5 
Height (cm) 179.6 ± 2.5 182.9 ± 3.0 
Body fat (%) 14.4 ± 1.0 12.6 ± 1.0 
Physical activity (kcal/kg/d) 35.0 ± 0.2 45.0 ± 1.8* 
VO,,,,;,, (ml/kg/min) 48.3 ± 1.9 55.3 ± 2.4* 
State anxiety 30.7 ± 2.4 30.8 ± 1.5 
Calorie consumption (kcal) 1571 ± 121 2002 ± 186 
Salt intake (g/100 kcal) 0.28 ± 0.03 0.40 ± 0.05 
Total salt intake (g) 4.4 ± 0.5 7.7 ± 0.9 * 
Total sodium intake (mg) 1724 ± 205 3025 ± 354* 

*Significant difference between groups (P < 0.05). 
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Table 2 Response to Stroup mental challenge in moderately active (MC)D; n= 0) and highly active (HIGH; n= 9) [Hales with family 
history of hypertension (clean±S. e. ) 

Vouioblo Condition 

Baseline Stroop Stroop Stroop Recovery 
(0-2 min) (4-6 ruin) (8-10 ntin) 

MOD HIGH MOD HIGH MOD HIGH MOD HIGH MOD HIGH 

IIK (b/uiin) 65.4 ±3 49.8 ±3t 78.4±1i 64.6 f4 69.3±8 60.5f4 70.4f6 59.2 t4 58.6f7 
. 51.5±: 1 

CO (I/min) Ii. 1 ±0.5 53) ± 0.05 6.1+0.8 6.2±U. 5 5.9±0.9 6.3 ± 0.6 6.2±0.7 8.4±0.8 5.5±0.8 (3.1 ±((. 33 
SV (111) 92.4±(i 119.8±11)t 73.2±7 98.0±7 78.1)±9 105.5 ±8 82.537 108.9 ±8 87.5 ±9 120.0±10 r 
SItl (uimllg) 122±; 3 128±4 142±5 142±5 152±6 153±6 151±5 149±6 143±5 141±b 

p 

DBP (nunltR) lit±a (i0±3 77±4 7: 3±: 3 82±4 77±3 8(1±3 75±3 73±: 3 (i9±4 
MAP (inin 11 ) (1 ±3 82±5 9(3±4 95±3 105 ±4 102 ±4 103 ±4 99 ±4 96 ±4 92 ±4 
'I'I'R 1 131 ± 101 1 197 ± 128 1242 ± 99 1296 ± 117 1326±116 1376t122 1273 ± y(i 13: 38 ± 135 1294 ± 124 1: 325 ± 155 
FHF (iul/loll 4.5±I 3. (i±0.4 9. (1±U. 8 5.8±0.9* --7.. 5±1 5. ß±n. 7 4.0±0.9 3.8±e. 5 

inl/eiirr) 
PVR(nin11I}I/ 2: 1.2±4 26.5±3 (1.4±U. ) 19. )+'* -- 16.3±'l 20.4 ±3 ; 11.4±5 28.5±5 

1111/100 ml/min) 
ll-Nn Inimulhn}(; r) e. ti±((. 1 1.4±U. 4 ------ 1.7±0.3 2.2±11.7 
[J-K (minn)/mt; (; r) 0.314±0.11O4 ((. 0) ±0.0: 3 ------ 0.12±0.02 0.18±0.02 

11R: heart rate; SV: stroke volume; CO: cardiac output; SBP: systolic blood pressure: DBP: diastolic blood pressure; MAP: mean arterial 
presstur,; 'I'PR: total peripheral resistance: FBF: forearm hlood flow; FVR: forearm vascular resistance; U-Na: urinary sodiun3 excretion; 
ll-K: urinary pot<(ssiu1u excretion. 
"Significant difference in change between groups in comparison with baseline (P< 0.05). 
tSignificunt difference in baseline between groups (P < 0.05). 

64) = 10.79, P<0.05), but no interaction or between 
subject effects. HR was significantly increased only 
during the first 2-min of Stroop in comparison with 
baseline. There was no significant main effect over 
time within subjects or between subject effects for 
CO (F (4,64) = 0.82, P>0.05). There was a signifi- 
cant main effect over time within subjects for SV (F 
(4,64) = 13.77, P<0.05), and between subject 
effects (F (1,16) = 6.43, P<0.05), but no group inter- 
action over time. SV was significantly reduced dur- 
ing all stages of the Stroop with respect to baseline 
(see Table 2). 

Blood pressure: There was a significant main 
within subjects effect over time for SBP (F (4, 
64)=41.97, P<0.05), diastolic BP (DBP) (F (4, 
64) = 71.01, P<0.051, and MAP (F (4,64) = 60.95, 
P<0.05), but no interaction or between subject 
effects. Systolic BP (SBP), DBP, and MAP were elev- 
ated during all stages of Stroop and recovery in com- 
parison to baseline (see Table 2). 

Peripheral vascular responses: There was a sig- 
nificant main effect within subjects for TPR (F (4, 
64) = 10.53, P<0.05), but no interaction or between 

subject effects. TPR was significantly elevated dur- 
ing all stages of Stroop and recovery in comparison 
to baseline: There was a significant main effect (F 
(3,48) = 50.75, P<0.05), and interaction (F (3, 
48) = 7.3, P<0.05) over time within subjects for 
FBF. FBF was significantly increased during both 
the first and last 2 min of Stroop in comparison with 
baseline. Subsequent analysis revealed that during 
the first 2 min of Stroop the MOD group displayed 

a significantly greater increase in FBF comparedp 
with that of the HIGH (F (1,16) = 7.9, P<0.05) (see 
Figure 1). There was a significant main effect for; 
FVR (F (3,48) = 20.39, P<0.05), and a trend for an 
interaction over time. FVR was significantly reduced 
during both the first and last 2 min of Stroop in com- 
parison with baseline. Also, during the first 2 min 
of Stroop the MOD group displayed a significantly 
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Figure 1 Forearm blood flow response to Stroop mental challenge 
in highly and moderately active offspring hypertensives. 
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Figure 3 They relationship between change in heart rite lnd fore- 
arm blood flow during tho first 2 min of Stroop mental challenge 
in made nff; tiering hypertensives. 

in offspring hypertensives. If exaggerated FBF dur- 
ing mental challenge was due to it renal vasocon- 
strictor response then it was predicted that high 
forearm vascular responsiveness should be charac- 
terised by sodium retention. Because the moderately 
active offspring hypertensives displayed greater FBF 
reactivity to mental challenge it was expected that 
this group would also retain sodium. However, this 
was not the case, despite similar CO and BP 
responses to mental challenge between the high 
(MOD group) and low FBF reactors (HIGH group). 
These results suggest there may be regional blood 
flow differences in other vascular beds. It is possible 
that all of the major skeletal muscle vascular beds 
do not react in it similar way to mental challenge. 
However. Ha1liwelP2 has suggested there is a strong 
correlation between the skeletal muscle vascular 
reactivity of the forearm and calf. Research using 
spontaneously hypertensive rats (SHR) and normo- 
tensive controls (Wistar-Kyoto (WKY)) has shown 
that although both strains demonstrate similar BP 
changes to the defence response, regional blood flow 
changes are different. -" Specifically, SHR demon- 
strated increases in mesenteric: vascular resistance 
that appeared to be offset by more pronounced 
decreases in hindquarter vascular resistance 
(increased skeletal muscle vasodilatation). 

Haemodynamic effects 

During the mental challenge a number a haemody- 
naniic changes occurred for both groups that were 
characteristic of the defence response. These 

changes included significant increases in HR, BP, 
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TPR, and skeletal muscle vasodilatation. BP and 
FBF'were significantly elevated throughout the men- 
tal challenge whilst HR was only significantly elev- 
ated at the beginning. This suggests that peripheral 
compared with central haemodynamic response 
may play a more important role in the defence reac- 
tion brought about by continued exposure to men- 
tal challenge. 

Vascular stress-reactivity mechanism 
The finding that HR change and FBF change during 
mental challenge were significantly correlated sup- 
ports the notion that one common mechanism 
underlies cardiac and vascular reactivity. It is plaus- 
ible that this mechanism may involve sympathetic 
activation of 01- and 02-adrenergic receptors that 
produce increased HR and skeletal muscle vasodil- 
atation. This notion is supported by the findings of 
Miller and Ditto24 that strongly implicate the 
sympathetic nervous system in the exaggerated 
cardiovascular response to stress in offspring 
hypertensives. Their study employed the use of 
selective pharmacological blockade (a 01-adrenergic 
Blocker and an a1-adrenergic blocker). HR and FBF 
response between offspring hypertensives and con- 
irols during a 1-h active coping psychological 
stressor under a placebo and two drug conditions 
was compared. Under the placebo condition the off- 
spring hypertensives demonstrated exaggerated HR 
and FBF responses to the stressor. Under the f31- 
adrenergic: blocking condition only differences in 
HR response were abolished. These results suggest 
that the initial forearm vasodilatation response to 
stress and the reductions in forearm vascular resist- 
ance are reinforced by 02-adrenergic or cholinergic 
activity. Furthermore, Halliwell et all' examined 
skeletal muscle vasodilatation to mental stress in 

order to determine the extent to which this response 
was due to sympathetic withdrawal, active neuro- 
genic vasodilatation, or ß-adrenergically mediated 
vasodilatation. Firstly, they found that muscle sym- 
pathetic nerve activity to the forearm was inhibited 
during mental stress (a 2.5-min Stroop task), suggest- 
ing that sympathetic vasoconstrictor withdrawal 
may contribute to the vasodilatation response. How- 

ever, the vasodilatation during mental stress con- 
tinued to occur after both selective blockade of a- 
adrenergic; neurotransmission and local anaesthetic 
blockade of the stellate ganglion. Also, after admin- 
istration of propanolol (a 0-2 blocker) the vasodilat- 
ation response to stress was reduced but not com- 
pletely abolished. Thus, the authors concluded that 
sympathetic withdrawal, through a reduction in dis- 

charge of noradrenaline from the autonomic nervous 
system, may mediate the initial vasodilatation. Then 
the response could he further augmented by both 

adrenaline, secreted from the adrenal gland, acting 
via ß-adrenergic receptors and activation of local 

mechanisms that release nitric oxide. Such local 

mechanisms may include the release of acetylcho- 

line from selected endothelial cells stimulated 
mechanically by increases in blood flow and rises 4 
in arterial BP. The locally released acetylcholine is to 

then thought to act on muscarinic receptors and at 
cause nitric oxide release producing vasodilat- ät 
ation. 29 

Exercise-induced reactivity lowering mechanism T1 

Differences in sympathetic withdrawal, ß-adre- 
3F 

nergic receptor activation, and/or local vasodilat-o' 
ation mechanisms may explain the difference inw 
FBF reactivity to mental challenge between thele 
moderately and highly active offspring hyperten-, 

sives. However, it is interesting to note that the fore-, k 

arm vasodilatation response was only significantlyk. 
different between the groups during the initial firstly 
2 min of the mental challenge. This therefore sug-1 
gests that differences in the response are more likely,, 
to be due to sympathetic withdrawal and ß-adre- 

nergic mechanisms because local mechanisms are 
thought to sustain rather than initiate the response. 
Results from animal studies have shown that after Ik 
an acute bout of exercise vascular responsivenessýE 
was reduced. 27 Using vasoactive agonists infused', 

ý1 
into the hindlimb of the conscious rabbit, blood flow 
responses in the isolated hindlimb were markedly1 
reduced following a bout of treadmill exercise to 

exhaustion. The authors suggested that this may beF 
due to an exercise-induced down regulation of (A 
and/or ß-adrenergic receptors. Furthermore, longi- k 
tudinal studies' . 28 2' have consistently shown that } 
endurance training reduces resting plasma cat- Z1 

echolamine concentration. However, because 

plasma catecholamine levels represent a measure of t 
average sympathetic neural activity, it is difficult to t 
determine whether central, peripheral, or local tF 
mechanisms are primarily or secondarily respon- tF 

sible for the changes. Studies employing methods to 8, 
measure post-ganglionic sympathetic nerve traffic-4 
have suggested that the reduction in sympathetict 
nervous activity from training originates from a cent 
tral effect of training.: ` 

Therefore, the mechanism responsible for a poss-Jh, 
ible exercise-induced vascular stress reactivity low-rt 

ering effect may be a downregulation of a-receptorslt 
reducing the sympathetic withdrawal response. C 
Also a down regulation of ß-adrenergic receptorslt 
and/or reductions in sympatho-adrenal activation,, 
reducing adrenaline discharge, and thus reducinglg, 
the ß-adrenergic vasodilatation response couldi 
occur. Evidence from the SHR modele: ' suggests that ý, 
the enhanced 13-2 adrenergic vasodilatation in thety 
SHR during the defence response is due to an ýj 
increased release of adrenaline as opposed to greater 
receptor sensitivity. Research studying plasma cat- bl 

echolamine concentration during mental stress in lV 
human offspring hypertensives also supports find- ly 
ings from the SHR study. Falkner et aP1 have shown 
that post-stress plasma catecholamines were higher 
in offspring hypertensives compared with controls. 
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,,, Uso, Horikoshi et al"' found that offspring hyper- 

i% lensives who were high BP responders to mental 
also displayed significantly higher levels of 

, t. adrenaline throughout mental stress. 

kenal responses to stress 
Phat sodium retention was not displayed in the off- 
ipring hypertensives in the present study is in con- 

t_ýast with the findings of Light at a! 7 who found that 
put of it sample of 13 offspring hypertensives, those 
yhv (}isplayed high HR reactivity to mental chal- 

r1g8 (11 = 7) had reductions in sodium and water 
xcrýtlElll of 27% and 35%) respectively. This was in 

1v 
, 

1par so" with the low HR reactors with family 

`ý story of hypertension (n=6) who demonstrated 

)', Is in sodium and fluid excretion of 00, and 
,; \dividuals with no family history demonstrating 

fi ilic'reases. Given the high correlation between 

'''ice rIkI tivity and sodium retention (r=0.64, 
Ný 0. ()5) in the Light at a! 7 study, a common 
`rkecjirlion by the sympathetic nervous system for 

c"'lrclfjlc and renal reactivity responses was sug- 
ý' 7 his relationship has also been shown in the 
, ({stc'd" ýyK ere renal drnorvatfon reduces sodium reten- 
ýý' c} delays the pathogenic process.: ': ' There are 

, 
10 an i\t " 1)(-r of reasons to explain why subjects in the 
h01 

study reacted in it similar manner to the low 
11T` r"lllt 

grEclp 
in the Light study (icl, displayed sodium 

rk ticýll responses to stress), despite the presence 
, i-tcfct'ificlnt cardiac; reactivity in the present sub- 
+lt isi>"ýirstly. although Light at (117 employed it simi 
t- : g. , if mental stress (cognitive processing task), 

tý tjý})1 lasted for a period of 1 11 compared with 
ifeiir 

t1 the present study. Miller and Ditto24 dem- i 11 present 
t Týif' I that during an extended 1-h active-coping 

, if Ist 11 
II pattern of increasing vascular resistance 

1- tc''ý`'cýý, E. rved that is thought to be due to increased 
118s cýtý 

c, l is involvement. Thus, eXtended periods 

i(: 'edl-c'17 be required to produce renal vaso- l rE'4g 
It1aV 

r, st Eai(]n resI]onses and sodium retention, Sec: - 
n`'trihc, cause all subjects in the present study were 
cdic-ally active, a moderate level of physical 

., s nlaV be adequate to reduce a familial tend- 

to rotain sodium. It should be noted that sub- 
lc_ to 

P, Its 
the I71OdBrately active group were in fact all 

tiny 
fit with an average of 

gtn, l/kg/min. Lastly, in another study that inves- 

d the effect of prolonged isometric exercise on 
I, tat e. 

"retion of sodium and potassium, there were 
(I R81 Eý X 

It ,b 
differell°E's 

in this response between offspring 
1 tc, lýsives and controls. Therefore, because 

" 'Per retention following isometric exercise is 
" luny hypertensive patients, it is possible that the 

n ir1 
ýiuý retention response to stressors is a conse- 

t_ %dit)' 
of, rather than a predisposing factor to, 

i (yPettesion. 
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bib thlýsily 
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response to stress. Although neither group demon- 
strated disturbed renal responses during mental 
challenge, which has previously been identified as 
a significant risk marker for hypertension develop- 
ment, the moderately active offspring hypertensives 
demonstrated an enhanced FBF reactivity response 
to mental challenge. Repeated episodes of a hyper- 
reactive vascular response to stress has in itself been 
linked to the development of hypertension through 
it vascular re-modelling process. " Furthermore, that 
risk index was associated with the SBP response to 
stress in the moderately active but not highly active 
group provides further evidence that habitual physi- 
cal activity is associated with reduction in genetic 
risk factors of hypertension. 

In conclusion, habitual physical activity is 
associated with reduced vascular reactivity to a 
laboratory stressor in offspring hypertensives. That 
differences in renal response to mental challenge 
between highly and moderately active groups have 
not been observed suggests that either a moderate 
level of physical activity may alleviate familial 
abnormalities in renal functioning, or that physical 
activity level is not associated with renal responses 
to stress in offspring hypertensives. 
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