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ABSTRACT 

The aim of this work is to offer a voltage control 

strategy for distribution networks that experience 

voltage unbalance due to single phase and unbalanced 

loads and voltage rise due to high penetration of 

Distributed Generation units. The objectives are 

minimization of voltage imbalance on each node and 

total power losses on the entire network. The control of 

node voltages by Distributed Generation units has 

potential to clash with the more traditional method of 

voltage control adopted by Distribution Network 

Operators namely, tap changing voltage regulators and 

shunt capacitors. We look at a coordinated method of 

voltage control that solves the multi-objective 

optimization problem of voltage profile improvement 

and power loss reduction using a Pareto optimal and 

elitist evolutionary optimization algorithm called Non-

dominated Sorting Genetic Algorithm II (NSGA-II). The 

study system is the IEEE 123 bus distribution test feeder 

which is highly unbalanced and includes most of the 

elements of a real network. 

INTRODUCTION 

Distribution systems worldwide have been undergoing 

rapid changes in the way they are operated and managed 

on a minute-by-minute basis. Distribution Network 

Operators (DNOs) are responsible for delivering power 

to the consumer doorstep in an efficient, cost effective 

and reliable manner. The quality of power delivered 

should also adhere to strict efficiency measures such as 

voltage being within a prescribed range of the rated 

value and the power factor being as close as possible to 

unity. Any sustained deviations in the voltage levels at 

the customer point would not only be detrimental for 

various appliances but would also have undesired 

effects for the network in the long-term.  

 

Active management of distribution systems involves 

maintaining a good voltage profile across the network, 

while simultaneously minimizing the losses in the 

network. Additionally, the power factor at each node 

should be kept as close to unity as possible. This is done 

by supplying reactive power closer to the load, which is 

done by DGs and capacitors [1]. Reactive power and 

voltage are closely related, as are real power and 

frequency. Hence by injecting reactive power into the 

system, especially at the point of consumption, voltage 

can be maintained.   

 

While a reduction in voltage would reduce the current 

consumed by constant impedance loads such as lighting 

and heating elements and in turn reduce the losses on 

the network, a persistent low voltage could increase the 

effort on heating coils to heat water and thereby 

increase the effective load for longer durations of the 

day. Constant power devices such as motors would 

draw more current and may even stall resulting in an 

exponential increase in load current and thereby 

damaging the motor. Hence Conservative Voltage 

Reduction (CVR) needs to be carefully employed for 

achieving load reduction only in peak times and for a 

short duration. On the other hand, high voltages at the 

consumer end could have adverse impact on the 

operation of loads such as motors and could cause 

permanent damage.  Furthermore, the voltage unbalance 

across the phases results in high neutral currents and 

could cause further damage to equipments. Therefore a 

constant, optimal and balanced voltage profile is 

needed. The presence of varying loads, long feeders, 

and Distributed Generation (DG) units make this a 

challenge. Phase balancing is employed to alleviate this 

issue [2]. However, such tools rarely operate in 

isolation. One of the other tools is capacitor switching, 

which is mainly to bring the voltage at the load end to 

the required standards. To achieve unity p.f. at the load 

end, DNOs employ either fixed or switched capacitors 

that are centrally controlled via a master program or 

locally through voltage, VAR sensors.  

 

The ways in which the DNO controls the voltages 

across the network is via  

• Substation Transformer Tap Changing (OLTC) 

• Voltage regulator tap changes across the feeders 

• Shunt capacitor switching 

• Reactive power control at DG nodes 

• Network reconfiguration 

• Phase-shifting and shedding of loads 

 

A combination of some of the above approaches is used 

to alleviate voltage issues. They depend on the cost of 

employing that strategy in terms of time, effort and 

money. For example, an effective strategy is to employ 

tap changing along with capacitor switching to get the 

desired voltage profiles. On the other hand, reactive 

control via DG units could put a significant stress on the 

tap changing units leading to a fall in the generator bus 

voltage [3]. Therefore there is a need for a coordinated 

approach to solving the voltage control problem. 
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MULTI-OBJECTIVE FORMULATION 

The objectives are to minimize the voltage unbalance on 

each node and to simultaneously reduce the total power 

losses on the entire network. The quality of voltage can 

be measured using various indices. For example, in [2] a 

voltage deviation index was used that measured the 

deviation both from the minimum and maximum 

specified values, weighted by power injections at the 

nodes. In [4], voltage unbalance was tackled as a 

constraint set within the limits of ≤ 3%. Some of the 

optimization problems also consider the voltage 

unbalance indices over 48 half-hourly periods. In this 

study our primary focus is the total of maximum phase 

unbalance across all the nodes at a specific half-hour 

time period. The voltage limits are tackled as 

constraints. This allows the objective function to be 

precise and simple. The other constraints are the power 

limits of the DG units and power balance equations of 

injected power at each node. The decision variables are 

the tap positions of Voltage Regulators (VR), status of 

Capacitors (CP), and the optimal reactive power 

generated by the DG units. 

 

The optimal reactive schedule is such that the voltage 

rise caused by the active generated power is minimised 

and is applicable over a range of load values [5]. On the 

other hand the optimal set of solutions for the tap 

positions and capacitor status also contribute to the 

optimization process. This solution set is derived half-

hourly and is extendible for the entire load profile over 

48 half hours. The outcome of this method is that the 

system operator is provided with an optimal set of tap 

positions of voltage regulators, status and switchable 

capacities for shunt capacitors in conjunction with a 

control strategy for the reactive power generated 

through DG sources. The result is a combination of 

traditional DNO voltage control and reactive power 

control strategy for mitigating voltage rise. 

  

Objectives: 

The Multi-objective Optimization Problem (MOP) to be 

solved is: 
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where,    

  and    

  are the total generated and load powers at 

node i, and     
  is the impedance of the line    . This 

constraint is automatically satisfied on running the power flow 

algorithm. 

METHODOLOGY 

Multi-objective Optimization Evolutionary Algorithms 

(MOEAs) offer tools for solving such highly non-linear 

and complex optimization problems in order to arrive at 

a set of optimal solutions. MOEAs are population based 

and hence consider all possible solutions 

simultaneously. The solution evolves in a sense that the 

information from the parent solutions is mixed and 

passed on to the offspring. The aim in solving a MOP is 

to obtain a set of alternate solutions that are Pareto 

optimal. A general methodology for genetic algorithms 

is shown in Fig. 1. Pareto optimality refers to the 

condition reached where a better solution in the solution 

set to a MOP cannot be achieved without detriment to at 

least one of the other solutions in the set. Non-

dominated Sorting Genetic Algorithm II (NSGA-II) is 

one such elitist approach that provides the Pareto 
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optimal solution front [6]. Such a methodology is quite 

relevant when a solution (such as tap positions on a 

voltage regulator) is to be chosen amongst a set of non-

dominant solutions based on the experience and expert 

judgement of the network operator [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: General methodology of Pareto-optimal seeking 

Genetic Algorithms. 

 

Non-dominated Sorting Genetic Algorithm-II 
 

NSGA-II is a Pareto optimal based elitist algorithm [6] 

that sorts the solution set for Pareto optimality and all 

the objectives simultaneously. It is made up of two 

steps: a fast non-dominated sorting approach and a 

method to preserve the diversity amongst the solutions 

in the Pareto optimal front. The second step is further 

divided into estimation of the crowding distance around 

a solution and a crowded-comparison operator. An 

offspring population is generated using a binary 

tournament selection procedure, and then the 

recombination and mutation operators are applied. 

Elitism is then introduced through comparison of the 

current population with previously found best non-

dominant solutions. The resulting population is then 

used to generate a new set of solutions using selection, 

crossover and mutation as operators. At the end of each 

generation (run), the generated solution set are ranked 

into a set of non-dominated fronts. 

  

Power flow solver and MOP framework 

 

DNetPower (Distribution Network Power Flow 

Algorithms) is a Java based power flow solver 

developed by the authors [7] specifically for highly 

unbalanced distribution networks in the context of the 

developing CASCADE framework [8], with detailed 

models of loads, transformers, voltage regulators, 

distribution lines, capacitors, etc. The power flow 

algorithm is based on the simple forward/backward 

sweep technique or better known as the ladder technique 

applicable for radial or weakly-meshed networks. 

 

jMetal (Metaheuristic Algorithms in Java) is a 

framework for solving MOPs with metaheuristic 

techniques [9]. It is made up of abstract classes for 

Algorithms, Operators, Problems and SolutionType, etc. 

The variables are either binary or real coded. There are 

several implementations of classes Selection, Mutation 

and Crossover. The developers of jMetal have included 

several MOPs and MOEAs for testing purposes.  

 

 

 

 

 

 

 

 

 
Figure 2: Overview of model framework. The SolutionSet 

represents the set of variables such as Tap positions, capacitor 

status & Reactive power of DGs. 

 

The abstract class Problem describes the objectives and 

constraints in an analytical form. However, in our case, 

since such an analytical relation between the decision 

variables and the objective functions is difficult to 

derive, we use equations (1), (2) where voltages act as 

the secondary decision variables. The abstract class 

Problem is implemented as a power flow algorithm 

“DSOpti2” that is run for different values of the 

decision variables. The voltages obtained are used to 

evaluate the objective functions. Once the constraints 

are evaluated, each solution is added to the solutionSet 

and crossover, mutation and selection applied to obtain 

the Pareto optimal set (Fig. 2). The Pareto front consists 

of values for the decision variables (Table. 1), that when 

used in DNetPower gives a balanced voltage profile 

(Fig. 4) with minimal power loss. 

RESULTS 

The proposed methodology is applied to the IEEE 123 

bus radial distribution test feeder [10]. The test system 

is highly unbalanced having a wide variety of loads 

dispersed on three-phase, two-phase and single-phase 

laterals. The loads are of constant impedance, constant 

power and constant current type. There are four voltage 

regulators on the feeders and laterals at a voltage level 

of 4.16 kV. While the test system has no generation, we 

introduce DG units at specific locations on the network. 

The DGs at nodes 8 and 44 are of 1000 kVA capacity 

each, while the DG at node 81 is of 3000 kVA capacity. 

The system also has a three phase and three single-

phase shunt capacitors that can be switched on remotely 

or through local actuators.  
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Figure 3: IEEE 123-bus test feeder. Position of switches is 

known a-priori and set for a radial configuration. 
 

Base case (no regulation): 

This refers to a case where there is no voltage control. 

The network is passive and the voltage profile is 

dictated solely by the loads. Node voltages steadily 

decrease as we move away from the substation located 

at node 150. For example,     
             (Fig. 4a). 

The total voltage unbalance index is around 124 and the 

real power loss is around 99 kW (Fig. 5). 

 

VR-Auto: 

This refers to the case where the voltage regulators are 

set to compensate for drop in the feeder voltage and 

keep the target-node voltages at a particular Set level. 

We call this as the VR-automatic mode. From Fig. 4 and 

Table. 1 we see that the tap positions are set such that 

the end nodes are effectively raised to above 1.03 p.u. 

The VUI reduces significantly to 72.54 (Fig. 5). 

 

MOP [VR]: 

This is the case where the MOP is solved with the tap 

positions being the decision variables (7 in total). The 

shunt capacitors are switched ‘on’ to fixed maximum 

ratings. From Table. 1 we see that the optimal solution 

to the MOP throws up a different set of tap positions 

such that the voltage is phase-balanced (Fig. 5) and the 

profile across all the three phases tends towards 1.0 p.u 

(Fig. 4). For example, the taps on VR at nodes 160-67 

tend to reduce the voltage (Table. 1) on all the three 

phases as compared to the case where the VRs operate 

automatically. From Fig. 5 we also notice that the 

values of the objective functions VUI and P_Loss 

reduce further as compared to the previous two cases.  

 

MOP [VR, CP]: 

Here, we enable the shunt capacitors to be switched ‘on’ 

in steps and in tandem with VR tap changers. We now 

have a total of 7+6 decision variables. The optimized 

KVAR values for the capacitors at node 83 (phase-b) 

and at node 90 (phase-b) are less than previous cases. 

The effect of this reduction in KVAR injected is that the 

voltage on phase ‘b’ further approaches 1.0 p.u in the 

lateral nodes emanating from node 67. This effect is 

further amplified by a reduction in tap changing of VR 

at nodes 160-67. The total VUI is further reduced to 

59.66 and the total power losses to 87.03 kW (Fig. 5). 

 
Figure 4(a): Node voltages on phase ‘a’ of IEEE 123-bus test 

feeder for different cases of voltage control.  

 
 
Figure 4(b): Node voltages on phase ‘b’ of IEEE 123-bus test 

feeder for different cases of voltage control. 
 

 
Figure 4(c): Node voltages on phase ‘c’ of IEEE 123-bus test 

feeder for different cases of voltage control. 
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MOP [VR, CP, DG]: 

This is the case where the DG units are installed at 

nodes 8, 44 and 81 and their ability to absorb reactive 

power is controlled such that any increase in the node 

voltages due to power injection by these units is 

effectively compensated. The units initially work at 

unity pf and are switched to Q-control mode when the 

voltage is sufficiently high for a significant amount of 

time. This strategy works in coordination with the VR 

tap changers and the shunt capacitors such that the latter 

get the initial preference for voltage regulation. This is 

reflected in the fact that the tap positions for the VRs 

are significantly lower (as compared to other cases) due 

to an increase in voltage through load compensation by 

DG units. In addition, the DG units absorb reactive 

power at around 0.95 lag (Table. 1) to pull the voltages 

towards 1.0 p.u and further reduce VUI and P_Losses 

(Fig. 5). The optimal solutions and the Pareto optimal 

front across both the objectives are shown in Fig. 6.  

 
Figure 5: Values of objective functions of Pareto optimal 

solutions for each case of voltage control. 
 

 VR-Auto [VR] [VR,CP] [VR,CP,DG] 

Taps150-149 [7,7,7] [6,6,6] [7,7,7] [4,4,4] 

Taps9-14 [-2,0,0] [-1,0,0] [4,0,2] [0,0,0] 

Taps25-26 [0,0,-1] [4,0,2] [-1,0,1] [3,0,2] 

Taps160-67 [8,2,5] [4,-1,3] [2,2,2] [-1,-4,-1] 

CP83(kvar) 200,200,200 200,200,200 170,10,170 190,70,130 

CP88(kvar) 50,0,0 50,0,0 30,0,0 0,0,0 

CP90(kvar) 0,50,0 0,50,0 0,0,0 0,50,0 

CP92(kvar) 0,0,50 0,0,50 0,0,40 0,0,50 

DG8(kvar) - - - 90 

DG44(kvar) - - - 270 

DG81(kvar) - - - 920 

Table 1: Pareto solutions (values of the decision variables 

across all three phases) for different cases of voltage control.  

 

 
Figure 6: Pareto front for the case of [VR, CP, and DG] 

control. The points represent the values of objective functions, 

which are the total voltage unbalance and total real power loss. 

CONCLUSIONS 

Voltage control in distribution systems is one of the 

core operational issues for present day utilities due to 

the nature of loads and high penetration of DGs. We 

have presented here a coordinated strategy for 

regulating voltage by means of tap changing VRs, 

switching capacitors and reactive control by DG units 

themselves. The two-fold objective of balancing the 

voltages and reducing power losses is solved via a 

genetic based non-dominated sorting approach (NSGA-

II) and a power flow solver. The results show that a very 

good balanced voltage profile and a high degree of 

control over each phase is possible through coordination 

of different variables. 
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