
Accepted Manuscript

A Modified Super-Efficiency in the Range Directional Model

Adel Hatami-Marbini, Jafar Pourmahmoud, Elnaz Babazadeh

PII: S0360-8352(18)30206-7
DOI: https://doi.org/10.1016/j.cie.2018.05.007
Reference: CAIE 5213

To appear in: Computers & Industrial Engineering

Received Date: 10 July 2017
Revised Date: 13 April 2018
Accepted Date: 3 May 2018

Please cite this article as: Hatami-Marbini, A., Pourmahmoud, J., Babazadeh, E., A Modified Super-Efficiency in
the Range Directional Model, Computers & Industrial Engineering (2018), doi: https://doi.org/10.1016/j.cie.
2018.05.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228199533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.cie.2018.05.007
https://doi.org/10.1016/j.cie.2018.05.007
https://doi.org/10.1016/j.cie.2018.05.007


  

 
 

0 

A Modified Super-Efficiency in the Range Directional Model 

 

 
 

Adel Hatami-Marbini
*
 

Department of Strategic Management and Marketing 
 Leicester Business School 

De Montfort University 
 Hugh Aston Building, The Gateway, Leicester LE1 9BH, UK  

E-mail: adel.hatamimarbini@dmu.ac.uk 
 

 

Jafar Pourmahmoud 
Department of Applied Mathematics 

Azarbaijan Shahid Madani University, Tabriz, Iran 
E-mail:pourmahmoud@azaruniv.edu  

 

 

 

Elnaz Babazadeh 
Department of Applied Mathematics 

Azarbaijan Shahid Madani University, Tabriz, Iran 
E-mail: elnaz.babazadeh@azaruniv.edu 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
*
Corresponding Author  

mailto:pourmahmoud@azaruniv.edu
mailto:elnaz.babazadeh@azaruniv.edu


  

 
 

1 

 

A Modified Super-Efficiency in the Range Directional Model 

1st Revision 

CAIE-D-17-00965 

 

All additions and changes to the first revision are highlighted in this revision. 

 

Abstract
 

The range directional model (RDM) relaxes the assumption of non-negativity of inputs and 

outputs in the conventional data envelopment analysis (DEA) with the aim of evaluating the 

efficiency of a decision-making unit (DMU) when some data are negative. Although the 

concept of super-efficiency in the RDM contributes to enhancing discriminatory power, the 

formulated model may lead to the infeasibility problem for some efficient DMUs. In this 

paper, we modify the super-efficiency RDM (SRDM) model to overcome the infeasibility 

problem occurring in such cases. Our method leads to a complete ranking of the DMUs with 

negative data for yielding valuable insights that aid decision makers to better understand the 

findings from a performance evaluation process. The contribution of this paper is fivefold: (1) 

we detect the source of infeasibility problems of SRDM in the presence of negative data, (2) 

the proposed model in this study yields the SRDM measures regardless of feasibility or 

infeasibility of the model, (3) when feasibility occurs, the modified SRDM model results in 

the scores that are the same as the original model, (4) we differentiate the efficient units to 

improve discriminatory power in SRDM, and (5) we provide two numerical examples to 

elucidate the details of the proposed method. 

Keywords:  DEA; Super-efficiency; infeasibility; Negative data; RDM model.  

 

1. Introduction 

Data envelopment analysis (DEA) is a powerful tool in the context of production 

management for performance measurement. The purpose of DEA is to measure the relative 

efficiency of a set of decision-making units (DMUs) where multiple inputs are converted into 

multiple outputs. In classical DEA models, the Farrell output efficiency of a firm among its 

peers measures how much it can proportionally expand all of its outputs and still use its 

inputs under a given technology (Farrell, 1954). Additionally, as a result of applying DEA, 

the DMUs can be divided into two groups: efficient and inefficient DMUs. Since the seminal 
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work of Charnes et al. (1978), DEA studies have been tremendously attracting both in 

modelling and applications in various disciplines. However, classical DEA models include 

two practical disadvantages. First, while a decision maker may desire a total ordering, many 

DMUs often belong to the efficient group without discriminating between efficient DMUs, 

particularly, when the number of DMUs is relatively small in comparison with the sum of the 

number of input and output variables (Cook et al. 2014; Adler and Yazhemsky, 2010). 

Second, in conventional DEA models, inputs and outputs are assumed to be non-negative 

while negative data may occur in some DEA applications such as the performance analysis of 

socially responsible and mutual funds (Basso and Funari, 2014) and the macroeconomic 

performance where “rate of growth of GDP per capita” can be either negative or positive 

(Lovell, 1995). As far as we know, the existing DEA software does not allow users to directly 

define negative outputs and/or inputs.  

To deal with the former limitation in DEA models, many research studies have been 

carried out in the frontier analysis context and they can be partitioned into six distinct 

categories (Adler et al., 2002); (1) cross-efficiency ranking methods initially proposed by 

Sexton et al. (1986) in terms of both self and peer evaluation, (2) benchmark ranking 

methods initiated by Torgersen et al. (1996) where a total ordering of DMUs is obtained 

according to the share of total output increase (input decrease) achieved by DMUs for which 

the DMU is a peer, (3) multivariate ranking methods first proposed by Friedman and Sinuany 

(1997) where multivariate statistical tools such as canonical correlation analysis and 

discriminant analysis are used to rank the DMUs, (4) the inefficiency-based ranking methods 

that struggle to rank the inefficient DMUs (e.g., Bardhan et al. (1996)), (5) DEA and MCDM 

methods originally proposed by Golany (1988) with the aim of incorporating preference 

information into DEA models, and (6) super-efficiency method first developed by Andersen 

and Petersen (1993) where a DMU under analysis is excluded from the reference set so that 

the efficient DMUs can receive scores greater than or equal to the unity while the score for 

the inefficient DMUs do not change. Hinojosa et al. (2017) recently introduced three 

additional and independent categories in ranking DMUs in the literature; (i) common weights 

methods which make an attempt to rank all DMUs using a common set of weights (see e.g., 

Hosseinzadeh Lotfi et al. (2013); Hatami-Marbini et al. (2015)), (ii) cross-influence ranking 

methods which first disregard a DMU from the reference set like the super-efficiency method 

and then study its impact on all the DMUs (see e.g., Jahanshahloo et al. (2007)), and (iii) 

ranking methods based on the concept of cooperative game theory started off by Li et al. 

(2016) for ranking efficient DMUs in DEA. 
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To handle the negative data as the latter limitation of DEA, Lovell and Pastor (1995) 

and Pastor (1996) were the first by serving a translation invariance classification. That is, in 

light of the translation invariance property in basic DEA models such as the additive model, 

the original negative data can be equivalently converted to positive data by adding a constant 

number. However, many DEA models such as CCR may not have this property to be applied 

as a treatment of negative data (Ali and Seiford, 1990). A number of significant contributions 

have been developed in the DEA literature to address the occurrence of negative data (e.g., 

Seiford and Zhu, 2002; Silva Portela et al., 2004; Kerstens and Van de Woestyne, 2011).  

Silva Portela et al. (2004) suggested working with some variations of the directional 

distance function. Kerstens and Van de Woestyne (2011) modified the traditional 

proportional distance function to treat negative data. Although Cheng et al. (2013) made an 

effort to propose a variant of the traditional input- or output-oriented radial efficiency 

measure to handle negative inputs and outputs, Kerstens and Van de Woestyne (2014) 

highlighted some shortcomings in their method by using a more general case of the 

directional distance function proposed by Kerstens and Van de Woestyne (2011). An 

overview of the various DEA modelling approaches can be found in Pastor and Ruiz (2007) 

and Pastor and Aparicio (2015). 

The super-efficiency presents the possible capability of an efficient DMU in 

expanding its inputs and/or reducing its outputs without becoming inefficient (Chen et al., 

2013). Banker and Chang (2006) exploited the super-efficiency model to detect and remove 

the outliers. Further, the super-efficiency DEA approach can be viewed as a tool for 

sensitivity analysis where a DMU under evaluation is excluded from reference set (see, e.g., 

Zhu 2001; Charnes et al. 1992; Rousseau and Semple 1995; Charnes et al., 1996). Whereas 

the classical super-efficiency model under constant returns to scale (CRS) does not suffer 

from the infeasibility problem
1
, the super-efficiency model based upon the variable returns to 

scale (VRS) model of Banker et al. (1984) may be infeasible for a DMU under evaluation 

(see, e.g., Seiford and Zhu, 1999; Chen and Liang, 2011; Lee et al., 2011; Lee and Zhu 2012). 

Seiford and Zhu (1999) argued the necessary and sufficient conditions of infeasibility 

problem occurring in super-efficiency DEA models without solving the problem. Lovell and 

Rouse (2003) introduced a user-defined scaling factor to find a feasible solution for efficient 

DMUs that are infeasible in the standard VRS super-efficiency model. However, a user-

defined scaling factor in Lovell and Rouse’s method for all DMUs may have infeasible 

                                                             
1 The CRS super-efficiency model may be also infeasible when the input or output value of an efficient DMU is 

zero (Thrall, 1996; Zhu, 1996; Lee and Zhu, 2012).  
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solutions as indicated in Cook et al. (2009). Chen (2005) further proposed the use of an 

integrated super-efficiency score that is obtained from both the input- and output-oriented 

VRS super-efficiency models. However, Chen’s method will be unsuccessful once both the 

input- and output-oriented VRS super-efficiency models are infeasible. Cook et al. (2009) 

developed the modified input- and output- oriented VRS super-efficiency models to deal with 

the infeasibility trouble for efficient DMUs. Lee et al. (2011) suggested a two-stage process 

to treat the VRS infeasibility issue by defining a score that characterizes the super-efficiency 

in both inputs and outputs. Chen and Liang (2011) further simplified the two-stage process of 

Lee et al. (2011) by proposing a single linear program. Lee and Zhu (2012) first showed that 

Lee et al.’s model may be infeasible when some inputs are zero and then the authors 

proposed a modified model which is always feasible albeit data are non-negative. 

In a recent paper, Hadi-Vencheh and Esmaeilzadeh (2013) made an attempt to 

develop a super-efficiency model based on the RDM model in the presence of negative data. 

However, Hadi-Vencheh and Esmaeilzadeh’s model suffers from the common infeasibility 

and unboundedness problems (Pourmahmoud et al., 2016). Pourmahmoud et al. (2016) 

showed that the RDM super-efficiency model will be always feasible when all range of 

possible improvements are strictly positive. In addition, they defined four cases in which the 

envelopment form of the RDM super-efficiency model is infeasible. In general, the 

infeasibility occurs when (i) there exists zero range of possible improvements in inputs and/or 

outputs of the evaluated DMU and (ii) the corresponding inputs (outputs) of the DMU under 

evaluation with a zero amount of improvement are outside of the production possibility set 

(PPS) spanned by the inputs (outputs) of the remaining DMUs. Apart from Hadi-Vencheh 

and Esmaeilzadeh (2013), super-efficiency models with negative data have received no 

attention in the literature. In this study, we first investigate whether a RDM super-efficiency 

model is infeasible, and then calculate a super-efficiency score when infeasibility occurs. In 

the case of feasibility, the proposed RDM super-efficiency scores are identical to the results 

obtained from the standard RDM super-efficiency model. Our proposed model has an 

intuitive capability to provide a complete ranking of all DMUs. 

The rest of the paper is outlined as follows. Section 2 presents RDM model, super-

efficiency RDM model and our motivation. In Section 3, we develop our new RDM super-

efficiency model in the presence of infeasibility. In the penultimate section, our proposed 

model is applied to two numerical examples and finally Section 5 concludes the paper.  

 

2. Background and Motivation  
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In this section, we first review a certain DEA model with negative data as well as its super-

efficiency model, and then discuss our research motivation. 

 

2.1. The Range Directional Model (RDM) 

To deal with the negative data in the conventional DEA models, Silva Portela et al. (2004) 

used a directional distance model of Chambers et al. (1996, 1998) to propose the range 

directional model (RDM) for evaluating the performance of production units. In addition, the 

RDM model that originally introduced under the variable returns to scale (VRS) presents 

closer targets compared to the existing models in the literature. 

Consider a set of n observed DMUs, {                } where each observation 

transforms m inputs,                , into s outputs,                . Let 

          denote a DMUo under evaluation amongst n observations. Furthermore, assume that 

some data can take negative values. By the use of convexity and free disposability of inputs 

and outputs, and VRS assumptions, the technology or production possibility set (PPS), 

        from the observed input-output data for n DMUs can be defined as follows: 

                                     

 

   

                  

 

   

 

   

  

The RDM model in terms of the directional distance function and         can be 

expressed as follows (Silva Portela et al. 2004): 

 

                                                                         

                      
  

              

                         
  

           ,  

                
      

                            

                    

(1) 

where    
                                   ;    

                      

              are always non-negative and called a range of possible improvement of 

DMUo.  The bundle (   
     

   defines the ideal directional vectors for input and output levels.  

Model (1) combines the features of both an input- and output-oriented models in which each 

input and output of the unit under assessment are respectively lessened and increased at the 

same time by the same portion β. The factors β can be considered as a surrogate for technical 
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inefficiency of the DMU in order to define its efficiency as 1-β. If    
                 

         or    
    (                   ), model (1) is transformed to input- or 

output-oriented models, respectively. The RDM model (1) takes advantage of the desirable 

properties of translation and unit invariance.  

To further exemplify the RDM model, let us consider a simple numerical example in 

Figure 1 where eight DMUs {A, B, C, D, E, F, G, H} consume two inputs (-6,5), (-6,3), (-5,-

2), (-2,-5), (2,-6), (-3.5,3.5), (6.5,-3) and (5,2), respectively, to produce the same amount of a 

single output
2
. The performance of DMUs is therefore assessed using an input-oriented RDM 

model thanks to    
    (                   ). The ideal point (minimum inputs) is 

   
        

      =(-6, -6) indicated by I in Figure 1. The segments connecting DMUs A, B, C, 

D and E form the efficient frontier. The region bounded by the frontier line ABCDE, the 

horizontal line passing through the point E and the vertical line through the point A is the PSS 

or technology where all the observed points (the coordinates of any point) are enveloped 

within all four quadrants. The efficiency measure of DMUA, (    
  , in the RDM model 

equals to 0.8182 since it is apparent that x2 of DMUA can be reduced from 5 to 3 so that 

DMUA coincides with DMUB that is fully efficient. DMUA is therefore weakly efficient while 

DMUs B, C, D and E are fully efficient (i.e.,        The RDM-efficiency of DMUH that is 

placed in an inefficient portion of the technology is calculated by the ratio     
    

    

    
 

    

    
=(|-6-(-3.1048)|) (|5-(-6)|)=0.2632. Analogously, the RDM-efficiency of DMUF 

and DMUG are 0.4167 and 0.3265, respectively. 

Despite the reference point of the RDM-efficiency, it can be viewed the close affinity 

between the RDM efficiency measure and conventional radial efficiency measure. That is, the 

origin is regarded as the reference point in conventional radial DEA models while the RDM 

model exploits the ideal point in lieu of the origin to measure the efficiencies. 

 

----Insert Figure 1 Here---- 

 

It should be noted that, due to non-directional-slack of the RDM model, the projection 

may not be possessed of Pareto-efficient frontier. To project units onto the Pareto-efficient 

                                                             
2 It should be pointed out that although the input-oriented RDM model with a single constant output is 

equivalent to a model without outputs which clearly appears awkward to be justified from an economic 

viewpoint, our aim is only to underline the characteristics of the RDM and its extension to the super-efficiency 

model by using a graphical representation.     
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frontier, the [weighted] additive model can be solved in a second phase (Asmild and Pastor 

(2010)). 

 

2.2. The Super-Efficiency RDM (SRDM) 

The RDM model measures the technical efficiency (1-β) of a DMU relative to the others to 

discriminate between efficient and inefficient DMUs. Inefficient DMUs can be simply ranked 

in terms of their different measures whereas we face with the lack of discrimination among 

efficient DMUs. The super-efficiency method suggested by Andersen and Petersen (1993) 

ranks efficient DMUs that are determined using the standard CCR model. The underlying 

idea is to exclude the DMU under analysis from the technology (reference set) so that 

efficient DMUs may have the capability to augment efficiency scores (>=1) hinging on the 

DEA model orientation while the measure of inefficient DMUs remains the same as those 

obtained from the CCR model. The technology of super-efficiency for n DMUs,   
      , 

can be defined as follows: 

  
       

 
 
 

 
 

                            

 

   
   

                      

 

   
   

 

   
    

 
 

 
 

 

The super-efficiency RDM (SRDM) of DMUo apropos to the technology   
       can 

be formulated as: 

 

                                                                         

                      
  

   
   

           

                         
  

   
   

        ,  

                
   
   

   

                                 

                    

(2) 

 

Model (2) is solved for a set of efficient DMUs obtained from the RDM model, i.e., 

     in model (1). In the case of super-efficiency of DMUo,    is less than zero, meaning 

that the outputs are scaled down while its inputs are scaled up so as to move onto the 

modified frontier formed by the rest of the DMUs. We point out that if DMUo is inefficient, 
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then it is positioned inside the technology and its removal in the SRDM model (2) does not 

affect the shape of estimated technology. Therefore, the measures of inefficient units in 

models (1) and (2) are identical. When     
    (                   ) the 

corresponding output-oriented SRDM problem for the efficient DMUo can be expressed as  

 

                                                                         

                 
 
   
   

           

                         
  

   
   

        ,  

                
   
   

   

                                 

                    

(3) 

 

Note that in model (3) the output bundle,    , of the efficient DMUo is only scaled 

down by an optimal portion         while the input bundle     preserves unaltered. 

When     
    (                   ), the pertinent input-oriented SRDM model for 

the efficient DMUo can be formulated as 

 

                                                                         

                      
  

   
   

           

                    
 
   
   

        ,  

                
   
   

   

                                 

                    

(4) 

where the improvement range is contingent on the input direction by defining    
 . Model (4) 

scales up the input bundle,    , of the efficient DMUo by an optimal portion         while 

the output bundle     preserves unchanged. 

To provide a detailed view of the SRDM problem, we return to the simple numerical 

example given in the earlier sub-section. From Figure 1, DMUs B, C, D and E located on the 

efficient frontier are efficient and rated at 100% efficiency measure (      ). Put 
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differently, the discrimination problem can be observed in this performance analysis when 

50% of DMUs are efficient and non-comparable. To deal with the problem, the input-

oriented SRDM model (4) is applied to the efficient units in order to increase its input 

bundles by taking non-positive amount to the optimal   . For instance, consider DMUC that 

lies on the efficient frontier ABCDE. For the SRDM evaluation of DMUC, we first omit this 

observation from the PPS. In the elimination of DMUC, the piecewise segments linking 

DMUs A, B, D and E construct the efficiency frontier, and subsequently lead to a more 

restricted PPS. The resulting SRDM measure of DMUC is 1.5 (i.e.,   
      ), implying that 

DMUC scales up its input bundle (-5,-2) by      to coincides with point Q whose the 

coordinate is         
    

        
    

                           

            . In other words, the SRDM measure of DMUC obtained from model (4) is a 

ratio of the length of       to      , i.e.,     
             , in which       represents the line segment 

connecting the ideal point with the projection point and       stands for the line segment 

connecting the ideal point with DMUC. In addition, it should be also noted that the SRDM 

assessment of an inefficient observation such as DMUG and DMUF is not influenced by this 

exclusion from the technology in view of the fact that the efficient frontier constructed by the 

efficient units is unaltered by such an omission.   

 

2.3. Infeasibility Trouble in the SRDM Model (Our Motivation) 

The conventional super-efficiency model under VRS may suffer from the infeasibility 

problem (Seiford and Zhu, 1999). Given that the RDM model is based upon VRS, the SRDM 

model (2) may turn into infeasible for certain DMUs. Pourmahmoud et al. (2016) proved that 

model (2) may be infeasible if there exists at least one i and/or r for the efficient DMUo such 

that     
    and/or     

   . In detail, the infeasibility problem in model (2) occurs if 

a)        
                                  

b)        
                                 

c)    
            where     be outside the PPS spanned by                

d)    
            where     be outside the PPS spanned by                 

 

The necessary and sufficient conditions for infeasibility of model (2) for a given efficient 

DMU are, respectively, (i) a range of zero improvement associated with some inputs and/or 

some outputs, and (ii) the corresponding inputs (outputs) with a zero amount of improvement 

which are outside the PPS spanned by the inputs (outputs) of the remaining DMUs. That is, 
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the (i) necessary infeasibility condition and (ii) sufficient infeasibility condition 

simultaneously provide the circumstance that the DMU cannot be projected on the production 

frontier using the defined directional vectors. Mathematically, infeasibility of model (2) is 

caused by the non-existence of the feasible solution for the relevant linear programing model. 

Let us describe the infeasibility conditions of the SRDM model by means of the example 

depicted in Figure 1. The SRDM evaluation of DMUE using model (4) results in the problem 

of infeasibility since (i) its x2 improvements (difference between ideal point and observed 

values) is zero, i.e.,    
                       =-6-(-6)=0, which is the necessary 

infeasibility condition and this allows us to move on to examine the sufficient infeasibility 

condition, and (ii) DMUE is outside the PPS spanned by x2 of the remaining DMUs
3
 which 

fulfills the sufficient infeasibility condition. Interestingly, model (4) for DMUB has a feasible 

solution. This is because that although the necessary infeasibility condition for DMUB is 

fulfilled due to a range of zero improvement, i.e.,    
                       =-6-(-

6)=0, the sufficient infeasibility condition is not satisfied because DMUB is still inside the 

PPS spanned by x1 of DMUA.  

 

3. Modified SRDM Model 

In this section, we propose a modified SRDM model to circumvent the infeasibility problem 

of SRDM in certain circumstances as well as to completely rank all the DMUs including 

efficient and inefficient observations in terms of their SRDM measure.   

As we marked rigorously the causes and conditions of infeasibility in an earlier 

section, a corresponding efficient DMU under RDM is not able to get to the production 

frontier, formed by all the residual units, in terms of the direction of the ideal point that has 

the largest potential for improvement. It should be also noted that this efficient DMU that 

leads to infeasibility of the SRDM model has at least one output (and/or one input) with the 

largest (and/or smallest) amount among DMUs. In other words, the DMU under analysis has 

zero amount for at least one input and/or output for range of improvement as well as being 

outside the PPS spanned by the corresponding inputs and/or outputs of the residual DMUs. 

Traditionally, the typical idea to deal with the problem of infeasibility in super-efficiency 

DEA models, particularly under VRS assumption, is to rightly scale up the inputs (scale 

down the outputs) of the DMU under analysis that is unaffected in constructing the 

                                                             
3
 The removal of DMUE alters the efficient frontier which consists of the line connecting ABCD, the vertical line 

going upward through A and the horizontal dashed line going from D. 
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production frontier (e.g., see Lovell and Rouse, 2003; Cook et al., 2009; Lee and Zhu, 2012). 

We aim at exploiting this clue to develop a modified SRDM model where the infeasible 

DMU moves appropriately and minimally toward the efficient frontier in both input and 

output directions. In this regard, we propose the following modified SRDM model to evaluate 

the performance of DMUo: 

 

                  
 
       

 
                                                                    

                      
  

   
   

       
              

                         
  

   
   

       
           ,  

                
   
   

   

                                 

                         

                     

(5) 

where M is a large positive parameter defined by a user, and     
                 

        and      =max    :         . To handle the problem of infeasibility of SRDM 

model, we add the term       
    (         ) to the right hand side of the first set of 

constraints and at the same time subtract the term       
   (         ) from the right 

hand side of the second set of constraints where the sum of    (         ) and    (  

       ) is added to the objection function in the presence of a penalty term M. Therefore, 

the constraints are not violated anymore when there exists a range of zero improvement for 

DMUo. It is necessary to note that       
    and       

    present the input saving and 

output surplus of DMUo under analysis compared to the frontier that is created in the 

elimination of DMUo.  

To show the property of units invariance of (5), assume that the inputs     and outputs 

    are multiplied by positive αi and   , respectively. This therefore leads to            

(                     and                                , and      
  

     
           ;     

       
           . The adjusted constraints of (5) 

                     
  

   
   

         
    and                      

  
   
   

 

        
    are simply transformed to the constraints of (5). As a result,     

    and     
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assist in keeping model (5) unit invariant as well as making sure the feasibility of (5) as 

shown in the following proposition.  

 

Proposition 1.Model (5) is always bounded and feasible. 

Proof. Given the predefined parameter M, it is obvious that model (5) is bounded. 

Regarding feasibility of model (5), consider two following cases: 

i) Assume that            
  which implies that  

                       
 
   
   

           
 
   
   

             
   
   

   

Hence, there exists        such that         
         

      4. In other words, 

there exists          such that          
        

 
   
   

 and          
        

 
   
   

. 

Therefore, the model (2) is feasible and the optimal solutions for model (5) are   
       

         and   
               . This shows the feasibility of model (5).   

ii) Assume that          
 , which implies that  

                         
 
   
   

           
 
   
   

             
   
   

   

This leads to               
 
   
   

 and/or               
 
   
   

.  

Models (2) and (5) are feasible if  

a)     ,   
              for model (5) when               

 
   
   

 and/or 

b)     ,   
              for model (5) when               

 
   
   

  

Otherwise, model (5) is feasible if 

c)       ,   
    when               

 
   
   

 and/or 

d)       ,   
    when               

 
   
   

.
5
 

 

Proposition 2.Model (2) is infeasible if and only if there exists at least one r or i such that 

  
    or   

    where   
  dna   

  are the optimal solutions of model (5).  

                                                             
4 This is the case that DMUo is inefficient and removing it from the PPS does not change the original 

technology. So, the optimal value of the RDM model is equal to the optimal value of the SRDM model (2). 
5 Under the cases (a) and (b) models (2) and (5) have a feasible solution and their optimal objective function 

values are identical whereas in the cases (c) and (d) model (5) is feasible and model (2) has no feasible solution. 
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Proof.  (i) Assume that model (2) is infeasible. If   
    dna   

    in model (5), this 

implies that model (2) is feasible, which is a contradiction to our earlier assumption. 

Therefore, some components of   
   dna/ro    

  are positive. 

(ii) Assume that some components of   
  and/or   

  are positive (i.e.,   
    and/or   

   ), 

and model (2) is feasible. This shows that   
    dna   

    are feasible solutions to model 

(5) that is a contradiction to our assumption. Therefore, from (i) and (ii) the proof completes. 

■ 

The value of    
          

  
       

  
    is called SRDM measure of DMUo where   , 

  
  dna   

  are the optimal solutions of model (5). 

Note that the efficiency measure of the inefficient units resulted from models (2) and (5) is 

identical to the conventional RDM measure since its removal does not change the shape of 

the technology. 

 

Lemma 1.  Model (5) is equivalent to model (2) when model (2) is feasible. 

In particular, the corresponding output- and input-oriented modified SRDM problem 

for the efficient DMUo can be expressed as 

              
 
                 

                
 
   
   

           

                        
        

    
   
   

   ,  

               
   
   

   

                                

                    

(6) 

 

              
 
                 

                      
  

   
   

       
              

                    
 
   
   

       ,  

                
   
   

   

                                 

                    

(7) 
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For further perusal of the method, consider DMUE in Figure 1 that is infeasible when 

applying model (4). The production frontier is ABCDK when DMUE is excluded from the 

technology. The distance from the line DK to the line EW is 1, in which DK is the segment of 

the frontier and EW can be extended to the left from E to coincide the point I (ideal point). 

Equivalently, solving model (7) results in   
      

      where   
      and     

     , 

meaning that for projecting DMUE onto the frontier DK, its    is decreased by     
  

      
                         and its    is scaled up by     

        
    

             
 

 
     . In such case, DMUD is defined as the benchmark for DMUE 

since    
          and    

         .  

In addition, a SRDM measure,    
 , for DMUo may not be greater than one while the 

super-efficiency scores for efficient units should be preferably greater than one. For example, 

the SRDM measure of DMUE as a RDM efficient unit is       , i.e.,     
     

  
    

   
  

                     where   
    

    and   
     . To deal with the 

problem, we modify the SRDM measure yielded by model (5) in terms of the concept 

extended by Chen (2005) and Lee and Zhu (2012). In so doing, SRDM as a directional model 

can be considered as input saving and/or output surplus for an efficient DMU under analysis 

where it moves towards the frontier in an input and output improvement direction. Let 

vectors    and    denote the input saving index and output surplus index, respectively: 

    

                                   

  
    

 

     

   
             

  

 

    

                                          

  
 

     
    

   
                     

  

where        
     and        

    , and |R| and |I| are the cardinality of the sets R and 

I, respectively. Note that the vector         presents the distance from DMUo to the frontier 

established by the remaining DMUs. In other words,    and    show the increase in inputs and 

decrease in outputs of DMUo, respectively, so as to reach the production frontier. 

Consequently, the modified SRDM measure can be defined as    
             where 

    ,    and    are the efficiency, the input saving index, and output surplus index, 

respectively. When the sets I and R are not empty, the values of input saving index and output 
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surplus index are, respectively, defined as 
  

    
 

 
    

   
 

  
     

   
    

      
   

     
       

   
 and 

  
     

   

     
      

      
       

   
 

  
 

    
     

   
. For DMUE in Figure 1,    

         where   
       

          and     . 

In summary, our proposed model (5) in this study yields a modified SRDM measure 

of DMUs even if model (2) is either feasible or infeasible. It is worth noting that in the case 

of feasibility of model (2) our modified SRDM measures are exactly equivalent to the 

original SRDM.  

 

4. Numerical Examples 

In this section, two examples are quoted to illustrate the applicability of our approach. The 

examples are based on the same datasets as the study of Hadi-Vencheh and Esmaeilzadeh 

(2013). The General Algebraic Modeling System (GAMS)
6
 software is utilized to solve the 

proposed models. 

 

4.1. Example 1 

 The first example evaluates 13 DMUs with two inputs {x1, x2} and three outputs {y1, y2, y3} 

as listed in Table 1. The values of x2, y2 and y3 for all the DMUs are non-positive while x1 and 

y1 values are strictly positive. Thanks to the negative value in the data set, we run the SRDM 

model (1) to calculate the efficiency score (    ) of thirteen DMUs as presented in the 2
nd

 

column of Table 2. A higher discriminatory power is required as soon as we see five efficient 

DMUs {C, G, H, K, M} in the result. To rank these efficient units, the SRDM model (2) is 

solved as shown in the 3
rd

 column of Table 2. However, model (2) is infeasible for DMUs G, 

H and M since     
      

      
      

   . We deal with the infeasibility trouble and 

give the efficiency measure by employing a modified SRDM model (5) as reported in the 4
th

 

column of Table 2. As can be seen, applying model (5) to DMUs G, H and M yields 2.1306, 

3.8320 and 3.7632, respectively where M as a user-defined parameter is set equal to 10
8
. Note 

that the scores for inefficient units in the RDM, SRDM and modified SRDM models are 

identical. In addition, the amount of input saving for G and H is   
     

           

            and   
     

                      , respectively, and the amount of 

output surplus for M is   
     

                       and   
     

           

                                                             
6 http://www.gams.com 
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           . The ranking order of DMUs that is a result of the proposed super-efficiency 

model is reported in the 4
th
 column of Table 2. Therefore, we have the capability of making 

the difference between the efficient units {C, G, H, K, M} resulting from the RDM model. 

That is, our method provides the ranking of the efficient DMUs as          .  

----Insert Tables 1 and 2 Here---- 

 

4.2. Example 2 

This example contains six DMUs with two inputs {x1, x2} and one output {y1} listed in Table 

3. In detail, x1 and y1 are positive for some DMUs and negative for others while x2 is positive 

for all the DMUs. Applying the RDM model to DMUs yields the 100% efficiency score for 

DMUs D and F. The modified SRDM model (5) proposed in this study can be used to deal 

with the problem of infeasibility in the SRDM model (2) when evaluating DMUs D and F. 

Note that M as a user-defined parameter is set equal to 10
8
. Therefore, DMUF is superior to 

DMUD as shown in the 5
th

 column of Table 4. In addition, the amount of output-surplus for 

DMUD is   
     

                    and the amount of input saving for DMUF is 

  
     

                  . 

----Insert Tables 3 and 4 Here---- 

 

5. Conclusion 

The use of negative data is an interesting and challenging issue in the data envelopment 

analysis (DEA) literature, particularly, in real applications when observations may include 

negative numbers. As an example, in decentralized energy resources, the consumption of 

electricity may be either negative or positive regarding the heat consumption. The well-timed 

study of Silva Portela et al. (2004) tackled the negative data in DEA by developing the range 

directional model (RDM) basing on directional distance model. The common infeasibility 

problem in the traditional DEA super-efficiency approach can be also viewed in the super-

efficiency RDM (SRDM) model when negative data occur. However, the problem of 

infeasibility in measuring the super-efficiency scores occurs when at least one output and/or 

input with a range of zero improvement for the evaluated DMU is outside the PPS spanned 

by the corresponding inputs and/or outputs of the remaining DMUs.  

In this paper, we propose a modified SRDM to discriminate between efficient and inefficient 

DMUs as well as to differentiate between efficient DMUs when observations contain 

negative values. We further propose ranking procedure for DMUs based on their efficiency 
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scores. We define input saving index and output surplus index for an efficient DMU under 

analysis for SRDM in order to move towards the frontier in an input and output improvement 

direction. 
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Figure 1. Example with two inputs. 
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Table 1. Input-output data for Example 1. 

DMUs x1 x2 y1 y2 y3 

A 1.03 -0.05 0.56 -0.09 -0.44 

B 1.75 -0.17 0.74 -0.24 -0.31 

C 1.44 -0.56 1.37 -0.35 -0.21 

D 10.8 -0.22 5.61 -0.98 -3.79 

E 1.3 -0.07 0.49 -1.08 -0.34 

F 1.98 -0.1 1.61 -0.44 -0.34 

G 0.97 -0.17 0.82 -0.08 -0.43 

H 9.82 -2.32 5.61 -1.42 -1.94 

I 1.59 0 0.52 0.00 -0.37 

J 5.96 -0.15 2.14 -0.52 -0.18 

K 1.29 -0.11 0.57 0.00 -0.24 

L 2.38 -0.25 0.57 -0.67 -0.43 

M 10.3 -0.16 9.56 -0.58 0.00 

 

 

 

 

 

 

 

 

 
Table 2. Results of RDM, SRDM and the modified SRDM models. 

DMU RDM SRDM    
  Rank 

A 0.9649 0.9649 0.9649 8 
B 0.9181 0.9181 0.9181 10 
C 1 1.2377 1.2377 5 
D 0.7352 0.7352 0.7352 13 
E 0.9243 0.9243 0.9243 9 
F 0.9708 0.9708 0.9708 7 
G 1 Infeasible 2.1306 3 
H 1 Infeasible 3.8320 1 
I 0.9945 0.9945 0.9945 6 
J 0.8596 0.8596 0.8596 11 
K 1 1.9375 1.9375 4 
L 0.8448 0.8448 0.8448 12 
M 1 Infeasible 3.7632 2 
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Table 3. Input-output data for Example 2. 

DMUs x1 x2 y1 

A -2 12 -0.1 

B -2 8 0.1 

C 1 5 2 

D 6 4 3 

E 6 6 2.5 

F -0.5 2.5 1 

 

 

 

 

 

 

 

 
 

 

 

 
 

Table 4. Results of RDM, SRDM and the modified SRDM models. 

DMUs RDM SRDM   
  Rank 

A 0.9355 0.9355 0.9355 5 

B 1.7273 1.7273 1.7273 3 

C 1.2800 1.2800 1.2800 4 

D 1 Infeasible 3.5333 2 

E 0.7619 0.7619 0.7619 6 

F 1 Infeasible 6.4583 1 
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Highlights 

 

 We determine the source of infeasibility problems of RDM super-efficiency (RDMS). 

 We propose a modified RDMS model in the presence of negative data. 

 We enhance discriminatory power of the RDM model by differentiating the efficient DMUs. 

 The new approach is illustrated through two numerical examples. 

 

 


