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ABSTRACT 

 

 This thesis presents an investigation into the viability of Low Energy Earth Pipe 

Cooling Technology in providing thermal comfort in Malaysia. The demand for air-

conditioning in buildings in Malaysia affects the country escalating energy 

consumption. Therefore, this investigation was intended to seek for a passive cooling 

alternative to air-conditioning. By reducing the air-conditioning demand, there would be 

a higher chance of Malaysia government to achieve their aim in reducing CO2 emissions 

to 40 per cent by the year 2020, compared to 2005 levels. The passive technology, 

where the ground was used as a heat sink to produce cooler air, has not been 

investigated systematically in hot and humid countries. In this work, air and soil 

temperatures were measured on a test site in Kuala Lumpur. At 1m underground, the 

result is most significant, where the soil temperature are 6
o
C and 9

o
C lower than the 

maximum ambient temperature during wet and dry season, respectively. Polyethylene 

pipes were buried around 0.5m, 1.0m and 1.5m underground and temperature drop 

between inlet and outlet were compared. A significant temperature drop was found in 

these pipes: up to 6.4
o
C and 6.9

o
C depending on the season of the year. The results have 

shown the potential of Earth Pipe in providing low energy cooling in Malaysia. A 

parametric study on the same experiment was carried out using Energy Plus 

programme. Energy Plus data agreed with the field work data and therefore, this 

confirms Energy Plus is reliable to investigate Earth Pipe Cooling in Malaysia. 

Furthermore, thermal comfort of air at the Earth Pipe outlet was analyzed and the result 

has shown that the outlet air is within the envelope of thermal comfort conditions for 

hot/humid countries.  
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CHAPTER 1 INTRODUCTION  

 

In 2004, a report has shown a vast increase in energy consumption in buildings 

in Malaysia (Chan, 2004). It demonstrated that the energy consumption in Malaysia in 

the year 2000 is almost tripled the amount of energy consumption in the year 1990 

(Figure 1.1). 

 

Figure 1.1: Trend of electricity consumption in three different sectors; residential, 

industrial and transportation from year 1980 to 2001. (Source: Department of Electricity 

and Gas Supply Malaysia in Chan, 2004). 

 

The same report also stated that the Malaysia Energy Centre (PTM) have 

foreseen at the time of the report being made, based on the current economic growth 

rates, that Malaysia would transformed into a net importer of energy by between the 

year 2010 and 2015 (Figure 1.2)(Chan, 2004). 

Ali (2010) presented a report stating Malaysia remained to be a net energy 

exporter in 2009 with 13.7% of export earnings, which derived from crude oil, liquefied 

natural gas (LNG) and petroleum products. Referring to the report in 2008, the final 
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energy demand came up to 44.9Mtoe while the final energy supply in 2008 was 

75.5Mtoe. Although the country remains to be a net energy exporter, the energy demand 

is projected to grow at the rate of 3.4%p.a. According to this projection, the energy 

demand could reach 92.9Mtoe in 20 years, which is double the energy demand in 2008. 

 

Figure 1.2: Trend of net export/import of energy from year 2000 and prediction up to 

year 2035 (Source: Chan, 2004). 

 

One of the major factors that are affecting the energy use in buildings in 

Malaysia is air-conditioning. Being a warm and humid country, cooling of building is in 

great demand and the majority of building users in Malaysia are depending on air-

conditioning to achieve comfort, particularly in non-residential buildings.  

In 2003, an energy audit was conducted by Danida and ECO-Enegry Systems on a 

987m
2
 single storey office building in Malaysia and the report stated that 64% of the 

energy consumed was for air-conditioning alone (Figure 1.3) (Chan, 2004). Another 

survey was conducted in a typical Malaysian terraced house of about 180m
2
. The 

breakdown of energy use was found the refrigerator consumed the most and the air 

conditioning is the next most energy consuming (Figure 1.4). There is another study that 

shows refrigerator consumes the most energy in residential sector, followed by air 

conditioning (Figure 1.5) (Mohd Taha, 2003). The energy consumption of refrigerator is 
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acceptable because it is an essential home appliance to as food storage in hot and humid 

weather. 

 

 

Figure 1.3: Breakdown chart of the energy load in an office building in Malaysia 

(Source: Chan, 2004). 

 

 

Figure 1.4: Breakdown chart of the energy load in a typical terraced house in Malaysia 

(Source: Chan, 2004). 
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Figure 1.5: Breakdown chart of the energy load in residential sector in Malaysia 

(Source: Mohd Taha, 2003). 

 

The high percentage of energy consumed by air conditioning in both building 

types show that there is a potential of significantly reducing energy consumption in the 

country by reducing the use of air-conditioning in buildings.  

In 2009, at the United Nations Climate Change Conference in Copenhagen, 

Denmark, Malaysia Prime Minister stated the country’s aim to reduce CO2 emissions to 

40 per cent by the year 2020, compared to the level in 2005 (Demotix, 2009). 

Abdul Rahman and Ismail (2006) stated those in building industry such as 

architects and engineers and also building owners can play a role in improving the 

energy issue and reducing energy consumption in buildings. A building can be designed 

in such a way that it blocks as much as possible sun rays from penetrating into the 

building interior. The building must also allow as much air movement into the building 

because of Malaysia weather being warm and humid all year round.  
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Researchers in Malaysia have carried out investigations in reducing heat gain 

through the building fabric in Malaysia. Among them are planting creepers onto the 

building fabric, roof spray mist, wall spray mist, and the fabric colour. Table 1.1Table 

1.1 listed the effect of incorporating the innovative radiant heat gain reduction element 

onto the building fabric towards the thermal performance of the building. 

 

Table 1.1: The effect of incorporating innovative heat gain reduction element onto the 

building fabric to the maximum indoor air and surface temperature, 
o
C (Source: Abdul 

Rahman and Ismail, 2006. Location: Malaysia). 

Reduce Radiant Heat Gain 

Element 

Before, 
o
C After, 

o
C T Difference, 

o
C 

Creepers on walls (air 

temperature) 

36.8 27.7 9.1 

Roof spray mist (surface 

temperature) 

44.26 33.86 10.40 

Roof spray mist (air 

temperature) 

36.30 32.71 3.59 

Wall spray mist (air 

temperature) 

35.0 32.0 3.0 

White colour – brick (air 

temperature) 

33.5 33.0 0.5 

 

Referring to the first two experiments, which involved creepers and roof spray 

mist (surface temperature), the latter seem to have more temperature reduction. 

However, this does not mean the roof spray mist method gives better performance than 

the creepers. The temperature reduction at the roof spray mist surface before the 

experiment was very high, and that makes a higher temperature reduction compared to 

the experiment with creepers.  

Differences in indoor air temperature were found between the 2
nd

 and 3
rd

 rows in 

Table 1.1. This was because the 2
nd

 row recorded indoor surface temperature while the 

3
rd

 row recorded indoor air temperature. 
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The last experiment in Table 1.1 compared the effect of white colour to brick. 

Referring to Table 2.4 in Chapter 2, white paint has lower solar radiation absorptivity 

than bricks; white paint is 0.30 while bricks are 0.6 or 0.7 depending on its roughness. 

Therefore, white paint walls provide lower indoor air temperature (Table 1.1). 

To encourage air movement into the indoor environment, this work seeks a 

better alternative to building cooling in Malaysia, responding to the promotion of using 

renewable energy and energy efficiently by the Energy Commission in Malaysia (Chan, 

2004). Among many innovative low energy building cooling methods, this paper has 

chosen to investigate the viability of applying Earth Pipe Cooling technology in 

Malaysia climate. This technology is not very recognized in Malaysia but has been 

applied in hot arid and temperate countries.   

 

1.1 Research Question 

At the initial stage of research, four main research questions arise. The four 

research questions are as follows: 

a) How is the temperature distribution of Malaysia soil? 

b) How much temperature reduction can be found within the buried pipe? 

c) What is the optimum configuration for pipe burial in Earth Pipe Cooling 

experiment? 

d) Would the air at the buried pipe outlet provide adequate cooling? 

 

1.2 Research Objective 

The research is initiated to explore the feasibility of Earth Pipe Cooling 

Technology and what it can offer to reduce the hot temperature in Malaysia at daytime 

and reduces energy consumption at the same time. 

The investigation is structured with four objectives in this study. The first 

objective is to obtain soil temperature data at test site in Kuala Lumpur for various 

depths. The second objective is to determine the optimum setup for buried pipe. This is 

followed by the third objective, which is to ascertain temperature reduction 

performances of buried pipe. The fourth objective is to conduct computer simulation of 

the soil pipe. 
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1.3 Research Limitation  

As mentioned previously, there has been very few record of this technology 

being used in Malaysia and information on its performance in hot humid climates is also 

scarce. The earth pipe cooling technology consists of ambient air being channelled 

through pipes buried underground. It uses the soil as a heat sink, where heat from the 

ambient is dissipated to, through conduction via the buried pipe. Its efficiency is largely 

influenced by temperature difference between ambient and soil temperature and thermal 

conductivity, followed by air flow inside the pipe, pipe length and diameter. Previous 

investigations found the optimum depth to bury the pipe is rather great, at 4m 

underground in many cases in other parts of the world where Earth Pipe Cooling system 

are often applied. However, for Malaysia climate, this optimum depth to bury the Earth 

Pipe Cooling system needs to be investigated again. 

Data of Malaysia soil temperature is available from the Malaysia Meteorology 

Department. However, these data is collected at a maximum depth of 1.2 meter below 

ground, which is not deep enough to get the conclusion on the optimum buried depth of 

Earth Pipe Cooling system. The initial challenge of commencing the Earth Pipe Cooling 

Investigation in Malaysia is that there is no reference on soil temperature data at depth 

lower than 1m underground. Therefore, a separate investigation was added to measure 

the soil temperature at the same site that was to be used for the Earth Pipe Cooling 

investigation in Malaysia.  

 

1.4 Thesis Structure 

The thesis structure comprises of eight chapters that includes this chapter, 

Introduction and seven following chapters (Figure 1.6). This section of this chapter 

briefly introduces the seven following chapters. 

Literature Review chapter is divided into two chapters; Chapter 2 and Chapter 3. 

Chapter 2 explains in detail on background studies of Malaysia and thermal comfort in 

general and thermal comfort in tropical climate with reference to Malaysia. Chapter 2 

begins with the description of Malaysia weather where data obtained from three 

Meteorology Departments were analysed. This followed by the study of Malaysia 

Vernacular Architecture, where buildings were designed mainly as the means of shelter 
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from the surrounding environment. The vernacular architecture responds to the weather 

condition of Malaysia, which is hot and humid with rainfall. However, the trend of 

vernacular architecture was taken over by metal and glass buildings in this modern era, 

where the aesthetic is the main consideration rather than environmental responsive. 

Even though there are a few buildings designed with low energy cooling system and the 

next section of Chapter 2 illustrates six case studies on buildings where low energy 

cooling method was implemented. Chapter 2 continues with the fundamental of thermal 

comfort which includes the process of thermal interaction between man and the 

environment, factors of thermal comfort and adaptive thermal comfort. This is followed 

by thermal comfort analysis in Malaysia and neighbouring countries with similar 

climate.  

Chapter 3 explains the type of passive ground cooling followed by the 

fundamental of passive low energy Earth Pipe Cooling, which includes the factors that 

affect the efficiency of the applied Earth Pipe Cooling system, the methods in which the 

Earth Pipe Cooling has been applied and the limitations found in Earth Pipe Cooling 

performance. Next section in Chapter 3 explains the common research methods used by 

previous researchers for Earth Pipe Cooling investigation via field experiments and 

computer modelling. This is followed by the common research method used to calculate 

the energy performance of the Earth Pipe Cooling. Chapter 3 ends with a few case 

studies on hybrid design that incorporates Earth Pipe Cooling into the system. 

After examining Malaysia background, thermal comfort and earth pipe cooling, 

a research methodology for earth pipe cooling investigation was formed in Chapter 4. 

Chapter 4 begins with description of field work site in Gombak, Malaysia. Gombak is 

neighbouring Kuala Lumpur. Then, the chapter describes field work on soil temperature 

measurement and followed by field work methodology on Earth Pipe Cooling 

experiment in Malaysia. The two field works mentioned were carried out 

simultaneously throughout the research period on the same site mentioned above. They 

were carried out in three stages; during the wet season, the hot and dry season and one 

whole year investigation on one selected buried pipe.  

All results from field work experiments were collected, analysed and presented 

in Chapter 5. The first part of Chapter 5 illustrates results from soil temperature 
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measurement. Then, the chapter continues by illustrating the results from the Earth Pipe 

Cooling experiment on the field work site. 

Research funding and time limited the Earth Pipe Cooling investigation from 

carrying out a parametric study. Therefore the parametric study was carried out in 

computer modelling, which is what Chapter 6 entails. The chapter begins with 

comparative study between two computer modelling software results against field work 

result in a few days. After one is chosen, which is the Energy Plus programme, the earth 

pipe cooling results were plotted against field work data in all months with valid field 

work data. Then, Chapter 6 illustrates parametric studies as an extended investigation of 

Earth Pipe Cooling in Malaysia. 

The next chapter, Chapter 7 is a general discussion chapter on thermal comfort 

performance of the Earth Pipe Cooling in Malaysia, using Malaysia thermal comfort 

temperature range, Auliciems thermal comfort calculation and Khedari’s thermal 

comfort chart. The chapter then discusses the energy efficiency of Earth Pipe Cooling in 

Malaysia.  

All results obtained in each chapter are concluded in the final chapter, which is 

Chapter 8.  
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Figure 1.6: Structure of the Thesis. 



11 

 

CHAPTER 2 LITERATURE REVIEW: MALAYSIA BACKGROUND  

 

This chapter is intended to help us improve our knowledge on a) Malaysia 

location, climate, architecture and cooling system, and b) thermal comfort in general 

and in hot and humid tropics. This chapter is an essential foundation prior to preparing 

the research methodology in order to achieve the research objective satisfactorily. This 

chapter consists of two main sections. The first section studies the background of 

Malaysia climate, architecture and currently available cooling methods. Further into the 

chapter, detailed thermal comfort study has been reported. The thermal comfort study 

covers topic on adaptive thermal comfort and thermal comfort range for occupants in 

warm and humid tropical countries.  

 

2.1 Malaysia Background Studies 

The location of Malaysia on the globe determines its climate and weather 

distribution throughout the year. Malaysia extends from latitude of 1
o
 N to 7

o
N and 

from longitude of 100
o
E to 120

o
E (Figure 2.1). Being located close to the equator, and 

within the tropical region, it has a warm and humid climate, with high air temperature 

and high humidity level throughout the year. The only seasonal differences in Malaysia 

are caused by the southwest monsoon, northeast monsoon and the interval period 

between two monsoons. Southwest monsoon season occurs from the month of May 

until September. During the southwest monsoon period, the wind is usually at the 

maximum of 7.7m/s and blows in South Westerly direction. On the other hand, the 

northeast monsoon season occurs from November until March. During this period, the 

wind is slightly stronger than in the southwest monsoon season but blows in North 

Easterly direction. The North Easterly wind can reach up to a maximum of 10.3m/s 

(http://www.worldweather.org/020/c00082.htm).  

 

http://www.worldweather.org/020/c00082.htm
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Malaysia climate is normally considered in terms of five environmental factors: 

dry bulb temperature (
o
C), relative humidity (%), amount of rainfall (mm), wind speed 

(m/s) and direction (
o
), and solar radiation (MJ/m

2
). This climate usually influenced 

architects to design buildings that were responsive to the local climate. However, when 

the shelter does not provide adequate comfort, various cooling methods had been 

applied into the building interior to satisfy the occupants’ thermal comfort. 

 

2.1.1 Climate 

A study on Malaysia climate was supported by data obtained from local weather 

stations near Kuala Lumpur. Three weather stations were identified and the data 

obtained from the three weather stations are being compared with reference to its dry 

bulb temperature, relative humidity and precipitation. These data were recorded hourly 

at Sungai Besi, Subang Jaya and Petaling Jaya Weather Stations. Meanwhile, solar 

radiation data and sunshine hours were only available from Subang Jaya Weather 

Stations. The three weather stations are located on latitude 3
o
 06’ N and longitude 101

o
 

  

Kuala Lumpur 

  

Kuala Lumpur 

 

 

Figure 2.1: Location of Malaysia on the globe, showing its latitude and longitude. 

(Google Earth. Assessed on the 12
th

 of May 2006). 
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39’ N. Subang Jaya weather station is at 16.5m above M.S.L (Mean Sea Level), while 

Petaling Jaya weather station is at 60.8m above M.S.L., which is at higher location than 

Subang Jaya weather station. 

Weather data in 2004 were compared between Subang Jaya and Sungai Besi 

Weather stations, while weather data in 2006 were compared between Subang Jaya and 

Petaling Jaya weather stations.  

 

 

 

  

 

Sungai Besi weather station is 23.9km to the East from Subang Jaya weather 

station. However, referring to Figure 2.2, the dry bulb temperature averages are almost 

the same, with less than 0.4
o
C differences. The highest mean daily maximum 

temperature occurred in May in both weather stations. 

 

 

 

 

Figure 2.2: Summary of Dry Bulb Temperature in 2004 measured at Subang Jaya and 

Sungai Besi Weather Station (source: Malaysia Meteorology Department). 
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Looking at the absolute daily maximum rainfall, both weather stations seemed to 

have different total of rainfall in each month. However, the monthly total averages for 

both weather stations in 2004 are almost the same (Figure 2.3). Furthermore, the figure 

shows that November was the month with most total rainfall at both weather stations 

and June was the month with the least total rainfall.  

 

 

 

 

 

 

 

 

  Figure 2.3: Summary of Rainfall in 2004 measured at Subang Jaya and Sungai Besi 

Weather Station (source: Malaysia Meteorology Department). 
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Figure 2.4 shows that the average dry bulb temperatures from Subang Jaya and 

Petaling Jaya weather stations are almost the same and this is because Petaling Jaya 

weather station is 16.6km to the South East direction from Subang Jaya weather station. 

The differences in average temperatures are not more than 0.5
o
C. 

 

 

 

 

 

  Figure 2.4: Summary of Dry Bulb Temperature in 2006 measured at Subang Jaya and 

Petaling Jaya Weather Station (source: Malaysia Meteorology Department). 
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 Similar to weather data in 2004, Figure 2.52.5 shows that in 2006, the month 

with most rainfall is November in both Subang Jaya and Petaling Jaya weather stations. 

The weighting of absolute daily maximum rainfall at both weather stations does not 

coincide. However, the monthly total rainfall averages in the year are almost the same 

with approximately 13mm difference. All three weather stations have similar dry bulb 

temperature trends and monthly average total rainfall. Therefore, either weather station 

could be used to represent climate of Kuala Lumpur, which is the referred coordinate 

for this research. 

 

 

 

 

 

 

  Figure 2.5: Summary of Rainfall in 2006 measured at Subang Jaya and Petaling Jaya 

Weather Station (source: Malaysia Meteorology Department). 
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a) Dry Bulb Temperature 

The illustrated records of Kuala Lumpur air temperature has shown that the 

maximum dry bulb temperature can reach up to 36.4
o
C, which occurred in March 2005 

(Figure 2.6). The figure is showing the summary of data collected from 2002 to 2008 by 

the Meteorology Department at Subang Jaya Weather Station.  

 

 

 

 

 

 

Throughout the year 2002 and 2008, the highest absolute and mean daily 

maximum dry bulb temperature occurred in March, April and May (Figure 2.6 and 

Figure 2.7). This period is at the end of northeast monsoon season and the beginning of 

southwest monsoon season.  

The lowest absolute daily minimum dry bulb temperature, in six years record, 

occurred in July, August and September (Figure 2.6). However, the lowest average daily 

minimum dry bulb temperature occurred in November, which is the northeast monsoon 

season (Figure 2.7). 

Figure 2.6: Absolute daily maximum and minimum Dry Bulb Temperature from 2002 

to 2008 measured at Subang Jaya Weather Station (source: Malaysia Meteorology 

Department). 
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A study has been carried out on data collected from six Meteorology Department 

throughout the peninsular of Malaysia from the year 1993 to 2002. The records had 

shown that the 24 hour mean air temperature ranges from 26.9
o
C to 28.2

o
C, where 

Kuala Lumpur ranking in the middle (Abdullah, 2007). The mean daily maximum 

ranges from 33.8
o
C to 35.5

o
C and the mean daily minimum ranges from 22.0

o
C to 

23.3
o
C (Abdullah, 2007). Therefore, the air temperature does not differ much more than 

2
o
C in any locations throughout Malaysia.  

Malaysia has a uniform sunrise and sunset time throughout the year. The sun 

rises after 0700 hours and sets around 1900 hours. This is shown later in Figure 2.20 

where the solar radiation begins to increase after 0600 hours and reduces back to zero at 

1900 hours. Furthermore the daylight hours are illustrated by a stereographic diagram in 

Figure 2.21. 

  Figure 2.7: Mean daily maximum and minimum Dry Bulb Temperature from 2002 to 

2008 measured at Subang Jaya Weather Station (source: Malaysia Meteorology 

Department). 
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On the hottest day in 2005, the warmest time in the day was between 1200 hours 

to 1500 hours. Meanwhile, the coolest time of the day is at 0600 hours, just before the 

sun rises (Figure 2.8). In Figure 2.8 the temperature range is 11.8
o
C. Data of 2002 to 

2006, obtained from the weather station has shown that the maximum temperature range 

is 12.4
o
C. On this day, the maximum temperature was 34.6

o
C and the minimum was 

22.2
o
C. Meanwhile, the minimum temperature range in the six years record is 2.9

o
C. On 

this day, the temperature ranges from 23.3
o
C to 26.2

o
C. The maximum temperature was 

low due to the continuous rainfall from 0800 to 1800 hours. The average daily 

temperature range in the six years record is 8.14
o
C. 
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Figure 2.8: A sample of 24 hours dry bulb temperature distribution in March 2005 

measured at Subang Jaya weather station (source: Malaysia Meteorology Department). 
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Referring to the daily average dry bulb temperature in Figure 2.9, the 

temperature is warmest in the month of May with the 24 hours average dry bulb 

temperature of 28.4
o
C. Meanwhile, the lowest 24 hours average dry bulb temperature is 

found in the month of November with temperature of 26.8
o
C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: 24 hours average dry bulb temperature from 2002 to 2008 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 
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b) Relative Humidity 

Besides dry bulb temperature, relative humidity is another climate factor that 

influence human thermal comfort. Malaysia is surrounded by sea and there is no part in 

Malaysia that is further than 80 miles distant from the coast (Abdullah, 2007) as seen in 

Figure 2.1. That makes it a humid country with high mean daily relative humidity. 

Records from 2002 to 2008 have shown that the 24 hours average relative humidity 

ranges from 76.2% to 82.2% (Figure 2.10). These average figures are rather high. The 

average is at its lowest in the month of February and highest is in the month of 

November.  

 

 

 

 

 

 

 

Figure 2.10: 24 hours average Relative Humidity from 2002 to 2008 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 
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 The highest six years average absolute daily maximum relative humidity 

occurred in April with average absolute maximum relative humidity of 98.4% (Figure 

2.11). Concurrently, the absolute daily minimum relative humidity is 26.0%, which 

occurred in February 2008 (Figure 2.11).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Absolute daily maximum and minimum Relative Humididty from 2002 

to 2008 measured at Subang Jaya weather station (source: Malaysia Meteorology 

Department). 



23 

 

Meanwhile, the highest average daily maximum relative humidity is 94.7%, 

which is in November (Figure 2.12). However, the lowest average daily minimum 

relative humidity is 52.3%, which is the average of February (Figure 2.12). 

 

 

 

 

 

 

Figure 2.13 summarises the relative humidity distribution in 2004. From the 

graph, the daily relative humidity remains the same throughout the year, regardless of 

the southwest and northeast monsoon seasons. They only differ between day and night, 

where the relative humidity is higher at night (Figure 2.13). Being a tropical country, 

Malaysia has a high humidity level, hence the high maximum level in the graph above. 

In 2004, the maximum relative humidity measured at Subang Jaya weather station was 

100%, which occurred a few times during night time and also daytime, in the month of 

October.  

Figure 2.12: Mean daily maximum and minimum Relative Humidity from 2002 to 

2008 measured at Subang Jaya weather station (source: Malaysia Meteorology 

Department). 
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Referring to Figure 2.13, in November, the relative humidity level decreased to 

its minimum value of 35%. This is considered as a dry environment. However, 

throughout the year 2004, the relative humidity level is higher than 50% at most times. 

The two dotted lines on the graph in Figure 2.13 represent the average value for relative 

humidity during daytime and night time throughout the year 2004. During the night 

time, the average relative humidity ranged from 88% to 91%, and in the daytime, the 

average relative humidity ranged from 69% to 74%. Both average relative humidity 

during night time and daytime were quite high. Therefore, shelters in Malaysia should 

be able to reduce the humidity level to avoid feeling stuffy and discomfort. 
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Figure 2.13: A sample of annual Relative Humidity distribution measured at Subang Jaya 

weather station (source: Malaysia Meteorology Department). 
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c) Air Velocity 

Recorded data from Subang Jaya Weather Station has shown that the air speed 

in its vicinity could reach an absolute maximum of 12.2m/s. That has happened in 

September 2003 (Figure 2.14).  

 

 

 

 

 

However, the average daily maximum air speed is only up to 5.6m/s (Figure 

2.15). Therefore, a high air speed only happens occasionally. The data was recorded at 

an airport at the height of 16.5m above M.S.L. (Mean Sea Level). That was the rationale 

behind a rather high air speed. In terms of the average 24 hours air velocity, it ranges 

from 1.4m/s to 1.8m/s (Figure 2.16). The average decreases due to calm conditions 

particularly at night. 

Figure 2.14: Absolute daily maximum air velocity from 2002 to 2008 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 
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Figure 2.15: Mean daily maximum air velocity from 2002 to 2008 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 

Figure 2.16: 24 hours average Air Velocity from 2002 to 2008 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 
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Figure 2.17 shows an annual distribution of hourly air velocity, recorded from 

Subang Jaya weather station in 2004. The graph separates the data recorded in daytime 

and night time and it show a fluctuation of air velocity between 0 m/s to a maximum of 

10.5 m/s. Although the maximum air velocity was fairly high, the average air velocity 

was not more than 3 m/s. Referring to the graph, the air velocity was slightly higher in 

daytime as compared to night time. At night time, the average air velocity was 

approximately 0.9m/s, whereas in daytime, the average air velocity was approximately 

2.3m/s. The two black and grey dotted lines represent these averages (Figure 2.17). 

Figure 2.17 also shows that there were many occurrences of calm conditions, where the 

air velocity was 0m/s. 

 In order to achieve thermal comfort in a room, there should be sufficient air 

velocity to remove the excess heat gains from the room external fabric, its occupants 

and the appliances in the room. Thermal comfort can only be achieved when there is a 

balance between air temperature, humidity and air velocity.  
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Figure 2.17: A sample of annual air velocity distribution measured at Subang Jaya 

weather station (source: Malaysia Meteorology Department). 
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d) Precipitation 

Being a tropical country, Malaysia experiences rainfall constantly throughout the 

year but monthly total rainfall differs between seasons. The amount of rainfall was 

influenced by seasonal change in two different monsoons and two transitional periods 

between the two monsoon seasons. Figure 2.18 has shown that the southwest monsoon 

season, which is between May and September, is usually drier than other periods and 

May is looking to be the month with the least rainfall in most of the years. Meanwhile, 

November usually has the most total rainfall compared to other months and it is the first 

half of the Northeast monsoon season.  
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Figure 2.18: Monthly total rainfall from 2002 to 2008 measured at Subang Jaya weather 

station (source: Malaysia Meteorology Department). 

 

e) Solar Radiation 

Malaysia is a hot and humid country and therefore it has a relatively high solar 

radiation throughout the year. Records from Subang Jaya weather station has shown that 

the daily average over daylight hours of solar radiation from year 2002 to 2006 ranges 

from 321W/m
2
 to 394W/m

2
 (Figure 2.19). As the sun rises, the solar radiation increases 

until the maximum, which occurred mostly at 1200 hours. The solar radiation then 

gradually decreases until the sun sets (Figure 2.20). 
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Figure 2.19: Daily daytime average Solar Radiation from 2002 to 2008 

measured at Subang Jaya weather station (source: Malaysia Meteorology 

Department). 

Figure 2.20: Hourly average Solar Radiation from 2002 to 2006 measured at 

Subang Jaya weather station (source: Malaysia Meteorology Department). 
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As mentioned earlier, this study has referred to Subang Jaya Weather Station, 

which is located near Kuala Lumpur at longitude E101.7
o
 and latitude 3.1

o
N from the 

equator. Stereographic diagrams that show the sun movement for Kuala Lumpur would  

be as the diagrams shown in Figure 2.21. A red dot on the diagram shows a sun position 

in May at approximately 1230 hours. 

 

 

 

 

 
Figure 2.21: A stereographic diagram of Kuala Lumpur with a sun positioned 

shown was recorded in May at approximately 1230 hours that produce 

Horizontal Shadow Angle of 47.8
o
 and Vertical Shadow Angle of 79.5

o
 (Ecotect, 

2005). 
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Figure 2.21 is a plan view of a sun path for Kuala Lumpur. In reference to the 

plan view (Figure 2.21), the lines that cross from east to west are the sun paths from 

sunrise to sunset within a day where there are series of curvy lines across the diagram, 

which represent the hours of the day. The diagram also shows a series of circles, which 

represent the solar altitude. The angle of each solar altitude circle is shown on a straight 

line that crosses from south to north. The angles on the perimeter of the diagram, from 

North in a clockwise direction, represent the solar azimuth, which is the sun angle. 

These sun paths create the Horizontal Shadow Angle (HSA) and the Vertical 

Shadow Angle (VSA) upon a building. The curvy lines representing daylight hours on 

the diagram in Figure 2.21 demonstrates the statement stated earlier in the chapter that 

the sun rises after 0700 hours and sets around 1900 hours. 

 The sun apparent movement is governed by the Earth’s inclination and the sun 

angles are determined by the time of the year. Within a year, the annual sun path is 

divided into four parts, which are bordered by the Vernal and Autumn Equinox Day, 

Summer Solstice Day and Winter Solstice Day. Vernal Equinox Day falls on the 21
st
 of 

March, Autumn Equinox Day falls on the 23
rd

 of September, Summer Solstice Day falls 

on the 22
nd

 of June, and finally, the Winter Solstice Day falls on the 22
nd

 of December 

(Figure 2.21). These dates differ in Vertical Shadow Angle (VSA) (Table 2.1) and 

Horizontal Shadow Angle (HSA) (Table 2.2).  

Figure 2.22: An example of a shelter where the Sun was projecting 

its East facing wall, on a Winter Solstice Day, 22
nd

 of December 

(Ecotect, 2005). 
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The values in Table 2.1 and Table 2.2 were obtained from an Ecotect study of a 

simple building structure (Figure 2.22). The values of Vertical Shadow Angle and 

Horizontal Shadow Angle were projected onto a wall of a building, which was 

perpendicular to and faced East. 

 

 

 

 

 

 

 

 

 

21/03/04 22/06/04 23/09/04 22/12/04

Vertical Vertical Vertical Vertical

Date Shadow Angle (
o
) Shadow Angle (

o
) Shadow Angle (

o
) Shadow Angle (

o
)

1:00 0.0 0.0 0.0 0.0

2:00 0.0 0.0 0.0 0.0

3:00 0.0 0.0 0.0 0.0

4:00 0.0 0.0 0.0 0.0

5:00 0.0 0.0 0.0 0.0

6:00 0.0 0.0 0.0 0.0

7:00 0.0 0.0 0.0 0.0

8:00 12.7 24.5 17.4 10.2

9:00 30.5 47.6 34.9 23.8

10:00 46.3 64.8 50.1 36.6

11:00 60.0 78.3 63.4 48.4

12:00 72.3 90.0 75.5 59.4

13:00 83.9 100.7 87.1 70.1

14:00 95.5 111.4 98.7 80.9

15:00 107.7 122.5 111.1 92.6

16:00 121.1 134.4 125.0 106.2

17:00 136.5 147.2 140.8 123.7

18:00 154.0 160.9 158.8 147.2

19:00 173.3 175.1 178.2 176.8

20:00 0.0 0.0 0.0 0.0

21:00 0.0 0.0 0.0 0.0

22:00 0.0 0.0 0.0 0.0

23:00 0.0 0.0 0.0 0.0

0:00 0.0 0.0 0.0 0.0

Table 2.1: Table of Vertical Shadow Angle towards an East-facing wall during the 

Equinox and Solstice days (Ecotect, 2005). 
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Figure 2.21 shows that, Malaysia is exposed to the East and West sun as well as 

the South and North sun, throughout the year. The South and North of a building face 

the sun during mid-day where solar radiation is at its highest. Therefore, building design 

should include shading the South as well as the North-facing envelope.  

However, Table 2.1 shows that the VSA increases to above 45
o
 upward from the 

East by 11:00 a.m. The sun then starts to set down to below 45
o
 on the West after 4:00 

p.m. This occurs throughout the year (Table 2.1). 

 

 

 

 

 

 

 

Date 21/03/04 22/06/04 23/09/04 22/12/04

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00 0.8
o
 South 23.3

o
 North 0.5

o
 South 24.5

o
 South

9.00 1.7
o
 South 24.5

o
 North 1.5

o
 South 27.2

o
 South

10.00 2.9
o
 South 27.9

o
 North 2.7

o
 South 32.4

o
 South

11.00 4.8
o
 South 34.9

o
 North 4.7

o
 South 41.4

o
 South

12.00 9.1
o
 South 49.9

o
 North 9.7

o
 South 57.7

o
 South

13.00 33.3
o
 South 80.2

o
 North 64.3

o
 South 84.1

o
 South

14.00 161.4
o
 South 117.2

o
 North 168.2

o
 South 113.3

o
 South

15.00 172.8
o
 South 139.0

o
 North 174.8

o
 South 133.4

o
 South

16.00 175.9
o
 South 149.2

o
 North 177.0

o
 South 144.7

o
 South

17.00 177.5
o
 South 154.1

o
 North 178.3

o
 South 151.1

o
 South

18.00 178.6
o
 South 156.3

o
 North 179.3

o
 South 154.7

o
 South

19.00 179.5
o
 South 156.7

o
 North 179.9

o
 North 156.4

o
 South

20.00

21.00

22.00

23.00

24.00

Table 2.2: Table of Horizontal Shadow Angle towards an East-

facing wall during the Equinox and Solstice 
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f) Soil Temperature 

Malaysian soil temperatures behave differently to those in Europe. In Europe, 

the soil temperature fluctuates at shallow depths, which was influenced by the ambient 

air temperature. The deeper is the soil, the gentler the ground temperature curve varies 

(Wu et al., 2007). Meanwhile, the soil temperature finds its stability and remains more 

or less constant beyond a depth of 4m. The temperature of un-shaded soil at this depth is 

approximately equivalent to the mean annual ambient dry bulb temperature (Building 

Research Establishment (BRE)). However, when the soil is shaded by forest trees or 

structure, the temperature at 4m depth underground follows closely its minimum 

ambient air temperature. This has been confirmed by Givoni (Givoni, 2007). In his 

study, he proposed an approach of having a raised wooden shack on stilts at 

approximately 0.6m above the measured soil. During summer months, ambient air 

temperature in Florida ranges from 24
o
C to 38

o
C. During this month, the cooled soil 

temperature at 1m depth ranges between 24
o
C and 25

o
C, which is similar to the 

minimum ambient air temperature rather than the average. 

A study (Abdul Rahim et al., 1986) on Malaysia soil temperature was carried out 

by Abdul Rahim et al. in 1981 and 1982. It is a comparative study of soil temperature in 

open land and forested condition, at 5, 10, 20 and 30cm depth underground. The mean 

daily maximum air temperature is 34.4
o
C and the corresponding minimum is 18.9

o
C. 

Meanwhile, the mean annual air temperature is 26.5
o
C. Soil temperature at 5cm and 

30cm depth underground were measured in both open land and forested condition 

(Figure 2.23).  
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The average soil temperature at 30 cm depth underground for both open land 

and forested conditions were plotted against the mean air temperature, measured at 1.5m 

(Figure 2.24) and (Figure 2.25). The two averages follow the mean air temperature 

closely. The mean monthly air temperature ranges from 25.0
o
C to 27.5

o
C. The monthly 

average soil temperature at 30m depth underground in open land condition ranges from 

27.3
o
C to 30.5

o
C (Figure 2.24), whereas the corresponding temperature under forested 

condition ranges from 23.3
o
C to 25.0

o
C (Figure 2.25). Therefore, in open land 

condition, the average soil temperature at 30cm depths underground is higher than the 

average air temperature, whereas under forested condition, the average soil temperature 

at the same depth is lower than the average air temperature. In the open land, the ground 

surface is exposed to the solar radiation from the sun, while in forested land, the ground 

surface is shaded from the solar radiation by the trees. The main factor for these results 

is the effect of solar radiation. When the ground surface is exposed to solar radiation 

during the day, excess heat has been absorbed into the ground, which results in higher 

average soil temperature than average air temperature in the open land condition. 

Meanwhile, when the ground surface is shaded by trees, the soil is protected from solar 

Figure 2.23: Soil temperature distribution at 5cm and 30cm depth 

underground in both open land and forested conditions (Location: Pahang. 

Source: Abdul Rahim et al., 1986). 
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radiation, which results in lower average soil temperature than the average air 

temperature in the forested condition. 

 

Figure 2.24: Average soil profile temperature at 30cm depth underground plotted 

against the air temperature at 1.5m high in open land condition (Location: Pahang. 

Source: Abdul Rahim et al., 1986). 

 

Figure 2.25: Average soil profile temperature at 30 cm depth underground plotted 

against the air temperature at 1.5m high in forested condition (Location: Pahang. 

Source: Abdul Rahim et al., 1986). 
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In 2005, Huat et al. carried out a study on the effect of rain towards soils in 

Malaysia, which is located above the groundwater table (Huat et al., 2005). As part of 

their investigations, they have collected measurements on the soil temperature at 30cm 

depth. The soil temperature at this depth ranges from 28
o
C to 31

o
C. This temperature 

range is similar to the average soil temperature in open condition, recorded by Abdul 

Rahim in 1981 and 1982.   

Records of dry bulb temperature from Subang Jaya Weather Station from year 

2002 to 2008, has shown that the 24 hours average dry bulb temperature ranges from 

26.8
o
C to 28.4

o
C and the mean annual dry bulb temperature is 27.7

o
C. Therefore, the 

average soil temperature at 30cm deep underground, in a study carried out by Huat et al. 

in 2005, is slightly higher than the mean annual air temperature. A study has reported 

that soil temperature at shallow depth has significant variation in a day and even in a 

year due to being near to the soil surface (Kusuda and Achenbach, 1965). The study by 

Kusuda and Achenbach (1965) has shown that the underground earth heat flow is 

influenced by many factors, which are latitude, altitude, weather conditions, time of the 

year, shading, landscaping, soil properties and rainfall (Claridge et al., 1993). 

Since published records of soil temperature throughout Malaysia at depths 

greater than 30cm is limited, this research has taken a study of soil temperature 

measurement at lower depths as a first step of Earth Pipe Cooling investigation. 

 

2.1.2 Malay Vernacular Architecture 

Malaysia Architecture, at its origin, is a means of shelter design with primary 

concepts that response to the local climate condition. Originally, local villagers 

designed the vernacular houses with great understanding of local climate and their own 

needs. Following the understanding of the Malaysian climate from previous section, this 

chapter describes the design strategies of Malay vernacular shelters that should be able 

to shield the occupants from the unpleasant outside environment. The table below 

illustrates the primary concepts of a Malay vernacular house (Table 2.3) and their 

response to the local climate condition. 
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Table 2.3: Design strategies in Malaysian Vernacular Houses (Lim, 1987).  

Primary Concepts of a Malay Vernacular 

House 

Responses to Local Climate Condition 

1. Low thermal capacity material  Due to a high solar radiation during 

the day, Malay houses were built out 

of lightweight timber materials. The 

reason for using lightweight timber 

construction is because of its low 

thermal capacity, which holds small 

amount of heat and releases heat fast 

into the outside air during night time. 

This would provide comfortable 

environment during sleeping time. 

2. Widely spread building blocks  Due to limited air velocity, the 

buildings are usually spread out to 

allow uniform wind to flow around 

each building block. 

3. Ventilated Roof  Another strategy to reduce the solar 

heat gain in a pitched roof is by 

allowing ventilation of air to flow 

through the ceiling joints and remove 

the possibly excess heat collected in 

the roof. 
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Table 2.3 continues 

4. Tall and Thin Vegetation  Due to high solar radiation and limited 

air velocity, the most suitable type of 

vegetation is the tall tree such as 

coconut tree. This tree type provides 

sufficient shading for the ground and 

buildings underneath, while 

simultaneously allowing air to flow 

freely underneath them. 

5. Cross Ventilation  Malay Vernacular houses have 

openings opposite each other and 

minimal internal partitions. This is to 

allow easy access of air velocity from 

outside to pass through the house. 

6. Houses on stilts  Malay Vernacular Houses are raised 

on stilts. The purpose for this is to 

allow a higher air velocity into the 

house by being at a higher level. A 

common fact is that air velocity is 

usually higher at a higher level. 

Another reason for a raised house is to 

protect the house from flood and 

animals. 
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Table 2.3 continues 

7. Full length openings  Malay Vernacular houses have 

openings that open from floor to 

ceiling. This provides air ventilation at 

occupant level.  

8.  East West orientated  Due to low vertical angle of solar 

radiation in the morning and late 

afternoon, on the East and West 

respectively, the Malay Vernacular 

houses are usually orientated along the 

East and West direction to minimize 

solar heat gain from these directions. 

9. Big overhangs  Malay Vernacular houses have big 

overhangs that shade as much walls 

and windows from the solar radiation 

and also rain. This allow windows and 

doors to be opened at most times of 

the day during hot days and also rainy 

days.  
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Table 2.3 continues 

10. Prevention of Glare  The big overhangs also protect the 

occupants from glare. Another strategy 

to prevent glare is by having low 

reflectance ground and wall surfaces 

of neighbouring buildings: soft 

landscape and timber walls for 

example. 

11. Lighting performance  Due to large overhangs, the lighting 

level in a Malay vernacular house is 

usually not adequate. Despite its lowly 

lit, it is assumed to have given the 

occupants the cooling feeling 

psychologically. 

 

All of the above elements can be applied to a building design in a tropical 

climate and the next figure is an example of a cross-section of a basic Malay Vernacular 

house (Figure 2.26). 
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2.1.3 Cooling Methods Implemented in Malaysia 

Having said previously, shelters should be designed responding to local 

environment and micro climate. Malay vernacular design building is suitable to be built 

in places with broad land space to accommodate widely spread building blocks and 

sufficient amount of trees for shading from high solar radiation. Malaysia being a fast 

developing country has its environment changed rapidly particularly in the city of Kuala 

Lumpur. The rapid development has result in reduction of vegetation and increase in 

number of buildings, which makes the place dense with buildings built closely and does 

not comply with the criteria of vernacular Malay house (Table 2.3 (2)). As a result, 

natural ventilation does not provide adequate cooling sensation in the building due to 

the minimal wind flowing around the buildings. Therefore, vernacular Malay design is 

not suitable for the developed environment of Malaysia. Due to this, occupants have 

relied on electric fans and air-conditioning. To the extreme, occupants would rather 

have the building windows shut and depend on air-conditioning for cooling. 

Figure 2.26: A cross section of a typical Malay Venacular House (Lim, 1987) 
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As the demand for air-conditioning increases, which contributes to the country 

energy demand exponential increment, several researchers and architects have come to 

realize their role in designing modern buildings in Malaysia that can provide thermal 

comfort with minimal reliance on air-conditioning and less energy demand. The energy 

efficient building design is also called “Green Building” or “Ecological Design 

Building” (Yeang, 1999). 

“Green” or ecological design here means building with minimal environmental 

impacts, and, where possible, building to achieve the opposite effect; this means 

creating buildings with positive, reparative and productive consequences for the natural 

environment, while at the same time integrating the built structure with all aspects of 

the ecological systems (ecosystems) of the biosphere over its entire life cycle.” (Yeang, 

1999). 

 

a) Old Shop-houses, Melaka 

 

 

Figure 2.27: An example of old shop-houses in Melaka, Malaysia (Jayapalasingam, 

2009). 
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  The old shop-houses design comprises of internal courtyard to provide fresh air 

and natural daylight into the long building. These shop-houses were first built in the 19
th

 

century. Its form has a typical width of within 6 to 7m and typical length of 30m (Figure 

2.27). Although there are some with 60m long (Wan Ismail and Shamsuddin, 2005). 

The rationale behind its form is due to the tax charge according to the width of the 

façade. Therefore, to reduce paying tax, the width of the building is minimized but with 

long stretch to the back of the building. These shophouses are also terraced houses and 

therefore, have minimal exposure to the outdoor environment. As part of passive design, 

internal courtyards were introduced into the building plan. The number of courtyards 

depends on the length of the building to provide ample natural ventilation and daylight. 

 

b) IBM Headquarter Mesiniaga Tower, Subang Jaya 

One of the earliest energy saving office building was the IBM headquarter 

Mesiniaga Tower that was erected in 1992 in Subang Jaya, near Kuala Lumpur (Figure 

2.28). This sixteen-storey office tower was designed by T.R. Hamzah and Yeang. 

 

 

Figure 2.28: Pictures of Mesiniaga Tower in Subang Jaya from three direction (Chan et 

al., 2004). 
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Figure 2.29: 3d diagram of Mesiniaga Tower illustrating the passive building design 

scheme (Chan et al., 2004). 

  

Figure 2.29 illustrates part of the building passive design scheme. The 

Mesiniaga Tower became an energy efficient building by implementing various 

environmental responsive passive designs. Water conservation system took advantage 

of the raining season by collecting rainwater for building use. Another passive design 

strategy is the tower having a naturally ventilated service core, which is placed on the 

East side of the building to shade the rest of the building from direct east sunlight and 

provides a heat sink simultaneously. Double-glazed façade can only be found on the 

North and South side of the building. Furthermore, sky gardens were integrated into the 

building façade (Figure 2.29) to extend vegetation and also for occupants to relax. On 

the roof top there is a tubular steel trellis that give shading to the building rooftop and 

also support the PVC solar panel. The PVC solar panel will absorb solar radiation from 

the sun and generate electricity for the building (Chan et al., 2004) 
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b) Securities Commission Building in Malaysia, Kuala Lumpur 

The Securities Commission building was completed in 1999 and was designed 

by Hijjas Kasturi Associates. The building was reviewed as the most energy efficient 

new building in the ASEAN Energy Awards for Energy Efficient Buildings (AEA) 

2001 (Figure 2.30). Its energy efficient features consist of double-glazed thermal flue 

façade, atrium glass roof, energy-saving light fittings and under-floor air-conditioning 

system (Securities Commission, 2001). The features were designed to achieve sufficient 

indoor thermal comfort.  

 

 

Figure 2.30: Bird’s eye view of Securities Commission Building in Kuala Lumpur, 

showing the triangle-plan atrium at the centre of the building (Abdul Aziz and Mohd 

Adnan, 2008). 

  

The double-glazed thermal flue façade comprises of a 1.2m air gap that serves 

the building as ventilated air gap, acoustic buffer zone and maintenance walkway. This 

walkway has fixed louvered panels as a shading device from solar radiation (Figure 

2.31).  

 

Figure 2.31: Securities Commission Building in Kuala Lumpur (Shafii et al., 2006). 
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Furthermore, the atrium adopts under-floor air-conditioning system at ground 

level, which provides thermal comfort and good ventilation (Shafii et al., 2006). 

Thermostat controlled fans are located at the top of the atrium. The function of the fan is 

to extract hot air and release it to outdoor space via the atrium roof. The overall thermal 

transfer value (OTTV) of this building is 35Wm
-2

, which is lower than that of 

conventional glass building; 45Wm
-2

 (Securities Commission, 2001). 

 

c) UMNO Tower, Penang 

UMNO Tower is another building designed by T. R. Hamzah and Yeang, 

located in North Malaysia. Slightly higher than Mesiniaga Tower, the UMNO Tower 

comprises of 21 storeys (Figure 2.32). This building is cunningly designed to enhance 

natural ventilation that provides the indoor environment with approximately 30 air 

changes per hour. This was achieved by having a large fin or wing wind wall, which 

creates an artificial pressure zone that allows wind to go in and out of each office floor. 

The large fin enhanced natural ventilation has reduced the air-conditioning cooling load 

by 30%. 

 

Figure 2.32: UMNO Tower in Pulau Pinang, showing the large fin or wing wind wall 

(Abdul Aziz and Mohd Adnan, 2008). 

  

Large fin 
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d) Low Energy Office Building LEO, Putrajaya 

The LEO building (Figure 2.33) has won 1
st
 prize award in the ASEAN Building 

Energy Award 2006 (Qahtan et al., 2010). This building was built by the Government of 

Malaysia with the aid in technical input from Danida International Development 

Assistance (DANIDA), which house the Ministry of Energy, Water and 

Communications (MEWC) headquarters. It comprises of 2 building blocks of 6 storey 

high and 2 basements (Abdul Aziz and Mohd Adnan, 2008). 

 

 

Figure 2.33: Low energy office building LEO in Putrajaya (Qahtan et al., 2010). 

  

The LEO building have various passive sustainable features such as orientation 

to minimize solar heat gain into the building, smart internal planning of workspaces to 

benefit from natural daylight from atrium, thick wall materials, roof insulation, glazing 

using 12mm thick light green tinted glass and natural ventilation for cooling purposes 

(Abdul Aziz and Mohd Adnan, 2008). One of the stated passive sustainable features, 

which is thick wall materials contradicts with one of the climate responsive design 

strategies of a Malay Vernacular House, lightweight low thermal capacity walls (Table 

2.3 (1)). The contradiction is due to the different function of building; one is for living 

and the other one is an office. Vernacular Malay house design responded to Malay 

traditional lifestyle, where people worked or studied away from the house most of the 

day and return to rest in the house in the late evening. Therefore, the priority relied on 
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the comfort of the house in the late evening and hence the use of low thermal capacity 

lightweight walls, which quickly released heat from the indoor space and into the 

outside air during the night.  

On the other hand, LEO building, being an office building, is occupied mostly 

during daytime. It needs a thick wall with high thermal capacity, which could absorb, 

hold and release heat from outside air into the indoor space slowly during the day. The 

heat is held long enough in the walls until the sun sets and outside air becomes cooler 

again.  

The natural ventilation is provided by the open space lobby which links to a 5 

storey high atrium. The air movement within the atrium is further elevated upwards by 

the addition of thermal flue at the fifth floor wall, where the walls were painted black. 

The black wall will absorb heat from the sun, creating hot air, which result in stack 

effect, where the air flow is further increased upwards naturally without help from any 

kind of mechanical ventilation (Figure 2.34). The air movement inside the lobby was 

found to be 6 to 8 air changes per hour (Abdul Aziz and Mohd Adnan, 2008). 

 

 

Figure 2.34: A cross section of the LEO building, showing the open space lobby leading 

to the atrium, the black wall at the fifth floor and the three storey water wall (Abdul 

Aziz and Mohd Adnan, 2000). 
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 Another passive cooling feature is evaporative cooling provided in the atrium.  

A series of water mist spray are installed in a row, on the first floor beam to cool down 

the lobby as the outdoor temperature becomes hot. The evaporative cooling feature 

coupled with a three storey water wall within the atrium helps maintain the indoor 

temperature at 24
o
C (Figure 2.34) (Abdul Aziz and Mohd Adnan, 2008). 

The energy consumption of the LEO building is 114kWh/m
2
year. Typical 

conventional building energy consumption is within the range of 200 and 300 

kWh/m
2
year while the Malaysian Standard guideline for Energy Efficiency building 

energy consumption is 140kWh/m
2
year (MEGTW, 2009). This shows that the LEO 

building energy consumption is lower than suggested by the Malaysian Standards. 

A report also stated that the payback years for the LEO building is 5 years and it 

makes an annual energy saving of RM600,000, equivalent to GBP120,000 (Shafii, 

2007). 

 

e) Green Energy Office Building GEO, Bandar Baru Bangi 

 The GEO Building is still under construction and scheduled to complete in 2015 

(Figure 2.35). The building is built with various green building features such as almost 

100% daylighting, floor slab cooling (Figure 2.37), double glazing, insulation, solar 

energy use and load shifting and a trickling roof cooling tower (Kannan, 2009).  

 

 

Figure 2.35: A model of GEO building in Bandar Baru Bangi (Kannan, 2009). 
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In terms of solar energy absorption, the GEO building has a total of 92kWp of 

photovoltaics (Shafii, 2007). Four different types of photovoltaic panels were 

incorporated into the design according to the building zone function (Figure 2.36). 

 

 

Figure 2.36: Distribution of various types of Photovoltaic panels (Kannan, 2009). 

  

 

Figure 2.37: A section of the GEO building showing the floor slab cooling and the 

predicted resulting indoor air temperature (Kannan, 2009). 

   

The GEO building is predicted to consume energy as much as 65kWh/m
2
year 

but generates energy as much as 35kWh/m
2
year in the 2015 (MEGTW, 2009). 
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2.2 Thermal Comfort 

An individual who is experiencing thermal comfort is one who is satisfied and 

feels thermally comfortable with his surrounding environment. This fact is supported 

further by a phrase written in the ASHRAE Standard 55-66, which stated the definition 

of thermal comfort: 

“That condition of mind which express satisfaction with the thermal environment.” 

(Fanger, 1970). 

 The study of thermal comfort is crucial in every part of the world and it differs 

according to the local climate and environment. There are three main reasons behind the 

study of thermal comfort, which is to achieve user satisfaction, efficient energy 

consumption and to set a standard with a range of thermal comfort temperature for a 

particular environment. 

 The first issue mentioned is to achieve user satisfaction. From personal 

observation in Malaysia, quite a number of people would bring warm clothes into 

lecture theatres, cinemas and libraries because the indoor condition was cold as 

compared to the outdoor environment, which is warm and humid all year round. 

Furthermore, from personal experience, a library felt too cold because the air-

conditioning temperature was set to 18
o
C. Being an all year round warm and humid 

country, many commercial buildings are dependent on air-conditioning for cooling the 

indoor space. Without the knowledge of thermal comfort temperature range, the air-

conditioning temperature could be set to be too cold for the occupant and hence the use 

of warm clothing in a building in warm and humid climate of Malaysia.  

 With the knowledge of thermal comfort temperature range of a particular 

environment, energy consumption for heating or cooling could be reduced effectively. 

A method to calculate heating or cooling requirement for a building is to find the 

number of ‘degree-days’ within the heating or cooling season, with the aid of local 

weather data. ‘Degree-days’ can be calculated when thermal comfort temperature and 

outdoor temperature are known. For a heating season, the ‘Degree-days’ is the number 

of days multiplied by the temperature drop between the thermal comfort temperature 

and the outdoor temperature. For a cooling season, the ‘Degree-days’ is the number of 

days multiplied by the temperature rise between the thermal comfort temperature and 

the outdoor temperature (CIBSE Guide A, 2006). 
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 Thermal comfort study can also determine the thermal comfort standard that 

responds to the local weather condition. The comfort standard could reduce the indoor 

and outdoor temperature differences but maintain indoor comfortable condition. 

Implementation of comfort standard could introduce efficient energy consumption. 

 

2.2.1 The Processes of Thermal Interaction between Man and the Environment 

A healthy body has an internal body temperature of 37
o
C, with skin temperature 

that ranges from 25
o
C up to 37

o
C. The skin temperature varies in different parts of the 

nude person and ambient temperature. Figure 2.38 shows the variation of skin 

temperature, which affected by the different parts of the body and ambient temperature. 

 

Figure 2.38: Skin temperatures at different parts of person at different ambient 

temperatures (Olesen, 1982). 
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In order to avoid discomfort, it is important for the body to maintain a constant 

internal body temperature. This is where a heat balance of the body occurs, where the 

production of heat is equivalent to the dissipation of heat (Fanger, 1970). Fanger’s 

(1970) thermal balance equation is shown in Equation 2.1 below. 

H – Eis – Esw – Eres – Cres = K = R + C                                   (Equation 2.1) 

 

Where H is the net metabolic heat production, K is the heat transfer from the 

human skin to the outer layer of the human’s clothing, R is the heat transfer through 

Radiation, C is the heat transfer through Convection, Esw is the heat loss through 

Evaporation when sweating and Eis is the Evaporation of sensible moisture on the skin. 

Meanwhile, Eres and Cres are heat loss from respiratory where Cres is a convective heat 

transfer in the lungs with the value of 0.0014M*(34 – Ta) Wm
-2

 and Eres is an 

evaporation heat transfer in the lungs with the value of 0.0017M*(59 – pa) Wm
-2

. Eres is 

an evaporation from the surface of the lungs, which caused by breathing.  

There are four different categories within the processes of thermal interaction 

between man and environment, which are in terms of physics, physiology, 

psychophysics and human social behaviour (Nicol, 2008).  

The physics aspect of man and environment thermal interaction elaborates most 

variables in the thermal balance equation (Equation 2.1). The human body loses heat to 

or gain heat from its surrounding environment through radiation, convection and 

evaporation. Radiation occurs when there is a heat transfer between two or more 

objects, with different temperatures, in the form of electromagnetic waves, with no 

absorbing medium in between the two objects. The calculation of radiation occurred 

onto a human being in a room is slightly complex because the human is surrounded by 

objects with various radiant temperature. As an example, inside a room, there could be a 

warm ceiling but a cold window. The transparency of the windows transmits solar 

radiation into the room. Different materials have different radiation emissivity or 

absorptivity and solar radiation reflectivity (Table 2.4). Choosing the correct materials 

for building envelope can help the building occupant achieve thermal comfort. 
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Table 2.4: A list of common materials used in building envelope with their average 

emissivitities, absorptivities and reflectivities (Straaten, 1967). 

 

Surface 

Emissivity or absorptivity Reflectivity 

Low-

temperature 

radiation 

Solar radiation Solar Radiation 

Aluminium, bright 0.05 0.20 0.80 

Asbestos cement, new 

Asbestos cement, aged 

0.95 

0.95 

0.60 

0.75 

0.40 

0.25 

Asphalt pavement 0.95 0.90 0.10 

Brass and copper, dull 

Brass and copper, polished 

0.20 

0.02 

0.60 

0.30 

0.40 

0.70 

Brick, light buff 

Brick, red rough 

0.90 

0.90 

0.60 

0.70 

0.40 

0.30 

Cement, white Portland 0.90 0.40 0.60 

Concrete, uncoloured 0.90 0.65 0.35 

Glass 0.90 ____ ____ 

Marble, white 0.95 0.45 0.55 

Paint, aluminium 

Paint, white 

Paint, brown, red, green 

Paint, black 

0.55 

0.90 

0.90 

0.90 

0.50 

0.30 

0.70 

0.90 

0.50 

0.70 

0.30 

0.10 

Paper, white 0.90 0.30 0.70 

Slate, dark 0.90 0.90 0.10 

Steel, galvanized, new 

Steel, galvanized, weathered 

0.25 

0.25 

0.55 

0.70 

0.45 

0.30 

Tiles, red clay 

Tiles, black concrete 

Tiles, uncoloured concrete 

0.90 

0.90 

0.90 

0.70 

0.90 

0.65 

0.30 

0.10 

0.35 

. 

Convection is a heat exchange between the human body and the air surrounding 

when there is a temperature difference between the human skin or clothing temperature 

and the air temperature. The heat exchange would create air movement and hence 
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convection currents are formed. A forced convection current can be set up to increase 

thermal comfort by accelerating the rate of heat transfer with the aid of a mechanical 

source (Straaten, 1967). 

Evaporation heat transfer occurs when water particles from the human surface 

evaporates to the air and simultaneously extract latent heat from the surface, which 

provides cooling effect to the human skin. If the human body is not sweating, 

evaporation can also occur with the skin moisture. This principle of heat and water 

vapour relationship forms the basis of psychrometry (Straaten, 1967). 

In terms of physiological process of man and environment thermal interaction, 

heat is endlessly lost to the environment via the skin and the surfaces of the lungs to 

balance its metabolic heat production, which the human body produces through 

metabolising food and activities. Heat within a human body is transported around the 

body via the blood and the temperatures of the internal organs are controlled by the 

brain, which remain constant. When the core temperature drops, the brain defended the 

body by setting off vaso-constriction, where the blood circulation is reduced, and so is 

the heat supply. This then causes the skin temperature reduction, which reduces the heat 

loss to the environment. When the core temperature drops further, the muscle tension 

increases, which makes the body shivers (Nicol, 2008). 

On the other hand, when the core temperature increases, as a defence, the brain 

set off vaso-dilation, where the blood circulation increases. This increment leads to the 

increase in skin temperature and also heat loss from the skin to the environment. When 

the core temperature increases further, sweating will occur (Nicol, 2008). 

The psychophysical thermal interaction of man and the environment is the 

relationship between the human thermal sensations with the thermal environment.  

“The probability that members of a group of people are comfortable will start of 

low at low temperatures because almost all will be cold. Then rise to a maximum 

(100%) as temperature increases. Then, fall off again as they become likely to be hot” 

(Nicol, 2008). 

Human social behaviour is an active thermal interaction between man and the 

environment through changing clothes to suit the climate, changing posture and 

metabolic rate, movement between different thermal environments and making use of 

mechanical thermal controls to modify the immediate environment (Nicol, 2008). 
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2.2.2 Factors of Thermal Comfort 

The factors of thermal comfort include environmental factors and personal 

factors.  

Among the various climatic variables in the environment, the main climatic 

variables, which were usually taken into consideration in environmental responsive 

building designs were the solar radiation, reflected radiation from the ground, air 

temperature, humidity, air velocity and precipitation (Givoni, 1976). The precipitation 

referred to in this study is rain.  

 

a) Environmental factors 

The first mentioned environmental factor in section 2.2 is solar radiation, which 

is projected from the sun onto the Earth’s surface, when there is no obstruction. 

Obstructions in the atmosphere cause a decrease in the amount of radiation that reaches 

the Earth surface, due to absorption, reflection and diffusion. 

The direction of sunrays varies with date, time and latitude. As described in 

Section 2.1, the latitude, date and time of incident determines the sunrays’ angle that is 

projected on to the Earth’s surface. Radiation from the ground is emitted to the 

atmosphere when there is a difference between the radiant temperature of the Earth’s 

surface and the ambient air temperature. This occurs mainly at night when the Earth’s 

surface is warmer than the air temperature in the atmosphere. Solar radiation also create 

evaporation where there is water on a surface.  

The next mentioned environmental variable that affects thermal comfort is the 

air temperature. It is usually measured in the unit 
o
C. Air temperature is the most crucial 

environmental factor that could influence the amount of heat released from a human 

body to achieve comfort. As mentioned before, a healthy internal body temperature is 

approximately 37
o
C while the skin surface temperature ranges from 35

o
C to 37

o
C 

depends on the ambient temperature. Please refer to Figure 2.38. A human body 

continuously release heat produced by its metabolic process, which is an accumulative 

of its food intake and activities. Therefore, the air temperature must be at a certain level 

that could help a human body to release heat to the environment to prevent discomfort 

(Szokolay, 2004). 
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The humidity of air is determined by the amount of water vapour carried by the 

atmosphere. This study referred to relative humidity is the percentage of water particles 

in the ambient air.. The atmosphere collects water vapour due to the evaporation from 

wet surfaces, vegetation or water features. When the humidity as well as the air 

temperature is high, discomfort will occur. A range of acceptable relative humidity level 

is from 30% to 65% (Szokolay, 2004). This thesis investigates buildings in Malaysia, 

which has a warm and humid climate. Therefore, discomfort due to high relative 

humidity may occur. In order to prevent discomfort due to high relative humidity, 

adequate air movement is required to reduce the amount of humidity. 

Air speed is measured in the unit m/s. It is created in buildings by the wind, the 

difference in air temperature and fans. Warmer air is lighter which causes it to rise. This 

phenomenon is known as the stack effect. The difference in air temperature causes air 

movement from the warmer surface to a cooler air. This would increase the air velocity. 

Table 2.5 shows how human reacts to condition with different air speed. 

  

Table 2.5: Human reactions to different air speed (Szokolay, 2004). 

<0.1 m/s stuffy 

to 0.2 m/s unnoticed 

to 0.5 m/s pleasant 

to 1.0 m/s awareness 

to 1.5 m/s draughty 

>1.5 m/s annoying 

 

Another environmental factor that affects human thermal comfort is 

precipitation, which this study referred to as rain. Precipitation reduces the amount of 

solar radiation from the sun and causing a cooler atmosphere. This could be due to more 

cloud covers during rainfall that blocks the solar radiation. Simultaneously, it increases 

the Relative Humidity as it increases the amount of water vapour in the atmosphere. 

 These environmental factors play a role in changing the environment and are 

dependent on and affected by each other.  
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b) Personal factors 

Fanger (1970) had listed four personal factors that could affect human thermal 

comfort. They are the metabolic rate of the occupants, amount of clothing worn by the 

occupants, the state of health and acclimatisation of the occupants. Even though a group 

of people occupy a space, which exhibits a uniform environmental condition, they might 

not have the same thermal comfort perception due to the personal factors. 

Metabolic processes are divided into two types, basal metabolism and muscular 

metabolism. Basal metabolism is a continuous and automatic process, whereas muscular 

metabolism process occurs when a person is carrying out work. The amount of energy 

released by a human body depends on the person’s activity. The heat output can range 

from a minimum of 70 Watts, when the body is in a sleeping state, to 700 Watts, when 

the person is active; playing sports for example (Table 2.6).  

  

Table 2.6: The amount of energy released for different activities (Koenigsberger et al., 

1974). 

Activity Energy released (Watts) 

Sleeping Minimum 70 

Seating, moderate movement, e.g. typing 130 – 160 

Standing, light work at machine or bench 160 – 190 

Seating, heavy arm and leg movement 190 – 230 

Standing, moderate work, some walking 220 – 290 

Walking, moderate lifting or pushing 290 – 410 

Intermittent heavy lifting, digging 440 – 580 

Hardest sustained work 580 – 700 

Maximum heavy work for 30-minutes duration Maximum 1100 
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Clothing is another personal factor that would affect occupant’s thermal comfort. 

It is an item that shields the occupants from the environment, and in this study, it was 

measured in the unit clo-value. Table 2.7 has listed the clo-value of each garment. 

 

Table 2.7: Clo-value of each garment. (Bruel and Kjaer, 1982). 

Clothing                                        Clo-value 

___________________________________________________________ 

Naked                                              0.0      

Briefs                                             0.06      

T-shirt                                            0.09      

Bra and panties                                    0.05      

Long underwear           

     upper                                         0.35      

     lower                                         0.35      

Shirt           

     light, short sleeve                           0.14      

     heavy, long sleeve                            0.29      

     Add 5% for  tie or turtleneck           

Skirt                                           0.22-0.70      

Trousers                                        0.26-0.32      

Sweater                                         0.20-0.37      

Socks                                           0.04-0.10      

                                                0.02-0.08      

Light summer outfit                                0.3      

Working clothes                                    0.8      

Typical indoor winter clothing combination         1.0      

Heavy business suit                                1.5 

_____________________________________________________________________ 

 

In warm weather, occupants would normally wear clothing with low clo-value, 

to prevent them from getting too warm, whereas in cold weather, occupants would wear 

clothing with high clo-value to keep themselves warm. 
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 The next personal factor, which would affect thermal comfort of a person, is his 

or her state of health. When the internal body temperature increases above the air 

temperature, the body would feel colder. However, this happens very rarely and only 

when the person is not feeling well. 

Another factor, which could affect human thermal comfort, is the acclimatization of 

the person. The human body is homoeothermic. It is not entirely passive, but it has 

thermal adjustment mechanisms that enable the body to adapt to its surrounding 

conditions. The adjustment mechanisms go both ways, either in the cold environment or 

in the warm environment. 

In cold environment, the adjustment mechanism is called vasoconstriction. Here, 

the blood vessels contract, which reduces the volume of blood flow to the skin. 

Therefore, the skin temperature is reduced and a reduction in heat dissipation occurs. 

However, in a warm environment, the mechanism is called vasodilatation. Here, the 

blood vessels expand, which increases the volume of blood to flow to the skin. 

Therefore, the heat transport increases, and elevates the skin temperature, which 

increases the amount of heat dissipation (Szokolay, 2004). 

 

2.2.3 Adaptive Thermal Comfort 

Field studies on thermal comfort dates back as early as 1930s. In 1936, Bedford 

had carried out a field study based on the adaptive approach. In his field study, data of 

the thermal environment, such as air temperature, relative humidity, radiation, and air 

movement, were measured. At the same time, when the measurements were recorded, 

surveys on the occupants’ response were carried out (Bedford, 1936). 

In 1973, Nicol and Humphreys carried out a study on adaptive comfort. This 

study involved a range of different locations with different climates. The result had 

shown that as the indoor temperature, measured from one climate to another, increases, 

the mean comfort vote did not change as much. The results had proven that the 

percentage of comfort vote of a warmer climate and a colder climate were similar. Their 

results had shown that there is a possibility of adaptive comfort. 

In 1976, Humphreys carried out another similar study with subjects exposed to a 

wider variety of climates. Humphreys results had shown that the percentages of comfort 
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votes were similar, whether they were obtained in a warm climate or a cold climate. 

This result had supported Nicol and Humphreys conclusion in 1973. 

In 1998, Brager and de Dear carried out a field study based on naturally 

ventilated buildings located in a warm climate. This study used a Predicted Mean Vote 

(PMV) model and the actual comfort votes from the occupants were also recorded. 

Their study was to investigate the validity of the Predicted Mean Vote (PMV) model in 

predicting the thermal comfort in warm climate. The PMV model was created from 

Fanger’s heat balance equation (Fanger, 1970). Their results had shown that the PMV 

model predicted a lower comfort temperature than the actual comfort votes from the 

occupants. (Brager and de Dear, 2001). Therefore, they have concluded that the 

occupants were tolerant to a higher air temperature than what was predicted by the PMV 

model. 

A similar survey using the PMV model was carried out by a group of 

researchers; Taki, Seden, Ealiwa and Howarth, during the summer of 1997 and 1998. 

The field study was done in the hot-dry climate of North-Africa, with reference to 

Ghadames, Libya. During summer, the maximum temperature was up to 47
o
C, with a 

minimum night temperature of 30
o
C. The results of the Adaptive Model showed that, at 

a range of air temperature from 30
o
C to 35

o
C, 80% of the occupants reported they were 

satisfied. However, the PMV model had predicted a lower comfort temperature (Taki et 

al., 2001). This had again proven that the occupants in a warm country could tolerate a 

higher air temperature that what was predicted by the PMV model. 

In 2001, McCartney and Nicol carried out another similar type of comfort 

survey in Europe. The result had concluded that human are able to adapt to their 

surrounding environment. There are many possibilities for human to adapt to their 

surrounding environment. It is more of a common sense and natural reaction. A person 

has a choice, whether to change him or herself to be able to adapt to the environment or 

to change the environment to suit them. (Nicol and Humphreys, 2001). 

The results of an adaptive comfort survey might have possibly been influenced 

by three main contextual variables. The first variable would probably be the climate 

itself, which might influence the thermal attitudes and the culture of the community. 

The second variable would probably relate to the buildings, with respect to their design 

and the type of building services adopted, either they use individually controlled system 
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or a centralized system. The third variable would probably be time. Human activities, 

and the surrounding environment, change continuously through time. Therefore, it is 

important to take the time frame into consideration. 

In 2001, Nicol and Humphreys stated ‘… people have a natural tendency to 

adapt to changing conditions in their environment…’. A phenomenon experienced by 

Michael Humphreys, which had supported the fact that thermal comfort does not have a 

fixed range of temperature. He has experienced it for himself during his visit to Pakistan 

where the outside temperature was approximately 40
o
C. As he entered a building, he 

sensed a relief of coolness, assuming the indoor temperature would be around 25
o
C. 

When the measurement of the indoor temperature was taken, the actual temperature was 

found to be 32
o
C. In United Kingdom, when the indoor temperature reaches 32

o
C, the 

indoor space would be considered to be too warm and uncomfortable. (Humphreys and 

Nicol, 2001). 

The studies have shown that different regions on the globe have their own 

thermal comfort zone. The next section determines the thermal comfort zone for 

Malaysia and other tropical regions. 

 

2.2.4 Thermal Comfort in Warm and Humid Tropical Countries 

The purpose of this section is to determine the thermal comfort zone for 

Malaysia climate in terms of dry bulb temperature and relative humidity. Malaysian 

Department of Standards (2001) have suggested thermal comfort range and neutral 

temperature for air-conditioned non-residential buildings to be from 23
o
C to 26

o
C and 

24.5
o
C respectively. The suggested comfort range and neutral temperature agree with 

ASHRAE (1992) Standard 55 and ISO 7730 (1994). In 2007, the Department of 

Standards Malaysia (2007) have suggested design value of relative humidity to be 

between 55% to 70% and air movement to be between 0.15m/s to 0.50m/s. In 2004, 

ASHRAE Standard 55 has a lower margin of relative humidity that expands the comfort 

temperature. When the relative humidity is as low as 10%, the suggested comfort range 

is from 25
o
C to 28

o
C, while when the relative humidity is 55%, the suggested comfort 

range is from 24
o
C to 27

o
C (ASHRAE, 2004). 

Various researches have been carried out in search of the correct thermal 

comfort range for warm and humid climate such as Malaysia climate. These researches 
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investigated on occupants living in naturally ventilated (Table 2.8), air-conditioned or 

mixed both naturally ventilated and air-conditioned (Table 2.9) buildings. 

 

Table 2.8: Comfort range of occupants in naturally ventilated buildings under hot and 

humid climate. *ET is Effective Temperature, T of an environment when RH is 50%.  

Researcher Year Type of  

Study 

Country No. of 

Subjects 

Tc, Comfort 

Temp, 
o
C 

RH 

(%), 

A/V 

(m/s) 

Ellis 1952 Field Study Between 

Singapore 

and Hong 

Kong 

5211 26.1 ET 

Or  

Tc= 30
o
C 

and lower 

50% 

Ellis 1953 Field Study Singapore 118 Tc =24.4 - 

29.4 

ET = 21.7 – 

27.2 

 

Webb 1959 Field Study Singapore 20 Tn = 28.9 70%, 

A/V = 

0.2m/s 

Sharma and 

Ali 

1986 Field Study India (hot 

and humid) 

18 26 – 31
o
C 30% - 

70% 

De Dear 1990 Field Study Singapore 583 Tn = 28.5
o
C  

Abdul 

Shukor & 

Young 

 

1993 Chamber  

 

Penang, 

Malaysia 

142 25.0 – 31.4 

Ta 

50 

Zainal 1993 Chamber 

and Field 

Study 

Johor, 

South 

Malaysia 

 23.0 – 33.0 

Ta 

55 – 80 

average 

A/V = 

0.15 – 

0.2 m/s 

Mallick 

 

1996 Field Study Bangladesh 400 Tn = 28.9 0m/s 

Tn = 31.6 0.45m/s 

Abdul 

Rahman & 

Kannan 

1997 Field Study Subang 

Jaya, 

Malaysia 

236 Tn = 27.4
o
C 

Comfort 

Range = 

23.4 – 

31.5
o
C 

54% to 

76% 

Nicol et al 1999  Field Study Pakistan 25 Tglobe range  

= 21.0 – 

31.0
o
C 
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Table 2.8 continues. 

Abdul 

Rahman 

2000 Field Study Malaysia  Comfort 

range = 25.5 

– 28.5
o
C 

45% - 

90% 

     29.5
o
C 45% 

Khedari et 

al  

2000 Field Study Thailand 183 

male 

105 

female 

Tn range = 27 

– 31
o
C. 

A/V range = 

0.1 – 1.68m/s 

 

Sapian et al. 2001 Field Study Kuala 

Lumpur, 

Malaysia 

(multi- 

storey 

flats) 

 Comfort 

Range = 26.0 

– 29.5 

A/V = 

0.5 – 

1.0 

m/s  

Sh Ahmad 2002 Field Study Malaysia 

(classroom) 

 Tn = 26.9
o
C  

Comfort 

Range = 25.1 

and 30.1
o
C  

 

Wong and 

Khoo 

2003 Field Study Singapore 

(classroom) 

 Tn = 28.8 

Comfort 

Range = 27.1 

- 29.3oC 

 

Sh Ahmad 2005 TAS 

software 

Malaysia  Tn = 26.1oC 

Comfort 

range (90% 

acceptance) 

= 23.6 – 

28.6oC 
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Table 2.8 continues. 

Md Zain et 

al 

2007 Auliciem’s 

equation 

Malaysia  Tn = 26.19 At 

least  

A/V 

0.7m/s 

     Comfort 

range (80% 

vote) = 

22.7 – 

29.2oC 

As 

low as 

0m/s 

Hussein and 

Abdul 

Rahman 

2009 Field study Malaysia 2 

schools 

Tn = 28.4oC 

Comfort 

range = 26.0 

– 30.7oC 

A/V = 

0.3 – 

1m/s 

 

Table 2.8 listed the findings of research that was carried out from 1952 to 2009 

of the indoor thermal comfort range and neutral temperature for naturally ventilated 

buildings under warm and humid climate. The overall findings have shown that the 

neutral temperature, Tn ranges from 26.1
o
C to 28.9

o
C and the average Tn is 28.1

o
C. 

Meanwhile, the thermal comfort temperature ranges from 22.7
o
C to 33.0

o
C and the 

average upper limit of the thermal comfort temperature is 30.3
o
C. 

Table 2.9 listed the found indoor thermal comfort range and neutral temperature 

for air-conditioned and mixed naturally ventilated and air-conditioned buildings in 

warm and humid climate from the year 1990 to 2009. The neutral temperature, Tn for 

ranges from 24.2
o
C to 27.5

o
C and the average Tn is 25.9

o
C. However, the thermal 

comfort temperature for air-conditioned or mixed naturally ventilated and air-

conditioned room ranges from 20.8
o
C to 29.5

o
C. The average upper limit of the thermal 

comfort temperature is 28.3
o
C. 
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 Table 2.9: Comfort range of occupants in air-conditioned and mix-mode (naturally 

ventilated with air-conditioned) buildings under hot and humid climate. 

Researcher Year Type of  

Study 

Country No. of 

Subjects 

Tc, Comfort 

Temp, 
o
C 

RH 

(%) or 

A/V 

(m/s) 

De Dear 1990 Field Study Singapore 235 Tn = 24.2  

Busch 1992 Field Study Thailand 770 

(A/C) 

Comfort 

Range = Up 

to 28
o
C 

 

Zain Ahmed 

et al. 

1997 Field Study Shah 

Alam, 

Malaysia 

283 (NV 

+ A/C 

lecture 

rooms 

Tn = 26.27
o
C 

Comfort 

Range = 24.5 

– 28.0
o
C 

73% 

Karyono 2000 Field Study Jakarta, 

Indonesia 

596 in 7 

offices 

(NV, 

A/C and 

A/C + 

NV) 

Overall Tn = 

26.4
o
C 

Overall 

Comfort 

Range = 23.3 

to 29.5
o
C 

 

Ismail & 

Barber 

2001 Field Penang, 

Malaysia 

501 

(100% 

AC 

office) 

Tn = 24.6  

Comfort 

Range = 20.8 

– 28.6 

40 – 

80 

Sh Ahmad 

and Ibrahim 

2003 Field Study Malaysia 237 (NV 

and 

A/C) 

Tn = 26.9
o
C 

Comfort 

range = 24.4 

– 29.4
o
C 

 

Kwong et al 2009 Field 

Survey, 

Auliciems 

equation 

and CFD 

simulation 

Malaysia 113 Toper range = 

25.8 – 28.0
o
C 

Mean Toper = 

27.3
o
C 

Tn = 25.8
o
C 

Comfort 

range (80% 

acceptance) = 

22.3 – 29.3
o
C 

0.1 – 

0.2m/s 

Daghigh et al 2009 Field survey Malaysia 14 

rooms 

Tn = 26.6 – 

27.5
o
C 

RH = 

60 – 

70 
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Table 2.9 continues. 

Hussein et al 2009 Field survey Malaysia  Tn = 24.4
o
C 

Comfort 

range = 23.1 

– 25.6
o
C 

 

 

Findings in Table 2.8 and Table 2.9 have shown difference in neutral 

temperature and thermal comfort temperature range among buildings which are 

naturally ventilated, fully air-conditioned and mixed naturally ventilated and air-

conditioned. The occupants living in air-conditioned building have less tolerance to high 

dry bulb temperature as compared to occupants living in naturally ventilated building. 

This is the reason for lower neutral temperature, Tn and thermal comfort temperature 

range in fully and partially air-conditioned building.  

Comparing these results to Fanger’s neutral temperature for Malaysia, the results 

of neutral temperature studies that had been carried out in Malaysia were different from 

those predicted by Fanger’s calculation. The highest tropical neutral temperature found 

was 28.8
o
C, derived from the study carried out by Wong and Khoo. That is an increase 

of 3.1
o
C from Fanger’s neutral temperature for Malaysia. However, the upper boundary 

of comfort zone ranges from 29.3
o
C to 30.1

o
C in Malaysia and Singapore.

 

 

2.2.5 Conclusion 

This research had looked into innovative technologies, which had been 

implemented in buildings in Malaysia with aim to provide indoor thermal comfort. The 

purpose is to identify gaps of research findings specifically for indoor low energy 

cooling and analyze the viability of low energy Earth Pipe Cooling in providing 

thermally comfortable air movement. Therefore, this chapter also analyzes the thermal 

comfort air temperature range for buildings in Malaysia, with reference to results 

obtained by previous researchers.  
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CHAPTER 3 LITERATURE REVIEW: PASSIVE GROUND COOLING 

 Chapter 3 explains the fundamental of the proposed Ground Cooling technology, 

by analyzing facts gathered from background studies and related literature. After a 

thorough investigation on Malaysia thermal comfort and current available passive 

cooling methods in Chapter 2, to help reduce the energy demand in Malaysia, this 

chapter elaborates another cooling method, with hope it could be a better solution in 

cooling buildings in Malaysia with less demand on energy consumption. This thesis 

refers this cooling method as Earth Pipe Cooling Technology, which is a form of ground 

cooling and it has been successfully applied in temperate and hot and arid countries. 

 

3.1 Heat Flow within the Earth 

As a common physics law, heat normally flows from a hot object to a cold 

object. A simple explanation to this is by referring to a block that is warm at one end 

and cold at the other end. As the one end of the object warms up, its molecules start to 

vibrate strongly with increasing magnitude. As the atoms vibrate, their neighbours 

started to vibrate too until all atoms vibrates equally and achieve stable temperature 

throughout the block. This process is called Conduction.  

A French Physicist named Joseph Fourier formed an equation that calculates the 

heat flow, Q, conducted through a certain material. Figure 3.1 presents the illustration 

explaining Fourier’s Law of heat flow conduction. The related equation is as below: 

Q  = - ג *A*dᴓ 

                    dx 

Equation 3.1: Fourier’s Law equation on Flow of heat, Q 

ג   is thermal conductivity of the material, Wm
-1

K
-1

. A is the corresponding area of the 

block, m
2
. ᴓ is the temperature difference between the cold plate and the warm plate in 

Figure 3.1, 
o
C or 

o
K. x is the distance, m. 

(Source: Banks, 2008). 
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Figure 3.1: A diagram illustrating the conduction heat flow according to Fourier’s Law. 

(Source: Banks, 2008). 

   

 Since this research concerns the heat capacity of the earth to store heat, the basic 

knowledge of heat flow within the earth and the structure of the earth is essential. It was 

proven there is a geothermal gradient between the earth surface and its core. In the 16
th

 

and 17
th

 century, deep mining was initiated and the first geothermic measurements were 

taken by a French mine, de Gensanne in 1740 (Banks, 2008). The data shows the earth 

gets warmer with increasing depth below the ground surface. By relating this finding to 

Fourier’s Law, it was reviewed that the earth must experience conduction of heat from 

the earth core to the earth exterior. 
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Figure 3.2 shows that the earth structure comprises of four layers. The first layer 

is the solid inner core, which is a metallic iron-nickel with radius of 1370km. The 

second layer is a molten outer core, which consists of iron-nickel, with thickness of 

2100km. The third layer is the mantel which is composed by ultrabasic iron, Fe and rich 

amount of magnesium, Mg. The total thickness of the third layer is 2900km. The fourth 

layer is a relatively very thin crust, which is between 15 to 50km thickness below the 

continents, and 5 to 8km below the ocean (Banks, 2008).    

 

 

Figure 3.2: Structure of the earth demonstrating the thicknesses of earth surface layers 

and the percentage of volume and heat flow from each main layer (Source: Banks, 

2008). 
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 Referring to Fourier’s Law equation, the amount of heat flow through the earth 

structure should depend on the conductivity of the earth structure.  

 

Figure 3.3: An example of geothermal gradient through a sample of earth structure 

(Source: Banks, 2008). 

   

Figure 3.3 illustrates a sample of heat flow through layers of earth structure with 

different types of rock. Rocks differ in thermal conductivity and therefore, different 

rocks perform different geothermal gradient. This figure has shown that the earth gets 

cooler as the depth decreases. However, the diagram did not consider the heat gain from 

the solar radiation at the earth surface. 

 Malaysia weather is hot and humid throughout the year and there is certainly 

solar radiation in most days apart from rainy periods of the day. Therefore the earth 

surface of Malaysia certainly gained heat from the sun and with a large heat capacity, 

earth surface can easily store heat. Therefore at certain point within the shallow depth of 

earth, there should be equilibrium between the heat flow from the core and the heat gain 

from the sun through the earth surface. 
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3.2 Heat Storage Capacity of the Earth Subsurface  

The previous section has led to the study of heat storage capacity of the earth 

subsurface, the shallow depth below the earth surface. The subsurface soil temperature 

depends on the conductivity of the related rock layer and also its heat storage capacity. 

 

 Table 3.1: Thermal conductivity and volumetric heat capacity of rocks and air. (Source: 

Banks, 2008). 

Rocks and sediments Thermal conductivity         

(Wm
-1

 K
-1

) 

Volumetric heat capacity 

(MJm
-3

K
-1

) 

Coal 0.3 1.8 

Limestone 1.5-3.0 (2.8, massive 

limestone) 

1.9-2.4 (2.3) 

Shale 1.5-3.5 (2.1) 2.3 

Wet Clay 0.9-2.2 (1.6) 2.4 

Basalt 1.3-2.3 (1.7) 2.4-2.6 

Diorite 1.7-3.0 (2.6) 2.9-3.3 

Sandstone 2.0-6.5 (2.3) 2.0-2.1 

Gneiss 2.5-4.5 (2.9) 2.1-2.6(2.1) 

Arkose 2.3-3.7 (2.9) 2.0 

Granite 3.0-4.0 (3.4) 1.6-3.1 (2.4) 

Quartzite 5.5-7.5 (6.0) 1.9-2.7 (2.1) 

Air 0.024 1.29 x 10
-3

 at 1atm 

 

 Table 3.1 has shown that the rocks at the subsurface have high value of 

volumetric heat capacity but low value of thermal conductivity. Therefore, the heat is 

rather stored than diffuses through the soil in the upstream. 
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Figure 3.4: Seasonal soil temperature amplitude in Oxford (a) and Sweden (b) at 

increasing depths below ground. (Source: a) Rambaut, 1900 in Banks, 2008; b) Rosen et 

al., 2001 in Banks, 2008). 

   

 Figure 3.4 (a) shows that the soil temperature amplitude decreases with 

increasing depth below the ground in Oxford. Oxford is located in a temperate country 

with winter from December to March, and Summer from June to August. There are 

several soil temperature behaviour found in the graph in Figure 3.4 (a). The soil 

temperature was measured and recorded at 0.17m, 0.46m, 1.08m, 1.74m, and 3.04m. In 

all graphs, the curve peaked during the summer months and reduced to its minimum 

within the winter months. However, Figure 3.4 (b) shows that the amplitude of the 

annual monthly average soil temperature decreases with depth. This shows the influence 
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of the hot ambient air temperature and high solar radiation to the soil. Figure 3.4 (b) 

shows that the soil temperature is stable at 6m depth underground in Sweden. This 

research investigated about Malaysia soil temperature gradient at the subsurface.  

The knowledge of the heat flow within the earth structure has helped in 

understanding the heat transfer between the earth and the air flow within a pipe buried 

underground.  

 

3.3 Passive Ground Cooling 

The infinite thermal capacity of earth has made it a very useful heat sink for 

building cooling or even heating purposes. This fact has been studied and proven by 

several researchers (Mihalakakou et al., 1995). The rationale behind this is due to the 

daily and seasonal temperature variations, which is greatly reduced in the ground with 

increasing depths up to a depth where the soil temperature remains constant throughout 

the year (Krarti and Kreider, 1996). The constant soil temperature is usually 

approximately equal to the mean annual air temperature (Labs, 1981 in Krarti and 

Kreider, 1996). In winter, the soil temperature increases with increasing depth up to a 

certain depth and hence the use of earth as a heat source. Meanwhile, in summer, the 

soil temperature decreases with increasing depth, which provides the use of earth as a 

heat sink (Krarti and Kreider, 1996). 

This research is for Malaysia climate, which is hot and humid and therefore, this 

study will focus on building cooling rather than heating. There are two main strategies 

for Passive Ground Cooling; the direct earth contact and the indirect earth contact 

(Jacovides et al., 1996). 

 “(i) the direct contact, which involves partial or total placing of the building 

envelope in direct contact with the ground surface, and (ii) the indirect contact, which 

involves the use of an earth-to-air heat exchanger system through which air from indoor 

and outdoor of a building or an agricultural greenhouse is circulated and then is 

brought into the building or the greenhouse.” (Mihalakakou et al.,1997).  

The direct earth-to-building contact ground cooling has many advantages in its 

performance. It is a low maintenance passive cooling strategy with minimal heat gains 

and solar exposure. Underground houses were built in southern Tunisia and eastern 

Spain to protect occupants from their hot and arid climates and large houses were 
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excavated in northern China to cope with severe winter climate (Krarti and Kreider, 

1996).  

In some places on the globe such as desert and semi-desert countries, large 

excavation is not suitable due to their geological condition. Therefore, other technique 

was introduced in Iran (1978), which is the indirect-to-building contact ground cooling. 

In this country, the air is channeled through tunnels buried underground into the 

building with the aid of wind towers (Krarti and Kreider, 1996). Krarti and Kreider 

(1996) also stated that low energy cooling or heating technique using earth became 

increasingly popular in Europe and America after the oil crisis in 1973.    

Despite the advantages of the direct-to-building contact ground cooling, it also 

creates environmental problem such as indoor condensation and poor indoor air quality 

(Labs, 1990) and (Jacovides et al., 1996). Malaysia, being a hot and humid climate has a 

very high humidity level and indoor condensation would be a serious problem to the 

indoor environment. Furthermore, Malaysia has a low average air velocity throughout 

the year and having a direct earth contact to the building method would minimize the 

number of openings, which result in reduction of natural ventilation into the building 

and hence an even lower air velocity. Therefore, considering the potential consequences 

of direct earth contact ground cooling and that the indirect earth contact ground cooling 

was projected to be less risky, this research investigates on the latter ground cooling 

strategy, which this research refers to as Passive Low Energy Earth Pipe Cooling 

Technology.  

Buried pipes can be arranged in two ways; open loop and close loop. The latter 

pipe arrangement can reduce the tunnel length since the conditioned air is re-circulated 

within the buried pipe (Goswami and Biseli, 1993). However, this research investigated 

on the open loop buried pipe, which helps understand the Earth Pipe Cooling 

performance better since the system application is rather new in Malaysia. In some 

cases, the Earth Pipe Cooling system is assisted with a heat pump as a heat exchanger 

located within the buried pipe. It can increase cooling capacity and hence improve the 

coefficient of performance (Goswami and Biseli, 1993). 
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3.4 Passive Low Energy Earth Pipe Cooling 

The Earth Pipe Cooling system works with a long buried pipe with one end for 

the ambient air intake and the other end for providing cooled air to the desired space. 

The pipe is buried underground at the ultimate depth that could give most efficient 

results, but with the two pipe ends above ground. This technology uses the ground as a 

heat sink for cooling purposes in warm countries where the channelled ambient air, via 

the buried pipe, transfers excess heat to the ground by convection. There should be 

adequate air flow into the buried pipe intake to produce cool air at the other pipe end for 

occupants’ thermal comfort. If there is insufficient air flow, a fan blower is needed at 

the buried pipe air intake to stimulate the air flow.  

 

3.4.1 Factors that affect Earth Pipe Cooling performance 

 As a conclusion from various published literature, the performance of Earth Pipe 

Cooling are affected by four main parameters and they are: 

1. pipe length; 

2. pipe radius or diameter; 

3. depth of the pipe inserted into the ground; 

4. air flow rate inside the pipe. 

 

Many researchers found that the resulting temperature at the buried pipe outlet 

decreases with increasing pipe length, decreasing pipe diameter, decreasing mass flow 

rate of flowing air in the pipe and increasing depths up to 4m (Santamouris et al., 1995) 

and (Ghosal and Tiwari, 2006). 

 

a) Effect of pipe length 

Commonly, the results from various researchers in the past have shown that 

Earth Pipe Cooling systems with different pipe lengths perform differently. The findings 

have proven that a longer pipe provides lower air temperature at the buried pipe outlet. 

Mihalakakou et al. (1994) compared Earth Pipes of 30m, 50m and 70m long and found 

that the pipe exit temperature reduces when the pipe length increases. Santamouris et al. 

(1995) carried out Earth Pipe Cooling study to cool a 1000m
2
 agricultural greenhouse in 
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Athens, Greece, comparing two different pipe lengths; 10m and 50m. The result has 

shown that the air temperature at 50m pipe outlet is 2
o
C lower than at the 10m pipe 

outlet. Similar results were found in a study carried out by Ghosal and Tiwari (2006), 

also at a greenhouse but in Delhi, India. The rationale behind the better performance of 

a longer pipe was due to the longer pipe allowing the air to circulate underground for a 

longer time and hence transfer more excess heat into the earth. Meanwhile, pipe lengths 

are sometimes limited by economic matters. To have the cooling system efficient, it 

should not be costly and longer pipes tend to cost higher.  

Hanby et al. (2005) approached the Earth Pipe Cooling study in a slightly 

different way. He has combined the system performance with the cost by calculating a 

payback time to find the efficiency economical. In his study in hot, arid Kuwait, Hanby 

et al. have found that the optimum pipe length is 56.97m alongside pipe diameter of 

0.35m buried at 5.47m deep underground, gives a payback time of 7.24 years to cover 

the cost of building the Earth Pipe Cooling system (Hanby et al., 2005). 

 

b) Effect of pipe radius or diameter 

Another parameter listed as the main factor of Earth Pipe Cooling system 

performance is the buried pipe radius. Mihalakakou et al. (1994) tested the performance 

of three buried pipes of different radius; 0.125m, 0.180m and 0.250m. The result found 

that the increasing pipe radius result in higher air temperature range at the buried pipe 

outlet. The author concluded the reason for this is because a bigger pipe radius reduces 

the convective heat-transfer coefficient and hence the higher temperature at the buried 

pipe outlet (Mihalakakou et al., 1994).  Santamouris et al. (1995) has stated that the pipe 

with the smallest radius performs best. In his opinion, based on his test results, when the 

radius is small, the centre point of the pipe gets closer to the soil outside, allowing a 

faster transfer of excess heat from the air to the soil. Ghosal and Tiwari (2006), agreeing 

with the previous studies, have stated that pipe outlet temperature can be reduced with 

decreasing pipe diameter.  

In a published paper by Krarti and Kreider (1996), they have explained an 

equation that shows the relationship of heat transfer coefficient, Us and the buried 

structure radius ro; 

‘ 
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Us = ks/ro    (Equation 3.2) 

Where  ks = ground conductivity 

           ro = radius of the buried structure  

(Carslaw and Jaeger, 1959 in Krarti and Kreider, 1996) 

 

From the equation, Krarti and Kreider (1996) concluded that when the buried 

structure is small, the heat transfer coefficient increases. Therefore, according to the 

developed Equation 3.2, smaller structure transfers heat more easily into the ground. 

Krarti and Kreider (1996) carried out a study on the effect of pipe diameter towards the 

buried pipe outlet temperature using a developed numerical model, which was validated 

against an experimental data set. The various diameters were 0.1m, 0.2m, 0.4m and 

0.8m and the result shows the lowest temperature range at buried pipe outlet were from 

the 0.1m diameter pipe. 

However, when the radius is small, the air pressure inside the pipe increases and 

hence provides faster air flow. If the air flow inside the pipe is too fast, the channelled 

air would not have adequate time underground to dissipate the excess heat onto the 

earth, unless the pipe is long enough. Again, there has to be balance between these 

parameters to achieve efficient passive cooling.  

 

c) Effect of pipe depth buried underground 

Increasing soil depths equals to decreasing amplitude of daily or diurnal soil 

temperature due to the distance of soil from the soil surface and ambient air. This then 

influences the temperature of air circulating in the buried pipe. Therefore, the air 

temperature at the pipe outlet has decreasing amplitude throughout the day or a year 

with increasing depth it is buried.  

Mihalakakou et al. (1994) carried out a study on Earth Pipe Cooling with three 

different soil depths; 1.2m, 2m, and 3m and has found that pipe buried at 3m provide 

the lowest temperature range and the pipe outlet. Mihalakakou et al. (1994) carried out 

another study on buried pipes at different depths; 2.5m, 4m and lower than 4m. The 

finding shows that the pipe outlet temperature decreases as the depth increases. The pipe 

outlet temperature stops decreasing when the pipe was buried beyond 4m deep because 

the ground temperature became stable (Mihalakakou et al. 1994).  
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d) Effect of air flow rate inside the pipe 

Similar to other parameters, several researches has found that it does affect the 

Earth Pipe Cooling performance. In 1994, Mihalakakou et al. also performs 

investigation on the effect of air flow rate in the buried pipe. They compared three air 

velocities, namely 5m/s, 10m/s and 20m/s. The findings have shown that increasing air 

velocity result in increasing air temperature at the buried pipe outlet. The reason given 

was due to the increased mass flow rate (Mihalakakou et el., 1994). 

Krarti and Kreider (1996) also did a parametric study using a developed 

numerical model on the effect of air flow rate within the buried pipe towards the 

temperature at the buried pipe outlet. They compared four different air velocities; 

3.5m/s, 14m/s, 31.5m/s and 56m/s and 3.5m/s air velocity produce the lowest outlet 

temperature range. However, the various selected air velocity were unusual. 

 Another study on the effect of air flow to the performance of Earth Pipe Cooling 

system was carried out by Bansal et al. (2010) recently. They have tested air velocity 

ranges from 2m/s to 5m/s. The result agrees with previous researches that when the air 

velocity is increased, the out temperature in summer increases. This lead to the 

reduction of temperature difference between pipe inlet and outlet, which then makes the 

coefficient of performance (COP) reduced (Bansal et al., 2010). 

 

e) Multiple Parallel Buried Pipes 

Several researches on Earth Pipe Cooling technique have considered the 

potential of having multiple parallel buried pipes rather than increasing the buried pipe 

length. This introduces another issue on the adequate distant between the buried pipes to 

prevent from heat transfer interference. Mihalakakou et al. (1994) investigated the 

performance of multiple buried pipes arranged in parallel. Various distances between 

the buried pipes were tested and the distances were 0.5m, 1.5m, 2.5m and 5m. From 

their result, it has shown that the buried pipe outlet temperature decreases when the 

distance is further apart.  

In 2003, Paepe and Janssens carried out a one-dimensional analytical method to 

determine optimal dimensions of the buried pipes to perform efficiently with low 

pressure loss. The study consists of parametric study on number of pipes, pipe diameter, 

pipe length and pipe arrangement within the soil, whether in parallel or serpentine 
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manner. In comparison, when there are 3 buried pipes arranged in parallel, with 

diameter 200mm and length 25m, provided air flow is 2.2m/s, the pressure loss was 8 

Pa. Meanwhile, when there is only 1 buried pipe in serpentine manner, with diameter 

250mm and length 38m, and provided air flow is 4.2m/s, the pressure loss is 32Pa. This 

shows that with the slight reduction in pipe diameter and multiplied number of buried 

pipes, the pressure loss can be reduced by 4 times. 

However, when the diameter is halved; 100mm and there were 4 buried pipes in 

parallel manner, which was 14m long each and provided with air velocity 6.6m/s, the 

pressure loss increases up to 77Pa. Therefore, the diameter can be reduced but too much 

reduction would lead to increase in pressure loss. Therefore, it is concluded that with the 

reduced buried pipe diameter, the Earth Pipe Cooling system performance increases 

with a possibility of pressure loss increment. To reduce the pressure loss increment, the 

buried pipe should be multiplied (Paepe and Janssens, 2003). 

Fisher and Rees (2005) have investigated the effect of multiple number of 

boreholes on the performance of a water-to-water ground source heat pump system by 

modelling the system in a building energy simulation program called EnergyPlus. In the 

program, Fisher and Rees (2005) compared the wall temperature of three ground loop 

heat exchanger configurations; 16, 32 and 120 boreholes. Data of 20 years were 

tabulated onto a graph. It was found that throughout 20 years, the borehole wall 

temperature increases. However, the configuration with 120 boreholes had the least 

borehole wall temperature increment over 20 year period. Therefore, multiple loop heat 

exchanger could help minimize the outlet temperature increment of an Earth-air Heat 

Exchanger over a period of time. 

Recently, Badescu and Isvoranu (2011) studied the performance of multiplied 

parallel Earth Pipe Cooling system using the simulation software CFD, which the result 

was validated against experimental results. Apart from reducing heating and cooling 

load of a building, the objective of the research was also to minimize air pressure drop 

inside the buried pipe, which could reduce fan energy consumption. Since single pipe 

requires large air flow rate that leads to large pressure drop, the study recommended the 

use of multiple parallel buried pipes. However, there are two types of parallel pipes 

named the Z-path and the π-path. The Z-path channels the outlet air away from the pipe 

inlet but in the same direction of the air flow into the pipe. Meanwhile, the π-path is 
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similar to a U-shape buried pipe where the pipe channels the outlet air back to the side 

of the pipe inlet but in the opposite direction of the air flow into the pipe inlet. From the 

result, the π-path have less air pressure loss than the Z-path (Badescu and Isvoranu, 

2011). 

 

f) Other parameters: Soil surface condition, pipe material  

Another important factor that could affect the performance of Earth Pipe 

Cooling system is the surface condition of the ground. A bare ground surface would 

allow exposure to solar radiation particularly in hot climate like in Malaysia. The heat 

from the solar radiation onto the ground surface dissipated into the soil, which makes 

the soil warmer than the soil under grass or shaded ground surface. 

In 1994, Mihalakakou et al.carried out a study on Earth Pipe cooling potential of 

a single and multiple earth-to-air heat exchanger under bare soil and short grass covered 

soil. The study was carried out using a numerical model which has been validated 

against a set of experimental data. The validation has proven that the numerical model 

predicts accurate temperature and humidity of the circulated air, soil temperature and 

moisture and also the overall thermal performance of Earth Pipe Cooling.  From his 

research findings, he concluded that short grass covered soil provides a higher cooling 

capacity for both the single and multiple earth-to-air heat exchanger (Mihalakakou et 

al., 1994). However, both soil conditions provide cooler air temperature at the buried 

pipe outlet than ambient air temperature.  

 In 1996, Jacovides et al. carried out an observation on soil temperature profile of 

two different soil surfaces; short grass covered soil and bare soil in Greece, which was 

recorded from 1917 to 1990. The results was analysed through Fourier analysis. For the 

bare surface soil, the monthly mean maximum temperature was 38
o
C while the 

minimum was 9
o
C. On the other hand, the monthly mean maximum temperature for the 

grass covered soil was 31
o
C and the minimum was 8

o
C. The result has shown that 

during winter, there is only 1
o
C difference in soil temperature between the two different 

soils. However, during summer, there was a significant difference of 7
o
C in soil 

temperature between the two soils (Jacovides, 1996). The mean air temperature was 

measured simultaneously as the soil surface temperature and it ranges from 9
o
C to 31

o
C. 

From this result, it has shown that the mean soil surface temperature of bare soil in 
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summer is higher than the mean air temperature. This must have been the effect of high 

solar radiation on un-shaded or uncovered soil during the hot summer months.  

Givoni has carried out a similar study in 2007. In his paper, he has compared the 

soil temperatures under two different coverings; shaded by a raised building and by tall 

grass. The results have shown that the soil temperature under the raised building is 

around the minimum Dry Bulb Temperature of the day, while the soil temperature under 

the tall grass is around the average Dry Bulb Temperature of the day.  Therefore, the 

soil under a raised building has a lower temperature than the soil under a tall grass 

(Givoni, 2007). Givoni’s finding can be applied in Malaysia vernacular houses since 

these houses are mostly built on stilts, hence shading the soil underneath and allowing 

breeze to pass above the shaded soil (Section 2.1.2, Figure 2.9). 

There has been another situation of soil covering that is when the Earth Pipe 

Cooling system is buried below the building itself. The soil temperature should be 

different from soil under bare, short grass covered or even shaded condition since the 

soil is not exposed to any solar radiation as well as night breeze. Mihalakakou et al. 

(1995) has predicted soil temperature at various depths below a building using a 

numerical model in TRNSYS environment and the data has been validated with a set of 

experimental data. This method is described further in Section 2.4.2. 

Despite the five parameters, another performance factor is the choice of pipe 

materials. However, Goswami et al. (1981) has shown that different pipe materials have 

minor effects on the Earth Pipe Cooling system performance (Goswami and Biseli, 

1993). However, the conductivity of each material varies and therefore, this theory was 

re-assessed again in this thesis. 

   

3.4.2 Application of Earth Pipe Cooling 

“High thermal efficiencies associated with the use of buried pipes in which the 

system’s cooling capacity covers 100% of the building’s cooling needs….” 

(Jacovides et al., 1996) 

The above quote was referred to experiments carried out in Athens, Greece, 

which is a temperate country with large annual ambient air temperature range. Table 3.2 

to 3.5 summarizes application and the outcome of Earth Pipe Cooling system in various 

investigations by other researchers. 
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Table 3.2: List of applied Earth Pipe Cooling system and the outcome with reference to 

output temperature in 
o
C.  

Researcher (year) 

 

Location Buried Pipe 

Design 

Ambient T, 

o
C 

Output T, 
o
C 

Sodha et al. 

(1985) 

 

Schematic Earth-Air 

tunnel system in 

Mathura, India (Sodha 

et al., 1985) 

 

Cross-section of Earth-

Air tunnel system in 

Mathura, India (Sodha 

et al., 1985) 

 Mathura, 

near Delhi, 

India 

1 main tunnel 

+ several 

subs tunnels 

= 80m 

Cross-section 

area = 1.05 x 

0.75m 

Air velocity= 

4.89m/s 

2 exhaust 

fans = 500W 

each 

connected to 

skylight. 

24
o
C to 43

o
C 

RH = 40% to 

53% 

Inlet DBT = 

29.1
o
C to 

36.1
o
C 

Outlet DBT = 

23.1
o
C to 

28.2
o
C 

Outlet RH = 

75% to 89% 

Therefore, no 

condensation 

was observed. 
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Table 3.2 continues. 

Goswami and Biseli 

(Summer, 1993) 

 

Florida, 

USA  

0.305m dia, 

30.5m long 

pipe. 2.7m 

deep. 0.184 

kW fan 

blower and 2 

½ ton heat 

pump 

Summer: 

23.9
o
C to 

33.1
o
C 

Reduced from 

32.2
o
C to 

range of 

26.7
o
C to 

28.3
o
C. 3.9

o
C 

to 5.5
o
C 

reduction. 

Mihalakakou et al. 

Model for TRNSYS 

and validated (July 

and August, 1994) 

 

Greece 4 plastic 

pipes. 

0.125m 

radius. 

30m length. 

1.5m depth. 

Gap between 

2 pipes = 

1.5m. 

Air Velocity 

= 1m/s 

July: 

23.2
o
C to 

40
o
C 

August: 

25.3
o
C to 

39.3
o
C 

Outlet Temp.: 

July: 

24.1
o
C to 

28.2
o
C 

August:  

25.4
o
C to 

29.7
o
C 

Pfafferott 

Field Experiment 

(Cooling season 2003) 

 

 

 

 

 

 

 

 

 

DB Netz 

AG 

(Hamm) 

26 

Polyehtylene 

Ducts, 67-

107m long. 

Diameter = 

200 and 

300mm 

Air velocity = 

Approx. 

2.2m/s 

Max Outlet T 

set to 19
o
C 

Inlet 

Temperature: 

22
o
C to 34

o
C 

Outlet 

Temperature: 

10
o
C to 19

o
C 
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Table 3.2 continues. 

Pfafferott 

Field Experiment 

(Cooling season 2003) 

 

 

 

 

 

Fraunhofer 

ISE 

(Freiburg) 

(Open 

loop) 

7 

Polyethylene 

Ducts, 95m 

long 

Diameter = 

250mm 

Air velocity = 

5.6m/s 

Inlet 

Temperature: 

22
o
C to 35

o
C 

Outlet 

Temperature: 

13
o
C to 24

o
C 

Tiwari et al. (Summer, 

2006) 

 

Lamparter 

(Weilhem) 

(Close 

loop) 

2 

Polyethylene 

ducts, 90m 

long each. 

Diameter = 

350mm 

Air velocity = 

1.6m/s. 

Inlet 

Temperature: 

22
o
C to 34

o
C 

Outlet 

Temperature: 

10
o
C to 22

o
C 

Bansal et al. 

CFD Model inside 

FLUENT (Summer, 

2010) 

 

Ajmer, 

Western 

India 

Mild Steel 

and PVC 

pipe. 

23.42m long 

each. 

Depth= 2.7m. 

A/V= 2-5m/s. 

Diameter= 

0.15m. 

Blower= 

2800RPM 

and 

0.033m
3
/s 

Inlet T= 

43.1
o
C 

Temperature 

drop range: 

8.0
o
C to 

12.7
o
C. 
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 Table 3.3: List of applied Earth Pipe Cooling system and the outcome with reference to 

the optimal system design. 

Researcher 

(year) 

Location Buried Pipe 

Design 

Ambient T, 

o
C 

Optimal 

System 

Design 

Goswami and Biseli 

(Summer, 1993) 

 

Florida, 

USA  

0.305m dia, 

30.5m long pipe. 

2.7m deep. 

0.184kW fan 

blower and 2 ½ 

ton heat pump 

Summer: 

23.9
o
C to 

33.1
o
C 

Single Pipe = 

0.305m 

diameter 

Multiple Pipe 

= 0.203m to 

0.254m 

diameter 

Mihalakakou et al. 

(simulation using 

TRNSYS, validated 

against a set of field 

data) (Summer, 1994) 

 

Athens, 

Greece 

Bare soil 

and short 

grass 

covered 

soil. 

Radius: 0.125m, 

0.180m, 0.250m 

Length: 30m, 

50m, 70m 

Depth: 1.2m, 

2.0m, 3.0m 

A/V: 5m/s, 

10m/s, 20m/s 

Summer: 

21
o
C to 

38
o
C 

Soil 

condition: 

Short grass 

cover 

Radius: 

0.125m 

Length: 70m 

Depth: 3.00m 

A/V: 5m/s 

Krarti and Kreider 

(uses a numerical 

model) (1996) 

 

USA Radius: 0.1m, 

0.2m, 0.4m and 

0.8m. 

A/V: 3.5m/s, 

14m/s, 31.5m/s 

and 56m/s 

Depth: 1.5m 

Length: 80m 

Mean: 19
o
C 

Amplitude: 

9
 o
C 

Radius: 0.1m 

A/V: 3.5m/s 
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Table 3.4: List of applied Earth Pipe Cooling system and the outcome with reference to 

energy saving.  

Researcher 

(year) 

Location Buried Pipe 

Design 

Ambient T, 

o
C 

Energy 

Saving 

Goswami and 

Biseli (Summer, 

1993) 

 

Florida, 

USA  

0.305m dia, 30.5m 

long pipe. 2.7m 

deep. 0.184kW fan 

blower and 2 ½ ton 

heat pump 

Summer: 

23.9
o
C to 

33.1
o
C 

Open Loop 

COP= 12  

COP (air-

cond)= 1 to 4. 

COP is 

coefficient of 

performance 

With Heat 

Pump COP = 

13 

Kumar et al. 

(June, 2003) 

 

Mathura, 

India 

Room size: 

4x4x4m,  

4 occupants 

Length: 80m 

Inlet area: 0.53m
2
 

A/V: 4.9m/s  

  

Sodha et al. 

(1985) 

 

 Mathura, 

near Delhi, 

India 

1 main tunnel + 

several subs tunnels 

= 80m 

Cross-section area 

= 1.05 x 0.75m 

Air velocity= 

4.89m/s 

2 exhaust fans = 

500W each 

connected to 

skylight. 

 

24
o
C to 43

o
C 

RH = 40% to 

53% 

Inlet DBT = 

29.1
o
C to 

36.1
o
C 

No of rooms 

can be cooled 

= 7 of 16m
2 

floor area of 

each room. 

N= (cooling 

capacity)/(heat 

flux into the 

room), 

N= no of 

rooms 
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Table 3.4 continues. 

Pfafferott 

Field 

Experiment 

(Cooling 

season, 2003) 

 

DB Netz 

AG 

(Hamm) 

26 Polyehtylene 

Ducts, 67-107m 

long. 

Diameter = 200 and 

300mm 

Air velocity = 

Approx. 2.2m/s 

Max Outlet T set to 

19
o
C 

Inlet 

Temperature: 

22
o
C to 34

o
C 

COP: 88 

Fraunhofer 

ISE 

(Freiburg) 

7 Polyethylene 

Ducts, 95m long 

Diameter = 250mm 

Air velocity = 

5.6m/s 

Open loop 

Inlet 

Temperature: 

22
o
C to 35

o
C 

COP: 29 

Lamparter 

(Weilhem) 

2 Polyethylene 

ducts, 90m long 

each. 

Diameter = 350mm 

Air velocity = 

1.6m/s. 

Close loop 

 

2Inlet 

Temperature: 

22
o
C to 34

o
C 

COP: 380 
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Table 3.4 continues. 

Bansal et al. 

CFD Model inside 

FLUENT (Summer, 

2010) 

 

Ajmer, 

Western 

India 

Mild Steel and 

PVC pipe. 

23.42m long 

each. 

Depth= 2.7m. 

A/V= 2-5m/s. 

Diameter= 

0.15m. 

Blower= 

2800RPM and 

0.033m
3
/s 

Inlet T= 

43.1
o
C 

COP: 1.9 to 

2.9 

 

 

 The definition of Coefficient of Performance (COP) is quoted as below; 

 “Ratio of work or useful output to the amount of work or energy input, used 

generally as a measure of the energy-efficiency of air conditioners, space heaters and 

other cooling and heating devices. COP equals heat delivered (output) in British 

thermal units (Btu) per hour divided by the heat equivalent of the electric energy input 

(one watt = 3.413 Btu/hour) or, alternatively, energy efficiency ratio divided by 3.413. 

The higher the efficiency COP, the higher is the efficiency of the equipment.” 

(www.businessdictionary.com) 

The findings of Earth Pipe Cooling investigation carried out by Pfafferott (2003) 

in three different location has given three comparative Coeffiecient of Performance 

(COP) values; DB Netz AG is 88, Fraunhofer ISE is 29 and Lamparter is 380. The COP 

of Earth Pipe Cooling system in Lamparter is high due to the large pipe diameter, low 

air velocity and the close loop system (see Table 3.4). The COP of Earth Pipe Cooling 

system in DB Netz AG is fairly high also due to the low air velocity through the buried 

pipe. Meanwhile, the COP of Fraunhofer is comparatively very low because there was a 

high pressure loss occurred through the buried pipe. 

 

 

http://www.businessdictionary.com/
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Table 3.5: List of applied Earth Pipe Cooling system and the outcome with reference to 

payback time.  

Researcher Year Location Buried Pipe 

Design 

Ambient 

T, 
o
C 

Payback time 

(years) 

Goswami 

and Biseli 

(Summer, 

1993) 

Summer, 

1993 

 

Florida, 

USA  

0.305m dia, 

30.5m long 

pipe. 2.7m 

deep. 

0.184kW fan 

blower and 2 

½ ton heat 

pump 

Summer: 

23.9
o
C to 

33.1
o
C 

Open Loop 

(Corrugated 

plastic pipe) = 4 

Open Loop 

(Steel pipe) = 5 

Heat Pump 

(Corrugated 

plastic pipe) = 

17 

Heat Pump 

(Steel pipe) = 

22 

 

3.4.3 Limitations 

The indirect earth contact ground cooling may get away from having the 

consequences of high risk indoor condensation but there is the risk of condensation in 

the buried pipe. The pipe is embedded in a cool soil with warm air passing through the 

pipe. This allows condensation to occur on the inner surface of the pipe. One way to 

tackle this problem is by tilting the pipe slightly a few degrees, which could allow the 

water condensed drain away through a tiny hole (Santamouris et al., 1995). 

 In 2001, Thanu et al. have recorded the effect on indoor humidity caused by the 

earth pipe cooling system. The result had shown that there is an increase of 8.7% of 

relative humidity. The average relative humidity of the ambient air ranges from 18.6% 

to 66.2% and the average relative humidity of the measured room ranges from 26.5% to 

74.9%. Meanwhile, the air inside the buried pipe increased in humidity by 10.9%, 

comparing the difference in relative humidity between the suction point and delivery 

point of the buried pipe. However, the maximum relative humidity at the delivery point 
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was 2% higher than the relative humidity of the measured room. Therefore, there is a 

reduction of humidity between the delivery point and the whole room (Thanu et al., 

2001). From this study, it should be kept in mind that the air could get more humid as it 

passes through the earth-air-pipe cooling system. 

 

3.5 Common Research Methods for Earth Pipe Cooling Investigation 

3.5.1 Field Experiment 

a) Soil temperature measurement 

Knowledge of soil temperature is important in the design of underground air 

tunnel system (Goswami and Biseli, 1993). Goswami and Biseli measured soil 

temperature at 6, 9 and 12 feet (1.83, 2.74 and 3.66m) below the surface in Gainesville 

and it was found that the soil temperature stays fairly constant, approximately equal to 

the average annual air temperature, at 10ft (3.05) or more. These data was reported 

suitable for use in all locations in Florida without significant errors. 

Dhaliwal and Goswami (1985) calculated the surrounding soil temperature along 

a circular pipe using a time increment procedure and the numerical model result is 

validated against a set of experimental data (Krarti and Kreider, 1996). There is a report 

on the soil temperature within 1.0m proximity of the circular pipe being increased in 

long term due to the heat dissipation from the pipe effect (Li et al., 2009). Therefore, 

apart from measuring the undisturbed soil at various depths, soil along the circular pipe 

within 1.0m proximity is also measured at the same time and both results were 

compared. 

 

b) Earth pipe cooling experiment  

Earth pipe cooling technology investigation is usually carried out either in field 

experiment or simulation using computer modeling software. However, the latter option 

of investigation has always been validated against field experiment data. 

Goswami and Biseli (1993) investigated the system in a field experiment. At the 

earth pipe cooling construction, a trench was dug out using a backhoe. The pipe was 

assembled as much as possible before being buried into the trench. Once the pipe burial 

completed, a fan blower is attached to one end of the pipe. Part of the investigation is to 
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look at the system performance with the fan pushing the air and the fan pulling the air 

through the tunnel.  The findings shows that the fan pushing the air through the tunnel 

worked the best and therefore, the fan blower is best placed at the pipe inlet. 

 

3.5.2 Computer Modelling 

In 1995, Mihalakakou et al. developed a parametrical model inside a TRNSYS 

environment and concluded that the model can accurately predict the thermal 

performance of the earth pipe cooling by having it validated against a set of 

experimental data. The necessary inputs for the model is the four parameters, namely 

pipe length and radius, the air velocity within the pipe and the depth of the buried pipe 

underground (Mihalakakouet al., 1995) 

 In the same year, Mihalakakou et al. (1995) has developed another numerical 

model inside a TRNSYS environment to predict the soil temperature at various depths 

below a building. 

 Kumar et al. (2003) developed a numerical model within a different tool, named 

Matlab through the techniques of Finite Difference and FFT. The researchers improved 

the model of previous studies by taking into account of other influencing factors such as 

the soil temperature, soil surface conditions, soil moisture content and design aspects of 

earth pipe cooling system. The model is then validated against experimental data of a 

similar earth pipe system set up in Mathura, India and then it is used to predict the 

performance of Earth Pipe Cooling in India. The improvised model also considers the 

latent heat transfer between the earth pipe wall and air, which enables the model to 

predict the humidity variations of air in the earth pipe. Simultaneously, the model also 

considers heat transfer from the conditioned earth pipe onto the soil surrounding the 

earth pipe. 

Lee and Strand (2006) investigated the performance of an Earth Pipe Cooling 

System by developing a new module and implementing it into EnergyPlus computer 

modelling program. EnergyPlus is a simulation engine that comprises a combination of 

most popular features and capabilities found in simulation software BLAST and DOE-

2.1E (Crawley et al., 2005). The simulation engine has a simple input and output if the 

form of simple text files. The program contains two basic module, which are building 

system simulation module and heat and mass balance simulation module. Crawley et al. 
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(2005) have tabulated features and capabilities of all available computer simulation 

software and EnergyPlus have 71% of all features and capabilities. EnergyPlus Earth 

Pipe model was validated by plotting alongside the data from experiments carried out 

by Dhaliwal and Goswami (1984) and Al-Ajmi et al. (2005). The data from EnergyPlus 

have similar temperature trend with both field experiments data (Figure 3.5) (Lee and 

Strand, 2008). 

 

 

Figure 3.5: EnergyPlus (E+) data validated against two sets of experimental data (Lee 

and Strand, 2008). 

  

This research uses the software Energy Plus and Buried Pipe as a tool to predict 

the Earth Pipe Cooling system outlet air temperature. 

 

3.5.3 Energy Calculation 

Paepe and Janssens (2003) used the total heat transfer calculation as part of the 

Earth Pipe Cooling system design calculation: 

Total heat transfer to the air when flowing through a buried pipe, Q 
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Q = mair x Cp,air (Tair,out – Tair,in) 

Where 

Cp,air = thermal capacity for air, J/kgK  

Equation 3.3: Total heat transfer equation (Source: Paepe and Janssens, 2003) 

 

 Mass flow rate, mair 

Mair = pair (π D
2
/4) vair 

Equation 3.4: Mass flow rate of air. 

 

Pressure drop equation in a smooth tube: 

  ΔP =ξ (L/D) p (vair
2
/2) 

 Where 

 ξ = 64/Re, Re = (vairD)/vair 

 vair = speed, m/s 

 pair = density, kg/m
3
 

 D = tube diameter, m 

 L = tube length, m 

Equation 3.5: Pressure drop equation. 

 

Pfafferott (2003) calculated the Earth Pipe Cooling system energy efficiency by 

using the following calculation: 

Energy Efficiency =       Energy Gain, Q, __   

           Fan Electricity Demand           

Equation 3.6: Energy Efficiency equation. 

Energy gained by the Earth Pipe Cooling system can lead to waste of energy 

when the supplied energy for cooling or heating is used during times it is not needed 

(Pfafferott, 2003). There has been a situation when the Earth Pipe Cooling system cools 

down the incoming air when the ambient air temperature is low and heats up the 

incoming air when the ambient air temperature is high. This was shown in a graph of 

cooling and heating energy supply plotted along with the ambient air temperature 
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(Pfafferott, 2003). In Pfafferott (2003) findings, a control energy gain strategy is 

essential in order to supply energy when it is needed. The control strategy of Earth Pipe 

Cooling system operation could either be in terms of time-controlled or temperature 

controlled or both (Pfafferott, 2003). 

In a performance analysis of Earth Pipe Cooling system, Bansal et al. (2010) has 

calculated the total hourly cooling with the following equation: 

Qc = 3600 m CdCp (Tinlet – Texit), J 

m = (π/4) d
2
 pv,  

where, Cd = Coefficient of discharge of the pipe = 0.6 

            Cp = specific heat capacity of air, J/kg K 

            d = pipe diameter, m 

            p = air density, kg/m
3
 

            v = air velocity, m/s. 

Equation 3.7: An example of equation to calculate the performance of an Earth Pipe 

Cooling system. 

 

In the calculation used by Bansal et al. (2010), there is an additional coefficient 

of discharge of the pipe, Cd, with the value of 0.6. 

 

3.6 Hybrid Design for Enhancement of Earth Pipe Cooling System 

Tropical Climate of Malaysia is hot and humid throughout the year. However, it 

has its temperature variation in daily basis that influences the soil temperature regime. 

Referring to Malaysia climate, the maximum diurnal temperature is up to 12.4
o
C 

maximum and the average diurnal temperature is approximately 8.14
o
C. In 2001, 

Khedari et al. has carried put an investigation of Earth Pipe Cooling in Thailand, which 

has hot and humid climate, similar to Malaysia. The Earth Pipe Cooling system consists 

of 40m long PVC ducts with 30cm diameter, buried at 2m depth underground. Results 

showed evidence of temperature reduction within the pipe inlet and outlet of Earth Pipe 

Cooling system. This shows there is a potential of developing the Earth Pipe Cooling 

system strategy into a hybrid cooling system, coupled with other cooling technology. 
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Khedari et al. (2001) has further developed their investigation of utilizing the 

earth as a heat sink by coupling the Earth Pipe Cooling System with an Air 

Conditioning system. In this study, the earth was used to absorb the heat that usually 

released to the atmosphere from the condensing unit of an Air Conditioner. The 

modified condensing unit was buried underground at 1m depth and its copper tube was 

lengthened to 67m from 22m, which the latter is the typical copper tube length of a 

conventional air conditioner. Results have shown that the modified condensing unit of 

an air conditioner consumes less energy as compared to the conventional air 

conditioner. The coefficient of performance (COP) for the air conditioner with a buried 

condenser unit is 7.1 during daytime and 8.1 during nighttime. On the other hand, the 

COP for a conventional air conditioner is less; 2.8 during daytime and 3.1 during 

nighttime. The temperature leaving the buried condenser is 31
o
C while the temperature 

leaving the conventional air condenser is 40
o
C. 

In 2009, Bansal and Mathur carried out a study on enhancing the Earth Pipe 

Cooling system with the aid of evaporative cooling technology. Alongside this 

investigation, they performed a parametric studies illustrating the effect of the following 

parameters on the performance of Earth Pipe Cooling system; pipe length, pipe 

diameter, volumetric air flow rate, number of pipes and surface-to-volume (s/v) ratio. 

The evaporative cooler was placed at the inlet of EAHE system and a desired outlet 

temperature was set according to the comfort temperature range; 22
o
C to 27

o
C. In the 

enhanced Earth Pipe Cooling with evaporative cooler, the pipe length required is 93.5% 

less than the pipe length required by the Earth Pipe Cooling system alone to achieve the 

same desired outlet temperature. In terms of effects of variables, the additional of more 

buried pipes reduced the required length to achieve the same desired outlet temperature 

by 82.5%. When the s/v increases, the required pipe length reduces exponentially. 

Furthermore, when the number of buried pipe increases, the pipe diameter reduces, 

which allow the Earth Pipe Cooling system perform more efficiently (referring to 2.3.1 

(b)). 

Li et al. (2009) investigated the soil temperature around multiple boreholes with 

the simulation software, for several years before 2006. The results has shown that if the 

Earth Pipe system only emits heat into the ground for the whole year, the ground 

temperature could increase up to 35
o
C, after 13 years of operation. Meanwhile, if the 
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Earth Pipe system only extracts heat from the ground for a year, the ground temperature 

near the Earth Pipe can be reduced to 6
o
C after 5 years of operation.  

Prior to the former investigation outcome, Li et al. (2009) has proposed a 

solution to alleviate the unwanted heat injected into the ground from the Earth Pipe 

Cooling system in summer. In the research, Le et al. (2009) introduced a Multi-Function 

Ground Source Heat Pump System (MFGSHP), which a hybrid of the original Ground 

Source Heat Pump (GSHP) coupled with Heat Pump for Water Heater. Typical hot 

water consumption at 65
o
C by 1 person in 1 household is 100L. The initial water 

temperature in summer is 24
o
C. The water supply of hot water is essential even during 

summer. 

The study consists of constructing a 3-dimensional model under a typical 

climatic condition in Yangtze River, China with the computer fluid dynamic simulation 

software, FLUENT. For both MFGSHP and GSHP, three points of underground 

temperature measurement were taken, which was on the borehole wall (Point b), 1m 

distant from the borehole (Point c) and 2.5m distant from the borehole (Point a). The 

result of GSHP at the end of the 7
th

 summer showed an increment of 2
o
C at Point b, 

2.2
o
C at Pint c and 1.9

o
C at Point a. Meanwhile, the result of MFGSHP at the end of the 

7
th

 summer showed the ground temperature around the borehole at all three points is 

close to the initial temperature. Furthermore, the MFGSHP can supply 95% hot water in 

a house and alleviate the unwanted heat ejected to the ground at the same time.  

 The hybrid design of Earth Pipe Cooling system is investigated further by Chel 

and Tiwari (2010) in New Delhi, India. In this hybrid design, a stand-alone Photovoltaic 

(PV) is integrated with the Earth Pipe Cooling System by utilizing the PV power system 

that provides daily electrical load partly for the fan blower that generates air flow into 

the Earth Pipe Cooling system. The rest of the daily electrical load was utilized by 

ceiling fan, fluorescent tube-light, computer and submersible water pump. The energy 

generated by a stand-alone Photovoltaic (SAPV) system is 3536kWh/year while the 

total energy consumed by the electrical load is 3114kWh/year. In terms of alleviating 

CO2 emission, the SAPV managed to alleviate 9.4tons/year of CO2 emission. 

The next hybrid design of Earth Pipe Cooling system is proposed by Maerefat 

and Haghighi (2010) under the climate condition of Iran. The proposed hybrid design 

coupled the Earth Pipe Cooling system with Solar Chimney (SC). The SC consists of 
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glass surface captures the heat from solar radiation to heat the air in the SC. This drives 

the air upwards due to stack effect. The upward airflow then causes driving force, which 

extracts the outside air through the cooling pipe and into the conditioned room. The 

ambient outdoor temperature during summer in Iran is 34
o
C and the undisturbed soil 

temperature, where it is dry and shaded, is 19
o
C. With 3 solar chimneys and 1 Earth 

Pipe Cooling, the conditioned room temperature remains within the range of 28.2
o
C and 

31.9
o
C, with air change rate of 3-7ACH. Since the room temperature falls within the 

acceptable comfort range, the integration of Earth Pipe Cooling system and Solar 

Chimney has been successful. 

 

3.7 Conclusion 

This chapter provides reviews on the Earth Pipe Cooling technology 

investigation carried out by other researchers in various countries. The literature reviews 

provide guidance in forming the research methodology which consists of field 

investigation and also simulation work.  
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CHAPTER 4 METHODOLOGY 

Low Energy Earth Pipe Cooling had been often used in buildings in hot and arid 

and temperate countries. However, speculations were made about the suitability of this 

technology for hot and humid climate. Therefore, a research methodology was designed 

to evaluate the potential of applying the technology in hot and humid country, with 

particular reference to Malaysia.  

As a conclusion from the background study on Low Energy Earth Pipe Cooling 

technology, there are five common design factors that affect the efficiency of this 

technology. The most crucial factor is the temperature difference between the ambience 

and its soil, followed by the pipe design, which includes its diameter, length, depth 

underground and the air flow rate provided inside the pipe. In many hot and arid 

countries, which utilizes Earth Pipe Cooling in their buildings has buried the pipe 

system at 4m deep underground due to the soil temperature being stable and fairly 

constant at that depth. With lack of information on Malaysia soil temperature this 

research is initiated by finding the optimum depth at which the Earth Pipe should be 

buried to obtain efficiency in its performance. Currently there are no publications about 

soil temperature in Malaysia ground at various depths, reaching 4 meter deep. There are 

data of Malaysia earth temperature available from the Malaysia Meteorology 

Department but these are daily recorded data of soil temperature at a maximum of 1.2m 

below ground. 

The research methodology is divided into three parts, which consists of soil 

temperature measurement, earth pipe cooling experiment and earth pipe cooling 

simulation study using Energy Plus. All three stages are crucial for the following 

purposes: 

 Due to lack of information on Malaysia soil temperature, the initial goal is to 

obtain soil temperature data at various depths up to 5m deep below ground.  

 To analyze the potential of Earth Pipe Cooling application in Malaysia climate 

with reference to its soil temperature and ambient temperature. 

 To determine the optimum depth to bury the Earth Pipe Cooling System below 

ground for the Earth Pipe Cooling experiment.  



101 

 

 To evaluate the potential of utilizing Earth Pipe Cooling in buildings in 

Malaysia climate for cooling purposes by referring to the temperature difference 

between the buried pipe inlet and outlet. 

 To conduct more evaluation with extended range of variables with the aid of a 

computer modeling software Energy Plus, in search for the most efficient Earth 

Pipe Cooling design for buildings in Malaysia. 

 

The research methodology has been tailored to meet the purposes listed above 

and Figure 4.1 illustrates an overview of the research methodology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

 

 

 

  

 

 

Figure 4.1; An overview of the research methodology for Earth Pipe Cooling investigation. 
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4.1 Field Work Site 

All field work investigations were carried out on the same site within the 

International Islamic University Malaysia (IIUM) campus, which is located in Kuala 

Lumpur, Malaysia. Its globe coordinate is near the equator with latitude 3
o 

17’ 60 N and 

longitude 101
o 

46’ 60 E. Figure 4.2 is an illustration of the university campus site map. 

The field work site is located on the South West of the campus, near the campus 

perimeter.  

 

 

 

  Figure 4.2: Field work site location (red dot) within 

International Islamic University Malaysia campus. 
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The soil at the site is sandy and barely covered with short grass. Hence, the soil 

is exposed to solar radiation during the day. Figure 4.4 and Figure 4.5 shows the 

original look of the site before construction was taken place. 

 

 

 

Figure 4.4: View of the site from North East before construction. 

  

 

 

 

Figure 4.3: Orientation of the experiment shed on site. 
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Figure 4.5: View of the site from South West before construction. 

  

4.2 Field Work 1: Soil Temperature Measurement in Malaysia 

This field investigation aims to record temperature of soil in Malaysia at various 

depths underground, up to 5m deep, purposely to seek potential of applying Earth Pipe 

Cooling in the country before implementing it. The maximum depth was limited to 5m 

underground because soil temperature is found to be constant and stable at 4m depth 

underground in other countries across the globe. Another rationale behind various 

depths measurement is to determine the optimum depth that could give the most 

effective result where the pipes were to be buried.  

The soil temperature measurement field work has two parts. The first 

measurement was carried out in October and November 2007 (wet season) whilst the 

second measurement was carried out in May 2009 (hot and dry season).  

 

4.2.1 Soil temperature measurement in the wet season 

The field investigation includes measurements of outdoor dry bulb temperature 

(DBT), ground surface temperature and soil temperature at 1m, 2m, 3m, 4m and 5m 

deep below ground. 

Before the investigation commenced, permission to use the site was obtained 

from the Development Division and Student Affairs Division of the International 

Islamic University. Permission from Student Affairs Division was required due to the 

site being located within a student resident compound and to use the facilities readily 

available on site for the experiment, which includes power supply. 
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The experiment intended to record seven different measurements simultaneously and 

therefore requires a multi-channel data logger. An 8 channel data logger called USB 

TC-08 Thermocouple Data Logger was used (Courtesy of Department of Mechatronics 

Engineering in the International Islamic University) (Figure 4.6). It is a product of Pico 

Technology Limited. Table 4.1 shows the data logger specifications and further 

information is available in Appendix 4.1. 

 

 

Figure 4.6: USB TC-08 Thermocouple Data Logger from Pico Technology Limited. 

  

Table 4.1: Specifications of USB TC-08 Thermocouple Data Logger. 

Number of channels 8 

Temperature accuracy The sum of +0.2% and +0.5
o
C 

Voltage accuracy The sum of +0.2% and +10µV 

Overload protection > +30V 

Input range +70mV 

Reading rate Up to 10 readings per Second 

Input connectors Miniature thermocouple 

Output connector USB1.1 connector 

Dimensions 85 x 145 x 25mm 

 

The experiment equipment was completed with 7 K-type thermocouple wires 

connected to the 8 channel data logger. The wire is made of Teflon and its size is 

0.32mm. The K-type thermocouple wire measures temperature ranges from -270
o
C to 
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1300
o
C. Each of the 7 thermocouple wires was connected to the data logger by a Type 

K Miniature Male Connector. A sample of one day data obtained from the USB TC-08 

Thermocouple Data Logger is shown in Figure 4.7. 
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Figure 4.7: Soil and air temperature one day data sample measured with USB TC-08 

Thermocouple Data Logger (November, International Islamic University Malaysia, 

Kuala Lumpur) 

 

The sample graph in Figure 4.7 illustrates hourly temperature distributions in 28 

hours in the month November. The data is recorded at the air, ground surface, 1m, 2m, 

3m, 4m and 5m deep below ground. Figure 4.7 shows the ambient air temperature 

ranges from 22.5
o
C to 34.2

o
 and ground surface temperature follow closely to the trend 

of ambient air temperature but with smaller amplitude. From 1m deep underground, the 

soil temperature remains constant for the whole day despite the oscillation of ambient 

air and ground surface temperature. Figure 4.7 also shows the soil is warmer as it gets 

deeper underground. Further explanation and extensive graphs are displayed in Chapter 

5.  

A contractor was appointed to drill a 15cm hole in the ground to bury the 6 

thermocouple wires at 5m, 4m, 3m, 2m, 1m below ground and ground surface (Figure 
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4.8). One thermocouple wire was set up to measure the ambience dry bulb temperature 

(Figure 4.9). 

 

 

Figure 4.8: Thermocouple wires were buried underground at ground surface, 1m, 2m, 

3m, 4m and 5m deep. 

  

 

Figure 4.9: One thermocouple wire measuring the ambient dry bulb temperature, shaded 

by a white plastic bowl. 

Thermocouple wire underneath the 

white plastic bowl 
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The measured data were logged from the 5
th

 of October to the 14
th

 of November 

2007 and readings were taken daily at 10 minutes interval. 

 

4.2.2 Soil temperature measurement in hot and dry season 

Referring back to Chapter 3, Malaysia weather is warm and humid throughout 

the year. However, the weather does vary in terms of dry and wet seasons and the 

months October and November falls during the wet season. Hot and dry season are 

often in the month of May and June. The second field work aims to measure the soil 

temperature during the hot and dry season.  

The result from the previous experiment shows that the soil temperature is 

lowest and also stable at 1m depth over 5 weeks of recorded data. Therefore, the field 

work in May measures soil temperature around 1m depth below ground at smaller gaps 

between two measuring points. The equipment was placed at 0.3m, 0.5m, 0.8m and 

1.0m below ground. The ambience dry bulb temperature (DBT) was also measured 

simultaneously. 

In this field work, portable and wireless data loggers were buried at the 

measuring points below ground. The data logger is called HOBO Pendant Temp Logger 

(UA-001-64), a product by Onset Computer Corporation (Figure 4.10). The logger 

specification is listed in Table 4.2 and further information regarding the logger can be 

found in Appendix 4.2. 

 

 

Figure 4.10: HOBO Pendant Temp Logger (UA-001-64) 
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 Table 4.2: Specifications for HOBO Pendant Temp Logger (UA-001-64). (Source: 

Tempcon Instrumentation) 

Measurement range -20
o
 to 70

o
C (-4

o
 to 158

o
F) 

Accuracy +0.47
o
C at 25

o
C (see Figure 4.11) 

Resolution: Temperature 0.10
o
C at 25

o
C (see Figure 4.11) 

Drift Less than 0.1
o
C/year 

Response time (airflow of 2m/s) 10 minutes, typical to 90% 

Response time (water) 5 minutes, typical to 90% 

Time accuracy +1 minute per month at 25
o
C (see Figure 

4.12) 

Operating range (in water/ice) -20
o
 to 50

o
C 

Operating range (in air) -20
o
 to 70

o
C 

Water depth rating 30m from -20
o
 to 20

o
C (see Figure 4.13) 

Battery life 1 year typical use 

Memory 64K bytes (approximately 52K sample and 

event readings 

Materials Polypropylene case; stainless steel screws; 

Buna-N o-ring 

Weight 18 g 

Dimensions 58 x 33 x 23 mm 

The CE marking identifies this product as complying with the relevant directives in the 

European Union (EU) 
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Figure 4.11 and Figure 4.12 illustrate the performance curves of the HOBO 

Pendant Temp Logger (UA-001-64). This pendant data logger is waterproof at 

temperature range from -20
o
C to 50

o
C at up to 10m depth (Figure 4.13). 

 

 

Figure 4.11: Trend of accuracy and temperature resolution of HOBO Pendant Temp 

Logger (Source: Tempcon Instrumentation). 

  

 

Figure 4.12: Trend of time accuracy for HOBO Pendant Temp Logger. *PPM stands for 

parts per million (Source: Tempcon Instrumentation). 

  

 

Figure 4.13: The range of depth and temperature where the HOBO Pendant Temp 

Logger is waterproofed (Source: Tempcon Instrumentation).  
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. 

 The graph in Figure 4.14 presents soil temperature data at various depths in four 

continuous days. It is shown that soil temperature at 0.3m underground fluctuate the 

most among the other measured depths because it is the most shallow depth among the 

four, which was influenced by the effect of cool ambient air at night and warm ambient 

air and solar radiation during the day.  

The equipment that was used to measure the ambience dry bulb temperature is 

HOBO U12-012 Temp/RH/Light/Ext. It is also a product from Onset Computer 

Corporation (Figure 4.15). 

 

 

Figure 4.15: HOBO U12-012 Temp/RH/Light/Ext (Source: Tempcon Instrumentation). 

Figure 4.14: Soil temperature data sample measured with HOBO Pendant Temp 

Logger over 3 days (April, International Islamic University Malaysia, Kuala Lumpur) 
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 The logger in Figure 4.15 was placed just outside an experimental shed, shaded 

from direct solar radiation, by an opaque plastic bowl. The logger specification is listed 

in Table 4.3 and further information regarding the logger can be found in Appendix 4.3. 

 

 

Figure 4.16: Trend of temperature accuracy and resolution for HOBO U12-012 

Temp/RH/Light/Ext (Source: Tempcon Instrumentation). 

 

  

Figure 4.17: Trend of RH accuracy for HOBO U12-012 Temp/RH/Light/Ext (Source: 

Tempcon Instrumentation). 

 

  

Figure 4.18: Trend of time accuracy for HOBO U12-012 Temp/RH/Light/Ext (Source: 

Tempcon Instrumentation). 
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Table 4.3: Specifications for HOBO U12-012 Temp/RH/Light/Ext (Source: Tempcon 

Instrumentation). 

Measurement range (temperature) -20
o
 to 70

o
C 

Measurement range (RH) 5% to 95% RH 

Light intensity 1 to 3000 footcandles (lumens/ft
2
) 

External input channel  0 to 2.5 DC Volts 

Accuracy (temperature) +0.35
o
C from 0

o
 to 50

o
C (see Figure 4.15) 

Accuracy (RH) +2.5% from 10% to 90% RH (typical) (see 

Figure 4.16) 

Accuracy (Light intensity) Designed for indoor measurement of 

relative light levels (see Figure 4.17) 

Accuracy (external input channel) +2mV +2.5% of absolute reading 

Resolution (temperature) 0.03
o
C at 25

o
C (see Figure 4.15) 

Resolution (RH) 0.03% RH 

Drift (temperature) 0.1
o
C/year 

Drift (RH) <1% per year typical; RH hysteresis 1% 

Response time in airflow of 1m/s 

(temperature) 

6 minutes, typical to 90% 

Response time in airflow of 1m/s (RH) 1 minute, typical to 90% 

Time accuracy +1 minute/month at 25
o
C (see Figure 4.18) 

Operating temperature (logging) -20
o
 to 70

o
C 

Operating temperature (launch and 

readout) 

0
o
 to 50

o
C, per USB specification 

Battery life 1 year typical use 

Memory 64K bytes 

Weight 46 g 

Dimensions 58 x 74 x 22 mm  

The CE marking identifies this product as complying with the relevant directives in the 

European Union (EU) 
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The HOBO Pendant Temp Loggers and HOBO U12-012 Temp/RH/Light/Ext 

were used to start measure on 27 April 2009 and stop on 16 May 2009. All data were 

recorded throughout each day at 10 minutes interval. Figure 4.19 shows an example of 

data recorded from the HOBO U12-012 Temp/RH/Light/Ext. 
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Figure 4.19: Sample data of ambient dry bulb temperature and relative humidity (RH) 

measured with HOBO U12-012 Temp/RH/Light/Ext over 24 hours (Location: 

International Islamic University Malaysia, Kuala Lumpur). 

  

4.2.3 Soil temperature measurement in one year 

As explained in the results chapters, the study of soil temperature has narrowed 

down to the depths of 1.5m maximum. The reason is because, during the first period of 

testing (wet season), it was found that the average soil temperature at 1m is lower than 

the average soil temperature at 4m. Even though, the soil temperature at 1m depth has 

the potential to increase in the hot and dry season due for being less stable than the soil 

temperature at 4m depth, it provides the benefit of low average soil temperature during 

the wet season. With reference to soil temperature at 1m depth underground, the results 

obtained from soil temperature measurement in both wet and hot and dry seasons were 

compared and the finding shown a difference in average soil temperature of the two 
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seasons. The average soil temperature is slightly higher in May as compared to the 

average soil temperature in November and December. Building on this result, the study 

of Malaysia soil temperature was resumed in the same site but for the duration of one 

year at 0.5m, 1.0m and 1.5m depth underground.  

The soil temperatures at three levels were measured using HOBO Pendant Temp 

Logger (Figure 4.10). Simultaneously, outdoor dry bulb temperature (DBT) was also 

recorded using the same type of data logging equipment. Initially, the data logger that 

measured the outdoor DBT was hung under the roof just outside the experimental shed 

(Figure 4.20). At this moment, the datalogger was facing East and slightly towards 

North East. 

 

Figure 4.20: The location of HOBO Pendant Temp data logger that measured the 

outdoor dry bulb temperature (DBT) from March until July (Location: International 

Islamic University Malaysia, Kuala Lumpur). 

 

Initial analysis of the outdoor DBT showed maximum daily temperature 

reaching over 40
o
C (Figure 4.21), which is above the levels of the local Met Office data  

and this could be the effect of warm air beneath eaves of roof towards the HOBO data 

logger that was measuring the outdoor DBT.  

 

HOBO Pendant datalogger 
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Figure 4.21: Sample data of outdoor dry bulb temperature (DBT) measured with HOBO 

Pendant Temp data logger (Location: International Islamic University Malaysia, Kuala 

Lumpur). 

  

In August, the data logger was relocated to a more shaded area, under a tree near 

the experiment shed and Figure 4.22 illustrates sample of the data measured.  
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Figure 4.22: Sample data of outdoor dry bulb temperature (DBT) measured under the 

shade of a tree with HOBO Pendant Temp Datalogger (Location: International Islamic 

University Malaysia, Kuala Lumpur). 
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  The soil temperature mentioned above was measured at the site of the 

experiment shed but slightly away from the buried pipe. These data loggers that 

measured soil temperature for one whole year at 0.5m, 1.0m and 1.5m depth 

underground were buried on the West of the experiment shed. Two studies reported 

slight increment of temperature at the soil surrounding the buried pipe as a long term 

effect of Earth Pipe Cooling (Dhaliwal and Goswami (1985) in Krarti and Kreider, 1996 

and Li et al., 2009). Therefore, this research has also carried out a field study to 

investigate the relationship of soil temperature surrounding the buried pipe or away 

from the pipe. In this soil comparison investigation, the three data loggers buried 

underground away from the experiment shed remain at the same location. Another three 

HOBO Pendant Temp Dataloggers were buried 0.1m away from the buried pipes at 

0.5m, 1.0m and 1.5m depth underground (Figure 4.23). The data was logged in 

November, December, January and February, which were then compared to the data 

from the other location of the other three dataloggers. Figure 4.24 shows a sample of the 

data measured. 

 

 

Figure 4.23: An excavated hole where the three HOBO Pendant Temp Loggers were 

buried at 0.5m, 1.0m and 1.5m, 0.1m away from the buried pipes (Location: 

International Islamic University Malaysia, Kuala Lumpur). 
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Figure 4.24: Sample data of soil temperature 0.1m distance from buried pipe measured 

with HOBO Pendant Temp Loggers (Location: International Islamic University 

Malaysia, Kuala Lumpur). 

  

4.3 Field Work 2: Earth Pipe Cooling Experiment in Malaysia 

Published literatures have shown that main parameters affecting the result of 

Earth Pipe Cooling performances include depth of tube buried underground, length and 

diameter of buried tube and the air flow rate inside the buried tube. Furthermore, 

various pipe materials have been used in the experiments published by other researcher. 

The second part of field work is the main Earth Pipe Cooling Experiment. 

Initially, the investigation was carried out in two parts. The first part investigated the 

performance of Earth Pipe Cooling in November and December, which represents the 

wet season. The second part investigated the performance of Earth Pipe Cooling in 

April and May, which represents the hot and dry season. Due to the field experiment 

located in Malaysia while the research base is in United Kingdom, the initial plan was to 

investigate the Earth Pipe Cooling performance for one and a half month for each 

season. This planned decision was made assuming the data produced would be similar 

for both season since Malaysia climate is hot and humid all year round. However, the 

findings have shown otherwise. There are differences in the pipe outlet temperature 
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when the data collected in November and December were compared to the data 

collected in April and May. Therefore, the investigation of Earth Pipe Cooling resumes 

and collected data for one whole year and a research assistant on-site was appointed to 

monitor the experiment once a fortnight. 

 Field Work 2 involves a bigger construction work compared to soil temperature 

measurement field work. The experiment set up includes burial of long pipes into the 

ground and building of an experiment shed. The set up involved four construction 

workers who brought in a digger, which is a large and heavy vehicle, into the site 

compound. Therefore, in order to carry out Field Work 2, a new permission was needed 

from authorities from three departments in International Islamic University. They were 

Development Division, Student Affairs and Security Officers.  

Once permission had been sought, construction work begins. The following 

figures (Figure 4.25 to 4.34) show some of construction work progress from burying the 

pipes to finishing the experiment shed. 
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Figure 4.25: Construction work 

commenced. 

  

 

Figure 4.26: PVC pipes buried at 1.0m, 

1.5m and 2.0m. 

  

 

Figure 4.27: The PVC pipe buried at 

1.0m depth is 50m long while the other 

pipes were only 30m long. 

 

 

 

 

Figure 4.28: The inlets and outlets of PVC 

pipes buried at 0.5m, 1.0m, 1.5m and 2.0m. 
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Figure 4.29: Construction of an 

experiment shed containing the 

equipment and earth pipe in/outlets 

commenced. 

  

 

Figure 4.30: Progress in the experiment 

shed construction work. 

  

 

Figure 4.31: Ceiling construction in 

progress showing its insulation materials. 

  

 

 

 

Figure 4.32: Fibre glass insulation to be 

fitted inside the walls of experiment shed. 
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Figure 4.33: There is a gap under the roof 

for ventilation in the experiment shed. 

However, main purpose of building shed is 

for security of the equipment purposes. 

  

 

Figure 4.34: Inlets of the PVC pipes are 

connected to one fan blower that has three 

variable speeds. The fan blower extract air 

from outside and blow the air into the pipe 

inlets. 

  

The figures above has shown that initially, the experiment uses four PVC pipes 

buried at 0.5m, 1.0m, 1.5m and 2.0m depth below ground level. Once the set up were 

completed, each pipe outlet was tested to see if there is airflow going through it when 

the fan was switched on. Unfortunately, it was found that only one pipe released air at 

its outlet, which was the pipe buried at 0.5m depth. The other three pipes did not release 

any air from their outlets. Water was found in the three pipes, all in the same level of 

0.63m below ground level. The three pipes were dug out (Figure 4.35). The PVC pipes 

were then replaced by Polyethylene pipes (Figure 4.36). They were buried at 0.5m, 

1.0m and 1.5m depth below ground (Figure 4.42). 
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Figure 4.35: Broken PVC pipes due to 

incapability to support soil weight at depth 

below 0.6m underground. The PVC pipe 

buried at 0.5m is intact and remains where 

it is. 

  

 

Figure 4.36: Polyethylene pipes were used 

to replace the broken PVC pipes. 

  

 

Figure 4.37: Three polyethylene pipes 

were buried at 0.5m, 1.0m and 1.5m. 

  

 

Figure 4.38: An example of 50m 

polyethylene pipe buried at 1.0m below 

ground. 
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Figure 4.39: Section of the experiment set up showing cross section of the polyethylene 

buried pipe at 0.5m, 1.0m and 1.5m depth underground. 

Figure 4.40: Plan of experiment set up showing experiment shed and buried Polyethylene 

pipes extended in South East direction for 12m long.   

Figure 4.41: Plan of the experiment shed with example of equipments location during data 

recording. (PP = Polyethylene Pipe). 
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Parameters of each buried pipe are determined and shown in Table 4.4 Initially 

PP2 was 50m long that ran 24m away from its inlet and outlet. It was then shortened to 

25m long. 

 

Table 4.4: Parameters of each buried Polyethylene pipe. 

Pipes PP1 PP2 PP3 

Material Polyethylene Polyethylene Polyethylene 

Diameter 0.076m (3”) 0.076m (3”) 0.076m (3”) 

Length 25m 25m 25m 

Buried depth 0.5m 1.0m 1.5m 

Air Speed 5.6m/s 5.6m/s 5.6m/s 

 

 In the field investigation of Earth Pipe Cooling, initially three variables were 

kept constant, which were material, diameter, and air speed. Different effect of length 

was studied at 1m depth only where the original pipe length at 1m depth was 50m long, 

as stated before.  

 

4.3.1 Selecting fan blower 

Fan blower plays an important role in the Earth Pipe Cooling system since it 

provides the cooling medium, which is air through the system. This Earth Pipe Cooling 

Figure 4.42: A 3d drawing of the experiment set from North showing buried pipes at 

0.5m, 1.0m and 1.5m underground. (PP = Polyethylene Pipe). 
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system includes buried pipe as long as 50m. For a pipe as long as 50m, significant air 

pressure loss could happen within the pipe, which could then reduce the air flow 

through the pipe. Therefore, a careful selection of a fan blower is important to ensure 

the fan power could overcome the pressure loss through a 50m long pipe. Therefore, it 

is important to identify the pressure loss of a certain pipe design prior to selecting the 

fan power (CIBSE Guide B, 2005) 

 

                             Pef = ΔPt qv 

ηo                                          (Equation 4.1) 

The CIBSE Guide C, particularly the chart “flow of air in round ducts” (CIBSE 

2001) was used to determine the pressure drop per unit length (Pa/m). This chart 

requires two of the following inputs; volume flow rate (m
3
/s), pipe internal diameter, 

(m) and air velocity (m/s). This study has used various values of two inputs; air velocity 

(m/s) and pipe internal diameter (m).The pressure loss data obtained were then 

multiplied by a correction factor for plastic duct (Table 4.5). 
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Table 4.5: Pressure loss in ducts of (a) neat cement or plaster, (b) spiral wound 

galvanised, (c) sheet aluminium and (d) plastic ducts (CIBSE Guide C, 2001) 

Pressure loss 

from chart 

(Pa/m) 

Correction factor for ducts of all diameters 

(a) 

Plastered ducts 

(b) 

Spiral wound 

ducts 

(c) 

Aluminium 

ducts 

(d) 

Plastic ducts 

0.1 1.03 0.97 0.96 0.90 

0.2 1.05 0.96 0.95 0.90 

0.5 1.07 0.95 0.93 0.88 

1.0 1.08 0.94 0.91 0.85 

2.0 1.08 0.93 0.90 0.84 

     

5.0 1.09 0.92 0.88 0.80 

10.0 1.09 0.91 0.86 0.77 

20.0 1.10 0.90 0.85 0.75 

50.0 1.10 0.88 0.83 0.71 

100.0 1.11 0.86 0.79 0.68 

 

 

 Table 4.6: Pressure loss, (ΔP x correction factor from Table 4.4) per unit length (Pa/m). 

Air 

Velocity (m/s) 

Pipe diameter 

0.076m, 

3” 

0.102m, 

4” 

0.127m, 

5” 

0.152m, 

6” 

1 0.28 0.19 0.15 0.13 

2 0.94 0.68 0.51 0.41 

3 2.02 1.45 1.11 0.85 

4 3.36 2.35 1.76 1.45 

5 4.88 3.61 2.77 2.14 

10 16.50 12.32 9.24 7.04 
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Table 4.6 has shown that the pressure loss per unit length decreases when pipe 

diameter increases but increases when the air velocity increases. A 0.076m or 3” 

diameter pipe was chosen for use in the field investigation due to financial limit and a 

100m long pipe was considered to determine the required fan power to provide adequate 

air flow. Therefore, referring to the values in Table 4.6, the pressure loss, ΔP of 0.076m 

or 3” diameter and 100m long pipe, with 5m/s air velocity is 488 Pa. 

Six fan blower manufacturing companies were contacted to acquire a fan blower 

that would overcome 488Pa pressure loss with the above pipe/air flow configuration, 

which was considered to the upper limited of the pressure loss that is likely to be 

encountered. The configuration has a volumetric flow rate of 81.7m
3
/h. A 

manufacturing company Nicotra Fans and Blowers Manufacturing responded with 6 

different models of Turbo-Aire, a multi speed centrifugal fan. A model named Fan 

Turbo Aire GCIL200 (Figure 4.43) was chosen, which fits the required criteria. Figure 

4.44 shows the performance curve of this model. Table 4.7 lists down the fan 

specifications. 

 

 

Figure 4.43: Fan Turbo Aire GCIL200 with uniquely designed 3 speeds external rotor 

motor. (The built in motor produce extra heat to the air that goes into the buried pipe 

inlet. This is shown in the results chapter). 
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Figure 4.44: Performance curves of Fan Turbo Aire GCIL200 at Low (L), Medium (M) 

and High (H) fan speed (Nicotra Fans and Blowers Manufacturing (M) 

  

Table 4.7: Specification for Fan Turbo Aire GCIL200 

Impeller Backward curve centrifugal impeller 

Casing 1. Rust-resistance pre-galvanised steel 

2. Aerodynamically designed inlet 

guide vane 

Motor 1. 3 speeds external rotor motor 

2. Moisture resistant 

3. Permanently lubricated ball 

bearings ensuring reliable and 

maintenance free operation 

4. Class F insulation 

5. Speed controllable (optional) 

6. Operate in ambient temperature 

range from -14
o
 to 40

o
C 

7. Built-in thermal protection device 

Dimensions Diameter = 0.378m 

Depth = 0.235m 

Power 119 Watts 

Performance See Figure 4.44 
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4.3.2 Earth Pipe Cooling experiment in the wet season 

The result from soil temperature measurement in October/November 2007 has 

shown that at 1m depth, soil temperature is almost stable at 28
o
C and it increases at 2m 

and below underground. Therefore, this section of field work only considered depths 

less than 2m underground. The first earth pipe cooling experiment aims to test each 

variable with different values, where the first set of soil temperature data measured in 

October/November 2007 used as a guideline. Table 4.8 summarizes details of each 

parameters used during the field work. The data collected after the broken PVC pipes 

were replaced by Polyethylene pipes. 

  

Table 4.8: Details of Parameters used for field experiment in November/December 

2008. 

Parameters Detail Description 

Depth 0.5m, 1.0m and 1.5m 

Length 25m (0.5m, 1.0m and 1.5m depth) and 

50m (1.0m depth) 

Pipe Diameter Polyethylene = 7.36 cm  

PVC = 10.2 cm 

Pipe Thickness Polyethylene = 0.82 cm 

PVC = 0.20 cm 

Fan Speed 5.62m/s (High), 5.15m/s (Medium) 

and 4.67m/s (Low) 

Materials Polyethylene Pipe (0.5m, 1.0m and 

1.5m depth) and PVC Pipe (0.5m depth) 
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Equipments were gathered before the experiment commenced. The types of 

equipments were chosen with reference to the type of data needed; 

 Outdoor dry bulb temperature 

 Dry bulb temperature (DBT) inside the experiment shed 

 Relative humidity (RH) inside the experiment shed 

 Temperature at the inlet of each buried pipe 

 Temperature at the outlet of each buried pipe 

 Air velocity through each buried pipe 

  

Table 4.9: Measuring equipments used that produce required data 

Data Measuring equipments 

Outdoor dry bulb temperature HOBO Pendant Temp Logger (UA-001-

64) 

DBT inside experiment shed HOBO U12-012 Temp/RH/Light/Ext  

RH inside experiment shed 

Temperature at inlet of each buried pipe HOBO U12-012 Temp/RH/Light/Ext + 

HOBO External Sensor TMC6-HD  Temperature at outlet of each buried pipe 

Air velocity through each buried pipe Air Flow Meter from Testo 

 

The outdoor dry bulb temperature was measured with HOBO Pendant Temp 

Logger, which is the same logger as described in Section 4.2.2. It was hung just outside 

the experiment shed under the roof overhang Figure 4.20 that protected it from direct 

solar radiation. The dry bulb temperature and relative humidity inside the experiment 

shed was measured with HOBO U12-012 Temp/RH/Light/Ext. This equipment is also 

the same equipment as described in Section 4.2.2. HOBO U12-012 loggers were also 

used to measure the inlet and outlet of each buried pipes, with a HOBO external sensor 

TMC6-HD (Figure 4.45) attached to it. The external sensor was inserted into each of the 

pipe inlet and outlet to measure the temperatures (Figure 4.47 and Figure 4.48). 
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Figure 4.45: HOBO External Sensor TMC6-HD 

   

Table 4.10: Specifications for HOBO External Sensor TMC6-HD 

Range -40
o
 to 50

o
C in water or soil, -40

o
 to 100

o
C in air 

Accuracy with U12 +0.25
o
C at 20

o
C (see Figure 4.45) 

Drift <0.1
o
C per year 

Resolution with U12 0.03
o
C at 20

o
C (see Figure 4.45) 

Response time in air 3 minutes typical to 90% in air moving 1m/s 

Response time in stirred water 1 minute typical to 90% 

Housing Stainless-steel sensor tip 

Probe dimensions 0.5 cm x 2.5 cm  

Length 1.8 m 

Weight 37 g 

Note: Sensor tip and cable immersion in fresh water up to 50
o
C for one year; radiation 

shield strongly recommended for use in sunlight 

 

 

 

Figure 4.46: Graph of temperature accuracy and resolution for HOBO External Sensor 

TMC6-HD. 
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Figure 4.47: Placements of HOBO U12-012 Temp/RH/Light/Ext with attached HOBO 

External Sensor TMC6-HD inside the experiment shed and in each buried pipe inlet and 

outlet during the wet season; in plan view. 

Figure 4.48: Placements of HOBO U12-012 Temp/RH/Light/Ext with attached HOBO 

External Sensor TMC6-HD inside the experiment shed and in each buried pipe inlet and 

outlet during the wet season; in section view. 
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The air velocity of each buried pipe was measured at various fan speed; 5.62m/s 

(High), 5.15m/s (Medium) and 4.67m/s (Low). These were measured with an Air Flow 

Meter from Testo. The fan blower operates from 10:00 am to 6:00 pm. This method was 

applied to find the effect of night ventilation cooling that could reduce the fan operation 

hours. All data were measured 24 hours daily from 22 November to 24 December 2008 

at 10 minutes interval. However, each pipe temperature was measured separately to 

avoid interference between the pipe data.   

 

4.3.3 Earth Pipe Cooling experiment in hot and dry season 

As mentioned earlier, at the end of April and beginning of May is the beginning 

of hot and dry season. The graph of Kuala Lumpur weather data in Chapter 3 illustrates 

the annual climate condition more clearly. The Earth Pipe Cooling Experiment was 

repeated in April/May 2009 to capture the cooling pipe performance in hotter and dry 

climate. Apart from that, this experiment is intended to fill in gaps of inadequate data 

from the experiment in November/December 2008. Therefore, the methodology has 

been added and improved with a slightly different equipment arrangement.  

The parameters used in this experiment were slightly different from the 

experiment in November/December 2008 (Table 4.8). Table 4.11 lists down the new 

parameters. 

  

Table 4.11: Details of parameters used in field experiment in April/May 2009. 

Parameters Detail Description 

Depth 0.5m, 1.0m and 1.5m 

Length 25m 

Pipe Diameter Polyethylene = 7.36 cm  

PVC = 10.2 cm 

Pipe Thickness Polyethylene = 0.82 cm 

PVC = 0.20 cm 

Fan Speed 5.6 m/s  

Materials Polyethylene Pipe and PVC Pipe 
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Equipments were gathered before the experiment commenced. The choice of 

equipments was referred to the required data from this experiment; 

 Outdoor dry bulb temperature 

 Outdoor Relative Humidity 

 Dry bulb temperature (DBT) inside the experiment shed 

 Relative humidity (RH) inside the experiment shed 

 Temperature at the inlet of each buried pipe 

 Relative Humidity at the inlet of each buried pipe 

 Temperature at the outlet of each buried pipe 

 Relative Humidity at the outlet of each buried pipe 

 Air velocity through each buried pipe 

  

Table 4.12: Measuring equipments used to produce the required data. HOBO U12-012 

is the same equipment described in Section 4.2.2. 

Data Measuring equipments 

Outdoor dry bulb temperature HOBO U12-012 Temp/RH/Light/Ext 

Outdoor Relative Humidity 

DBT inside experiment shed HOBO U12-012 Temp/RH/Light/Ext  

RH inside experiment shed 

Temperature at inlet of each buried pipe HOBO U12-012 Temp/RH/Light/Ext  

RH at inlet of each buried pipe 

Temperature at outlet of each buried pipe HOBO U12-012 Temp/RH/Light/Ext 

RH at outlet of each buried pipe 

Air velocity through each buried pipe Air Flow Meter from Testo 

 

The HOBO U12-012 that measured the outdoor dry bulb temperature and 

relative humidity was hung just outside the experiment shed, below the roof overhang, 

which protected the equipment from direct solar radiation. Meanwhile, the HOBO U12-

012 that measured dry bulb temperature and relative humidity inside the experiment 

shed was placed away from the pipe outlets (Figure 4.50). 
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In this experiment, the temperature and relative humidity at pipe inlet were 

measured with HOBO U12-012 without HOBO external sensor TMC6-HD. The HOBO 

U12-012 was placed inside the pipe inlet in the middle of the air stream (Figure 4.49 

and 4.50). The HOBO U12-012 that measured the temperature and relative humidity at 

pipe outlet was hung inside the pipe outlet (Figure 4.49 and 4.50). 

 

 

Figure 4.49: Plan view of the experiment shed showing the placements of HOBO U12-

012 data loggers in each pipe inlet and outlet and HOBO Pendant Temp Datalogger 

outside the experiment shed. 
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Figure 4.50: Sectional view of the experiment shed showing the placements of HOBO 

U12-012 data loggers in each pipe inlet and outlet, and one hung below the ceiling. 

Picture also shows a HOBO Pendant Temp data logger outside the experiment shed. 

  

The fan blower was timed at two different hours; 24 hours and from 10:00 am to 

6:00 pm. Similar to the previous experiment, this method was also applied to find the 

effect of night ventilation cooling that could reduce the fan operation hours. All data 

were measured throughout each day from 29 April to 16 May 2009 at 10 minutes 

interval. Each pipe temperature was measured separately to avoid interference between 

the pipe data. 

 

4.3.4 Year-long Earth Pipe Cooling experiment  

Results obtained from experiments in the wet season and the hot and dry season 

showed a significant (up to 2
o
C) difference in temperature at the buried pipe outlet 

between in the hot and dry season and the wet season. Therefore, a whole year data set 

is required to see the pattern of temperature at the buried pipe inlet and outlet 

throughout the different seasons in Malaysia. The downside of this is that by running 

the earth pipe cooling system experiment for a whole year, only one buried pipe can be 

used to avoid interference between pipe outlet temperatures if two or more pipes were 

running. The data interference could happen if two or more pipes run simultaneously 
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because all pipes were buried close to each other, approximately 0.5m distance with 

each other.  

Looking at the results in the wet and hot and dry season, buried Polyethylene 

pipe at 1m deep provides the most temperature reduction between its outlet and inlet 

and therefore, the buried pipe at 1m depth was used for the extended investigation of 

Earth Pipe Cooling of one year. The air flow within the buried pipe was set to maximum 

which provides an air velocity of 5.6m/s. The pipe length was 25m and it was a 3”size 

Polyethylene pipe. The following variables were measured during the one year 

experiment; 

 Outdoor dry bulb temperature (shaded by a tree) 

 Otudoor dry bulb temperature (just outside the fan blower) 

 Outdoor Relative Humidity 

 Dry bulb temperature (DBT) inside the experiment shed 

 Relative humidity (RH) inside the experiment shed 

 Temperature at the inlet of each buried pipe 

 Relative Humidity at the inlet of each buried pipe 

 Temperature at the outlet of each buried pipe 

 Relative Humidity at the outlet of each buried pipe 

 

Throughout the year, the buried pipe inlet temperature is mostly higher than the 

outdoor temperature measured under a tree and away from the experiment hut. The 

reason behind this was because the fan blower that provides forced air flow into the 

buried pipe is placed with its fan exposed to solar radiation. Since the external part of 

the fan blower is not shaded, hot air was being extracted by the blower through the 

buried pipe inlet. This makes the buried pipe inlet temperature higher than the outdoor 

temperature measured under a tree (Figure 4.51). The air temperature at buried pipe 

inlet was also increased due to heat gain from built in motor in the fan blower. 
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During the investigation, there has been unexpected incident where the power 

cable that connects the power supply to the fan blower was repeatedly cut off for at least 

four times. These incidents have left gaps of invalid data in April, the whole of July and 

August and gaps in September. However, looking at the soil temperature data in July 

and August, they are similar to the soil temperature in September and hence the buried 

pipe results in July and August were not present in the data shown and discussed in the 

next chapter. 

Limited funds and resources for a PhD project based abroad is a major reason 

too for a number of limitations and gradual changes; including the absence of a proper 

weather station; parallel test pipes running at the same time and occurrence of invalid 

data caused by repetitive uncontrolled mysterious vandalism towards the test site.  

 

 

 

 

Figure 4.51: Trend of temperature at buried pipe inlet, a shaded outdoor and outdoor 

just outside the fan blower (Data recorded in December). 
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CHAPTER 5 FIELD WORK RESULTS 

The main factors that can be controlled by designers to make use of the Low 

Energy Earth Pipe Cooling system efficiently are the depth of the earth pipe buried 

underground, the length of the earth pipe, its diameter, the thickness of the earth pipe, 

its material and heat conductivity and the air flow inside the earth pipe. These have been 

explained in Chapter 3: Literature Review: Passive Ground Cooling. Due to the soil 

depth where earth pipe are buried being one of the main factors and with limited source 

of Malaysia soil temperature information, the research is brought together by two inter-

related field works, the soil temperature measurement and the investigation of earth pipe 

cooling under Malaysia climate  

 

5.1 Malaysia Soil Temperature 

The Malaysia soil temperature measurement was carried out to seek the potential 

of applying Earth Pipe Cooling technology into Malaysia soil, before the main Earth 

Pipe Cooling investigation takes place. According to successful application of such 

cooling technology in other parts of the world, the Earth Pipes were buried at the depth 

between 3m to 5m underground. It was found that the soil temperature is stable and 

constant throughout the year around 4m underground. So far, there was very limited 

record of soil temperature in Malaysia and among various records of Malaysia soil 

temperature, the data goes as deep as 1.2m underground.  

In addition to the results obtained from literature review of Malaysia soil 

temperature by Abdul Rahim et al. (1986) and Huat et al. (2005) another set of data on 

Malaysia soil temperature was obtained from Malaysia Meteorology Department. 

However, the data dated back from August 1977 to September 1982 and it contains the 

soil temperature at grass level, 0.05m, 0.10m, 0.30m and 1.20m deep underground. 

Furthermore, the data given was recorded in a daily basis with no information of the 

time of measurements. Table 5.1 below summarizes the annual maximum, minimum, 

average and amplitude of Malaysia soil temperature measured from January 1978 to 

December 1981. The data in 1977 and 1982 is not included since there are missing data 

at the earlier and later months of the years. 
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Table 5.1: Summary of Malaysia Soil Temperature in Subang Jaya, obtained from 

Malaysia Meteorology Department. 

 Depth (m) 1978 1979 1980 1981 

Maximum 

Temp (
o
C) 

Grass 25.4 24.7 25.5 26.1 

0.05 34.0 33.7 33.5 33.4 

0.10 31.5 32.6 31.3 30.9 

0.30 31.0 32.0 30.3 30.7 

1.20 30.6 31.0 30.5 30.7 

Minimum 

Temp (
o
C) 

Grass 19.1 18.5 19.6 19.0 

0.05 26.1 26.7 26.0 26.0 

0.10 26.4 26.7 26.0 26.3 

0.30 24.5 27.0 26.8 26.9 

1.20 28.8 28.8 28.8 28.3 

Average 

Temp (
o
C) 

Grass 22.8 22.6 23.0 22.9 

0.05 30.3 30.4 30.2 30.2 

0.10 29.1 29.1 28.7 28.6 

0.30 29.0 29.2 28.8 28.9 

1.20 29.7 29.8 29.6 29.7 

Average 

Amplitude 

Grass 3.2 3.1 3.0 3.6 

0.05 4.0 3.5 3.0 3.8 

0.10 2.6 3.0 2.7 2.3 

0.30 3.3 2.5 1.8 1.9 

1.20 0.90 1.1 0.9 1.2 

 

 Figure 5.1 shows Malaysia soil temperature at shallow depths; from the grass 

surface up to 1.2m deep underground. The data from Malaysia Meteorology Department 

dated back in 30 years ago and they have no records of more recent years of data.  

According to successful application of Earth Pipe Cooling in the temperate and 

hot and arid countries, the pipes were usually buried at 3 to 4 m deep underground, 

where the soil temperature is found to be stable, with amplitude temperature less than 

0.5
o
C. Referring to Figure 5.1, Malaysia soil temperature fluctuation is still considered 
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big at 1.20m underground although Malaysia climate is hot and humid all year round.  

Figure 5.1 shows a soil temperature trend in year 1981 of depth up to 1.2m 

underground. 
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Figure 5.1: Trend of Malaysia soil temperature in 1981 from Malaysia Meteorology 

Department. (Grass represents data recorded on the ground surface with short grass 

cover). 

  

In 1981, the figure above shows that the soil temperature becomes more stable 

with less annual amplitude as the measurement goes deeper underground. However, the 

data available from Malaysia Meteorology Department is limited to 1.2m deep 

underground. Earth Pipe Cooling investigation requires information on soil temperature 

at deeper level underground, since Earth Pipe Cooling application in other regions of the 

world have normally buried the Earth Pipe at 4m deep underground. Therefore, this 

research carried out soil temperature measurement in an experiment site, which is 

located in Gombak, near Kuala Lumpur, Malaysia. 

Initially, the soil temperature investigation includes measurement of outdoor dry 

bulb temperature, soil temperature at ground level, and underground soil temperature at 

1m, 2m, 3m, 4m and 5m depths. The investigation was carried out from 5 October 2007 
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to 14 November 2007. There was a gap of missing data from 13 to 16 October. The 

field work was carried out during the North East monsoon season when the weather is 

wet and less warm throughout Malaysia. Table 5.2 summarizes the trend of soil 

temperature measured during the soil temperature investigation in October and 

November 2007. 

  

Table 5.2: Summary of outdoor dry bulb temperature and soil temperature measured on 

site at various depth underground in October and November 2007. 

Depth Maximum 

(
o
C) 

Minimum (
o
C) Average (

o
C) Amplitude (

o
C) 

Ambient Air 

DBT 

35.4 21.7 26.2 6.8 

Ground Level 34.9 24.4 27.8 5.2 

1m deep 28.5 26.9 27.5 0.8 

2m deep 29.4 27.1 28.5 1.1 

3m deep 30.1 28.8 29.1 0.6 

4m deep 30.3 29.1 29.4 0.6 

5m deep 30.2 29.3 29.5 0.5 

 

Table 5.2 shows that the amplitudes of soil temperatures within the two months 

decrease with increasing depth underground. However, soil temperature at 3m depth 

underground is fairly stable with amplitude similar to 5m depth soil, but with lower 

average soil temperature. The table also show that at 1m depth underground, the soil 

temperature is fairly stable with a much lower average temperature (Table 5.2). 

During the investigation in October and November 2007, the outdoor dry bulb 

temperature ranges from 21.8
o
C to 35.4

o
C. The maximum diurnal temperature during 

these two months was 12.8
o
C, which occurred on 11 November 2007 where the ambient 

dry bulb temperature ranges from 22.5
o
C to 35.4

o
C (Table 5.2). Meanwhile, the 

minimum diurnal temperature at this period was 6.4
o
C where the ambient dry bulb 

temperature ranges from 22.5
o
C to 28.9

o
C. This occurred on 10 November and rain 
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started falling from 11:00 am until 5:00 p.m., which has caused the ambient dry bulb 

temperature to maintain below 29.0
o
C in the middle of the day. 
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Figure 5.2: Trend of ambient air temperature and soil temperature measured on field site 

in Gombak, Malaysia from 5 October to 14 November 2007. 

  

The ground temperature trend follows the outdoor DBT slightly with 

temperature ranges from 24.4
o
C to 34.9

o
C. At the ground level of soil, the temperature 

amplitude is 5.2
o
C and is considered quite high (Figure 5.2) although its average 

temperature was fairly low, which was 27.8
o
C. Meanwhile, the soil temperature at 1m 

deep underground has the lowest average temperature throughout the investigation 

period, which is 27.5
o
C and its temperature amplitude is reasonably low, which is 

0.8
o
C. Beyond 1m deep, the average temperature increases again (Table 5.2 and Figure 

5.2). The average soil temperature at 1m deep underground is 7.9
o
C lower than the 

absolute maximum ambient DBT and 5.5
o
C lower than the average maximum ambient 

DBT within the investigation period. This temperature reduction shows a potential of 

using the soil as a heat sink to reduce the ambient air temperature. 
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The above soil temperature investigation was measured during the wet season, 

from October to November 2007. Another soil temperature measurement was carried 

out during the hot and dry season, from 27 April to 16 May 2009. The second 

investigation was carried out after analysis of data from the first soil temperature 

experiment, which has shown that at 1m depth underground, the soil temperature is 

fairly stable and has a lower soil temperature compared to the deeper soil. Therefore, the 

second soil temperature experiment measures soil temperature at 0.3m, 0.5m, 0.8m and 

1.0m depth below ground level and also ambient temperature. Table 5.3 summarizes the 

trend of soil temperature measured during the soil temperature investigation in April 

and May 2009. 

  

Table 5.3: Summary of outdoor dry bulb temperature and soil temperature measured on 

site at various depth underground in April and May 2009. 

Depth Maximum 

(
o
C) 

Minimum (
o
C) Average (

o
C) Amplitude (

o
C) 

Ambient Air 

DBT 

39.9 

 

22.8 

 

29.2 

 

8.5 

 

0.3m deep 31.8 28.8 30.1 1.5 

0.5m deep 31.0 29.3 30.0 0.9 

0.8m deep 30.6 29.4 29.9 0.6 

1.0m deep 30.3 29.4 29.7 0.5 
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Figure 5.3: Trend of ambient air temperature and soil temperature measured on field site 

in Gombak, Malaysia from 27 April to 16 May 2009. 

  

During the soil investigation in April and May, the ambient DBT ranges from 

22.8
o
C to 39.9

o
C and the maximum diurnal temperature difference during the 

experiment period was 16.1
o
C which occurred on 11 May 2009, where the maximum 

ambient air temperature was 39.9
o
C and its minimum was 23.9

o
C (Figure 5.3). The 

average maximum ambient DBT during this investigation was 37.9
o
C, which is 4.9

o
C 

higher than the average maximum ambient DBT during the first soil temperature 

experiment that took place in October and November 2007. This shows there is a 

temperature difference of 4.9
o
C in average maximum ambient DBT between the hot and 

dry season and warm and wet season.  

The graph in Figure 5.3 above shows that the increase of ambient DBT has 

affected the trend of soil temperature at 1m deep. Although the soil temperature 

amplitude maintains to be as low as 0.5
o
C, the average soil temperature at 1m deep was 

29.7
o
C, which is 2.2

o
C higher than the average soil temperature at 1m deep underground 

during the wet season. The result of this investigation shows that at 1m deep 

underground, the soil temperature is still affected by the ambient DBT. Figure 5.3 also 

shows that as the soil gets nearer to the ground surface, the temperature amplitude 
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increases, which makes the soil temperature became less constant with more 

fluctuations. 

Due to the rather significant differences at 1m depth soil temperature, another 

soil temperature measurement was carried out for the whole year. Figure 5.3 shows that, 

throughout the day, the soil temperature at 1.0m depth does not fluctuate significantly, 

comparatively to the soil temperature at 0.5m and 0.3m depth. Therefore, the next soil 

temperature investigation measures at 0.5m, 1.0m and 1.5m depth. 

Figure 5.4 shows an hourly distribution of soil temperature at the field work site 

in Gombak where the data loggers were buried at 0.5m, 1.0m and 1.5m deep 

underground. However, there is an error in the reading of data logger buried at 1.5m in 

the month of January and February, which leaves a gap in the soil temperature trend 

(Figure 5.4).   
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Figure 5.4: Hourly distribution of soil temperature (
o
C) at 0.5m, 1.0m and 1.5m depths 

within a year at the field work site in Gombak, Kuala Lumpur, Malaysia. 
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Figure 5.4 above shows the daily fluctuations of soil temperature is reduced as 

the depth underground increased. As mentioned in Chapter 2, Malaysia climate is hot 

and humid through the year but does have different season with slightly different 

average weather data; air temperature, relative humidity and rainfall. Between October 

and March the weather is warm and wet, whereas in March, April and May, the weather 

is usually hot and dry. The weather data explains the trend of soil temperature in Figure 

5.4. The soil temperature at all depths that are successfully recorded are found to be 

lower in November, December, January and February while the soil temperature is 

higher in March, April and May.  

In a year, the soil temperature at 0.5m depth ranges from 26.6
o
C to 30.7

o
C 

(Figure 5.5). The absolute maximum temperature occurred in the hot and dry month 

May while the absolute minimum temperature occurred in February. Due to the shallow 

depth of the measured soil, the annual amplitude is 2.05, which is considered to be 

large. However, the monthly amplitude ranges from 0.46 (May) to 1.53 (February) and 

the average monthly amplitude is 0.81. 
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Figure 5.5: Monthly absolute maximum, absolute minimum and average soil 

temperature (
o
C) at 0.5m depths within a year at the field work site in Gombak, Kuala 

Lumpur, Malaysia. 
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 Meanwhile, at 1.0m depth underground, the soil temperature ranges from 

27.2
o
C to 30.5

o
C (Figure 5.6). The absolute maximum soil temperature recorded in May 

while the absolute minimum soil temperature is recorded in February. The annual 

amplitude is 1.65, which is 0.4 lower than the annual amplitude of soil temperature at 

0.5m depth. On the other hand, the monthly amplitude ranges from 0.2 (in May and 

July) to 1.04 (February) and the monthly amplitude gives an average of 0.45 in a year. 

This average monthly amplitude is halved the average monthly amplitude of 0.5m depth 

soil temperature.  
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Figure 5.6: Monthly absolute maximum, absolute minimum and average soil 

temperature (
o
C) at 1.0m depths within a year at the field work site in Gombak, Kuala 

Lumpur, Malaysia. 

  

At 1.5m depth underground, the valid soil temperature data is recorded from 

March to December due to unexpected error in the data logger throughout January and 

February. Therefore, the soil temperature at 1.5m depth ranges from 28.5
o
C to 30.3

o
C 

within a year excluding data in January and February (Figure 5.7).  
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Figure 5.7: Monthly absolute maximum, absolute minimum and average soil 

temperature (
o
C) at 1.5m depths within a year at the field work site in Gombak, Kuala 

Lumpur, Malaysia. 

  

Because there are no data in January and February, the annual amplitude of soil 

temperature at this depth cannot be calculated. However, the monthly amplitude ranges 

from 0.10 (May) to 0.40 (November) and the average monthly amplitude (excluding 

January and February) is 0.26. 

The monthly amplitude for all 0.5m, 1.0m and 1.5m depth soil temperature are 

tabulated in Table 5.4. 

 

Table 5.4: Summary of monthly amplitude of soil temperature at 0.5m, 1.0m and 1.5m 

depth at the field work site. 

 Amp-

litude 

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec 

0.5m depth 0.79 1.53 0.56 0.65 0.46 0.70 0.50 0.85 1.10 0.90 0.89 0.84 

1.0m depth 0.44 1.04 0.30 0.35 0.20 0.45 0.20 0.45 0.60 0.40 0.60 0.40 

1.5m depth   0.20 0.25 0.10 0.30 0.20 0.30 0.35 0.35 0.40 0.15 
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It is interesting to see that although each depth varies with different monthly 

absolute maximum, absolute minimum and amplitude soil temperatures, their monthly 

averages are nearly the same (Figure 5.8). Figure 5.8 also shows that the trend curve of 

monthly average soil temperature at all three depths follow the trend curve of monthly 

average air dry bulb temperature but the soil temperature monthly averages are elevated 

mostly 2
o
C higher than the monthly average air dry bulb temperature. 
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Figure 5.8: Monthly average air dry bulb temperature and soil temperature at 0.5m, 

1.0m and 1.5m depths within a year at the field work site in Gombak, Kuala Lumpur, 

Malaysia. 

 

 An additional study of soil temperature was carried out from November to 

February. This investigation is carried out simultaneously while the earth pipe cooling 

experiment were running. It is initiated to compare the soil temperature in two different 

locations, at 1.0m depth. The determined location is the usual spot, which is away from 

the buried pipe and the other location is within 0.5m from the buried pipe. As 

mentioned in Chapter 3: Literature Review: Passive Ground Cooling, this investigation 

is carried out in response to a literature by Li et al. (2009) that reported an increase of 
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soil temperature within 1.0m proximity to the buried pipe for earth pipe cooling in long 

term due to the heat dissipation from the pipe effect. However, due to time limitation, 

this research only managed to compare the two soil temperatures in two locations for 

three months. The determined soil depth for this investigation is 1.0m because the only 

running earth pipe cooling at that time is buried at 1.0m depth underground. 

 The data logger was buried long after the earth pipe cooling system started 

running and therefore the soil should already be affected by the heat dissipated from the 

buried pipe by the time the data logger reads the soil temperature near the buried pipe. 

Figure 5.9 shows that the soil temperatures at two locations are very similar with 

maximum of 0.4
o
C temperature differences, which occurred in January and February. 

This shows that in the short term, the heat dissipated from earth pipe cooling system 

does not affect the soil temperature significantly. Further studies of the long term effect 

of heat dissipation from earth pipe cooling system to the nearby soil temperature can be 

carried out in the future when there is no time limitation to the research. 
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Figure 5.9: Trend of soil temperature at 1.0m depth underground in two locations; near 

pipe (SNP) and away from pipe (SAP) and outdoor air dry bulb temperature. 
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5.2 Earth Pipe Cooling Investigation in Malaysia. 

The Earth Pipe Cooling investigation in Malaysia was carried out three times on 

the same site throughout the research year. The first set of data was recorded in 

November and December, during the wet season. The second set of data was recorded 

in April and May during the hot and dry season. The results obtained from the 

investigations in wet and hot season show variation in buried pipe outlet air temperature 

even though Malaysian climate is hot and humid throughout the year. Therefore, the 

third investigation recorded data for one year. The aim of these investigations was to 

obtain optimum design of Earth Pipe Cooling set up to be implemented in Malaysia 

climate. Another aim is to seek the viability of applying this technology under Malaysia 

climate by looking at the result of temperature drop between the buried pipe inlet ad 

outlet.  

As mentioned earlier, the parameters that could affect the performance of Earth 

Pipe Cooling technology apart from surrounding weather condition are the depth of pipe 

buried underground, the length of pipe, its diameter, the pipe material and the airflow 

inside the buried pipe.  

 

5.2.1 Investigation in the Wet Season 

Investigation in the wet season; November and December, comprises the inlet 

and outlet temperature of the 25m long Polyethylene pipes buried at 0.5m, 1.0m and 

1.5m and 50m long Polyethylene pipe buried at 1.0m deep underground. The various 

parameters used were part of the investigation in the wet season since it is the first 

investigation of Earth Pipe Cooling System of this research. The parametric studies 

consist of the effect of pipe length, and depth of pipe buried underground. However, the 

parametric study has its limits because the different setup was run separately to avoid 

interference at the buried pipe outlet. The fan blower that provides air into the buried 

pipe operates daily from 10:00am to 6:00pm and the air velocity maintains at 5.6m/s. 

Alongside the buried pipe inlet and outlet temperature, this investigation also 

records the indoor DBT in where the buried pipe inlet and outlet are located. As 

mentioned earlier, each data group of each Earth Pipe Cooling design were measured 

separately. This is to avoid interference among different Earth Pipe Cooling design data 

measurements since the pipes were buried fairly close to each other. 
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a) 25m long Polyethylene pipe buried at 0.5m depth underground 

In the graph shown in Figure 5.10 below, day 1 temperatures data seem to 

maintain low throughout the day. The reason behind this was because it rained during 

the day, hence the low outdoor, indoor and buried pipe inlet temperatures. During the 

two days of operation, the temperature at buried pipe inlet and outlet ranges from 

23.1
o
C to 33.9

o
C and from 23.3

o
C to 28.4

o
C respectively. The maximum temperature 

reduction between the two ends of the buried pipe was 5.9
o
C, which occurred at 

1:00pm. At this hour, the buried pipe inlet and outlet temperatures were 33.8
o
C and 

27.9
o
C respectively. The average daily maximum temperature reduction between the 

two ends of the buried pipe was 5.9
o
C, which is the same as the absolute maximum in 

two days, because there is no temperature reduction on day 1 due to rainfall and hence 

the pipe inlet temperature became lower than the pipe outlet. Indoor DBT ranges from 

22.8
o
C to 32.2

o
C while the outdoor DBT ranges from 22.3

o
C to 37.3

o
C. 
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Figure 5.10: Temperature during investigation of 25m long Polyethylene pipe buried at 

0.5m depth underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

November 2008. 
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b) 25m long Polyethylene pipe buried at 1.0m depth underground 

Within the 25m long Polyethylene pipe which was buried at 1.0m depth 

underground, the temperatures at the inlet and outlet range from 22.8
o
C to 34.8

o
C and 

from 22.8
o
C to 29.5

o
C respectively. Figure 5.11 below shows there is a jump in pipe 

outlet temperature on day at 6:30pm. This happened because the fan blower was 

switched off too soon before the outdoor DBT reduced to lower than the pipe outlet 

temperature in the previous hours. During the time when fan blower operates, which 

was from 10:00am to 6:00pm, the pipe outlet temperature ranges from 26.8
o
C to 28.5

o
C. 

However, the maximum temperature reduction in two days of operation is 6.4
o
C, which 

occurred at 1:00pm. At this hour, the buried pipe inlet and outlet temperatures are 

34.6
o
C and 28.2

o
C respectively. The average daily maximum temperature reduction 

within the two days of operation is 5.7
o
C. 

The indoor DBT ranges from 22.7
o
C to 32.6

o
C while the outdoor DBT ranges 

from 21.9
o
C to 35.8

o
C. The two ranges of dry bulb temperature (DBT) are very similar 

where there is not much temperature reduction between the outdoor and indoor DBT. 
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Figure 5.11: Trend of temperature during investigation of 25m long Polyethylene pipe 

buried at 1.0m depth underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

November 2008. 
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c) 25m long Polyethylene pipe buried at 1.5m depth underground 

Figure 5.12 illustrates data obtained from this investigation. The temperature at 

buried pipe inlet ranges from 22.7
o
C to 32.4

o
C while the buried pipe outlet temperature 

ranges from 22.7
o
C to 28.6

o
C. The maximum temperature reduction from the pipe inlet 

to outlet is 4.0
o
C, which occurred at 11:30am. At this hour, the buried pipe inlet and 

outlet temperatures were 32.3
o
C and 28.4

o
C respectively. Between the two days of 

experiment, the average daily maximum temperature reduction is 3.9
o
C. Meanwhile, the 

indoor DBT ranges from 22.6
o
C to 30.9

o
C while the outdoor DBT ranges from 22.0

o
C 

to 33.6
o
C. The data shows there is not much difference in temperature between the 

indoor and outdoor. 
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Figure 5.12: Trend of temperature during investigation of 25m long Polyethylene pipe 

buried at 1.5m depth underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

November 2008. 

 

d)  50m long Polyethylene pipe buried at 1.0m depth underground 

A 50m long Polyethylene pipe is also buried at 1.0m depth underground and the 

temperatures at the pipe inlet and outlet ranges from 23.9
o
C to 35.3

o
C and from 23.9

o
C 

to 28.6
o
C respectively (Figure 5.13). The maximum temperature reduction within the 

two days of investigation, the maximum temperature reduction between the two ends of 
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the buried pipe is 6.8
o
C, which occurred at 3:00pm. At this hour, the buried pipe inlet 

temperature was 35.3
o
C while the outlet temperature was 28.5

o
C. Meanwhile, the 

average daily maximum temperature reduction is 6.3
o
C. 
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Figure 5.13: Trend of temperature during investigation of 50m long Polyethylene pipe 

buried at 1.0m depth underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

November 2008. 

 

The indoor DBT in this investigation ranges from 23.9
o
C to 32.4

o
C and the 

outdoor DBT ranges from 23.3
o
C to 38.7

o
C. Looking at the pipe outlet temperature 

graph in Figure 5.13, the temperature had a sudden rise at 8:00am in all three days. This 

is because unlike the other investigation, the fan blower operated from 8:00am to 

7:00pm. This was the first investigation carried out during the wet season and the fan 

blower operation time was determined according to the hour after sunrise and before 

sunset. The result shows that the pipe outlet temperature is higher than the inlet until 

approximately 10:00. The pipe outlet temperature became higher than the inlet again 

after 6:00pm. Therefore, the following investigations during the wet season had the fan 

blower operated from 10:00am to 6:00pm. 
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Table 5.5 summarises the result of each cases a), b), c) and d). The table 

includes the temperature reduction between the two ends of each buried pipe and also 

temperature ranges of each buried pipe. 

 

Table 5.5: Summary of results of 24 hours obtained from investigation carried out 

during the wet season. TR=Temperature Reduction, OT=Outlet Temperature and 

IT=Inlet Temperature. 

 Case a) 

Polyethylene 

pipe, 25m 

long, 0.5m 

deep 

Case b) 

Polyethylene 

pipe, 25m 

long, 1.0m 

deep 

Case c) 

Polyethylene 

pipe, 25m 

long, 1.5m 

deep 

Case d) 

Polyethylene 

pipe, 50m 

long, 1.0m 

deep 

Outdoor DBT, 

o
C 

22.3 – 37.3 21.9 – 35.8 22.0 – 33.6 23.3 – 38.7 

ITRange, 
o
C 23.1 – 33.9 22.8 – 34.8 22.7 – 32.4 23.9 – 35.3 

OTRange, 
o
C 23.3 – 28.4 22.8 – 29.5 22.7 – 28.6 23.9 – 28.6 

Max TR, 
o
C 5.9 6.4 4.0 6.8 

Average daily 

maximum 

TR,
o
C 

5.9 5.7 3.9 6.3 

Indoor DBT, 

o
C 

22.8 – 32.2 22.7 – 32.6 22.6 – 30.9 23.9 – 32.4 

Blower on 

period 

10:00 to 18:00 hrs 
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5.2.2 Investigation in the Dry Season 

Similar to investigations in the wet season, the experiments during hot and dry 

season are carried out with various parameters. The experiments are carried out in four 

different cases, a), b), and c). In each case temperatures at the buried pipe inlet and 

outlet were obtained. Simultaneously, the DBT of indoor that houses the two ends of the 

buried pipe and outdoor were also recorded. Outdoor DBT was also recorded but the 

data logger was not properly shaded and produced temperature readings that are too 

high during the daytime in all case experiments. The various parameters differ in 

depths. Three Polyethylene pipes were buried separately at 0.5m, 1.0m and 1.5m deep 

underground. All buried pipes are 25m long and all pipe inlets are connected to a fan 

blower. The fan blower provides air flow through each buried pipe at 5.6m/s. The fan 

blower supply air into one buried pipe at a time to prevent interference among the 

different buried pipe designs. The fan blower was scheduled to operate daily from 

10:00am to 6:00pm. 

In this season, the investigations include collection data of relative humidity at 

the buried pipe inlet and outlet, outdoor and indoor. The purpose of this was to find the 

possibility of condensation that might occur within the buried pipe or in the experiment 

shed, which houses the two ends of the buried pipe. 
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a) 25m long Polyethylene pipe buried at 0.5m depth underground 

The related soil temperature in this investigation is also at 0.5m deep 

underground. The soil temperature shown in Figure 5.14 ranges from 29.8
o
C to 30.3

o
C. 

The temperature at the inlet and outlet buried pipe ranges from 24.7
o
C to 35.2

o
C and 

from 25.3
o
C to 30.6

o
C respectively. There is temperature difference between the two 

ends of the buried pipe when the fan blower was operating. The maximum temperature 

reduction at the pipe outlet from the inlet was 4.9
o
C while the average daily maximum 

reduction was 4.2
o
C. The indoor DBT ranges from 25.1

o
C to 33.5

o
C. The maximum 

indoor DBT is 1.7
o
C less than the maximum temperature at the buried pipe inlet.  
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Figure 5.14: Trend of temperature from the investigation of 25m long Polyethylene pipe 

buried at 0.5m deep underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

May 2009. 
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Figure 5.15 shows that the RH at the inlet and outlet of the buried Polyethylene 

pipe ranges from 51.4% to 85.7% and from 63.0% to 84.5% respectively. In 

Polyethylene pipe buried at 0.5m deep underground, the RH at outlet is similar to the 

inlet RH when the fan blower stopped operating. The maximum RH rise between the 

two ends of the buried pipe is 16.4% where it is higher at the pipe outlet. The indoor RH 

ranges from 56.3% to 81.3%. Within the two days of experiment, the resulting RH did 

not exceed 85%. 
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Figure 5.15: Trend of relative humidity from the investigation of 25m long Polyethylene 

pipe buried at 0.5m deep underground. Fan blower operated from 10:00 a.m. to 6:00 

p.m. in May 2009. 
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b) 25m long Polyethylene pipe buried at 1.0m depth underground 

At 1.0m depth underground, the soil temperature measured in two days ranges 

from 29.9
o
C to 30.0

o
C. The temperatures at buried pipe inlet and outlet range from 

24.4
o
C to 37.0

o
C and from 24.7

o
C to 31.2

o
C respectively (Figure 5.16).  
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Figure 5.16: Trend of temperature from the investigation of 25m long Polyethylene pipe 

buried at 1.0m deep underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

May 2009. 

 

The maximum temperature reduction occurred during the day when the fan 

blower was operating and the value was 6.9
o
C. Within the two days, the average daily 

maximum temperature reduction was 6.0
o
C. Meanwhile, the indoor DBT ranges from 

25.1
o
C to 34.9

o
C. The maximum indoor DBT is 2.1

o
C less than the maximum 

temperature at the buried pipe inlet. 
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Similar to case a), Figure 5.17 shows that the RH in the buried pipe inlet and 

outlet are similar when the fan blower stopped operating. The RH at the buried pipe 

inlet and outlet ranges from 46.0% to 83.5% and from 60.3% to 83.2% respectively 

(Figure 5.17). The maximum rise in RH at the pipe outlet from the inlet was 17.3% and 

the resulting RH maintained below 85%. The indoor RH ranges from 53.2% to 77.5%. 
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Figure 5.17: Trend of relative humidity from the investigation of 25m long Polyethylene 

pipe buried at 1.0m deep underground. Fan blower operated from 10:00 a.m. to 6:00 

p.m. in May 2009. 
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c) 25m long Polyethylene pipe buried at 1.5m depth underground 

In this season, the soil temperature measured was limited to 1.0m deep 

underground and hence there’s no available soil temperature at 1.5m depth. The 

temperature at the buried pipe inlet and outlet ranges from 23.9
o
C to 36.1

o
C and from 

23.7
o
C to 30.2

o
C respectively (Figure 5.18).  
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Figure 5.18: Trend of temperature from the investigation of 25m long Polyethylene pipe 

buried at 1.5m deep underground. Fan blower operated from 10:00 a.m. to 6:00 p.m. in 

May 2009. 

 

In the evenings when the fan blower was not operating, the temperatures at pipe 

inlet and outlet are similar. When the fan blower operates during daytime, there was 

temperature reduction between the two ends of the buried pipe that developed until the 

maximum value of 5.9
o
C. Within the two days of experiment, the average daily 

maximum temperature reduction was 4.9
o
C. The indoor DBT during the experiment 

ranges from 24.3
o
C to 34.2

o
C. The maximum indoor DBT is 1.9

o
C less than the 

maximum temperature at the buried pipe inlet. 
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Figure 5.19: Trend of relative humidity from the investigation of 25m long Polyethylene 

pipe buried at 1.5m deep underground. Fan blower operated from 10:00 a.m. to 6:00 

p.m. in May 2009. 

 

In this case, the RH at the buried pipe inlet and outlet ranges from 59.6% to 

93.0% and from 63.3% to 87.5% respectively (Figure 5.19). The RH trend of pipe inlet 

is different from the previous cases. During night time, the pipe inlet RH became 

significantly higher than the RH measured in the pipe outlet. The maximum rise in RH 

within the buried pipe is 7.6%. The indoor RH ranges from 53.9% to 85.0%. The 

resulting RH exceeded 85% but maintained below 90%. Even though case c) used the 

same experiment setup, only deeper than case a) and b), the significantly high RH at the 

buried pipe inlet of case a) in comparison to case a) and b), was due to rainfall that 

occurred in the late afternoon on day 1 of case c) investigation. 

Table 5.6 summarises the result of each cases a), b), and c). The table consists of 

temperature and also relative humidity at the two ends of the pipe, within the relative 

soil and inside the experiment shed. 

In comparison between summary of results in the wet season (Table 5.5) and 

summary of results in the hot and dry season (Table 5.6), the temperature range in hot 

and dry season are most of the time higher than the temperature range in the wet season. 
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The maximum temperature at pipe outlet in this case is at least 1.6
o
C more than in the 

wet season. The temperature at pipe outlet in the wet season did not exceed 30.0
o
C. 

Whereas, in the hot and dry season, in all buried pipes, the outlet temperature exceeded 

30.0
o
C. 

 

Table 5.6: Summary of results obtained from investigation carried out during the hot 

and dry season. TR=Temperature Reduction, OT=Outlet Temperature, IT=Inlet 

Temperature and RH=Relative Humidity. 

 Case a) 

Polyethylene pipe, 

25m long, 0.5m 

deep 

Case b) 

Polyethylene pipe, 

25m long, 1.0m 

deep 

Case c) 

Polyethylene pipe, 

25m long, 1.5m 

deep 

Soil Temperature, 
o
C 29.8 – 30.3 29.9 – 30.0 n/a 

ITRange, 
o
C 24.7 – 35.2 24.4 – 37.0 23.9 – 36.1 

OTRange, 
o
C 25.3 – 30.6 24.7 – 31.2 23.7 – 30.2 

Max TR, 
o
C 4.9 6.9 5.9 

Average daily max 

TR, 
o
C 

4.2 6.0 4.9 

Indoor DBT, 
o
C 25.1 – 33.5 25.1 – 34.9 24.3 – 34.2 

Inlet RH, % 51.4 – 85.7 46.0 – 83.5 59.6 – 93.0 

Outlet RH, % 63.0 – 84.5 60.3 – 83.2 63.3 – 87.5 

Max RH rise, % 16.4 17.3 7.6 

Indoor RH, % 56.3 – 81.3 53.2 – 77.5 53.9 – 85.0 

 

 

5.2.3 One year investigation of 1.0m depth buried pipe. 

The next investigation is intended to record data from the Earth Pipe Cooling 

experiment for a whole year. The rationale behind this is due to the differences found in 

outlet temperature between the wet and hot and dry season. Initially, it was assumed that 

with the knowledge of Malaysia climate being warm and humid throughout the year, the 

Earth Pipe Cooling result would give the same trend of output temperature throughout 

the year. After analysing and comparing the results of experiments carried out in the wet 

season and the hot and dry season, the Earth Pipe Cooling output temperature does vary 
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and sometimes significantly. Therefore, a record of experiment data of a whole year is 

collected. To avoid interference between different buried pipe readings, only one buried 

pipe was used for the whole year investigation and the pipe buried at 1.0m depth was 

chosen. The fan blower provides forced air flow through the buried pipe and the air 

velocity is maintained at 5.6m/s continuously. The results of each month is analysed 

separately. 

 

a) January 

As mentioned in Chapter 2, January falls within the northeast monsoon season. 

The outdoor dry bulb temperature ranges from 21.5
o
C to 37.9

o
C (Figure 5.20) and its 

average is 26.1
o
C. Soil temperature at 1m depth underground in January ranges from 

27.5
o
C to 28.4

o
C and its average is 28.0

o
C. The amplitude of the soil temperature at 1m 

depth underground is 0.4. Meanwhile, the temperature at the buried pipe inlet ranges 

from 25.4
o
C to 37.0

o
C and temperature found at the buried pipe outlet ranges from 

27.1
o
C to 28.9

o
C. The pipe outlet range is slightly wider than the 1m depth soil 

temperature. The minimum temperature was 0.4
o
C lower and the maximum pipe outlet 

temperature was 0.5
o
C higher than the maximum soil temperature at 1m depth. The 

graph in Figure 5.20 shows significant temperature drop in buried pipe outlet from the 

outdoor DBT and buried pipe inlet. Temperature drop occurs mostly during the daytime 

when the ambient air temperature is higher than the soil temperature. The maximum 

temperature drop between the outdoor DBT and buried pipe outlet temperature is 9.4
o
C 

and its average daily maximum is 4.1
o
C. The temperature drop between the buried pipe 

inlet and outlet is 8.6
o
C and its average daily maximum is 5.3

o
C. Since the buried pipe 

outlet is located in an experimental shed, the indoor space temperature is also measured 

and it ranges from 24.4
o
C to 33.7

o
C. The indoor temperature is not significantly reduced 

by the earth pipe cooling system.  
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Figure 5.20: Trend of temperature in January 2011. 

 

When temperature drops in a contained space, condensation may occur and 

therefore, this chapter also analyse the humidity of the cooling system and what it 

produces (Figure 5.21). The buried pipe inlet relative humidity ranges from 45.6% to 

79.2% and its average is 68.4%. The relative humidity at the buried pipe outlet ranges 

from 59.7% to 79.2% and its average is 71.3%. There is no significant increase in 

relative humidity across the buried pipe during the night time but in the day time, there 

is. The maximum relative humidity increment across the pipe is 26.9% during the 

daytime. Even so, the maximum relative humidity is lower than 80% and therefore, no 

condensation was found across the buried pipe. The indoor shed relative humidity 

ranges from 52.9% to 83.0% and its average is 72.8%. Figure 5.21 shows that the 

relative humidity of the indoor shed is mostly lower than the outdoor relative humidity.
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Figure 5.21: Trend of relative humidity in January 2011. 

 

b) February 

February also falls within the northeast monsoon season. Due to technical error, 

the correctly measured data was only recorded for 9 days (Figure 5.22). In February, the 

outdoor temperature measured under a tree and away from the experimental shed ranges 

from 21.6
o
C to 35.5

o
C. The temperature at the buried pipe inlet, after the fan blower, 

ranges from 25.1
o
C to 36.7

o
C. The pipe inlet temperature is higher than the outdoor 

temperature despite the air is covered. Looking at the outdoor temperature of air just 

outside the fan blower, it ranges from 21.6
o
C to 38.5

o
C. The non-shaded data logger that 

measures the air temperature outside the fan blower has a maximum temperature 3
o
C 

higher than the maximum air temperature shaded by a tree. This affected the air 

temperature extracted by the fan blower and hence the higher air temperature of pipe 

inlet than the outdoor shaded air. 

The soil temperature ranges from 27.2
o
C to 28.3

o
C and its average is 27.7

o
C. 

The buried pipe outlet temperature ranges from 26.9
o
C to 29.0

o
C and its average is 

27.7
o
C. The pipe outlet temperature average is the same as the soil temperature average 
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but the temperature pipe outlet temperature range is wider than the soil. In February, the 

maximum temperature drop given by the Earth Pipe Cooling between the buried pipe 

inlet and outlet is 8.1
o
C and its average daily maximum is 7.6

o
C. Meanwhile, the 

maximum temperature drop between the buried pipe outlet and shaded outdoor air 

temperature is 7.1
o
C and its average daily maximum is 6.4

o
C. Even though there were 

significant temperature drop at the buried pipe outlet, the indoor Dry Bulb Temperature 

(DBT) does not reduced significantly from the outdoor DBT. The indoor DBT of the 

experimental shed ranges from 24.1
o
C to 34.1

o
C. The shed was well ventilated but its 

timber material allows easy heat transmission from outside to inside making the indoor 

shed very warm. All temperatures are at its peak between 3:00 to 4:00pm and at its 

minimum between 6:00 to 8:00 am. 
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Figure 5.22: Trend of temperature in February 2011. 

 

The relative humidity is also analysed for February data. Figure 5.23 shows the 

trends of relative humidity in February. The outdoor relative humidity in February 

ranges from 54.6% to 83.9% and the relative humidity inside the experimental shed 
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ranges from 51.6% to 80.2%. The maximum relative humidity at the buried pipe inlet 

and outlet are similar, which are 77.0% and 77.1% respectively. On the other hand, the 

minimum relative humidity at the buried pipe outlet and inlet varies significantly. The 

maximum increment of relative humidity at the pipe outlet from the pipe inlet is 24.5% 

and this occurred at 3:00pm when the relative humidity at the inlet was 47.2% and at the 

outlet was 71.7%. The outdoor, indoor and pipe inlet relative humidity peaks to its 

maximum between 8:00 to 9:00am and their minimum often occurred between 3:00 to 

4:00pm. 
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Figure 5.23: Trend of relative humidity in February 2011. 

 

c) March 

 March is the beginning of the hot and dry season in Malaysia. The outdoor DBT 

are missing from the graph in Figure 5.24 because the values are not valid to be 

included in the analysis. The measured outdoor DBT ranges from 23.0
o
C to 44.3

o
C. The 

maximum outdoor DBT rises above 40
o
C because the datalogger was not shaded 

properly from the solar radiation. Therefore, the outdoor temperature data are not used 
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for analysis. The buried pipe inlet temperature ranges from 25.9
o
C to 38.1

o
C and the 1m 

deep soil temperature ranges from 29.6
o
C to 30.1

o
C. These inputs produce a buried pipe 

outlet temperature that ranges from 27.4
o
C to 33.1

o
C. However, referring to Figure 5.24, 

the curve for buried pipe outlet temperature shows that it fluctuates daily from 29.1
o
C to 

31.0
o
C most of the days. The buried pipe outlet reached above 32.0

o
C only twice.  
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Figure 5.24: Trend of temperature in March 2010. 

 

The maximum temperature drop between the buried pipe outlet and inlet is 

7.5
o
C but the average daily maximum temperature drop between the buried pipe outlet 

and inlet is 5.7
o
C. Similar to the previous months, the indoor temperature did not reduce 

significantly and it fluctuates daily from 26.0
o
C to 36.1

o
C. In most days, all 

temperatures were at their minimum between 6:00 to 8:00am and the temperatures peak 

between 2:00 to 4:00pm. 

The maximum relative humidity in March is also higher than that in February 

when comparing Figure 5.25 to Figure 5.23. The relative humidity at buried pipe inlet 

ranges from 32.9% to 81.6% and the relative humidity at buried pipe outlet ranges from 

44.4% to 81.6%. The maximum relative humidity at the buried pipe outlet occurred at 

3:00pm when the humidity at the pipe inlet was 62.9%. Therefore, there was a rise of 

18.7% in relative humidity between the buried pipe inlet and outlet. The temperature 
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drop between the buried pipe inlet and out let was 5.0
o
C and this could have led to the 

increase in relative humidity at the buried pipe outlet. 

Meanwhile, the relative humidity of experiment shed indoor ranges from 37.5% 

to 82.1%. This relative humidity range is not much different from the buried pipe inlet 

relative humidity and the graph shows that the relative humidity of the shed indoor 

follows closely to the relative humidity at the buried pipe inlet (Figure 5.25). 
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Figure 5.25: Trend of relative humidity in March 2010. 

 

d) April 

In April, there was an unfortunate event that the power cable has been cut off for 

14 days and therefore, the data within the 14 days became invalid. In April, the outdoor 

DBT ranges from 23.0
o
C to 44.3

o
C. Similar to the maximum outdoor DBT in March, 

this maximum DBT is not accurate because the data logger was not properly shaded 

from the solar radiation and therefore, it was not used for analysis. However, the buried 

pipe inlet temperature in April ranges from 26.3
o
C to 36.9

o
C and the soil temperature at 

1m depth underground ranges from 29.7
o
C to 30.3

o
C, with an average of 29.9

o
C. The 

temperature at the buried pipe outlet ranges from 28.9
o
C to 30.7

o
C and its average is 

29.7
o
C. The maximum temperature drop between the buried pipe inlet and outlet is 
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6.3
o
C and its average daily maximum temperature drop is 5.4

o
C. Even though there is a 

significant temperature drop, the indoor DBT was not reduced significantly. The indoor 

DBT ranges from 26.2
o
C to 36.2

o
C, which is similar to the temperature range at the 

buried pipe inlet. Figure 5.26 shows that most temperatures fell to its minimum between 

6:00 to 8:00am. The temperature rose to their maximum between 2:00 to 5:00pm. 
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Figure 5.26: Trend of temperature in April 2010. 

 

Relative humidity (RH) increases to its daily peak in the morning between 6:00 

to 8:00am and sometimes at 9:00am (Figure 5.27). The RH reduced to its minimum 

mostly in the afternoon between 2:00 to 5:00pm when the temperatures reach their 

maximum. The RH at buried pipe inlet ranges from 43.3% to 82.1%. The RH inside the 

experimental shed ranges from 48.9% to 82.2% which is slightly higher than in the 

buried pipe inlet. However, the RH at the buried pipe outlet ranges from 60.7% to 

80.9%. There has been increase between the RH of buried pipe inlet and outlet. The 

most increment was 23.0%, which occurred at 3:00pm. At this hour, the RH at buried 

pipe outlet was 77.5% and at buried pipe inlet was 54.5%. Figure 5.27 shows the RH 

graph of buried pipe outlet does not fluctuate evenly, unlike the pipe inlet and room RH. 
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Figure 5.27: Trend of relative humidity in April 2010. 

 

e) May 

May is another month with hot and dry climate. Chapter 2 has shown that in 

May as well as March, they had the highest annual average mean daily maximum dry 

bulb temperature within the year 2002 to 2008 and it was 33.0
o
C. The month May 

experienced the highest annual average absolute daily maximum dry bulb temperature 

within the same years which was 35.1
o
C. Figure 5.28 illustrate the trend of temperatures 

in May. The outdoor DBT ranges from 23.0
o
C to 45.2

o
C. During measurement, the data 

logger was not properly shaded from the solar radiation, hence the very high maximum 

temperature that was recorded in the afternoon. Therefore, the maximum outdoor DBT 

was not used for analysis. The closest data available to outdoor DBT is the buried pipe 

inlet temperature which ranges from 25.7
o
C to 37.1

o
C. The soil temperature measured at 

1m depth underground ranges from 30.1
o
C to 30.5

o
C and its average is 30.2

o
C. The 

buried pipe outlet temperature ranges from 29.0
o
C to 30.9

o
C and its average is 29.9

o
C. 

The maximum temperature drop at buried pipe outlet from the inlet is 6.4
o
C but the 
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average daily maximum temperature drop between the two ends of the pipe is 5.2
o
C 

(Figure 5.28). 

Similar to previous months, as much temperature drop occurred at the buried 

pipe outlet from the inlet, the temperature reduction in the indoor shed compared to the 

pipe inlet temperature is not much. The indoor DBT ranges from 25.9
o
C to 36.4

o
C. 
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Figure 5.28: Trend of temperature in May 2010. 

 

Looking at the relative humidity (RH) trend in May (Figure 5.29), the RH at the 

buried pipe inlet ranges from 42.7% to 82.1% while the RH at the pipe outlet ranges 

from 62.7% to 81.1%. The indoor RH ranges from 52.1% to 81.9%. Within the pipe, 

there has been increase in relative humidity from the inlet to the outlet. A maximum of 

24.1% increase in RH is found at 4:00pm, when the RH at the pipe inlet was 50.8% and 

at the pipe outlet was 74.9%. During this hour, the indoor RH was 58.9%, which is not 

very high.  
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Figure 5.29: Trend of relative humidity in May 2010. 

 

f) June 

In June, the outdoor DBT ranges from 22.9
o
C to 42.3

o
C but same case as in 

May, the data logger was not properly shaded and that is the reason of the very high 

maximum temperature. However, the temperature at the buried pipe inlet in June ranges 

from 25.8
o
C to 36.8

o
C and the soil temperature at 1m depth underground in June ranges 

from 30.0
o
C to 30.3

o
C. The temperature found at the buried pipe outlet ranges from 

28.7
o
C to 30.5

o
C (Figure 5.30). The pipe outlet temperature has slightly bigger 

amplitude than the soil temperature but fluctuates less when compared to the pipe inlet 

temperature. A maximum temperature drop found in the pipe outlet from the pipe inlet, 

which was 6.3
o
C that was recorded at 4:00pm. During this hour, the pipe inlet 

temperature was 36.8
o
C, which was the maximum inlet temperature recorded in the 

month, while the pipe outlet temperature was 30.5
o
C. The average daily maximum 

temperature drop is 5.0
o
C. Indoor DBT in June ranges from 25.8

o
C to 36.1

o
C, which is 

similar to the buried pipe inlet temperature. 
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Figure 5.30: Trend of temperature in June 2010. 
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Figure 5.31: Trend of relative humidity in June 
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Looking at relative humidity (RH) in June (Figure 5.31), the RH at the buried 

pipe inlet ranges from 45.9% to 81.4% while the RH at the pipe outlet ranges from 

63.0% to 80.9%. The indoor RH ranges from 51.7% to 81.4%. Similar case to the 

earlier months, the indoor RH is similar to the RH at the pipe inlet (Figure 5.31). While 

the earth pipe cooling system was running, there has been a rise in humidity between the 

pipe inlet and outlet. The maximum rise of RH found in the buried pipe outlet from the 

inlet is 22.4%, which occurred at 4:00pm. At this hour, the pipe inlet RH was 49.7% 

and the pipe outlet RH was 72.1%. Although there is a big rise in RH between the two 

ends of the buried pipe, the RH at pipe outlet maintains below 80%. 

 

g) September 

  In September, the valid recorded data is only found in seven days because the 

power cable was cut off again for the second and third time, before September and after 

the 7
th

 of September respectively. Within the seven days, the outdoor DBT ranges from 

20.9
o
C to 34.4

o
C. Figure 5.32 shows that the temperature at the buried pipe inlet ranges 

from 25.1
o
C to 36.1

o
C while the soil temperature ranges from 29.1

o
C to 29.3

o
C. The 

temperature recorded at the buried pipe outlet ranges from 28.1
o
C to 29.5

o
C. The 

maximum temperature drop from the pipe inlet to the pipe outlet is 6.6
o
C while the 

temperature difference between the pipe outlet and outdoor DBT is 4.8
o
C. However, the 

average daily maximum temperature reduction between the two ends and between pipe 

outlet and outdoor DBT are 5.2
o
C and 3.3

o
C respectively. Meanwhile, the indoor DBT 

ranges from 24.3
o
C to 33.6

o
C. The indoor DBT is 3.4

o
C higher than the outdoor in the 

early morning, and only 0.8
o
C lower than the outdoor DBT during the hottest hour of 

the day. All temperatures peak between 2:00 to 4:00 pm and reduced to its minimum at 

7:00am in most days. 
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Figure 5.32: Trend of temperature in September 2010. 

 

 Within the seven days of valid data, the relative humidity at pipe inlet ranges 

from 46.9% to 77.7% while the RH at pipe outlet ranges from 59.5% to 80.8%. 

Meanwhile the RH inside the experiment shed ranges from 53.8% to 80.6% (Figure 

5.33). Unlike the temperature, the RH trend fluctuates randomly day by day and there 

was increase in RH at the buried pipe outlet from the inlet. The maximum increase of 

RH was 18.1% and it occurred at 1:00pm. During this hour, the RH at pipe inlet and 

outlet was 54.9% and 73.0% respectively and the indoor space RH was 64.2%. Unlike 

in previous months, the indoor RH is higher than the RH at pipe inlet. 
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Figure 5.33: Trend of relative humidity in September 2010. 

 

h) October 

October is the beginning of Northeast Monsoon season, which lasted until 

March. As explained in Chapter 2, during this season, the wind is slightly stronger than 

in the Southwest Monsoon season but blows in North Easterly direction. A slightly cool 

temperature occurred during this season, which the middle of the season turns out to be 

the wet season with more rainfall compared to the other months. 

The power cable of the fan blower was cut off in September and was completely 

repaired on the 26
th

 of October. In this case, the recorded data is only valid from the 26 

October until the end of October, which makes 5 full days of valid data.  On site, the 

outdoor DBT ranges from 21.9
o
C to 35.5

o
C while the DBT inside the experiment shed 

ranges from 25.1
o
C to 33.9

o
C. Within the buried pipe, the DBT at the pipe inlet ranges 

from 25.7
o
C to 36.5

o
C and at the pipe outlet, it ranges from 28.5

o
C to 29.5

o
C (Figure 

5.34). The graph below shows an almost constant soil temperature which ranges from 

29.1
o
C to 29.2

o
C. 
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A maximum temperature reduction at the buried pipe outlet from the inlet was 

found to be 7.0
o
C while the maximum temperature reduction from between the outdoor 

DBT and the buried pipe outlet is 6.1
o
C. However, the average daily maximum 

temperature reduction between the pipe inlet and outlet was found to be 5.9
o
C. The 

average daily maximum temperature reduction between the outdoor DBT and pipe 

outlet was 3.9
o
C. 
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Figure 5.34: Trend of temperature in October 2010. 

 

In October, the data recorded includes data of outdoor air temperature measured 

just outside the fan blower, which is the supply of air being extracted into the fan 

blower for the buried pipe. It can be seen in Figure 5.34 that the DBT at buried pipe 

inlet is higher than the outdoor DBT measured under a tree but similar to the outdoor air 

DBT measured just outside the fan blower. The DBT at night shows that when there is 

no solar radiation, the outdoor DBT in two locations; under the tree and just outside the 

fan blower are similar.  

In terms of relative humidity (RH), the RH at buried pipe inlet and outlet ranges 

from 50.7% to 76.9% and 67.1% to 77.8% respectively. The indoor RH ranges from 
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59.5% to 79.8% while the outdoor RH just outside the blower ranges from 64.8% to 

82.5% (Figure 5.35). The indoor RH was reduced from the outdoor RH and the RH at 

pipe inlet is lower than the indoor RH. The RH peaks between 6:00 to 9:00am and at its 

minimum between 3:00 to 4:00pm. The maximum RH rise within the buried pipe is 

20.7%, which occurred at 4:00pm. At this hour, the RH at buried pipe inlet and outlet 

are 50.7% and 71.4% respectively. 
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Figure 5.35: Trend of relative humidity in October 2010. 

 

i) November 

Figure 5.36 shows the trend of temperature in November. The outdoor DBT 

measured under a tree ranges from 22.2
o
C to 36.3

o
C while the outdoor DBT measured 

just outside the fan blower ranges from 22.4
o
C to 38.8

o
C. The DBT at the buried pipe 

inlet ranges from 25.8
o
C to 37.2

o
C and the soil temperature measured at 1m depth 

below ground ranges from 28.5
o
C to 29.2

o
C. This gives the buried pipe outlet DBT, 

which ranges from 28.1
o
C to 29.7

o
C. A maximum temperature reduction within the 

buried pipe was found to be 8.0
o
C and the maximum temperature reduction from the 

outdoor DBT to the pipe outlet was 6.6
o
C. However, the average daily maximum 
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temperature reduction within the buried pipe was 5.9
o
C while the same average 

temperature reduction between the outdoor DBT and the buried pipe outlet was 3.7
o
C. 

Although the temperature reductions are significant, the indoor DBT was not reduced 

very much. It ranges from 25.3
o
C to 34.1

o
C. The DBT peaks between 1:00 to 4:00pm 

and at reach its minimum between 6:00 to 7:00am in most days 
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Figure 5.36: Trend of temperature in November 2010. 

 

In terms of relative humidity (RH), the RH at buried pipe inlet and outlet ranges 

from 44.8% to 79.5% and from 59.6% to 81.8% respectively. The indoor RH ranges 

from 50.6% to 82.4% while the outdoor RH measured just outside the fan blower ranges 

from 58.3% to 89.6% (Figure 5.37). Similar to the RH trend in October, the indoor RH 

is higher than the buried pipe inlet RH.  

A maximum rise in RH within the buried pipe was 24.0%, which occurred at 

3:00pm. At this hour, the RH at buried pipe inlet and outlet were 55.3% and 79.3% 

respectively. The indoor RH at this hour was 63.9% and the RH just outside the fan 

blower was 76.9%. Unlike the DBT trend, the RH peaks between 8:00 to 10:00am and 

at its minimum between 1:00 to 4:00pm in most days. 
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Figure 5.37: Trend of relative humidity in November 2010. 

 

j) December 

In December, the outdoor DBT measured under the tree ranges from 20.6
o
C to 

36.1
o
C while the outdoor DBT just outside the fan blower ranges between 20.9

o
C to 

38.6
o
C. The soil temperature measured at 1m depth ranges from 28.1

o
C to 28.8

o
C, 

which makes it almost constant throughout the month of December (Figure 5.38). The 

DBT at buried pipe inlet ranges from 24.4
o
C to 37.1

o
C and at the buried pipe outlet 

ranges from 27.7
o
C to 29.1

o
C.  

A maximum temperature reduction found within the buried pipe was 8.0
o
C and 

the maximum temperature reduction at pipe outlet, compared to the outdoor DBT was 

7.2
o
C. However, the average daily maximum temperature reduction within the buried 

pipe turned out to be 5.8
o
C and between the outdoor DBT and pipe outlet was 4.7

o
C. 

The indoor DBT ranges from 24.3
o
C to 33.8

o
C. In December, the DBT peaks between 

1:00 to 4:00pm and at its minimum between 6:00 to 8:00am in most days. 
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Figure 5.38: Trend of temperature in December 2010. 
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Figure 5.39: Trend of relative humidity in December 2010. 
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Figure 5.39 shows the trend of relative humidity (RH) in December. The RH at 

pipe inlet and outlet ranges from 45.1% to 78.8% and from 57.4% to 80.4% 

respectively. The indoor RH ranges from 51.5% to 81.9% while the RH just outside the 

fan blower ranges from 57.9% to 85.5%. A maximum rise in RH within the buried pipe 

was 26.2% that occurred at 3:00pm. At this hour the RH at pipe inlet and outlet were 

49.8% and 76.1% respectively. The indoor RH at this time was 58.8% and the RH just 

outside the fan blower was 67.7%. The RH peaks between 8:00 to 10:00am and at its 

minimum between 1:00 to 4:00pm in most days. 

 

5.2.4 Summary of Dry Bulb Temperature and Relative Humidity 

Table 5.7 below summarises the performance of Earth Pipe Cooling system 

buried at 1m depth underground where the air supplied by a fan blower connected to 

one of the buried pipe. 

The summary of Earth Pipe Cooling system performance with reference to Table 

5.7 is analysed among the valid available data. The absolute maximum temperature 

reduction within the buried pipe is lowest in April and June with 6.3
o
C temperature drop 

and highest in January with 8.6
o
C temperature drop. Meanwhile, the average daily 

maximum temperature drop is lowest in June with 5.0
o
C and highest in February with 

7.6
o
C. The buried pipe outlet data is then compared to the available outdoor DBT. TR2 

shows that the temperature reduction between the outdoor and the buried pipe outlet is 

lowest in September with 4.8
o
C and the highest in January with 9.4

o
C.  

Table 5.7 also shows that February provides the best result with the lowest 

minimum temperature at the buried pipe outlet. March has the highest maximum 

temperature at the pipe outlet. However, the minimum outlet temperature in March is 

27.4
o
C, which is quite low. The average monthly outlet temperature in March and May 

are the highest among the months with a valid data of a whole year, which are both 

29.9
o
C. Meanwhile, February have the lowest average air temperature at the buried pipe 

outlet. 
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Table 5.7: Summary of Earth Pipe Cooling System performance with respect to 

temperature. Maximum TR1=Temperature Reduction between pipe inlet and outlet. 

Maximum TR2=Temperature Reduction between outdoor and pipe outlet. 

AveMx=Average daily maximum and Ave=Average. *The outlet temperature value in a 

bracket is an error found which only occurred twice in the month. 

Month Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

Unit 
o
C 

Max 

TR1 

8.6 8.1 7.5 6.3 6.4 6.3 

D
at

a 
n
o
t 

av
ai

la
b
le

 

D
at

a 
n
o
t 

av
ai

la
b
le

 

6.6 7.0 8.0 8.0 

Max 

TR2 

9.4 7.1 n/a n/a n/a n/a 4.8 6.1 6.6 7.2 

AveMx 

TR1 

5.3 7.6 5.7 5.4 5.2 5.0 5.2 5.9 5.9 5.8 

AveMx 

TR2 

4.1 6.4 n/a n/a n/a n/a 3.3 3.9 3.7 4.7 

Outlet 27.1 

-

28.9 

26.9 

- 

29.0 

27.4 – 

30.9 

(33.1)* 

28.9 

- 

30.7 

29.0 

- 

30.9 

28.7 

- 

30.5 

28.1 

- 

29.5 

28.5 

- 

29.5 

28.1 

- 

29.7 

27.7 

- 

29.1 

Inlet 25.4 

– 

37.0 

25.1 

– 

36.7 

25.9 – 

38.1  

26.3 

– 

36.9 

25.7 

– 

37.1 

25.8 

– 

36.8 

26.5 

– 

36.1 

25.7 

– 

36.5 

25.8 

– 

37.2 

24.4 

– 

37.1 

Ave 

Outlet  

27.6 

– 

28.3 

27.3 

– 

28.3 

29.4 – 

30.7 

29.3 

– 

30.3  

29.4 

– 

30.5  

29.1 

– 

30.2 

28.6 

– 

29.4 

28.6 

– 

29.4 

28.4 

– 

29.1 

28.0 

– 

28.7 

Indoor 

DBT 

24.4 

– 

33.7 

24.1 

– 

34.1 

26.0 – 

36.1 

26.2 

– 

36.2 

25.9 

– 

36.4 

25.8 

– 

36.1 

25.8 

– 

33.6 

25.1 

– 

33.9 

25.3 

– 

34.1 

24.3 

– 

33.8 
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Table 5.8 summarises the relative humidity found throughout the field 

investigation. It has shown that there are increments within the buried pipe. However, 

the most increment in RH through the buried pipe was 26.9%, which occurred in 

January. The maximum RH at the buried pipe outlet was found to be 81.8%, which 

occurred in November. 

 

Table 5.8: Summary of Earth Pipe Cooling System performance with respect to relative 

humidity. *Ave=Average. 

Month Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

Unit % 

Max 

RH 

rise 

26.9 24.5 18.7 23.0 24.1 22.4 

D
at

a 
n
o
t 

av
ai

la
b
le

 

D
at

a 
n
o
t 

av
ai

la
b
le

 

18.1 20.7 24.0 26.2  

Outlet 59.7 

– 

79.2 

64.3 

– 

77.1 

44.4 

– 

81.6 

60.7 

– 

80.9 

62.7 

– 

81.1 

63.0 

– 

80.9 

59.5 

– 

80.8 

67.1 

– 

77.8 

59.6 

– 

81.8 

57.4 

– 

80.4 

Inlet 45.6 

– 

79.2 

51.6 

– 

80.2 

32.9 

– 

81.6 

43.3 

– 

82.1 

42.7 

– 

82.1 

45.9 

– 

81.4 

46.9 

– 

77.7 

50.7 

– 

76.9 

44.8 

– 

79.5 

45.1 

– 

78.8 

Ave 

Outlet  

71.3 70.2 69.2 72.9 74.3 74.1 72.4 71.6 72.8 72.3 

Indoor 

RH 

52.9 

– 

83.0 

51.6 

– 

80.2 

37.5 

– 

82.1 

48.9 

– 

82.2 

52.1 

– 

81.9 

51.7 

– 

81.4 

53.8 

– 

80.6 

59.5 

– 

79.8 

50.6 

– 

82.4 

51.5 

– 

81.9 

 

 

5.2.5 Further field investigation on buried pipe inlet 

Throughout all data obtained during the investigation of Earth Pipe Cooling, 

repetitive anomalies were found in the trend of dry bulb temperature at the pipe inlet 

particularly at night time, when there is no solar radiation. At most times, the buried 

pipe inlet temperature is higher than the outdoor ambient dry bulb temperature. During 

the night, the temperature difference between the buried pipe inlet and outdoor DBT 



191 

 

were more significant. These anomalies were investigated further in another experiment, 

which was carried out within a short time frame.  

 As a recap, the buried pipe inlet and outlet are located within the experiment 

shed so that they are secured. A fan blower is punched through a wall of the experiment 

shed, where the exhaust is connected to the buried pipe air inlet. The fan extracts air 

from outside, circulates it within the fan turbines and blows the air into the buried pipe.  

The distance of air travelled within the pipe from the fan blower to the location of data 

logger logging pipe inlet temperature is approximately 1.1m. Since the air from outside 

is blown through the fan into the buried pipe inlet at a speed of approximately 5.6m/s 

within a short distance, assumptions were made that the air temperature outside the fan 

should be similar to the air temperature at the buried pipe inlet. However, the results did 

not meet the assumption.  

 The fan was operating continuously for 24 hours a day and therefore, outside air 

flow into the buried pipe continuously. As an investigation to the anomalies found, the 

experiment measures all that has been measured in the previous experiment, outdoor air 

temperature under a tree, outdoor air temperature just outside the fan blower, indoor air 

temperature at 1.4m high, air temperature at the buried pipe inlet and pipe outlet. Three 

additional dataloggers were placed within the pipe, nearer to the fan blower. Their 

distances are 0.3m, 0.6m and 0.8m from the fan blower. The results given during fan 

operation for all measurements are illustrated in Figure 5.40. 
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Figure 5.40: Another result showing temperature trends of field investigation of 25m 

Polyethylene pipe buried at 1m depth in August 2011. This time it has multiple position 

of buried pipe inlet.  

 

Referring to Figure 5.40, all data of buried pipe inlets are higher than the 

outdoor air temperature. However, the temperature differences between the outdoor air 

temperature and all the four locations of pipe inlets are at different rate throughout the 

day. The results has shown that the air temperature between the fan blower and the point 

before the pipe goes underground are the same in all four locations, Inlet 1, 2, 3 and 4. 

The air temperature at Inlet 1 is the closest to the fan blower and it has the same 

temperature as Inlet 4, which is 0.8m further than Inlet 1, away from the fan blower. 

The same question arises again on the high temperature difference between the air 

outside the fan blower and the air at just 0.3m after the fan blower, particularly during 

night time (Figure 5.40). The result show a possibility of heat gained from the fan 

blower particularly at night time. The heat gain is found to be from the built in motor in 

the fan blower. 
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5.2.6 Field Investigation using PVC buried pipe 

Investigation in both the wet season and hot and dry season also comprises the 

inlet and outlet temperature of the 25m long PVC pipe buried at 0.5m. This section 

presents the results obtained from field investigation using buried PVC pipe. 

 

a) Wet season, November 

Figure 5.41 presents data collected during the field investigation of PVC pipe. 

Within the 25m long PVC pipe, the temperature at the inlet and outlet ranges from 

23.1
o
C to 33.3

o
C and 22.6

o
C to 27.0

o
C respectively. The maximum temperature 

reduction within the two days of operation is 6.6
o
C, which occurred at 12:30pm. At this 

hour, the temperatures at pipe inlet and outlet were 33.3
o
C and 26.8

o
C respectively. The 

average daily maximum temperature reduction within the two days is 6.4
o
C. Although 

there is a significant temperature reduction, the indoor DBT is reduced slightly, which 

ranges from 23.1
o
C to 31.6

o
C. Data logger that measured the outdoor DBT is not 

properly shaded, hence the fairly high maximum temperature during the day (Figure 

5.41).  

The fan blower operates from 10am to 6pm. A distinguish results were found in 

the PVC pipe field result in comparison to the results from Polyethylene pipe. The 

anomaly occurred from 6pm to 10am the next morning in both days. Referring to the 

buried pipe outlet temperature, it maintains at a constant level when the fan switches off 

at 6pm (Figure 5.41). It maintains the constant daytime temperature at most times 

during night time. Table 5.0 summarises the data obtained from this field investigation 

using PVC pipe.  
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Figure 5.41: Temperature during investigation of 25m long PVC pipe buried at 0.5m 

depth underground in the wet season, November 2008 

 

Table 5.9: Summary of temperature from the investigation of 25m long PVC pipe 

buried at 0.5m deep underground. 

 PVC pipe, 25m long, 

0.5m deep 

Outdoor DBT, 
o
C 22.5 – 37.1 

ITRange, 
o
C 23.1 – 33.3 

OTRange, 
o
C 22.6 – 27.0 

Max TR, 
o
C 6.6 

Average daily maximum TR,
o
C 6.4 

Indoor DBT, 
o
C 23.1 – 31.6 
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b) Hot and dry season, May 

Similar field investigation of the PVC buried pipe was repeated in the hot and 

dry season. The initial purpose is to test the effect of different material with different 

thermal conductivity, on the field investigation results. 

Figure 5.42 shows the trend of air temperature of the Earth Pipe Cooling system 

In this investigation, the relative soil temperature at 0.5m deep underground ranges from 

30.5
o
C to 31.0

o
C. The temperature found in the buried pipe inlet ranges from 25.2

o
C to 

37.4
o
C. The temperature found at the other end of the buried pipe, which is the pipe 

outlet ranges from 27.5
o
C to 30.6

o
C. When the fan blower operates between 10:00am 

and 6:00pm, there is temperature differences found between the two ends of the buried 

pipe and the maximum temperature difference was 6.9
o
C. However, the average daily 

maximum temperature difference was 6.7
o
C. Meanwhile, the indoor DBT ranges from 

25.2
o
C to 35.7

o
C. The maximum indoor DBT is 1.7

o
C less than the maximum 

temperature at the pipe inlet. 

The relative humidity, RH at the buried pipe inlet ranges from 44.6% to 89.7% 

while the RH at the outlet ranges from 68.8% to 95.6% (Figure 5.43). There is a 

maximum RH rise of 26.9% within the buried pipe. The maximum RH is close to 

100%, which shows that it gets very humid at the buried pipe outlet. The RH is higher 

during the night even when the fan blower is not operating. Meanwhile, the indoor RH 

ranges from 44.4% to 85.0%. 
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Figure 5.42: Trend of temperature from investigation of 25m long PVC pipe buried at 

0.5m deep underground in the hot and dry season, May 2009. 
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Figure 5.43: Trend of relative humidity from investigation of 25m long PVC pipe 

buried at 0.5m deep underground in the hot and dry season, May 2009. 
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Table 5.10: Summary of temperature and relative humidity during the field investigation 

of PVC pipe, which is 25m long and buried at 0.5m depth. 

 PVC pipe, 25m long, 0.5m deep 

Soil Temperature, 
o
C 30.5 – 31.0 

ITRange, 
o
C 25.2 – 37.4 

OTRange, 
o
C 27.5 – 30.6 

Max TR, 
o
C 6.9 

Average daily max TR, 
o
C 6.7 

Indoor DBT, 
o
C 25.2 – 35.7 

Inlet RH, % 44.6 – 89.7 

Outlet RH, % 68.8 – 95.6 

Max RH rise, % 26.9 

Indoor RH, % 44.4 – 85.0 

 

Apart from the data recorded, another discovery was found inside the outlet of 

PVC pipe. The datalogger that measured PVC pipe outlet temperature was found wet 

and a stick that holds the datalogger was found slightly covered with mould (Figure 

5.44 and Figure 5.45). It was assumed that there has been condensation occurred within 

the buried PVC pipe that produced water particles. The reason for this could be because 

of the pipe thickness, which is much thinner than the thickness of Polyethylene pipe.  

The assumption of condensation occurrence in the PVC pipe was confirmed by 

the humidity graph in Figure 5.43, where the maximum buried pipe outlet relative 

humidity was 95.6%. 
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Figure 5.44: A wet data logger taken out 

from the PVC pipe outlet 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.45: A stick used to hang data 

logger in PVC pipe outlet were found to be 

covered with mould. 
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CHAPTER 6 COMPUTATIONAL SIMULATION  

Computational Simulation work was required for this research to extend the 

investigation beyond the constraints of field experiment, which was both temporal and 

financial. In this study, simulation software Energy Plus was used to complete the Earth 

Pipe Cooling investigation in hot and humid climate with particular reference to 

Malaysia. Energy Plus (Crawley, 2005) has a basic user interface which requires inputs 

from the user, to produce the outputs, which is the computer simulation results required. 

Version 1.2.2 of Energy Plus was created in April 2005. The software includes the best 

capabilities and features of two softwares known as DOE-2.1E and BLAST. Both DOE-

2.1E and BLAST calculate or predict energy consumption in buildings. In addition to 

that, Energy Plus also tabulates temperatures of building in zones. 

Another simulation tool called Buried Pipes, (Hollmuller P) was also introduced 

to predict the results of Earth Pipe Cooling system. However, when relating the result of 

Buried Pipe with field work, there were significant differences. 

 

6.1 Comparison of Data Obtained from Energy Plus, Buried Pipe and 

Field Experiments. 

Energy Plus requires inputs such as weather data, soil temperature data at 

various depths, design of buried pipe and building containing the buried pipe outlet, and 

the fan power that creates air movement into the buried pipe. Similarly, simulation tool 

Buried Pipe also requires inputs such as weather data, mean soil temperature of soil 

surrounding the buried pipe, design of the buried pipe, the depth of the buried pipe 

underground and thermal property of the soil. 

The weather data used by Energy Plus software contains the monthly soil 

temperature at several depths, hourly dry bulb temperature and hourly dew point 

temperature, which obtained by calculating the dry bulb temperature and relative 

humidity. In a different case, the weather data used by Buried Pipe software requires the 

annual mean soil temperature at the depths of where the pipe is buried and the dry bulb 

temperature of the outdoor space. The latter simulation tool does not consider the 

humidity of the ambient air as well as it does not take into account the monthly average 

soil temperature. 
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Figure 6.1 illustrates a comparative study among data obtained from field work 

measurement, Energy Plus simulation and Buried Pipe simulation. Data measured in 

May were chosen for this comparative study when the climate was hot and dry.  
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Figure 6.1: Pipe Outlet Temperature measured during field experiment and pipe outlet 

temperature predicted by Energy Plus and Buried Pipe simulation tools. 

 

Figure 6.1 above shows that the data predicted by Energy Plus is similar to the 

data obtained from field work investigation. On the other hand, data predicted by Buried 

Pipe have rather significant temperature difference to the field work data. The 

maximum temperature difference between the field work and Buried Pipe data was 

0.5
o
C, whereas the maximum temperature difference between the field work and Energy 

Plus was 0.3
o
C. Therefore, between these two simulation tools, Energy Plus is more 

suitable because it agrees more with the data obtained from field work. In the next 

section 6.2, Energy Plus data are compared with field work data in each month 

throughout a year. 
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6.2 Simulation Set Up in Energy Plus 

As mentioned earlier, Energy Plus requires inputs such as weather data, soil 

temperature data at various depths, design of buried pipe and building containing the 

buried pipe outlet, and the fan power that creates air movement into the buried pipe. In 

most cases, having weather data is sufficient to predict soil temperature using external 

module that came with Energy Plus software. In some cases, researchers have 

developed the model to determine the annual mean soil surface temperature (Krarti et 

al., 1995). There is another study, carried out by Labs (1989), where the model was 

developed to determine the soil temperature at various depths using annual mean and 

amplitude of soil surface temperature (Lee and Strand, 2008).  

The input data file in Energy Plus is called the .idf file. IDF stands for Input 

Data File. The input data is classified in various class lists. However, only 7 class lists 

are applicable to the simulation related to Earth Pipe Cooling system. Within each 7 

class lists, there are various numbers of input data. The first applicable class list is 

entitled Simulation and Parameters. Within this class list, inputs given were Energy Plus 

version, simulation controlled by the sizing period and weather file run periods, and the 

number of data in an hour. Since the data recorded in field work were hourly, the 

number of data in an hour was set to 1 in Energy Plus. 

The second related class list is regarding the location of climate of the 

experiment site. This includes input of the site latitude, longitude, time zone and 

elevation above sea level. The input in this class list continues with the sizing period of 

the file. Since the comparative study between field work and Energy Plus data is carried 

out monthly, one Energy Plus file is dedicated to each month. Therefore, the sizing 

period that connects to the weather file, was set to one month. This is followed by the 

run period which was also set to the same month as the sizing period. This class also 

includes the monthly soil temperature at shallow (0.5m) and deep (3-4m) depths. 

A module that calculates three parameters essential for Earth tube simulation to 

be successful, is available in the Energy Plus program. The three are calculated 

parameters are annual mean ground surface temperature, amplitude of the annual soil 

surface temperature variation and phase constant of the soil surface. The calculation was 

derived from its weather data file of the particular country.  
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However, in circumstances of getting it accurate, this study used real soil 

temperature data for all soil related inputs in the software. The soil temperature data was 

measured in the field experiment site throughout one whole year and these were used in 

Energy Plus study (Table 6.1). The shallow ground temperature inputs were soil 

temperature data measured at 0.5m underground whereas the deep ground temperature 

inputs, were data measured at 4m underground. 

At 0.5m underground, the monthly average soil temperature ranges from 27.8
o
C 

to 30.2
o
C. However, at hourly measurements, it can drop as low as 26.6

o
C in February 

and when it experiences the wet season. It can increase as high as 30.7
o
C in May, when 

it is hot and dry season. The annual amplitude was as significant as 2.1
o
C because the 

soil temperature was measured at a shallow depth of 0.5
o
C below ground. 

Meanwhile, at 4m underground, the annual soil temperature is more stable due 

to it being deeper underground and less affected by air dry bulb temperature. The hourly 

soil temperature at this depth ranges from 29.1
o
C to 30.3

o
C, which gives the annual 

amplitude of 0.6. However, soil temperature at 4m depth of soil was measured only in 

November and December and the monthly average 4m depth soil temperature for both 

months is 29.4
o
C. Therefore, the annual monthly average would be the same as 29.4

o
C, 

referring to the two months result and theory of soil temperature stability in literatures 

reviewed. 
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Table 6.1: Input data of Site:GroundTemperature:Shallow and Deep in Energy Plus file. 

Month Ground Temperature: 

Shallow (
o
C) 

Ground Temperature: Deep (3-4m 

depth) (
o
C) 

January 27.8 29.4 

February 28.6 29.4 

March 29.8 29.4 

April 30.1 29.4 

May 30.2 29.4 

June 29.8 29.4 

July 29.3 29.4 

August 29.3 29.4 

September 29.1 29.4 

October 29.3 29.4 

November 28.8 29.4 

December 28.5 29.4 

 

The third related class list is Schedules. This is used to determine the operation 

of the fan blower, whether it is operating all day or at certain hours of a day. In this 

study, the fan operation is set to 24 hours. The fourth related class list is Surface 

Construction Elements. This class list starts with inputs of all building materials used 

with a full set of each material’s thermal properties. The thermal properties include the 

material’s roughness, thickness, conductivity, density, specific heat, thermal 

absorptance, solar absorptance and visible absorptance. An additional layer of material, 

which is an air gap and window glazing is also included. Next input that follows is the 

construction of the building surface using the materials listed previously. 

The fifth class list is Thermal Zones and Surfaces. In this class list, all building 

surfaces are given its own vertex coordinates that form the building walls, floor, roof, 

windows and door. All the building surfaces form the building to be measured, which in 

Energy Plus is called thermal zone. In this study, there is only one thermal zone since 

the experiment building is a single space building with centrally 2 pitched roof, two 

windows and one door. To get the vertex coordinates of each building surface, the 

building was drawn separately in another programme Google SketchUp 7 (Figure 6.2). 
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The Google SketchUp 7 must be installed where the Energy Plus software is already 

available. This enables a link between Google SketchUp 7 and Energy Plus softwares.  

 

 

Figure 6.2: Experiment shed drawn in Google SketchUp 7(before inserting the two 

windows and door) to obtain vertex coordinates for each building surface for Energy 

Plus input. 

  

The drawing in Google Sketchup 7 does not have to be orientated to the correct 

angle from North. This can be done in Energy Plus class list Thermal Zones and 

Surfaces. The final drawing of the experimental shed titled at the correct angle from the 

North sign can be viewed in a programme called Volo View Express. On the real field 

work site, all pipe inlets and outlets are installed within the experimental shed. In 

Energy Plus, there is no enquiry on the specific location where the pipe inlet and outlet 

are installed. 

 The 6
th

 related class list is Zone Airflow, which contains the specific input of the 

Earth Pipe design (Table 6.2). During the real field work investigation, the pipe radius 

and thickness was limited to 0.0368m and 0.0082m respectively. The pipe length was 

25m and the depth where the pipe was buried was 1m. The type of pipe used in the real 
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field work was Polyethylene pipe, which limits the pipe thermal conductivity to 0.42 

W/mK. The main purpose of simulating pipe outlet data in Energy Plus software is to 

extend the variables further than the limit of the real field work. This was carried out to 

perform a parametric study of different sets of variables with respect to the pipe length, 

diameter, material and depth it was buried. 

  

Table 6.2: Basic Set Up in Energy Plus file in Zone Earthtube column, under Zone 

Airflow Class List. 

Parameters Values 

Schedule Name Fan Blower Operates All Day (24 hours) 

Design flow rate 0.0238m
3
/s, 0.0128m

3
/s, 0.0043m

3
/s 

Minimum Zone Temperature when Cooling 20
o
C 

Maximum Zone temperature when Heating 50
o
C 

Earthtube Type Intake 

Fan pressure rise 520 Pascal 

Fan Total Efficiency 0.85 

Pipe Radius Original; 0.0368m (3.5”), Parametric Study; 

0.045m (4”), 0.0511m(5”), 0.0102m (1”) or 

0.1023m (10”) 

Pipe Thickness Original; 0.0082m (3.5” pipe), Parametric 

Study; 0.010m (4” pipe), 0.0114m (5” pipe), 

0.0023m (1” pipe) or 0.0227m (10” pipe) 

Pipe Length Original; 25m. Further parametric study; 6.3m, 

12.5m and 50m 

Pipe Thermal Conductivity 0.42 W/mK (Polyethylene PN 12.5), 0.19 

W/mK (PVC), Clay (1.8 W/mK) or Brick 

(0.69 W/mK) 

Pipe Depth Under Ground Surface 1m 

Soil Condition Heavy and Damp 

Average Soil Surface Temperature 29.21
o
C (at 1m depth) 

Amplitude of Soil Surface Temperature 1.642
o
C 

Phase Constant of Soil Surface Temperature 350 days 
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The 7
th

 class list is Natural Ventilation and Duct Leakage. This class list is 

considered because the windows of the experiment shed are always opened and there is 

a gap between the ceiling and the top edge of each wall. Therefore, the ventilation 

control was set to 24 hours. 

Once all input have been recorded, the simulation was carried out using the EP-

Launch programme. In this programme, the .idf file and Malaysia weather file are 

selected before the simulation commences. 

 

6.3 Validation of Energy Plus using monthly experimental data 

A series of graphs are illustrated below comparing the data obtained in field 

work with the data predicted by Energy Plus. However, there are no records of field 

work valid data in July and August and therefore the validation would skip these two 

months. There are also a few months with incomplete data recorded during the field 

work. 

All these graphs show that the data obtained from Energy Plus simulation tool 

agrees very well with the data obtained from the actual field investigation. However, a 

slight significant difference between Energy Plus and field work data is shown in the 

month of February (Figure 6.4). Even so, the maximum temperature difference found in 

Figure 6.4 is 1.57
o
C. 

 Referring to Figure 6.3, in early January, the temperature graph shows a flat 

distribution of buried pipe outlet temperature. This result shows the effect of rainfall 

that occurred in early January (Figure 5.20 in Chapter 5). The same occurrence repeated 

again at the end of January. This was also due to rainfall or low ambient temperature. 

 Figure 6.4 shows that there is a significant gap between the field work data and 

Energy Plus data. In Energy Plus, the monthly average soil temperature represents the 

whole month of soil temperature. The field investigation soil temperature is lower than 

monthly average soil temperature of Energy Plus, in the early February. Field data 

obtained in February was limited to the first nine days of the month. It can be seen in 

Figure 6.4 that the field investigation data and Energy Plus data starting to merge on the 

9
th

 of February. This can predict the energy Plus and field investigation data became 

similar and agrees well with each other. 
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Figure 6.3: Data obtained in January from field work and Energy Plus. 

  

b) February 
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Figure 6.4: Data obtained in February from field work and Energy Plus. 
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  In March, the Energy Plus data agrees very well with the field investigation data 

but the graph has been removed from this section because there is an error in field data. 

The original graph can be viewed at Appendix 6.1. 

 April data in Figure 6.5 shows similarity to February data in Figure 6.4 in terms 

of gap between field data and Energy Plus data in the early April. In April data, 

complete whole month of data were obtained. The two data trends merge into each other 

after the 5
th

 of April. 
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Figure 6.5: Data obtained in April from field work and Energy Plus. 
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d) May 

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1-
M

ay

2-
M

ay

3-
M

ay

4-
M

ay

5-
M

ay

6-
M

ay

7-
M

ay

8-
M

ay

9-
M

ay

10
-M

ay

11
-M

ay

12
-M

ay

13
-M

ay

14
-M

ay

15
-M

ay

16
-M

ay

17
-M

ay

18
-M

ay

19
-M

ay

20
-M

ay

21
-M

ay

22
-M

ay

23
-M

ay

24
-M

ay

25
-M

ay

26
-M

ay

27
-M

ay

28
-M

ay

29
-M

ay

30
-M

ay

31
-M

ay

Date

P
ip

e
 O

u
tl
e

t 
T

e
m

p
e

ra
tu

re
, 

o
C

Field Work Energy Plus  

Figure 6.6: Data obtained in May from field work and Energy Plus 
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Figure 6.7: Data obtained in June from field work and Energy Plus 
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f) September 

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1-Sep 2-Sep 3-Sep 4-Sep 5-Sep 6-Sep

Date

P
ip

e
 O

u
tl
e
t 

T
e
m

p
e
ra

tu
re

, 
o
C

Field Work Energy Plus
 

Figure 6.8: Data obtained in September from field work and Energy Plus 
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Figure 6.9: Data obtained in October from field work and Energy Plus 
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h) November 
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Figure 6.10: Data obtained in November from field work and Energy Plus 

  

 

i) December 
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Figure 6.11: Data obtained in December from field work and Energy Plus. 
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6.4 Parametric Studies – Extended Investigation of Earth Pipe Cooling 

in Kuala Lumpur, Malaysia with Energy Plus Software. 

Due to the good agreement between Energy Plus and field work data, the Earth 

Pipe Cooling investigation is able to expand with different set of variables. Among the 

many months, December is chosen for the weather and soil conditions for the 

parametric studies.  

The first parametric study is the effect of different pipe lengths used. The study 

is to investigate the minimum requirement for the buried pipe length to be to achieve 

earth pipe cooling. In this length investigation, the other variables remain as original; 

0.0238m
3
/s air flow rate, 3” pipe (radius 0.0368m) and 1m deep underground. The 

result of study of different length has shown that when the length is halved or quartered, 

the pipe outlet temperature range increases and therefore, its amplitude changes. When 

the length of the earth pipe is doubled to 50m long, the pipe outlet temperature range 

reduced and the outlet temperature becomes more stable (Figure 6.12). 
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Figure 6.12: Parametric study with Energy Plus using four different pipe lengths. 
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This predicts that when the buried pipe is long, heat transfer process 

underground becomes longer since the air flow inside the buried pipe stays longer in the 

soil, which allow more air inside the buried pipe to transfer heat to the soil. From Figure 

6.12, Energy Plus suggested 50m long Polyethylene pipe would be most efficient. 

The second parametric study investigates the effect of different pipe size on the 

Earth Pipe Cooling performance. Each size has its own radius and thickness (Table 6.3). 

The other variables remain as original; 0.0238m
3
/s air flow rate, 25m long pipe and 1m 

deep underground. 

 

 Table 6.3: A list of Polyethylene pipe radius and thickness for Energy Plus parametric 

study on different pipe size. 

Size 1” 3.5”  

(field work 

size) 

4” 5” 

Radius 0.0102m 0.0368m 0.045m 0.0511m 

Thickness 0.0023m 0.0082m 0.010m 0.0114m 
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Figure 6.13: Parametric study with Energy Plus using four different pipe sizes. 

  

Figure 6.13 shows that the increment of pipe diameter leads to an increase in 

pipe outlet temperature range. In 1” Polyethylene pipe, the pipe outlet temperature 

ranges from 28.3
o
C to 28.9

o
C. Its amplitude is only 0.30

o
C, which is almost the same as 

the amplitude of the soil temperature at the same depth; 0.35
o
C. In 5” Polyethylene 

pipe, the pipe outlet temperature ranges from 27.6
o
C to 29.7

o
C. The maximum outlet 

temperature is higher than that in 1” Polyethylene pipe. The graph has shown the Earth 

Pipe Cooling is more efficient when using a pipe with small size. The rationale behind 

this is when the pipe diameter is small, air in the center of the pipe gets closer to the 

surrounding soil, enables more efficient heat transfer and hence a closer temperature 

range to the surrounding soil temperature. Another obvious reason is the effect of the 

pipe thickness. Polyethylene pipes come in standard sizes with standard diameters and 

thicknesses. The smaller pipes have less thickness. Figure 6.13 shows that the thickness 

of the pipe reduces with the size of the pipe and 1” pipe are the thinnest pipe wall. 
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When the pipe wall is thin, the heat transfers between the air inside the buried pipe and 

the soil surrounding the pipe increases. 

The third Energy Plus parametric study involves the effect of different air 

velocity of air and the airflow rate flowing within the buried Polyethylene pipe (Figure 

6.14).  
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Figure 6.14: Parametric study with Energy Plus using four different air velocities (AV). 

  

The air velocities selected for this study are 0.5m/s, 1.0m/s, 1.5m/s and 5.6m/s. 

The air velocity provided in the field work experiment is 5.6m/s.  

When the air velocity is 0.5m/s, the pipe outlet temperature ranges from 28.2
o
C 

to 29.1
o
C. When the air velocity is increased to 1m/s, the pipe outlet temperature has 

smaller range with values from 28.6
o
C to 28.7

o
C. When the air velocity is increased to 

1.5m/s, the pipe outlet temperature ranged from 28.5
o
C to 28.8

o
C. Therefore, the best 

air velocity is 1m/s or 1.5m/s with lower and higher velocities performing less well in 

this parametric study.  

   The fourth parametric study investigates Earth Pipe cooling system 

performance with various materials of buried pipe. This study looked at the materials 

PVC, Polyethylene, brick and clay (Figure 6.15).  
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Figure 6.15: Parametric study with Energy Plus using four different materials with 

different thermal conductivity. 

  

The Earth Pipe Cooling performance of different buried pipe materials relies on 

the thermal conductivity of the materials. Table 6.4 lists the thermal conductivities for 

PVC, Polyethylene, Brick and Clay. 

  

Table 6.4: Thermal conductivities of various pipe materials. 

Material PVC Polyethylene Brick Clay 

Thermal 

Conductivity, 

W/mK 

 

0.19 

 

0.42 

 

0.69 

 

1.80 

 

PVC pipe have the least thermal conductivity among the four materials used, 

which produce pipe outlet temperature that ranges from 27.4
o
C to 29.8

o
C. Figure 6.15 
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shows that the bigger the thermal conductivity is, the narrower the range of pipe outlet 

temperature becomes. Among the four pipe materials, clay pipes provides lower 

maximum outlet temperature, therefore clay is most efficient pipe material among the 

four pipe listed in Table 6.4. 

According to all the above parametric studies, the variables that influence the 

performance of Earth Pipe Cooling significantly are the pipe length, radius, thickness 

and air velocity of the air flowing in the buried pipe; with the first being the most 

significant in impact. Soil temperature also influences the outcome temperature of Earth 

Pipe Cooling system significantly.  
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CHAPTER 7 THERMAL COMFORT AND ENERGY DISCUSSIONS 

 

7.1 Thermal Comfort Performance 

 

7.1.1 Malaysia Thermal Comfort Temperature Range in Naturally Ventilated 

Building 

In Chapter 2, Table 2.8 listed a number of comfort range in naturally ventilated 

buildings in Malaysia and neighbouring countries, which have similar hot and humid 

climate to Malaysia. It has been stated that the neutral temperature, Tn ranges from 

26.1
o
C to 28.9

o
C with an average Tn of 28.1

o
C. The comfort temperature ranges from 

22.7
o
C to 31.6

o
C and the average upper limit of the thermal comfort temperature is 

30.1
o
C.  

This chapter analyzed data obtained for a whole year but excluding the month 

July and August, when the power cable to the fan blower was mysteriously cut off. In 

the one year investigation, one pipe design was selected to avoid data interference, 

which could happened if there were to be multiple earth pipe cooling system that 

functioned simultaneously. The system design chosen for an annual experiment was the 

25m long Polyethylene pipe buried at 1.0m depth underground. The fan blower, which 

is connected to the buried pipe inlet and supplied air through the system at a constant air 

velocity of 5.6m/s, operated for 24 hours. 

Table 5.7 in Chapter 5 has shown that the monthly minimum temperature 

produced at the buried pipe outlet ranges from 27.1
o
C to 29.0

o
C and the monthly 

maximum temperature at the pipe outlet ranges from 28.9
o
C to 30.9

o
C. Monthly average 

maximum outlet temperature is 29.9
o
C. Although the indoor temperature reaches 

beyond the studied thermal comfort zone for hot and humid building, the temperature 

range of air that comes out from the buried pipe outlet, falls within the studied thermal 

comfort zone for buildings in Malaysia at most times. Therefore, the result has shown at 

this stage of investigation that Earth Pipe Cooling system in buildings under Malaysia 

climate is most suitable for localized cooling for most efficient results. 
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7.1.2 Auliciems Thermal Comfort Range 

Auliciems and Nicol (1981) produced an equation to find neutral temperature, Tn 

and comfort temperature range. Aynsley (1999) then used the equation to conduct a 

survey of post-occupancy response in buildings in South East Asia. The equation is 

described as follows. 

 

Tn = 17.6 + 0.31 Tm  
o
C                                                                                          

(Equation 7.1) 

Where Tm = the mean annual dry bulb temperature.  

80% acceptance comfortable Temperature range = Tn + 3.5 
o
C                                 

(Equation 7.2) 

Table 7.1 shows the monthly average dry bulb temperature within the year 2002 

until 2008, which was obtained from Malaysia Meteorology Department. 

  

Table 7.1: Monthly Average Dry Bulb Temperature from 2002 to 2008 (Malaysia 

Meteorology Department) 

Month Jan Feb March April May June July Aug Sep Oct Nov Dec 

Average 

DBT 

27.3 27.7 28.0 27.6 28.4 28.0 27.7 27.9 27.6 27.2 26.8 27.0 

 

 

Calculated from data in Table 7.1, the Tm is 27.6
o
C and that makes the neutral 

temperature Tn of Malaysia, which is predicted by Auliciems equation, to be 26.2
o
C. By 

considering 80% of occupant’s acceptance, the comfort temperature range calculated 

with Equation 7.4 turns out to be from 22.7
o
C to 29.7

o
C. 

Referring to the thermal comfort survey in naturally ventilated buildings in 

Table 2.8, the upper limit of thermal comfort range varies in every researchers findings 

and the average of the upper limit of thermal comfort range was found to be 30.1
o
C. 

This is 0.3
o
C higher than the upper limit of comfort temperature range calculated with 

Auliciem and Nicol equation. 
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Table 7.2 shows the temperature monthly temperature range at buried pipe outlet 

and inside the experiment shed. The maximum temperature at buried pipe outlet 

maintains within the comfort temperature range in the two months in the beginning of 

the year and in the four end months of the year. There are times in the four middle 

months; March, April, May and June that the buried pipe outlet temperature edges 

beyond the comfort temperature range. Note the effect of the air velocity is not taken 

into consideration here. 

  

Table 7.2: The summary of Earth Pipe Cooling System performance with reference to 

temperature 

Month Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

Pipe Outlet 

temperature, 

o
C 

27.1 

-

28.9 

26.9 

- 

29.0 

27.4 

– 

31.0 

28.9 

- 

30.7 

29.0 

- 

30.9 

28.7 

- 

30.5 

 

N/A 

 

N/A 

28.1 

- 

29.5 

28.5 

- 

29.5 

28.1 

- 

29.7 

27.7 

- 

29.1 

 

In March, 62% of the total hours in the whole month, experienced temperature at 

buried pipe outlet beyond the comfort temperature range. 47% of the total hours in the 

whole month of April have temperature at the pipe outlet higher than the comfort 

temperature range. 59% of the total hours in the month May experience temperature at 

buried pipe outlet beyond the maximum comfort temperature calculated by the Equation 

7.1. In June, 34% of the total hours in the whole month have temperature at buried pipe 

outlet higher than the calculated comfort temperature range. However, if the flow 

velocity is considered, they are mostly within comfort range, according to Khedari 

thermal comfort chart. 

This analysis is only based on temperature without considering the effect of 

relative humidity and air velocity. In the next section, another analysis on the thermal 

comfort performance of Earth Pipe Cooling system in Malaysia, is carried out. This next 

analysis uses a comfort chart created by Khedari et al. (2000). 
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7.1.3 Khedari Thermal Comfort Chart 

Khedari et al (2000) have produced a thermal comfort chart for predicting 

comfort of space in Thailand. Thailand being the neighboring country to Malaysia, have 

similar hot and humid climate and therefore, the same chart was used to analyze the 

thermal comfort performance of the Earth Pipe Cooling system with reference to the air 

temperature produced at the buried pipe outlet.  

The Thailand thermal comfort chart, also known as ventilation comfort chart 

was developed using 183 male and 105 female college-age volunteers as the subjects. 

They were exposed to various thermal conditions and the purpose of investigation is to 

find the effect of air velocity on occupant’s thermal comfort in naturally ventilated 

spaces. A commercial fan used to control the air velocity in the space with air velocity 

range from 0.2m/s to 3.0m/s. Khedari has used the the Predicted Mean Vote to 

determine the indoor neutral temperature. He has concluded that this developed chart 

could be used to design buildings in surrounding countries (Khedari et al., 2000). 

Figure 7.1 shows the original thermal comfort chart. The x- and y-axis represent 

the dry bulb temperature and relative humidity respectively. The lines that cross the 

graph at various individual angles represent the limit of comfort zone according to 

different air velocity provided.  

The comfort zone started with a triangular zone called Proposed Standard Zone 

(Figure 7.1). This Proposed Standard Zone is thermal comfort zone for occupants in air-

conditioned space or building. For naturally ventilated buildings, the thermal comfort 

zone expands according to the provided air velocity. 

 

 

Figure 7.1: Thermal comfort chart by Khedari et al (2000). 
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 Hourly data of the pipe outlet temperature from the Earth Pipe Cooling field 

investigation for each month are plotted into the Khedari thermal comfort chart to see if 

the buried pipe outlet temperature falls within the thermal comfort range for localized 

cooling from the buried pipe outlet. This analysis had to exclude the month July and 

August due to no valid data available for these two months. 
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Figure 7.2: January hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.3: February hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.4: March hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.5: April hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.6: May hourly data plotted onto Khedari 

thermal comfort chart 

 

Figure 7.7: June hourly data plotted onto Khedari 

thermal comfort chart 

 

Figure 7.8: September hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.9: October hourly data plotted onto 

Khedari thermal comfort chart 

 

Figure 7.10: November hourly data plotted onto 

Khedari thermal comfort chart 

  

 

Figure 7.11: December hourly data plotted onto 

Khedari thermal comfort chart 
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a) Beginning of the year; January and February 

In the beginning of the year, within the month January and February, the 

investigation of Earth Pipe Cooling system on the site produced data at the buried pipe 

outlet that falls within the thermal comfort zone., upon plotting them onto Khedari 

comfort chart, knowing the air velocity maintains at 5.6m/s. Figure 7.2 shows that in 

January the air that came out from the buried pipe outlet is comfortable throughout the 

day and can stay as comfortable even if the air velocity is reduced to 0.5m/s.  

 

b) Middle of the year; March, April, May and June 

Chapter 2 analyzed environmental data, which was obtained from Malaysia 

weather station and have stated that throughout the year 2002 until 2008, the highest 

absolute and mean daily maximum dry bulb temperature occurred in March, April and 

May. This makes the three months warmer than the rest of the year in an annual 

calendar. However, this section also includes graph of data recorded in June. 

In these four months, the data plots in Khedari thermal comfort chart have been 

shifted to the right in comparison to data plots in January and February. This is because 

the buried pipe outlet temperature is above 30.0
o
C most of the time and therefore 

required the air velocity to be 1.5m/s to achieve thermal comfort. However, there are 

two plots in March that require the air velocity to be 2m/s but the extraordinary jump in 

temperature that has occurred only twice will be ignored as it might be an error in data 

recording. 

Similar to March, the data plot in April shows that the air temperature at the 

buried pipe outlet falls within Khedari thermal comfort range (Figure 7.5). Almost half 

of the month, the air velocity needs to be 1.5m/s for the buried pipe outlet to produce 

comfortable cooled air.  

Similar to data in April, the data of buried pipe outlet in May falls within 

Khedari comfort zone and the maximum air velocity required to achieve thermal 

comfort throughout the month is also 1.5m/s (Figure 7.6).  

Figure 7.7 illustrates June data plots. Similar to April and May, the air 

temperature produced by the buried pipe outlet fall within Khedari thermal comfort 

range and the maximum air velocity required to maintain within the comfort zone is 
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1.5m/s, which according to Szokolay (2004) is draughty but not annoying. For warm 

and humid climate of Malaysia, draughty could be a pleasant sensation.  

 

c) End of the year; September, October, November and December 

In this season of the year, from analysis of the weather data obtained from 

Malaysia Meteorology Department, it was found that the last four months in a year 

usually experience the most rainfall particularly in October, November and December 

(Chapter 2). 

Figure 7.8 shows the data in September. The data of the buried pipe outlet fall 

within the thermal comfort zone and required a maximum air velocity of 1m/s to 

achieve thermal comfort.  

Similar to September, the data of buried pipe outlet in October falls within 

Khedari thermal comfort zone and the maximum air velocity required to achieve 

thermal comfort is also 1m/s (Figure 7.9).  

Air temperatures at buried pipe outlet measured in November maintains below 

30.0
o
C and most of the RH is below 80%. These data of buried pipe outlet falls within 

Khedari thermal comfort zone. Similar to September, the maximum required air 

velocity at the buried pipe outlet is 1m/s (Figure 7.10).  

In December, the data plots have shifted slightly to the left showing a cooler air 

temperature at the buried pipe outlet (Figure 7.11). The data plots of buried pipe outlet 

fall within Khedari thermal comfort zone. Most of the time in December, the maximum 

air velocities required to achieve comfort is 0.5m/s and only a few times that the air 

velocity need to be 0.7m/s for the air coming out from the buried pipe outlet to be 

comfortable and cooling.  

 

7.2 Energy Efficiency of Earth Pipe Cooling in Malaysia 

As mentioned in Chapter 2, the Malaysian Standard guideline for Energy 

Efficiency building energy consumption is 140kWh/m
2
year (MEGTW, 2009) while a 

typical conventional building energy consumption is within the range of 200 and 300 

kWh/m
2
year. In this research work, a fan blower called Turbo-Aire, which is a multi-

speed centrifugal in-line fan, used to supply air through the buried pipe. Figure 7.12 
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shows the electric data of the range of available model types of Turbo-Aire and this 

research has chosen to use the model GCIL200. 

Due to a small very small scale passive cooling investigation, the energy 

efficiency discussion will look upon the power requirement for a fan blower to provide 

a thermally comfortable pipe outlet temperature. This fan blower power is than 

compared with a typical room air-conditioning power and a typical domestic fan power 

Among the three different speeds, the fan blower was set to high speed. At this 

speed, the motor power is 156 Watts. However, electrical readings of the fan blower 

were recorded on-site and the meter has shown that the average motor power from 6 

readings is 119.4W (Table 7.3).   

 

 

Figure 7.12: Electrical Data for different models of fan blower Turbo-Aire (Source: 

Turbo-Aire specification sheet) 

   

Table 7.3: Electrical readings of the fan blower from a power meter, recorded in 

February. This fan blower provides air speed of 5.6m/s. 

Time Motor Watts Volts Hz A 

High Medium Low 

Morning 124.5 120.5 113.4 243 50 0.512 

Mid Day 124.5 120.7 113.4 245 50 0.514 

Evening 124.5 119.8 113.4 243 50 0.510 
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The fan power of 119.4W has given an air velocity of 5.6m/s of air flowing 

through the buried pipe in the field investigation. The referred buried pipe is 25m long 

with 74mm diameter and 8.2mm thickness, buried at 1m deep below ground. From the 

analysis in Section 7.1, according to Khedari’s comfort chart, the pipe outlet 

temperature in all months presented above falls within Khedari’s thermal comfort zones 

with a maximum requirement of 1.5m/s air velocity. Some months requires only 0.5m/s 

and some only requires 1.0m/s. However, in determining the effective fan power for the 

fan blower that provides comfortable air at the pipe outlet, the required 1.5m/s air 

velocity were taken into consideration. Therefore, the air velocity can be reduced from 

5.6m/s to 1.5m/s if the Earth Pipe Cooling is meant for localised cooling within 

personal space. The air velocity required is 3.73 times lower than provided. 

 

The formula to calculate the effective fan power, Pef is as follows (CIBSE Guide 

B): 

Pef = ΔPt qv 

            ηo                                          (Equation 7.5) 

where Pef = Effective fan power 

          ΔPt = Pressure loss 

          qv = volume air flow (m
3
/s) 

          ηo = efficiency  

 

The pressure loss must be calculated first in order to obtain the effective fan 

power. The formula to calculate the pressure loss, ΔPt of a turbulent air flow is as 

follows (CIBSE, Guide B): 

ΔPt = f  l  ρ v
2
 

            D    2                               (Equation 7.6) 

where f = constant 

         D = Diameter 

          l = pipe length 

         ρ = air density 

         v = air velocity 
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The air flow is classified as a turbulent flow from the calculation of the Reynolds 

number, Re: 

Re = ρvD        

       μ 

                     = 1.2 x 5.6 x 0.074 

                        1.79 x 10
-5

 

        = 27781 

 

The current velocity v1 of air flowing in the buried pipe is 5.6m/s. According to 

Khedari’s thermal comfort chart, thermal comfort can be achieved at 0.5m/s, 1.0m/s or 

1.5m/s depending on the weather conditions of specific months considered. The 

effective fan power, Pef1, which is approximately 120W provides air velocity, v1 5.6m/s. 

What would be the effective fan power, Pef2, if the air velocity, is reduced to v2 1.5m/s. 

To find this, first all variables in Equation 7.5 and 7.6 except for air velocity, v and 

diameter, D are considered as constant. Therefore, assuming f is a constant, 

Pef  =   f  l  ρ v
2 

  qv 

             D    2   ηo       

Pef  =  Constant x   v
2 

   

                               D  

Assuming the flow rate remains the same,  

    Pef1/ Pef2 = (v1/v2)
2

 (v1/v2)
1/2 

Using the above, the effective fan power Pef2 is 26.9 times lower at 4.44W. 

It is interesting to see in the parametric study using Energy Plus of different air 

velocity effect on the performance of Earth Pipe Cooling, 1.5m/s air velocity provides 

the best results among three other air velocities; 0.5m/s, 1m/s and 5.6m/s (Figure 6.14). 

A set of electrical readings of an air-conditioner in a room located near the field 

work site was recorded. The air-conditioner was operating 24 hours and the temperature 

was set to 16
o
C. The room area is 40ft X 24ft. The voltage, current and Power are found 

to be constant throughout the day for three days. The voltage reads 235.4 V, the current 

is found to be 14.7 Ampere. The power of a typical air-conditioning measured in a room 

located near the field work site is 3.4kW. However, the power of the air-conditioning 

unit is not comparable to the required power for the Earth Pipe Cooling system fan 
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blower due to the difference in temperature and extent of cooling provided. The two 

rooms are not comparable also because the two rooms are very different. 
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CHAPTER 8 CONCLUSION  

This last chapter summarises the research findings and conclusion of findings 

from literature, field investigation and computer simulation work. The final part of this 

chapter outlines potential future research on Low Energy Earth Pipe Cooling 

Technology for Malaysia. 

 

8.1 Key Findings and Conclusions 

 This section of the chapter presents the key findings and conclusion as a product 

of the two field investigation, computer simulation work using Energy Plus and thermal 

comfort study. The four main objectives are to obtain soil temperature data at test site in 

Kuala Lumpur for various depths, to determine the optimum setup for buried pipe 

in Malaysia, to ascertain temperature reductions performance of buried pipes in 

Malaysia and to conduct computer simulation of the soil pipe. These four main 

objectives have been achieved which forms the foundation of the research findings. 

 

8.1.1 Soil temperature investigation 

 Soil temperature is the main factor affecting the performance of Earth Pipe 

Cooling system. This research has taken that into account and managed to obtain soil 

temperature data of Kuala Lumpur for various depths up to 5m underground. This 

investigation answers questions related to the first two research objectives. 

 The first key finding is that soil temperature measured on the site in Kuala 

Lumpur is found to change little beyond the depth of 4m, which ranges from 29.3
o
C to 

30.2
o
C). This finding agrees with research finding Goswami and Biseli in 1993 in 

Florida, which is mentioned in Chapter 3. However, this value is 2
o
C higher than the 

annual average air temperature of Kuala Lumpur, which is around 28
o
C. The soil 

temperature gets warmer as it gets deeper and nearer to the Earth core since the Earth 

core is the hottest part of the Earth. Beyond 4m depths, the soil temperature became 

stable and increases slowly as it gets deeper into the Earth core. This has been explained 

in chapter 3 with supporting illustrations in Figure 3.2, 3.3 and 3.4 (b).  

 At shallow depth above 1.5m underground, there is seasonal difference of 2
o
C, 

referring to soil temperature at 1m depth. This was found by comparing data collected 

in the wet season and the hot and dry season. The soil temperature amplitude increases 
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at the shallow depths of underground because of the environmental impact from cool 

ambient air temperature at night and warm ambient air temperature and solar radiation 

in daytime. 

The seasonal different in soil temperature has led to another soil temperature 

investigation for one whole year at shallow depths. The annual soil temperature results 

confirmed the 2
o
C seasonal temperature differences at depth 0.5m, 1.0m and 1.5m. 

 1m depth underground is probably the optimum burial depth for Earth pipe 

Cooling system. Although the annual soil temperature fluctuates from 27.2
o
C to 30.5

o
C, 

the maximum temperature is similar to the maximum soil temperature at 4m depth, 

which is said to have a stable and constant soil temperature. However, the minimum soil 

temperature at 1m depth underground reduced down to 27.2
o
C. This reduction in soil 

temperature during the wet season was influenced by and benefits from the low ambient 

air temperature during the wet season.  

 Heat dissipated from the buried pipe to the soil could heat up the soil. This fact 

was investigated at 1m depth for three months, where one data logger was buried near 

the buried pipe and another one away from the buried pipe. There seem to be 0.4
o
C 

difference in temperature. Therefore, the heat dissipates from the buried pipe to the soil 

does not affect the soil temperature significantly in short term. Perhaps more significant 

results can be found in long term investigation.  

 

8.1.2 Earth Pipe Cooling investigation 

 This part of conclusion provides answers to the third research objective. The 

results have shown significant temperature reductions at the buried pipe outlets from 

their inlets. At the initial stage of research one month of data was collected during the 

wet season, with assumption the set of data could represent the whole year performance 

of the Earth Pipe Cooling system. To confirm this, another investigation of Earth Pipe 

Cooling was carried out for one month in the hot and dry season. Both investigations 

measured Earth Pipe Cooling system buried at three depths underground; 0.5m, 1.0m 

and 1.5m. 

 During the wet season, maximum temperature drop through the buried pipe was 

found to be 6.4
o
C while during the hot and dry season the temperature drop was 6.9

o
C. 
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In both seasons, the maximum temperature drop occurred in the buried pipe at 1m depth 

underground.  

The buried pipe outlet temperature during the hot and dry season was found 

higher than the pipe outlet temperature during the wet season. At depth 0.5m, 1.0m and 

1.5m, the 25m long buried pipe outlet temperature range were 23.3
o
C – 28.4

o
C, 22.8

o
C 

– 29.5
o
C and 22.7

o
C – 28.6

o
C respectively during the wet season. Meanwhile, during 

the hot and dry season, the pipe outlet temperature at the same three depths ranges from 

25.3
o
C – 30.6

o
C at 0.5m depth, from 24.7

o
C – 31.2

o
C at 1.0m depth, and from 23.7

o
C – 

30.2
o
C at 1.5m depth. 

Same as soil temperature investigation, the Earth Pipe Cooling Technology is 

investigated for one year duration due to seasonal differences. However, for a 

continuous annual run of investigation, only one buried pipe was used. The reason is to 

prevent interference between buried pipe outlet temperatures of the three buried pipes if 

they were to run simultaneously 24 hours for one year.  

Because the maximum temperature drop occurred in 1m buried pipe in both the 

wet and hot and dry season, the pipe was chosen to be investigated further duration of 

one year. From the one year results, maximum temperature drop was found to be 8.6
o
C 

and this occurred in January. The annual average maximum temperature drop was found 

to be 5.7
o
C.  

    

8.1.3 Validation of Enegry Plus simulation tool 

 Due to limitations in field investigations, parametric study on the Earth Pipe 

Cooling Technology was explored using computer simulation programme. Initially, two 

programmes were explored in search for a suitable programme.  

 The same input data used in and obtained from field investigation were added to 

Energy Plus and Buried Pipe programme and sets of buried pipe outlet temperature 

were recorded. The results were then compared with field investigation data of the same 

data and input.  

 Referring to the comparative graph shown in Chapter 6, Energy Plus data agrees 

well with the field investigation with similar temperature range and amplitude. The 

maximum temperature difference between Energy Plus and field investigation data was 

0.3
o
C. On the other hand, data from Buried Pipe shows less fluctuation of the buried 
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pipe outlet temperature with less amplitude compared to the field investigation data. 

The maximum difference between the two was 0.5
o
C. Therefore, between the two 

simulation tools, Energy Plus appears clearly to have agreed with the field investigation 

data compared to Buried Pipe. The research concludes Energy Plus to be a suitable 

simulation programme for further investigation. 

 Since the Energy Plus simulation tool has been validated and agrees well with 

the field work results, parametric study with extended value of variables were carried 

out using the simulation tool.  

 It was shown that the performance of the buried pipe increases with increasing 

pipe length. However, when the pipe length was set up beyond 50m, the buried pipe 

outlet temperatures remain the same, with no influence from the increasing pipe length. 

The parametric study concerning effective pipe diameter shows that Earth Pipe 

Cooling system performs more temperature reduction within the buried pipe when using 

a smaller size pipe. Small pipe diameter enables more efficient heat transfer and hence 

closer temperature range to the surrounding soil temperature. The rationale behind this 

is when the pipe diameter is small, air in the centre of the pipe gets closer to the 

surrounding soil.  

In terms of air flow, the best velocity is 1 m/s or 1.5m/s. When the air velocities 

are higher or lower than this range, the temperature reduction between the buried pipe 

inlet and outlet became less. 

In conclusion, the parametric study with Energy Plus showed significant effect 

of pipe length, diameter and air velocity. 

 

8.1.4 Thermal Comfort analysis 

An extended analysis of the field investigation data was carried out in the form 

of evaluating the thermal comfort performance of the Low Energy Earth Pipe Cooling 

Technology. The evaluation was performed in three methods. First method is to 

compare the field work buried pipe outlet temperature with the Malaysia thermal 

comfort range for naturally ventilated building. Second method is to compare the field 

work data with thermal comfort temperature range obtained from Auliciems Thermal 

Comfort Equation. The third method is to plot the field work data on to Khedari’s 

Thermal Comfort Chart. 
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The average monthly maximum temperature at the buried pipe outlet falls below 

the upper limit average of a collection of Malaysia thermal comfort ranges for naturally 

ventilated buildings, which were determined by previous researchers. The average 

monthly maximum temperature at the buried pipe outlet was 29.9
o
C, while the average 

maximum thermal comfort range found for naturally ventilated buildings in Malaysia 

was 30.1
o
C. However, looking at the outlet pipe temperature in each month, during the 

hot season; March, April, May and June, the maximum temperature were just beyond 

the thermal comfort range average limit. In the findings of thermal comfort range by 

previous researchers, the air velocity range varies and not all have recorded the related 

air velocity. 

In comparison of the data obtained in field work with thermal comfort range 

obtained from Auliciem’s thermal comfort range equation, in four months the buried 

pipe outlet temperature edges beyond the comfort temperature range.  These four 

months are during the hot and dry season. The Auliciem’s equation gave a thermal 

comfort range of 22.7
o
C to 29.7

o
C, which has lower maximum limit. However, this 

equation does not take into account the air velocity effect.  

Since the air velocity effects were not taken into account systematically in the 

above thermal comfort range findings, this research used Khedari’s Thailand Thermal 

Comfort Chart for evaluating the thermal comfort achievement of the buried pipe outlet 

temperature. 

It was found that all buried pipe output measured at 1m depth pipe falls within 

Khedari thermal comfort zone when the air velocity is either 0.5m/s, 1.0m/s or 1.5m/s, 

depending on the weather conditions of specific months considered. The comfort chart 

has considered the dry bulb temperature, relative humidity and air velocity. Throughout 

the field experiment, the airflow at the buried pipe outlet has air velocity of 5.6m/s. 

Therefore, at the current experiment setup, the air blown at the buried pipe outlet should 

be comfortable for localized cooling. However, ambient temperature inside the shed that 

contained the pipe outlet had a higher temperature range. Therefore, at this stage, this 

shows that for Malaysia weather, the Earth Pipe Cooling are mostly suitable for 

localized cooling of personal space. However, this has shown potential for further 

investigation 
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From Khedari’s thermal comfort chart, the outlet air temperature is comfortable 

at 1.5m/s air velocity. From the Energy Plus simulation data, the parametric study 

shows at the pipe outlet temperature is best at 1.0m/s or 1.5m/s rather than 0.5m/s and 

5.6m/s. The effective fan power that provides 5.6m/s air velocity was 120W. The 

effective fan power that could provide 1.5m/s air velocity was found to be 4.5W. 

Therefore, the effective fan power required is 26.9 less than the effective fan power 

currently used to provide 5.6m/s. 

In conclusions, the research findings support the research intention and 

established significant temperature reduction between the buried pipe inlet and outlet of 

the Earth Pipe Cooling system in Malaysia. Although some months edged slightly just 

below the upper thermal comfort range limit, the significant temperature reduction 

within the buried pipe can certainly help with solving the problem on escalating energy 

consumption in Malaysia. 

 

8.2 Potential Future Research 

As the research developed, a number of issues were recognized as having 

potential for further investigation in the future. Even though the research findings have 

fulfilled the research objectives, the application of Earth Pipe Cooling Technology have 

the potential to be developed further in Malaysia or other hot and humid countries. By 

investigating the technology further, designers would understand more about the 

potential of soil being the heat sink. Some of the issues are: 

 The field investigation findings show similarity in average between the buried 

pipe outlet temperature and the relative soil temperature at most times. This 

demonstrates the high influence of soil temperature on the performance of Earth 

Pipe Cooling Technology. This suggests the treatment of the soil, having it 

shaded from the daytime solar radiation with either plantation or lightweight 

structure. According to a study by Givoni, as mentioned in Chapter 3, shaded 

soil has lower average temperature. Since the soil temperature affect the pipe 

outlet temperature, a lower soil temperature could reduce the pipe outlet 

temperature even more than recorded in this research finding. 

 The Earth Pipe Cooling system can be coupled with Solar Photovoltaic (PV) 

Panels and form a hybrid sustainable technology. The fan could be connected to 
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Solar PV Panels in such a way and benefit from the energy collected by the 

Solar PV Panels from the sun. If this is applied at the same current site, it would 

save the trouble of finding power supply in the middle of the field. It also saves 

the investigation from being interrupted by having its power cable across the 

road being cut off.  

 The current Earth Pipe Cooling should be repeated in a better insulated 

experiment shed. At the current field site, the experiment shed was constructed 

as a very basic timber structure with minimal insulation due to funding limit and 

time constraint. By having a better insulated shed, the effect of Earth Pipe 

Cooling system towards the room ambient temperature can be investigated along 

with a thermal comfort study of the room.  

 Extending Energy+ modelling work by investigating the effects of different 

room designs coupled with the Earth Pipe Cooling system. The room design is 

to be tested in its form, size, materiality and construction. 
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APPENDIX 

 

Appendix 4.1: Specification of USB TC-08 Thermocouple Data 

Logger

 

 

Appendix 4.2: Specification of HOBO Pendant Temperature Data Logger UA-001-64 
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Appendix 4.3: Specification of HOBO U12-012 

Temperature/RelativeHumidity/Light/External Data Logger 

Measurement range: 
Temperature: -20° to 70°C (-4° to 158°F)  

RH: 5% to 95% RH 

Light intensity: 1 to 3000 footcandles (lumens/ft2) typical; maximum value varies from 

1500 to 4500 footcandles (lumens/ft2) 

Analog channels:  

0 to 2.5 Vdc (w/CABLE-2.5-STEREO); 0 to 5 Vdc (w/CABLE-ADAP5); 0 to 10 Vdc 

(w/ CABLE-ADAP10); 4-20 mA (w/CABLE-4-20MA) 

Accuracy: 
Temperature: ± 0.35°C from 0° to 50°C (± 0.63°F from 32° to 122°F), see Plot A  

RH: ±2.5% from 10% to 90% RH (typical), to a maximum of ±3.5%, see Plot B 

Light intensity: Designed for indoor measurement of relative light levels, see Plot D for 

light wavelength response  

External input channel (see sensor manual): ± 2 mV ± 2.5% of absolute reading 

Resolution: 
Temperature: 0.03°C at 25°C (0.05°F at 77°F), see Plot A  

RH: 0.03% RH 

Sample Rate:  
1 second to 18 hours, user selectable 

Drift: 
Temperature: 0.1°C/year (0.2°F/year) 

RH: <1% per year typical; RH hysteresis 1% 

Response time in airflow of 1 m/s (2.2 mph): 

Temperature: 6 minutes, typical to 90% 

RH: 1 minute, typical to 90% 

Time accuracy: ± 1 minute per month at 25°C (77°F), see Plot C 

Operating temperature: 
Logging: -20° to 70°C (-4° to 158°F) 

Launch/readout: 0° to 50°C (32° to 122°F), per USB specification 

Battery life: 1 year typical use 

Memory: 64K bytes (43,000 12-bit measurements) 

Weight: 46 g (1.6 oz) 

Dimensions: 58 x 74 x 22 mm (2.3 x 2.9 x 0.9 inches) 

http://www.onsetcomp.com/products/sensors/cable-25-stereo
http://www.onsetcomp.com/products/adapters/cable-adap5
http://www.onsetcomp.com/products/adapters/cable-adap10
http://www.onsetcomp.com/products/cables/cable-4-20ma
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Appendix 6.1: Data obtained in March from field work and Energy Plus. 
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Figure Appendix 6.1: Data obtained in March from field work and Energy Plus 
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