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Abstract—Multi-Objective Evolutionary Algorithms (MOEAs)
and transport simulators have been widely utilized to optimise
traffic signal timings with multiple objectives. However, traffic
simulations require much processing time and need to be called
repeatedly in iterations of MOEAs. As a result, traffic signal tim-
ing optimisation process is time-consuming. Anytime behaviour
of an algorithm indicates its ability to return as good solutions
as possible at any time during its implementation. Therefore,
anytime behavior is desirable in traffic signal timing optimisation
algorithms. In this study, we propose an optimisation strategy
(NSGA-II-LS) to improve anytime behaviour based on NSGA-
II and local search. To evaluate the validity of the proposed
algorithm, the NSGA-II-LS, NSGA-II and MODEA are used to
optimize signal durations of an intersection in Andrea Costa
scenario. Results of the experiment show that the optimization
method proposed in this study has good anytime behaviour in
the traffic signal timings optimization problem.

I. INTRODUCTION

Traffic congestion in urban areas has been becoming a
serious problem which can lead to an increase in fuel con-
sumption, air pollution and detrimental impacts on economic
growth. Traffic signal control is a cost effective tool to ease
congestion in urban traffic network. It is estimated that 50-
80 % of traffic incidents happens at intersections and theirs
surroundings, 1/3 travel time and 80-90 % waiting time is
consumed at red phases of signalized intersections [1]. There-
fore, properly and efficiently operation of traffic signal control
of the overall traffic network is critical to the performance of
the whole traffic system.

The role of traffic signal timing optimization is to signifi-
cantly improve network performance by optimizing objectives
such as reducing delay, number of stops and increasing net-
work throughput or average speed in the network. Setting
traffic signals in a signal-controlled street network involves
the determination of cycle time, splits of green (and red) time,
and offsets. Traffic light signal optimization might optimize a
part of or all these values. Traffic signal timing optimization

consists of two main categories: mathematical programming
method and simulation-based approach [2].

The former scheme utilizes mathematical formulations to
capture the characteristics of traffic flow model which will
be utilized to optimize objectives in traffic management.
However, the interrelationship between the flows of complex
intersections can not be adequately captured by mathematical
programming formulations [2]. For that reason, more recently,
researchers tend to optimize traffic signal timing by using
simulation-based approaches ( [2], [3], [4], [5]). According to
level of detail which transport simulators can represent, they
are divided into three categories: microscopic, macroscopic
and mesoscopic traffic simulators. Macroscopic simulators
describe the traffic at a high level of aggregation without
considering its parts. Microscopic traffic models simulate the
movement of individual vehicles. Mesoscopic models are at
an intermediate level of detail, for example, describing the
individual vehicle but not their interactions. Traffic charac-
teristics achieved from traffic models are used to generate a
near-optimal set of signal timing plans via the optimization
algorithms. However, it is noted that traffic simulation using
these models takes a significant amount of processing time.

Evolutionary Algorithms (EAs) are widely used to solve
the multi-objective optimisation problem in transportation ([6],
[7], [8], [9], [10], [11]). However, in a traffic signal plan
optimization process, traffic simulation needs to be called
every time an individual is evaluated. Time to run multiple
simulations as a part of the evolutionary algorithm requires
much processing time. The computation time will rapidly rise
as the scale of the traffic network increases, such as road
network size and number of simulated vehicles. Moreover,
when applying EAs to optimise traffic signal timings, the
optimization process is time-consuming since EAs need to run
the scenario simulation many times [12]. [13] utilizes parallel
genetic algorithm reduce time response of the optimization
process while [14] combined GA with cluster computing.
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[15] introduced GPU based NSGA-II to reduce computation
burden.

The optimization literature is mostly focused on the quality
of solutions reached by an algorithm after a given time. How-
ever, such studies might not work efficiently in optimization
problems where function evaluations are limited by time or
cost. In these situations, in order to evaluate efficiency of an
optimisation algorithm, an indicator, which can measure ability
of that algorithm to produce good solutions at any time during
its operation, is need. Anytime behavior of an algorithm is its
ability to provide as good solutions as possible at any time
during its execution and continuously improves the quality of
the results as computation time increases ([16], [17]).

Anytime behavior may be described in terms of the curve of
hypervolume over time. Hypervolume, introduced by Zitzler
and Thiele [18], measures the volume of the objective space
which is dominated by a non-dominated set. Therefore, if one
non-dominated set has a higher hypervolume, it will be closer
to Pareto-optimal front. Hypervolume indicator is used to
compare anytime behavior between two multi-objective opti-
mization algorithms. Because optimizing traffic signal control
is time-consuming and the time to run the optimization process
is limited and scenario specific, therefore, anytime behavior of
the system is desirable.

In this work we propose a multi-objective optimization
strategy for a traffic light control system. The proposed algo-
rithm (NSGA-II-LS ) which is based on NSGA-II and a local
search has better anytime behavior comparing to NSGA-II and
MODEA.

II. RELATED WORK

A. Traffic light signals timing problem

General form of a multi-objective optimization problem in
traffic light signal timing can be described as follows:

min/max fm(x),m ∈ (1,M)

s.t Cmin < C < Cmax

xLk < xk < xUk

(1)

where M is the number of the objectives functions, C is
the cycle length, Cmin and Cmax are minimum and maxi-
mum values of the cycle length .x(x1, x2, ..., xn) is a vector
composed of n decision variables xi, i ∈ (1, n). xLk and
xUk are lower and upper bound of variable xi. Objectives
functions in transportation management would be average
delay ([2],[19]) and queue lengths ([20],[21]) at signalized
intersections, average travel time ([3], [14]), travel cost [22],
flow ([2], [14],[21]) or traffic exhaust emissions ([1], [23]).
fm(x) are functions of offset time, cycle time, green time of
phases or order of the phases in the intersection.

B. NSGA-II and SUMO

Elitist Non-dominated Sorting Genetic Algorithm (NSGA-
II) is a well established multi-objective optimization algorithm
and is an instance of an Evolutionary Algorithm which was
proposed by K. Deb and his students in 2000. Deb et al.
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Fig. 1: Overview of simulation setup for the network.

pointed out that NSGA-II, in most problems, is able to find
much better spread of solutions and better convergence near
the true Pareto-optimal front compared to Pareto-archived
evolution strategy and strength-Pareto EA.

SUMO is a open source traffic simulator which can be
used for various purposes such as the evaluation of changes
in infrastructure and policy before implementing them on
the road [25]. SUMO has been used to simulate traffic in a
number of studies ([26], [27], [28], [29] and [30]). SUMO
is a microscopic traffic simulation so it can describe every
vehicles in detail such as departure and arrival time, lanes
to use, velocity and positions. Therefore, it is very suitable
for evaluating traffic light strategies. Furthermore, SUMO is
able to to generate a large number of different measures.
Values of all these measurement data will be collected into
files or a socket connection following the common rules for
writing files. All output files generated by SUMO are in XML-
format [25]. All needed traffic measurements can be extracted
by using any programming language. In this work, python
interfaces including TraCI [25] has been used (Figure 1).

III. METHODOLOGY

A. The Proposed Local Search Strategy

Local search is a metaheuristic method which can be
used for solving hard optimization problems. A local search
algorithm starts from a candidate solution and then iteratively
moves to a neighbor solution in the search space until a
local optimum is found. In this study, a local search scheme
is introduced to the evolutionary optimiser NSGA-II. After
solutions are non-dominated sorted into fronts, the local search
is applied for these fronts. The local searching strategy given
in the following.

Given a front Ft with size of NP with ith solution
xi,t(x1,i,t, x2,i,t, ..., xn,i,t) in Ft where n is the number of
variables, t is numerical order of the front. The selected
neighborhoods discovering strategy is based on [31]. There
are two neighborhoods on the kth variable of a solution xi,t
are defined in [31]:

nb1k,i,t = xk,i,t + c ∗ (uk,i,t − vk,i,t) (2)

nb1k,i,t = xk,i,t − c ∗ (uk,i,t − vk,i,t) (3)

where ui,t and vi,t are two solutions in the same front with
xi,t. Therefore 2∗n neighborhoods are explored on a solutions.
However, in our proposed method, in order to reduce the



number of solution evaluations, only two neighbours of each
individual are discovered. Each variables in two neighbours
nb1i,t and nb2i,t of xi,t are calculated by using (2) and (3).

Algorithm 1 The pseudo code of the proposed local search

For each: solution xi,t in Front Ft

1: Randomly select two solutions u and v in Ft

2: Calculate C = N(µ, σ2)
3: Calculate one neighbour nb1 of xi,t using (1)
4: if (nb1 dominates xi,t ) or (nb1 and xi,t are non-

dominated) then
5: Replace xi,t by nb1
6: Calculate a neighbour nb-nb1 of nb1 using (1)
7: if (nb-nb1 dominates nb1) or (nb-nb1 and nb1 are

non-dominated) then
8: nb1 is replaced by nb-nb1
9: else

10: Calculate another neighbour nb2 of xi,t using (2)
11: if (nb2 dominates xi,t ) or (nb2 and xi,t are non-

dominated) then
12: Replace xi,t by nb2

In order to decide whether the neighbour solution nb can
replace the current solution x, replacement strategy is given
as follows: if the neighbour solution dominates the current
solution or they are non-dominated, the neighbour solution will
replace the current neighbour. It is well known that replacing
the current solution x with one neighbourhood which dominate
x would help the current solution move closer to the Pareto
optimal front. In case the current solution x and its neighbour
solution nb are non-dominated, the replacement of x by nb
will help to increase the diversity of solutions.

During the searching process, if the first seeking direction
(using (2) to create neighbour) gives a worse result comparing
with the current solution, the searching scheme will turn into
another direction by using (3). As a result, the searching pro-
cedure would have more chance to achieve a better solution.
A new population of size NP are created by performing the
local search on all fronts. All solutions in the new population
are as good as or better than the individuals in the current
population.

B. The Proposed Algorithm NSGA-II-LS

The basic idea of the proposed system is the combination
of NSGA-II and the local search. The pseudo code of the
local search is described in algorithm 1. The framework of
the proposed algorithm is illustrated in the algorithm 2. The
input to the approach is an initial set of N random individuals.
This population undergoes a number of generations until
the termination criteria satisfy. In each iteration, tournament
selection, recombination and mutation operators are used to
created offspring population of size N . First, a combined
population of size 2N is formed from parent and children
population. Then, the population is sorted according to non-
domination. N best solutions are selected using their ranking
and crowed-comparison operator. Suppose that these N best

solutions belong to set F including K fronts. Local search is
applied with each front in F to find out new solutions which
are as good as or better than the current solutions in that front
(line 9). The new aggregate population of size N from K
fronts after local search procedures is now used for selection,
crossover, and mutation to create a new population in the next
generation.

Algorithm 2 The pseudo code of NSGA-II-LS

1: Generate N random solutions and insert into Population
P

2: Evaluate each solution in P
3: while not termination condition do
4: Create a ChildPopulation Q of size N from the Popu-

lation P
5: Evaluate every children in Q
6: Combine the Population P and the ChildPopulation Q

into CurrentPopulation R with size 2N
7: Perform a non-dominated sorting to the CurrentPopu-

lation R and identify different fronts Fi, i = 1,2,...
8: Select N best individuals starting from the first front in
Fi using ranking and crowding distance values. Assume
these N best solutions belong to K first fronts.

9: ForEach front Fi, i ∈ K: localsearch(Fi)
10: Output of the local search procedures become parents

for the next generation.

Each generation in NSGA-II includes N evaluations (line
5) to calculate fitness values with the population size of
N . Therefore, there are total N ∗M number of evaluations
where M is the number of generation in NSGA-II. Local
search procedure (algorithm 1) includes 2 evaluations for 2
neighbours of each solution in the front. Consequently, 2 ∗N
number of evaluations need to be performed in the local search
procedure in each iteration. Offspring solutions also need to be
estimated. Therefore, there are 3 ∗N and 3 ∗N ∗M number
of solution evaluations in each generation and in the whole
program of the proposed algorithm, respectively.

IV. EXPERIMENTAL RESULTS

A. Experimetal Scenario

To study the performance of the introduced and discussed
optimisation algorithms in traffic light timing control, a real
world traffic scenario from the city of Bologna was chosen
[32]. In this experiment, Andrea Costa scenario (Figure 2(a))
simulated the traffic conditions of the area around the football
stadium in big events such as football matches or concerts is
chosen. The scenario consists of traffic demand for Andrea
Costa’s peak hour from 8:00am to 9:00am. This scenario
includes positions and traffic light plan of all traffic lights in
the traffic network. A traffic light control program (id=210)
of coordinated intersections (Figure 2(b)) in the Andrea Costa
scenario will be optimized using the proposed algorithm.

The traffic lights which include their positions and signal
plans are provided so the aim in this experiment is to optimize



(a) Andrea Costa Scenario (b) Intersection id=210

Fig. 2: Scenario of the experiment.

phase durations of the signal plan of the traffic light. The
proposed algorithm optimizes two objectives concurrently
which are minimize total time loss of whole Andrea Costa
traffic network and maximize the number of vehicles which
enter and left the simulated scenario.

The cycle in the traffic signal strategy consists of 17
phases. Therefore, an individual in the optimization process
is represented as x = (x1, x2, ...x17) where xi, i ∈ [1, 17] has
a integer value in range from 1 to 80. The constrain in this
study is that the total length of all phases in a cycle must be in
range from 80 to 250. If one individual is infeasible, its fitness
value will be add a penalty value to reduce its ability to be
chosen to be parents. The proposed algorithm NSGA-II-LS is
compared with NSGA-II and MODEA in term of hypervolume
and diversity indicators.

B. Parameters for optimisation algorithms

We conducted two different experiments that use same
traffic scenario described in the previous section. The first
experiment compares NSGA-II-LS with NSGA-II while the
second experiment evaluates the performances of NSGA-II-LS
versus MODEA. In order to compare the anytime behavior of
optimisation algorithms, both experiments were run 20 times.
While in each separate run, the two compared algorithms
were started from the same initial random population, each
separate run of the 20 repeats had a separate initial randomly
generated population. This allowed for better comparison, as
the initial population acted as a reference point to calculate
the hypervolume indicators in every runs, being the same for
both the experiments.

1) Optimisation parameters for NSGA-II: Parameters for
NSGA-II algorithm are listed in Table I. Crossover scheme
utilized in our study is Simulated Binary Crossover (SBX)
with ηc = 20. A mutated variable with probability of 1/17

TABLE I: Optimisation parameters for NSGA-II

Parameters Values
Population size 20

Number of generations 45
Number of variables 17

Number of evaluations 20*45+20=920
Mutation rate of a solution 1.0

Mutation rate of a variable in an individual 1.0/17
Crossover rate 1.0

using Polynomial Mutation scheme. An individual in NSGA-
II has 17 variables which are durations of 17 phases of the
cycle of the traffic signal control program in the intersection
id = 210. Reference point is R(1.1, 1.1).

2) Optimisation parameters for NSGA-II-LS: As discussed
in previous parts, NSGA-II-LS is a combination of NSGA-
II and the proposed local search. Therefore, optimisation
parameters of NSGA-II-LS consist of parameters of NSGA-II
which is mentioned above and parameters of the local search.
In the proposed local search which was illustrated in algorithm
1, parameter c is calculated by a normal distribution with
µ = 0 and σ = 3. The iteration number of the algorithm
is 15 generations with 20 solutions in the population.

3) Optimisation parameters for MODEA: In our study, can-
didate creation strategy utilized in MODEA is DE/rand/1/bin
scheme. The differential weight/scaling factor F = 0.8 and the
crossover probability R = 0.9. Population size of MODEA is
20 individuals and the algorithm runs in 45 generations.

C. Performance measures

For evaluating the efficiency of NSGA-II-LS, NSGA-II
and MODEA, mean values of hypervolume in 20 runs are
calculated. Moreover, other related statistics measurements
such as standard deviation, median, min and max values of
the hypervolume have been used.
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Fig. 3: Comparision between NSGA-II-LS and NSGA-II.

Evaluation Mean stdDev Median Min Max
20 0.78211 0.01774 0.778 0.7575 0.82404
80 0.81007 0.01867 0.811435 0.77114 0.84561

140 0.840509 0.01894 0.837995 0.80787 0.87617
200 0.864435 0.02398 0.86644 0.82191 0.91703
260 0.887627 0.02368 0.8808 0.85444 0.93302
320 0.909207 0.02471 0.904385 0.86818 0.94545
380 0.921655 0.02094 0.92103 0.8809 0.95096
440 0.929193 0.02059 0.93436 0.88408 0.95494
500 0.93366 0.02031 0.9418 0.88934 0.96076
560 0.936715 0.01942 0.942775 0.89207 0.96383
620 0.942159 0.02121 0.94598 0.89233 0.97885
680 0.944445 0.02174 0.94884 0.89233 0.979
740 0.945616 0.0206 0.949505 0.89433 0.97946
800 0.948943 0.01584 0.94984 0.91195 0.97946
860 0.951636 0.01684 0.94987 0.91868 0.98882
920 0.952385 0.01657 0.949965 0.92001 0.98935

(a) Results of NSGA-II

Evaluation Mean stdDev Median Min Max
20 0.78211 0.017743 0.778 0.7575 0.82404
80 0.862689 0.041966 0.858565 0.793 0.93616
140 0.884613 0.040351 0.874965 0.83247 0.96311
200 0.907739 0.036938 0.90393 0.84021 0.97167
260 0.920226 0.031643 0.925505 0.87536 0.97165
320 0.93532 0.020136 0.93774 0.89876 0.97318
380 0.945051 0.020524 0.94728 0.89975 0.98809
440 0.950707 0.019395 0.951645 0.90437 0.98884
500 0.955306 0.017141 0.95719 0.91486 0.99051
560 0.957692 0.016752 0.959945 0.9171 0.99054
620 0.963205 0.016615 0.966055 0.91964 0.99062
680 0.966518 0.015434 0.968175 0.92445 0.99137
740 0.973752 0.015613 0.971485 0.94813 1.00134
800 0.974801 0.015402 0.97052 0.9533 1.00181
860 0.978567 0.014211 0.974915 0.96061 1.00279
920 0.981334 0.0151 0.976285 0.96297 1.01599

(b) Results of NSGA-II-LS

Fig. 4: Statistics results of NSGA-II-LS and NSGA-II.

In addition, we define a metric to evaluate how the dif-
ference between mean values of two compared algorithms
change. This metric is diffmean and described as follows:

diffmean =

n∑
i=1

(meanA,i −meanB,i) (4)

where A and B are two compared algorithms, n is the number
of evaluations. meanA,i and meanB,i are mean values of A
and B at ith evaluation.

Furthermore, to evaluate the diversity of the proposed
algorithm, two diversity indicators are used to compare the
spread of the solutions found between NSGA-II-LS, NSGA-II
and MODEA [33]. The first diversity performance measures
is spacing metric of Schott (S) which measures how evenly

the points of approximated Pareto front are distributed in the
objective space. Spacing is calculated as:

S =

√√√√ 1

N − 1

N∑
m=1

(davg − dm)2 (5)

with dm = minj=1,...,N

∑M
k=1 |fkm(x)− fkj(x)| where N is

the number of the solutions in the found Pareto front and M
is the number of objective functions. davg is the average value
of all dm values. The smaller S, the more evenly distributed
the solutions.

However, S does not provide any information with regards
to the extent of the solutions. Therefore, maximum spread
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Fig. 5: Comparison between NSGA-II-LS and MODEA.

Evaluation Mean stdDev Median Min Max
20 0.784841 0.012184 0.78797 0.76532 0.80425
80 0.850131 0.012534 0.854185 0.82047 0.86911
140 0.8829515 0.017913 0.886565 0.85487 0.9095
200 0.8983875 0.014418 0.898535 0.87204 0.92492
260 0.910071 0.017266 0.906575 0.88453 0.951
320 0.9227165 0.016434 0.92542 0.89287 0.95137
380 0.9335635 0.016694 0.937755 0.90877 0.95488
440 0.9400625 0.018031 0.94595 0.90944 0.96591
500 0.9472865 0.015764 0.948645 0.91108 0.96865
560 0.950607 0.014635 0.95379 0.91574 0.9687
620 0.95388 0.014518 0.95565 0.91837 0.97643
680 0.958744 0.014119 0.962775 0.92576 0.97938
740 0.9604765 0.013387 0.96298 0.92651 0.97992
800 0.962737 0.011767 0.963855 0.92831 0.98042
860 0.96588 0.010813 0.96698 0.94042 0.98064
920 0.968313 0.010861 0.96823 0.9448 0.9834

(a) Results of MODEA

Evaluation Mean stdDev Median Min Max
20 0.784841 0.012184 0.78797 0.76532 0.80425
80 0.8429605 0.031812 0.834485 0.79682 0.92371

140 0.881759 0.039373 0.866375 0.8345 0.95967
200 0.9037855 0.030173 0.897845 0.866 0.96478
260 0.925525 0.033721 0.93256 0.87289 0.98867
320 0.931084 0.027660 0.93901 0.88559 0.96738
380 0.939198 0.020757 0.943425 0.90526 0.96813
440 0.9450655 0.018799 0.94587 0.91222 0.9712
500 0.949226 0.017828 0.954555 0.91632 0.9704
560 0.954587 0.016656 0.962105 0.91633 0.97467
620 0.9594655 0.015986 0.96353 0.92936 0.98051
680 0.9600145 0.018554 0.96592 0.90597 0.98345
740 0.964136 0.014379 0.96628 0.92518 0.98345
800 0.9710835 0.016948 0.968385 0.94932 1.03212
860 0.973011 0.016964 0.972225 0.94176 1.03234
920 0.975725 0.015786 0.973695 0.95473 1.03235

(b) Results of NSGA-II-LS

Fig. 6: Statistics results of NSGA-II-LS and MODEA.

measurement is utilized as the second diversity indicator.

MS =

√√√√ N∑
k=1

(maxk −mink)2 (6)

where maxk and mink are maximum and minimum values
of the kth objective, respectively. MS measures the length of
the diagonal of the hyperbox that is created by the extreme
values of the non-dominated set. The bigger MS, the more
widely spread the solutions.

D. Results

1) NSGA-II-LS vs. NSGA-II: We compare our proposed
algorithm NSGA-II-LS with NSGA-II using hypervolume and
diversity indicators. In our experimental, we run these algo-
rithms 20 times and hypervolume values are recorded. Figure

3(a) illustrates the mean values of hypervolume of NSGA-
II-LS and NSGA-II in 20 runs. The figure points out that
with the same initial population, NSGA-II-LS achieves better
hypervolume than NSGA-II in the same number of solution
evaluations. Differences between mean values of NSGA-II-LS
and NSGA-II are shown in Figure 3(b). The diffmean value
soars at the beginning of the experiment (after 80 evaluations).
It then decrease gradually and remain quite stable from 500th

evaluation until the end of the optimisation process. Therefore,
NSGA-II-LS achieves better anytime behavior as compared
to NSGA-II. Figure 4 illustrates mean, standard deviation,
median, min value and max values of hypervolume of both
the algorithms in 20 runs, respectively.

Diversity performance of the proposed systems and NSGA-
II are presented in the table II. NSGA-II has smaller S value
than NSGA-II-LS which indicates that the solutions in the



TABLE II: Diversity comparison between NSGA-II and
NSGA-II-LS.

Diversity performance measure NSGA-II NSGA-II-LS
S 1,618,604.503 7,733,930.815

MS 5,364,304.997 22,632595.04

TABLE III: Diversity comparison between MODEA and
NSGA-II-LS.

Diversity performance measure MODEA NSGA-II-LS
S 5,643,745.306 5,031,615.396

MS 23,295,753.73 24,218,440.85

non-dominated front of NSGA-II are more evenly distributed
than these of NSGA-II-LS. However, MS value of NSGA-
II-LS is much more higher than that of NSGA-II. Therefore,
the non-dominated solutions found in the proposed algorithm
spread more widely than these in NSGA-II.

2) MODEA vs. NSGA-II-LS: We repeated the optimisation
process with MODEA and NSGA-II-LS algorithms 20 times.
Figure 5(a) illustrates mean values of hypervolume in 20 runs
of MODEA and NSGA-II-LS. We can see from the figure
that the curves of hypervolume of MODEA and NSGA-II-
LS are very close. The difference between mean values of
NSGA-II-LS and MODEA is presented in Figure 5(b). The
diffmean value got negative values from 80 to 140 evaluations
and positive values in the rest. It rises very quickly and peaks
at 260 evaluations and then fluctuate during the rest of the
simulations. We can see from the figure that the diffmean value
is above ”zero” line from 140th solution to the end of the
optimisation process. Figure 6 presents statistics data in terms
of hypervolume of MODEA versus NSGA-II-LS in 20 runs. It
is conclude that in overall hypervolume of MODEA is slightly
higher than that of NSGA-II-LS.

Table III illustrates the diversity measures of MODEA
and NSGA-II-LS. Data in the table show that the proposed
algorithm has better diversity performance in terms of both
maximum spread and spacing between non-dominated solu-
tions.

V. CONCLUSION

In real-time traffic signal optimization with expensive objec-
tive functions, anytime behaviour is desirable. An algorithm,
which has anytime behavior, is able to return good solutions
at any running time. In this paper we proposed a new multi-
objective optimization algorithm based on NSGA-II and local
search. The local search introduced in this study are integrated
into iterations of NSGA-II. The local search would produce as
good as or better solutions comparing with current solutions
in the same fronts. Output of the local search procedure
will become parents of the next generation. The experiment
was conducted to compare our scheme with NSGA-II and
MODEA in term of hypervolume indicator. The results show
that our proposed algorithm is better than NSGA-II and as
good as MODEA. Consequently, our proposed algorithm can
return good solutions at an early stage of the optimization
process. This is important in traffic management since urban

traffic networks are highly dynamic and optimization processes
are time-consuming. Therefore, better anytime behavior of
the proposed system would help decision makers get good
solutions without waiting until the optimisation process finish.

In future, traffic characteristics in over-saturated conditions
need to be get involved in the optimisation process. Fur-
thermore, we will study not only MOEAs but also other
optimisation approaches. These will be studied and tested in
regards to reduced response time of the optimisation process in
the highly complex and dynamic urban transport environments.
New optimisation methods need to be introduced to solve
expensive multi-objective optimisation problems.
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