
SAI Intelligent Systems Conference 2015 

November 10-11, 2015 | London, UK 

 

1 | P a g e  

www.conference.thesai.org 

An Extension of the Use Case Diagram to Model 

Context-aware Applications 
 

Ahmed Al-alshuhai 

Software Technology Research Laboratory 

De Montfort University 

The Gateway, Leicester LE1 9BH, UK 

p07143453@myemail.dmu.ac.uk 

François Siewe 

Software Technology Research Laboratory 

De Montfort University 

The Gateway, Leicester LE1 9BH, UK 

fsiewe@dmu.ac.uk 

 

 
Abstract—Context-aware applications have the ability to 

sense the context of the user and use the sensed context 

information to make adaptation decision in response to changes 

in the user’s context. Hence, besides the functional requirements, 

context-awareness is an important requirement of such 

applications. Although, the use case diagram of the Unified 

Modeling Language (UML) is considered as the industrial de-

facto standard for modeling the functional requirements of 

applications, it is insufficient to accurately capture context-

awareness requirements. This paper proposes an extension of the 

use case diagram with new notations to cater for the modeling of 

context-aware applications. The proposed extension called 

context-aware use case diagram is more expressive and enables a 

clear separation of concerns between context-awareness 

requirements and functional requirements which is helpful 

during requirements capture and analysis of large scale or 

complex context-aware applications. 

Keywords—Requirement engineering; UML; use case diagram; 

use context diagram; context-aware applications; context 

information; context source 

I. INTRODUCTION  

Context-aware computing envisions a new generation of 
smart applications that have the ability to perpetually gather 
data about the user’s context and use these data to make 
adaptation decision in response to changes in the user’s context 
[1, 13, and 18]. Such applications generally run on a mobile 
device carried by the user and use a variety of sensors to gather 
context data. It will be helpful to first define the concept of 
context and then what it means for an application to be context-
aware. Dey et al. [7] define context as “any information that 
can be used to characterise the situation of an entity. An entity 
is a person, place, or object that is considered relevant to the 
interaction between a user and an application, including the 
user and applications themselves.” It follows from this 
definition of context that the user’s location, the user’s activity, 
who the user is with, the state the physical environment (such 
as time, temperature, weather, and noise level), and nearby 
resources are important aspects of context.  

Furthermore in context-aware computing, context can be 
classified into 3 types: (i) the user context or personal context 
which includes e.g. the user’s id, preferences, and personal 
health information; (ii) the device context or ICT context 
which encompasses the user’s mobile device capabilities, 

network connectivity, and battery power; (iii) and the physical 
environment context like time, light, location and weather. 
Various types of sensor are used to measure context 
information; these may be physical sensing devices such as a 
GPS (to sense user’s location), a temperature sensor, and an 
accelerometer (to sense the user’s movement); or they may be 
virtual sensors like the user’s calendar (to sense the location or 
the activity of the user), and a weather web service. The 
generic term Context Source (CS) is used in this paper to refer 
to sensors, whether physical or virtual; while context 
information (CI) refers to the sensed data. 

A context-aware application collects context information 
via context sources and uses this information to adapt their 
behaviors so as to assist the user with relevant information and 
services anytime, anywhere [11, 15, and 18]. Hence, the 
behavior of such an application is context dependent. As a 
result, context information and context sources play an 
important role in the requirement analysis of context-aware 
applications. In software engineering, the use case diagram of 
UML is commonly used to conceptualise the functional 
requirements of software applications. However, there is no 
notation in the use case diagram to represent the context; or the 
relationship between the context and the functions of an 
application.  As a consequence, the usage case diagram is 
insufficient for accurately modeling and analysing the 
requirements of context-ware applications. 

This paper proposes an extension of the use case diagram to 
cater for the modeling and analysis of the requirements of 
context-aware applications. The contributions of this work are 
fourfold: 

 A new concept of use context is introduced to capture 
what CIs the behaviors of an application depend upon. 
Typically, a use context is a set of sequences of 
actions that an application must perform to acquire, 
aggregate, or infer CIs from raw context data 
produced by CSs (Sect. III). 

 A novel notion of use context diagram is proposed to 
represent graphically a set of use contexts and CSs 
and the relationships between them (Sect. III). 

 A Novel notion of context-aware use case diagram is 
presented which merges the traditional use case 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228199195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SAI Intelligent Systems Conference 2015 

November 10-11, 2015 | London, UK 

 

2 | P a g e  

www.conference.thesai.org 

diagram (that describes the functions of an 
application) and the new concept of use context 
diagram that specifies the context information the 
behaviors of these functions depend upon. This 
approach results in a rich and expressive language for 
the modeling and analysis of the requirement of 
context-aware applications (Sect. IV). 

 The pragmatics of the proposed approach is evaluated 
using two real-world case studies (Sect. V). 

II. OVERVIEW OF THE USE CASE DIAGRAM 

There are five different diagrams in the UML for modeling 

the dynamic aspects of systems [17]; use case diagrams are 

one of them. They are central to modeling the behavior of an 

application and represent an excellent tool for visualizing, 

specifying and documenting the intended behavior of an 

application during requirements capture and analysis. A use 

case diagram is built from three basic elements: use cases, 

actors, and the relationships between them as shown in Fig. 1.  

In UML, use cases are used to capture the functional 

requirements of applications. A use case describes the desired 

behavior of an application or part of an application (i.e. what 

an application or part of an application can do), without telling 

how that behavior is to be implemented. Use cases provide an 

effective way for developers to communicate with the 

application’s end user and domain experts during the 

requirements elicitation and analysis phases of the software 

development lifecycle. Furthermore, use cases are used for 

validation and testing during an application development.  A 

use case has a name and is graphically rendered as an ellipse 

as depicted in Fig. 1. 

An actor represents a coherent set of roles that users of use 

cases play when interacting with these use cases [17]. Actors 

can be human or they can be automated systems. An actor is 

connected to a use case by an association (graphically 

rendered as a solid line) which indicates that the actor and the 

use case communicate with one another, possibly by 

exchanging messages. An actor is represented graphically as a 

stick figure like in Fig. 1. 

There are three kinds of relationships between use cases.  A 

generalization relationship between use cases means that the 

child use case can inherit the behavior and the meaning of the 

parent use case; the child may add to or override the behavior 

its parent; and the child may be substituted any place the 

parent occurs [5, 17]. The generalization relationship is 

represented graphically as a solid directed line with a large 

open arrowhead. For example in Fig. 1, “use case 2” is a 

generalization of “use case 3” and “use case 4”. Conversely, 

“use case 3” and “use case 4” are specializations of “Use case 

2”.  

An include relationship between use cases means that the 

base use case explicitly incorporates the behavior of another 

use case; while an extend relationship between use cases 

means the base use case implicitly incorporates the behavior 

of another use case. Graphically, both relationships are 

rendered as a dependency, stereotyped as <<include>> and 

<<extend>> respectively. For example in Fig. 1, the base use 

use case 1

use case 2

use case 3

use case 4

use case 5<<extend>>

<<include>>

actor 1

actor 2

Fig. 1: an illustration of a use case diagram 

 

case “use case 5” extends “use case 1”, while the base use 

case “use case 4” includes “use case 5”. 

III. USE CONTEXT DIAGRAM 

By analogy to use case diagrams, this paper introduces the 

concept of use context diagrams to model the acquisition, the 

aggregation and the inference of CIs relevant to a context-

aware application. This helps to achieve a separation of 

concerns between the functional requirements and the context-

awareness requirements of an application; where the context-

awareness requirements specify the context information that 

affects the behavior of the application. A use context diagram 

is composed of a set of use contexts and context sources and 

the relationships between them, as depicted in Fig. 2. 

A use context specifies the CIs that affect the behavior of 

an application or part of an application. It is a description of a 

set of sequence of actions, including variants that an 

application performs to acquire, to aggregate or to infer CIs 

from CSs. Use contexts are used to capture the relevant CIs 

that affect the behavior of the application under development, 

without having to specify how the measurement of those CIs 

is actually implemented. They also provide the developers a 

way to come to a common understanding with the 

application’s end user and domain experts as to what CIs the 

application must be aware of. Similarly to use cases, use 

contexts serve to help validate the system’s architecture and to 

verify the system as it evolves during development.  In 

combination with use cases, use contexts applied to 

subsystems can help to design test cases for regression tests; 

when applied to the whole system are excellent sources of 

integration and system tests. A use context has a name and is 

graphically rendered as a dotted ellipse like in Fig. 2. 

Context sources are to use contexts what actors are to use 

cases. Use contexts communicate with context sources to 

gather raw context data from which CIs are calculated. 

Typically, context sources are sensors; physical sensors (e.g. a 

temperature sensor or a light sensor) and virtual sensors (e.g. a 

weather web service or a calendar) alike. Graphically they are 

rendered as shown in Fig. 2. Context sources may be 

connected to use contexts only by a context association 

represented by a dashed line. 

A use context may have variants. In all interesting context-

aware application, there will be use contexts that are 

specialized version of other use contexts, use contexts that are 

included as parts of other use contexts, and use contexts that 

extend the CIs of other core use contexts. These three kinds of 



SAI Intelligent Systems Conference 2015 

November 10-11, 2015 | London, UK 

 

3 | P a g e  

www.conference.thesai.org 

use context 1

use context 3

use context 2

<<include>>
context source 1

context source 2

<<extend>>

 
Fig. 2: An illustration of a use context diagram 

 

user activity

location

<<extend>>

calendar  
Fig. 3: Example of extend relationship 

 

GPS

weather
condition

rain

temperature

humidity

wind

location

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

Weather
Web service  

Fig. 4: Example of include relationship 

 

relationships can be used to factor the common, reusable CIs 

of a set of use contexts. The same graphical notations are used 

for these relationships as in use cases. An include relationship 

is used to avoid describing the same CI several times, by 

putting the common CI in a use context of its own.  An extend 

relationship is used to model the part of a use context the user 

may see as optional CI. In this way, optional CIs are separated 

from mandatory ones. 

Fig. 3 shows an example of use context diagram where the 

use context “user activity” calculates the current user activity 

using information stored in the user’s calendar. The extend 

relationship between the use contexts “user activity” and 

“location” means that location information might also be 

inferred from the user’s calendar and provided as an optional 

CI. An example of the include relationship is given in Fig. 4 

between the use context “weather condition” and the use 

contexts “location”, “temperature” and “rain”. This is to mean 

that the location, the temperature value and the rain status are 

mandatory CIs to be included in the weather reports. In the 

meantime, the humidity value and the wind status are not so 

important for the application in hand, but can be provided as 

optional CIs. 

The following section shows how use case diagrams and 

use context diagrams can be combined to provide a richer and 

more comprehensible specification of the requirements of 

context-aware applications. 

IV. CONTEXT-AWARE USE CASE DIAGRAM 

A context-aware use case diagram is built from a set of use 

case diagrams and use context diagrams by linking use cases 

to use contexts using utilize relationships. A utilize 

relationship between a use case and use context means that the 

behaviors specified by the use case depend upon the CIs 

described by the use context. A utilise relationship is 

graphically rendered as a dependency, stereotyped as 

<<utilize>>, like in Fig. 5. A utilize relationship always points 

from a use case towards a use context. The notations used to 

represent a context-aware use case diagram are summarized in 

Table 1. Examples of context-aware use case diagrams are 

detailed in the following section. 

V. CASE STUDIES 

This section presents two examples to illustrate how the 

proposed approach can be used in practice. The first example 

constructs a context-aware use case diagram for a smart 

weather application; and the second one presents a context-

aware use case diagram for a navigation application. 

 

Table 1:  Notations for describing a context-aware use case 

diagram. 

Context-aware use case diagram notations 

Context related notations UML notations 

 
Context source 

 
Actor 

 
Use context  

Use case 

 
Context association 

 
Association 

<<include>>
 

Include relationship 

<<include>>
 

Include relationship 

<<extend>>
 

Extend relationship 

<<extend>>
 

Extend relationship 

 
Generalization relationship 

 
Generalization relationship 

<<utilize>>
 

Utilize relationship 

 

 



SAI Intelligent Systems Conference 2015 

November 10-11, 2015 | London, UK 

 

4 | P a g e  

www.conference.thesai.org 

use case 1

use case 2

use case 3

actor

use context 1

use context 2

use context 3

context 
source 1

<<include>>

<<utilize>>

<<utilize>>

<<utilize>>

<<extend>>

context 
source 2

context 
source 3  

Fig. 5: An illustration of a context-aware use case diagram 

 

display weather
forecast

GPS

user

<<utilize>>

weather
condition

user
preferences

rain

temperature

humidity

wind

location

<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<utilize>> Mobile
phone

Weather
Web service  

Fig. 6: A smart weather forecast application 

user

GPS

get traffic
information

get direction

get position

get points 
of interest

render
map

get alternative
directions

location
speed

time to
destination

speed
limits

map
data

<<extend>>
<<extend>> <<include>>

<<include>>

<<utilize>> <<utilize>>

<<utilize>>

<<utilize>>
<<utilize>>

<<utilize>>

<<utilize>>

Map
service

Fig. 7: A Navigation Application 

A. A Smart Weather Forecast application 

Consider a smart weather forecast application that runs on 

the user mobile phone and is aware of the user’s preferences 

and location. The user’s preferences are stored in the user 

profile on the mobile phone and the location information is 

gathered from a GPS module embedded in the mobile phone. 

It is assumed that the actual weather data are provided by a 

weather wed service, given the limited computational power 

of a mobile phone. Fig. 6 shows the context-aware use case 

diagram for displaying the weather information on the user’s 

mobile phone based on the user’s location and preferences.  

The use contexts specify what CIs are calculated using the 

data provided by the corresponding CSs. For example, the use 

context “user preferences” indicates what information stored 

in the user profile is relevant for this application. The use case 

“display weather forecast” utilizes the use context “user 

preferences” and the use context “weather condition” to 

display the weather information according to the user’s 

preferences (e.g. font size, colors, etc.). An include 

relationship is used to indicate that the user’s location, the 

current temperature value and the rain status are mandatory 

CIs for this application. However, the wind status and the 

humidity data are rather optional CIs; hence the extend 

relationship is used for the corresponding use contexts. 

B. A Navigation Application 

The main functionalities of a navigation application [9, 12, 

14] include give directions; suggest alternative directions in 

the case an accident has occurred or the road is blocked; 

provide traffic information such as speed, speed limits, and 

approximate time to destination; and show the current position 

of the user and the nearby points of interest; to name but a 

few. The context-aware use case diagram in Fig. 7 shows the 

use cases corresponding to these functionalities and the use 

contexts representing the CIs these functionalities depend 

upon and the CSs that will provide the raw data for computing 

these CIs. Hence, the use case “get traffic information” 

calculates the speed and the time to destination using 

information from a GPS module; and determines the speed 

limits using the location data from the GPS and the road 

information provided by a map service. It is assumed that the 

map service (e.g. Google map) provides all the data necessary 

to render the road network, including location coordinates of 

speed cameras, types of road and speed limits. 

The use case “get position” displays the position of the user 

on the map and optionally the points of interest in the vicinity. 

Therefore, the use case “get points of interest” extends the use 

case “get position”. In order to render the user position and 

possibly the nearby points of interest, the use case “get 

position” invokes the use case “render map” which utilizes the 

location information from a GPS and the map data provided 

by a map service to do so. Likewise, the use case “render 

map” is also invoked by the use case “get direction” which 

shows the route to destination and optionally suggests 

alternative directions. 



SAI Intelligent Systems Conference 2015 

November 10-11, 2015 | London, UK 

 

5 | P a g e  

www.conference.thesai.org 

VI. RELATED WORK 

UML is a diagram language which enables designers of 

information systems to illustrate high level system 

requirements, using use case diagrams, and to demonstrate 

low level system requirements, using activity diagrams [6, 8, 

and 10]. Researchers have recently developed new UML 

diagrams in their attempts to make the development of 

context-aware applications easier. Choi and Lee [3] proposed 

a model-driven approach that uses UML’s use case diagrams 

to elicit the requirement of context-aware applications. In 

particular, the approach helps analysts and stakeholders pay 

more attentions to context related issues such as system 

platform, target users, intelligence, possible context-aware 

services and agreement with other stakeholders, and 

understanding contexts with decision tables and trees.  

ContUML [2] is a UML-based language for model-driven 

development of context-aware applications. However, 

ContUML essentially extends the UML’s class diagram with 

special classes for CIs and context-awareness mechanisms. 

Our context-aware use case diagrams are more abstract than 

class diagrams and so more suitable for requirement elicitation 

and analysis. It is understood that ContUML may be used for 

the realization of context-aware use case diagrams during 

system development. Almutairi et al. [4, 16] extended the 

UML’s use case diagram and class diagram to capture the 

security requirement of context-aware application. In 

particular, they introduces a “requires” relationship between a 

use case and CIs to indicate the CIs the behaviors described by 

that use case depend upon. In our approach, use context 

diagrams are used to specify CIs and their corresponding CSs; 

separately from the use cases that will utilize those CIs. This 

separation of concerns between functional requirements and 

context-awareness requirements is helpful, especially when 

dealing with large scale or complex context-aware 

applications. 

VII. CONCLUSION  

This paper presented a new extension of the use case 

diagram of UML to cater for both the functional requirements 

and context-awareness requirements of context-aware 

applications. This novel extension is called a context-aware 

use case diagram. Indeed, the concept of use context is 

introduced to specify the CIs that the behaviors of the 

application under development depend upon. Then a notion of 

use context diagram is proposed to depict graphically the 

relationships between a set of use contexts and the CSs. While 

use cases capture the functional requirements, use contexts 

describe the context-awareness requirements. Such a 

separation of concerns is helpful during system development. 

A context-aware use case diagram is built from a set of use 

case diagrams and use context diagrams by linking use cases 

to use contexts using the utilize relationship. A utilize 

relationship between a use case and a use context means that 

the behaviors specified by the use case depend upon the CIs 

described by the use context. The pragmatics and flexibility of 

the proposed approach are illustrated using two case studies. 

In future work, other UML diagrams, such as the activity 

diagram and the class diagram, will be extended in an effort to 

ease the development of context-aware applications. 

REFERENCES 

[1] Y. Chen and C. Petrie. “Ubiquitous Mobile Computing”. IEEE Internet 
Computing, 7(2):16–17, 2003. 

[2] Q. Z. Sheng and B. Benatallah. “ContextUML: A UML-Based Modeling 
Language for Model-Driven Development of Context-Aware Web 
Services”. In Proceedings of the International Conference on Mobile 
Business (ICMB’05), Sydney, Australia, 2005. 

[3] J. Choi and Y. Lee. “Use-Case Driven Requirements Analysis for 
Context-Aware Systems”. In: the Future Generation Information 
Technology Conference, Springer, Heidelberg, 2012. 

[4] S. Almutairi, A. Abu-Samaha, G. Bella and F. Chen. “An enhanced Use 
Case diagram to model Context Aware System”. Science and 
Information Conference (SAI), London, UK, 7-9 October 2013. 

[5] K. Henricksen and J. Indulska. “A Software Engineering Framework for 
Context-Aware Pervasive Computing”. In Proceedings of the Second 
IEEE Annual Conference on Pervasive Computing and Communications 
(PerCom’04), Florida, USA, 2004. 

[6] D. Ayed and Y. Berbers. “UML profile for the design of a platform- 
independent context-awareness applications”. Proceedings of the 1st 
workshop on MOdel Driven Development for Middleware (MODDM 
'06), Melbourne, Australia, 2006. 

[7] A. K. Dey and G. D. Abowd. “Towards a better understanding of 
context and context-awareness”. Lecture Notes in Computer Science; 
Vol. 1707, 1999. 

[8] A. Finkelstein and A. Savigni. “A Framework for Requirements 
Engineering for Context-Awareness Services”. First International 
Workshop from Software Requirements to Architectures (STRAW 01), 
2001. 

[9] O. Masreiter and E. Metzker, “A context-driven use case creation 
process for specifying automotive driver assistance systems”, IEEE 
International Requirements Engineering Conf., pp. 334-339, 2004. 

[10] D. Skogan, R. Gronmo, and I. Solheim. “Web Service Composition in 
UML”. Proceedings of the 8th International IEEE Enterprise Distributed 
Object Computing Conference (EDOC’04), California, USA, September 
2004.  

[11] D. Riboni and C. Bettini. “OWL 2 modeling and reasoning with 
complex human activities”. Pervasive and Mobile Computing, 2011. 

[12] S. Saeedi, N. El-Sheimy, X. Zhao, and Z. Sayed. “Context-Aware 
Personal Navigation Services using Multi-Level Sensor Fusion”. In 
Proceedings of the 24th International Technical Meeting of the Satellite 
Division of the Institute of Navigation, USA, September 2011. 

[13] K. M. Feigh, M. C. Dorneich and C. C. Hayes. “Toward a 
characterization of adaptive systems a framework for researchers and 
system designers”. The Journal of the Human Factors and Ergonomics 
Society, 2012. 

[14] M. Madkour, D. E. L. Ghanami, A. Maach et al. “Context-aware service 
adaptation: an approach based on fuzzy sets and service composition”. 
Journal of Information Science and Engineering, 2013. 

[15] J. Choi. “Context-driven requirement analysis”. In Computational 
science and its application. Springer, Heidelberg, 2007. 

[16] S. Almutairi, A. Abu-Samaha and G. Bella. “Specifying Security 
Requirement for Context Aware System using UML”. In Seventh 
International Conference on Digital Information Management (ICDIM) 
978-1-4673-2430-4/12/ in Macau, 2012. 

[17] G. Booch, J. Rumbaugh and I. Jacobson. The Unified Modeling 
Language User Guide. Addison Wesley, 1999. 

[18] M. Weiser. “The computer for the 21st century”. SIGMOBILE Mob. 
Comput. Commun. Rev. 3(3), 1999, pp. 3-11. 

 


