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We suggest an improved software pipeline for mixture analysis. The improvements include com-
bining tandem MS and 2D NMR data for a reliable identification of its constituents in an algorithm
based on network analysis aiming for a robust and reliable identification routine. An important
part of this pipeline is the use of open-data repositories, although it is not totally reliant on them.
The NMR identification step emphasizes robustness and is less sensitive towards changes in
data acquisition and processing than existing methods. The process starts with a LC-ESI-MSMS
based molecular network dereplication using data from the GNPS collaborative collection. We
identify closely related structures by propagating structure elucidation through edges in the net-
work. Those identified compounds are added on top of a candidate list for the following NMR
filtering method that predicts HSQC and HMBC NMR data. The similarity of the predicted spectra
of the set of closely related structures to the measured spectra of the mixture sample is taken as
one indication of the most likely candidates for its compounds. The other indication is the match of
the spectra to clusters built by a network analysis from the spectra of the mixture. The sensitivity
gap between NMR and MS is anticipated and it will be reflected naturally by the eventual identifi-
cation of fewer compounds, but with a higher confidence level, after the NMR analysis step. The
contributions of the paper are an algorithm combining MS and NMR spectroscopy and a robust
nJCH network analysis to explore the complementary aspect of both techniques. This delivers
good results even if a perfect computational separation of the compounds in the mixture is not
possible. All the scripts will be made available online for users to aid studies such as with plants,
marine organisms, and microorganism natural product chemistry and metabolomics as those are
the driving force for this project.

1 Introduction
Natural products (NP) are an important source of new pharma-
cologically active compounds. Regrettably, the rapid extinction
of many unexplored plants and other organisms represents losses
of a broad range of potential new bioactive and valuable chem-
icals. An effective and challenge-free method of screening and
identifying NP is yet to be well established. Thus, there is a
need for new high-throughput approaches to be used as a stan-
dard procedure for accurately catalog NP. When a biologically
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relevant spectral feature is identified and it is listed in a given
database, the identification process is straightforward generating
a confidence index for the analytical data to a database match.
This is routinely done for biological samples especially in human
metabolomics studies, where the broad range of compounds is
well-known and well-recorded in various databases.1 This is not
the same for NP, where the chemical diversity is much broader
with varied physicochemical properties. Their available databases
are not well organized, comprehensive or publicly available. The
complexity of secondary metabolites biosynthesis leads to the op-
portunity of uncovering additional compounds at different stages
of the biosynthetic/metabolic pathway with similar core struc-
ture. Within this context, mass spectrometry (MS) and nuclear
magnetic resonance (NMR) play a leading role in yielding infor-
mative data for the identification of both known and unknown
organic chemical compounds. Both have benefits and drawbacks
that characterize their complementary usage in terms of sensi-
tivity, reproducibility and structural information they are able to
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Fig. 1 Overall approach from the MSMS analysis and compilation of the possible candidates to the NMR simulations and matching.

provide. Whereas MS shows high sensitivity and accuracy, but
low reproducibility, NMR shows low sensitivity, high reproducibil-
ity and efficiency to unambiguously elucidate complex structures.
If a single compound is analysed, the spectrum can be interpreted
and will reveal its structure. A molecular structure can be inferred
from the peaks in the so-called spectrum acquired from both MS
and NMR. In the case of mixtures, the spectrum corresponds to
the spectra of all compounds in one analysis. So a direct inter-
pretation as the result of a molecule is not trivial since all signals
from each component of the mixture will be shown.

1.1 Background

Mixtures analysis is a hot topic today within NP and metabolomics
including modern and complex algorithms. Specifically for NP,
the analysis of complex mixtures is often referred as derepli-
cation due to its goal to quickly identify known compounds
and prevent replicated results. Dereplication in NP was exten-
sively reviewed elsewhere.2 Open-access tools such as MZMine
and3 OpenChrom4 enable complex processing of MS data
and database matching using open-access or even user-defined
databases for dereplication; closed source options from different
companies are available as well but under copyright protection.
Global Natural Products Social Molecular Networking (GNPS) is
an important tool that calculates similarities networks among
the fragmentograms and enables a crowdsourcing approach for
dereplication.5 It uses open-access databases for spectra match-
ing and allows the user to submit data from putatively identified
compounds to a local database. New workflows are under de-
velopment for the use of in silico fragmentation for compound
identification.6 GNPS now includes a workflow for the use of in
silico fragmentation of candidate structures, namely Network An-

notation Propagation.7 Regarding NMR compound identification,
COLMAR8 is a broadly used tool for metabolomics mainly focused
on primary metabolites. It uses HMDB1 and BMRB9 as database
and it offers an interactive web interface. The underlying tech-
nique (called DemixC) for NMR analysis uses full high-resolution
TOCSY after covariance NMR to deconvolute pure spectra from
redundant connectivity information from the cross peaks. Statis-
tical techniques are then used to find correlated changes in the
cross peaks and allows separation of the spectra of the individual
compounds from the measured spectra.10 The use of 13C NMR for
compound identification is a trend in the last decade11–14, prob-
ably due to the increasing sensitivity of dedicated (micro- and
nano-)probes. Undeniably the 13C resonances are less affected
by external parameters such as solvent, pH or temperature than
1H resonances, but the low sensitivity of direct 13C detection is
still prohibitive. The INETA package was designed to use INAD-
EQUATE NMR data using mainly BMRB9 and assigned 13C reso-
nances as database for compound identification, but yet it is only
feasible for 13C labeled samples. Another interesting approach
was developed for a computer-aided 13C profile of NP that uses
1D 13C NMR data and an in-house search algorithm based on sim-
ulated NMR data from predefined candidates.15 Later, the same
group extended this approach by using HMBC NMR data for com-
pound identification using a community detection algorithm.16

Differential analysis of 2D NMR spectra (DANS) compares spectra
from different biological states. If some signals vary significantly
between two spectra, they are assumed to come from compounds
unique to a particular sample.17
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Tolerance
RBER
Resolution 13C: 0, 1H: 0 13C: 0.2, 1H: 0.02
0.2 3/7, 2/6, 1/5, 1/2,

15/1
1/28, 1/15, 5/2, 2/1

0.5 3/7, 2/6, 1/5, 1/2,
15/1

1/28, 1/10, 1/5, 5/2,
2/1

1 3/7, 2/6, 1/5, 1/2,
15/1

1/15, 1/13, 1/7, 1/5,
1/3, 5/2, 2/1

10 3/5, 2/4, 3/3, 3/2,
17/1

1/6, 2/5, 3/4, 2/3,
8/2, 5/1

Table 1 The clustering achieved for the HMBC cross peaks of a mixture
of caffeine and ferulic acid. Various settings for the chemical shift
tolerance and the resolution parameter of the RBER algorithm were
tested. 1/28, 5/2... means there was 1 cluster with 28 elements, 5 with 2
elements etc.

2 Methods
2.1 Overview of the method
The overall method we present here starts with a general com-
pound identification scheme using LC-ESI-MSMS and molecular
networks as described elsewhere.18 We also searched a list of ex-
pected compounds in the literature assuming chemotaxonomical
relations within the plant species and genus as well as compounds
from related biosynthetic pathways. Once we have identified a set
of lead compounds using MS data and chemotaxonomic review,
we searched for similar known compounds through Pubmed and
list them together as possible candidates (Fig. 1). Thus, this ap-
proach filters compound by structural variations rather than by the molec-
ular mass only. For the candidates identified, we predict HMBC and HSQC
NMR spectra and compare them to the measured spectrum of the mixture
for every candidate (see Section 2.3 for details). The goal is to design a
redundant process to confirm the MS compound identification using 2D
NMR and increase confidence. For this, we have designed output param-
eters, which calculate how well the simulated spectra fit to the measured
data, and the candidates are ranked accordingly.

2.2 NMR Network Analysis
An NMR network analysis was suggested in 16. This is based on the idea
that in an HMBC spectrum cross peaks originating from one compound
should either share the 13C or the 1H chemical shift. So an initial network
is built from the long-range proton-carbon couplings. If a complete sepa-
ration is not possible by this, a community clustering algorithm should
separate the subnetworks for the individual compounds in the overall
network, assuming that there should be more connections between cross
peaks within one compound than to the other compounds. In 16 the RBER
(Erdös-Rényi null-model) method is used, with the resolution parameter
set to 0.2. This method divides the network into clusters based on the
density of the connections inside the clusters compared to the density of
connections to other clusters. It optimizes the clusters to have many con-
nections within, but few to other clusters. Cross peaks from the same
compound should share many chemical shifts. In contrast, different com-
pounds should share chemical shifts rarely, by a combination of similar
substructures and not enough resolution in the measurement. Therefore,
the clusters should mostly correspond to cross peaks from one structure,
not from several structures.

It is reported in 16 that this process yields as many clusters as there are
compounds in the mixture, with each cluster corresponding to the cross
peaks from one compound. The cross peaks from each cluster can then be
matched against a database of compounds to identify the components of
the mixture.

In order to verify the approach we tested it with the mixture of caffeine

and ferulic acid described in Section 4. The HMBC spectrum yields 55
cross peaks. We firstly built a network of HMBC cross peaks using the
0.2/0.02 ppm tolerance and then applied the RBER using the suggested
0.2 resolution parameter. We then varied these parameters. Table 1 shows
the numbers of clusters and their size derived with different resolution
parameters for the RBER algorithm. As expected, we obtained two large
clusters by setting the resolute parameter to 0.2. We listed the observed
cross peaks (numbered from 1 to 55) in the clusters, and underline them
if there is a matching cross peak for caffeine and overline them if there
is a matching cross peak for ferulic acid. 42 of the 47 predicted chemical
shifts are matched to a measured chemical shift. We get the following list:

[1,2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,38,39,45,
46,47,50,52]
[5,30,31,32,35,37,41,42,44,48,49,51,53,54,55]
[19,40]
[24,25]
[26,27]
[28,29]
[33,34]
[36]
[43]
We can see that the two large clusters correspond roughly to the two

compounds, but the separation is not perfect. Furthermore, when using
different parameters for resolution and tolerance, the number of clusters
varies. We list the cross peaks for resolution 0.2 and tolerance 0 ppm for
both axes in the same fashion as before, with the cross peaks matched
marked by underline/overline, and visualize this in Fig. 2 (15 clusters
with one cross peak have been left out for clarity):

[5,31,32,35,36,37,41]
[1,10,11,15,16,23,39]
[4,7,8,9,13,14,17]
[3,6,9,12,20,21]
[48,49,51,53,54,55]
[22,38,44,46,47]
[24,25]
There no clean separation, but we can still see a clustering pattern: In

the clusters, most of the cross peaks belong to one compound.
Overall it is clear that the separation depends on the parameters. Fur-

thermore, with more complex mixtures the best parameter setting may
change. Finally, we found that the data processing and peak picking can
influence the separation. On the other hand, even if a complete sepa-
ration is not possible, the cross peaks for the compounds still fall mostly
within specific clusters. They are not spread out over all clusters. We have
also confirmed that some test compounds other than caffeine and ferulic
acid do not show such a clustering pattern when tested against the caf-
feine and ferulic acid mixture. The cross peaks of those other compounds
either do not match any cross peaks or spread out over all clusters.

2.3 NMR Filtering by Network Analysis
Considering our results when using the NMR network analysis, we believe
that a reliable separation of compounds is not always possible. If this
would be possible, each cluster could be matched against the predicted
spectra. Even though a reliable separation is not possible, the clusters still
somehow relate to the compounds. Since we have a list of possible can-
didates from the MS experiments, we have therefore devised a modified
algorithm. This does not assume that one cluster represents one com-
pound, but that clusters contain cross peaks belonging to one compound.
Even if it would be possible to achieve full separation by fine-tuning the
measurement and the data processing and peak picking, our results in-
dicate that the full separation is quite sensitive and is not guaranteed to
work. Therefore our method is designed to be more robust and less de-
pendant on the quality of the data. We call our method NMR filtering
by network analysis. If the clustering separates the compounds exactly,
the simulated spectra should cover exactly one clusters. So the procedure
in 16 is actually a special case of our algorithm.

Once a list of candidates has been generated using the MS analysis, the
results are ranked according to the likelihood of their occurrence in the
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Fig. 2 The clusters derived from the HMBC spectrum of caffeine and ferulic acid with tolerances set to 0 for both chemical shifts and the RBER
resolution set to 0.2, with the compounds mapped onto them. Cross eaks for ferulic acid are blue, those for caffeine red, cross peaks mapped to both
are in both colours. Cross peaks used for none are in black.

2D NMR spectra. Core ideas presented in 16 are used for this, but they are
extended and generalized in the present approach that uses established
techniques, but modifies them by introducing new elements. The core
steps of our approach are:

• We use HSQC and HMBC spectra, measured and peak-picked as
explained in Section 4. The cross peaks of both spectra were put into
a single list, with the 13C chemical shift being the first dimension and
the 1H chemical shift being the second dimension.

• Every cross peak is a node in the NMR network we built in the next
step. An edge between two nodes is added to the network if two
cross peaks share a chemical shift on the 13C or 1H axis. A tolerance
of 0.2 ppm for 13C chemical shifts and 0.02 ppm for 1H chemical
shifts is applied here. These values have been found experimentally
and can be changed if desired. As cross peaks from the same com-
pound should share either the 13C or the 1H chemical shift value(s)
with other cross peaks from the same compound, this gives an initial
network.

• The resulting network is analysed using the RBER algorithm. The
resolution parameter is set to 0.2. Again, this can be changed. As
explained, inside the clusters produced, the cross peaks should orig-
inate predominantly from one compound, even if a complete sepa-
ration is not possible.

• We then predict the HSQC and HMBC spectra for the candidate
structures derived from MSMS. The combined spectra for each of
the compounds are then mapped onto the measured spectrum.
From the mapping, we calculate two measures: a) the distance of
the simulated spectrum to the measured spectrum and b) the distri-
bution of the cross peaks matched in the measured spectrum within
the clusters calculated in the previous steps. For details of the cal-
culation see the description of the implemenation below.

• We normalize both measures to range from 0 to 1 and use the aver-
age of the two measures as the likelihood of a compound to be part
of the mixture.

In this algorithm, we map the cross peaks of the simulated spectrum
of each candidate onto the whole spectrum and calculate the distribu-
tion over all clusters. Ideally, the cross peaks should cover some clusters
completely and not have any cross peaks in the remaining clusters. So
we have the distribution in the clusters and the distance of the simulated
spectrum to the best match in the measured spectrum for each candidate
as indication of how likely the candidate is to occur in the mixture. In or-
der to improve the clustering, we include HSQC and HMBC spectra in our
clustering (as opposed to 16, which uses HMBC only). All of these have
13C-1H cross peaks, which are treated the same, forming one network,
to which the clustering is applied. The spectrum simulation is also done
for HMBC and HSQC spectra and these cross peaks are mapped onto the
combined spectra.

Our approach is illustrated in Section 2.2 and Figure 2. They demon-
strate that the cross peaks for the compounds fall mostly within specific
clusters. This is true even if a complete separation is not achieved.

We have implemented the described procedure as a set of Python script,
including a Java program to do the prediction, and a shell script to run the
overall procedure. Data are transferred between scripts via text files. This
is primarily intended as proof of concept, a full application is part of the
future work. The detailed algorithm for the NMR ranking is as follows:

• For each candidate structure originating from the MSMS step
we simulate the combined HSQC and HMBC spectra using the
prediction mechanism of nmrshiftdb2 19. The Java code in
simulate.jar extracts pairs of atoms from the molecule, which
are assumed to generate a cross peak in one of the spectra, and
writes the pair of chemical shifts of these atoms into a peaklist. For
HSQC, cross peaks are built for all atoms pairs one bond away, and
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for HMBC, for all atom pairs two or three bonds away. Couplings
and intensities are currently not included, the cross peaks are based
on topology only. Experience shows that this gives a sufficient ap-
proximation. The chemical shift prediction is based on HOSE codes,
uses solvents when possible, and respects wedge bonds if data are
available. 20

• We form a single list of cross peaks out of the HSQC and HMBC
spectra measured for the mixture. This list is provided to the
clustering.py script, which builds a network as described, using
the tolerances from the nmrproc.properties file.

• The network generated is processed by clustserlouvain.py.
This applies the RBER algorithm, using the louvain library. 21 The
resolution value is taken from the nmrproc.properties file. The
result is a list of clusters, containing all cross peaks from the mea-
sured spectra in some cluster.

• For every simulated spectrum, we find the nearest matching cross
peaks in the measured spectrum. This is done by calculating the
distance between each cross peak in the simulated spectrum and
each cross peak in the measured spectrum. The formula for this is
as follows:

distance(peak1, peak2) =

(abs(peak1x − peak2x )+abs(peak1y − peak2y )∗10)2 (1)

This squares the distance between the two cross peaks on the 1H and
13C axis and adds them. The 1H chemical shift is multiplied by 10 to
normalize the range, assuming 13C ranges from 0 to 200 ppm and
1H from 0 to 20 ppm. The factor 10 is commonly used, e. g. in 16

the tolerance for carbon chemical shifts is 1.5 ppm and for hydrogen
chemical shifts it is 0.15 ppm. The squaring includes variance and
bias, similar to the mean squared error in statistics. This gives us a
matrix of size n∗m, where n is the number of cross peaks in the mea-
sured spectrum and m the number of cross peaks in the simulated
spectrum. We then use the function linear_sum_assignment
from the scipy.optimize package to find the minimal combina-
tion of these costs, which assigns exactly one cross peak to every
cross peak in the measured spectrum. The sum of the costs of this
minimal combination is the distance of the simulated spectrum to
the measured spectrum, which is our first reliability measure. As
opposed to other methods 22, we do not have a fixed limit for cross
peaks to match, rather we search for a best match and calculate the
distance. Together with the squared distance, this should give us a
robust mapping.

• We have previously created the clusters containing the measured
cross peaks. In the previous step, we have mapped each simulated
cross peak onto one measured cross peaks. Therefore, we can now
calculate the fraction of cross peaks in each clusters, onto which a
simulated cross peak is mapped. Our distance measure will map
each simulated cross peak onto some measured peak, even if they
are very much apart. For the distance measure this is not a problem,
since it will mean a very high distance value in cases of bad matches,
which in turn means the compound will not be considered a good
match. For the clustering step, we only use mappings where the
distance is less than 9 which corresponds to a value of 1.5 ppm for
the 13C chemical shift and 0.15 ppm (remember the factor of 10)
for the 1H chemical shift, which are the cut offs used in 16. This step
gives us n decimal numbers between 0 and 1 (since it represents
the fraction of mapped peaks, which is between 0 for no mapping
and 1 for all peaks mapped), n being the number of clusters. We
then calculate the standard deviation, using the std method of the
numpy package of these numbers for each simulated spectrum. The
standard deviation is the second reliability measure.

• In the last step, both reliability measures are normalized to range
from 0 (best) to 1 (worst). For each simulated spectrum, and there-
fore for each candidate compound, they are added and the com-

pounds are ranked by this combined reliability measure, the com-
pound with the lowest value being the most likely candidate.

It should be noted that the current code is not optimized for perfor-
mance. Running it on a laptop with an Intel Core i5 6300U CPU for the
P. boldus mixture discussed in the next section takes around 4 minutes.
This will be improved in the planned application, but for this type of task a
very quick solution cannot be expected, given the amount of information
involved.

3 Results
We collected MS data in high resolution under ddMS2 Top3 experiments
to yield close to 5000 scan in more than 2500 Mb file. We converted the
raw data to .mzXML for network calculations using the GNPS web sys-
tem and, then, we used Cytoscape for visualization and further analysis
(Fig. 3, section A). From the MS spectra, we could visualize high inten-
sity key features that would indicate well-known components of the alka-
loidic fraction of P. boldus. Boldine (at m/z 328.15), coclaurine (at m/z
286.14), and norreticuline (at m/z 316.15) are well-known components
of the aporphine-like pool of alkaloids from this species 23; other close
related (delta-m/z 14, 12 and 16) features (at m/z 300.15, 342.17 and
358.16) are also displayed at the MS scan (Supplementary Information).
Nonetheless, the use of molecular networking for structure elucidation en-
able the enrichment of the list of candidates, and adding others that are
close related or of expected occurrence. The GNPS processed data can
be accessed here.∗ GNPS promptly identified boldine within a network
of 94 nodes; this finding enable us to relay the information and elucidate
the possible structure for the close related nodes. 14 structures were sug-
gested in this stage (Fig. 3, section B). Thus, we identified a core structure
as being of an aporphine-like alkaloid and used that to extend the list of
candidates with similar known compounds (from Pubmed) and other that
plays a role in their most accepted biosynthesis pathway (Fig. 3, section
C). 24 We took the compounds from the MS side of the method and listed
them as SMILES structures as preparations for the NMR filtering. Note
that the sensitivity gap between NMR and MS is anticipated and will be
reflected naturally by the eventual annotation of fewer compounds after
NMR analysis side of the method. This is due to the peak intensity of MS
data which is structure-dependent and vary highly according to the ion-
ization technique. In contrast, peak intensity in NMR is mainly dependent
on the spin concentration, 1H in the case discussed here.

The HMBC and HSQC spectra for P. boldus gave 1034 cross peaks. Run-
ning the clustering algorithm on these yields 193 clusters. The largest has
257 cross peaks, 75 clusters have one peak, the other clusters are some-
where in between in size. The average size of the clusters is 4.36, the
median is 2. We simulate the spectra for the compounds derived from the
MS step. Calculating the similarity and clustering for them, gives a rank-
ing for the compounds. The first ten compounds and the last compound
are as follows:

1: OC1=C(OC)C=C(C(CC2=CC=C(O)C=C2)NCC3)C3=C1 ,
d i s t ance : 0.21 , standard dev ia t i on : 1 .00; 1−[(4−
hydroxyphenyl ) methyl]−7−methoxy−1,2,3,4−
t e t r ahyd ro i soqu ino l i n −6−o l

2: OC1=C(O)C=C(CCN[C@@]2([H])CC3=CC=C(O)C=C3) C2=C1 ,
d i s t ance : 0.23 , standard dev ia t i on : 0 .99; (S)−
Norcoc laur ine

3: OC1=C(O)C=C(C(CC2=CC=C(O)C=C2)NCC3)C3=C1 , d i s t ance
: 0.24 , standard dev i a t i on : 0 .98; Norcoc laur ine

4: CC1CN(C)C2CC3=CC=CC=C3C4=C2C1=CC=C4 , d i s t ance :
0.26 , standard dev ia t i on : 0 .99; 4,6−dimethyl
−5 ,6 ,6a,7− te t rahydro−4H−dibenzo [de , g] qu ino l ine

5: OC1=C(OC)C=C(CCN[C@@]2([H])CC3=CC(O)=C(OC)C =C3)C2
=C1 , d i s t ance : 0.20 , standard dev ia t i on : 0 .84; (S
)−N o r r e t i c u l i n e

∗See the link https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

4275dd938bdf4eea8f30a59afdcfc671
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Fig. 3 Main molecular network and list of candidates.

6: OC1=C(OC)C(C(C([H])=C(OC)C(O)=C2)=C2C3)=C( C3N(C)
CC4)C4=C1 , d i s t ance : 0.13 , standard dev ia t i on :
0 .73; (+)−(S)−Boldine

7: OC1=C(OC)C=C(CCN[C@@]2([H])CC3=CC=C(O)C=C3)C2=C1 ,
d i s t ance : 0.23 , standard dev ia t i on : 0 .82;
Coc laur ine

8: CCC1CN(C)C2CC3=CC=CC=C3C4=C2C1=CC=C4 , d i s t ance :
0.26 , standard dev ia t i on : 0 .81; 4−ethy l−6−methyl
−5 ,6 ,6a,7− te t rahydro−4H−dibenzo [de , g]

9: OC1=C(OC)C=C(CCN(C) [C@@]2([H])CC3=CC(O)=C(O) C=C3)
C2=C1 , d i s t ance : 0.16 , standard dev ia t i on : 0 .67;
(S)−3−Hydroxy−N−methy lcoc laur ine

10: NCCC1=CC(O)=C(O)C=C1 , d i s t ance : 0.00 , standard
dev ia t i on : 0 .47; Dopamine

. . .
66: O=C(C(O)=O)CC1=CC=C(O)C=C1 , d i s t ance : 0.99 ,

standard dev ia t i on : 0 .00; 4−Hydroxyphenylpyruvate

The first hits have high standard deviations (due to normalizing 1 is
maximum), meaning they fall into a low number of clusters. They also
have relatively high distance to the measured spectrum (0 being optimal).
Lower in the list, we get better similarities, but still relatively high cluster-
ing. The last hit has high distance and a low standard deviation, making

it a highly unlikely candidate. This ranking validates the MS-only based
dereplication yielding higher confidence to the result. The successful iden-
tification of such aporphine alkaloids (1-[(4-hydroxyphenyl)methyl]-7-
methoxy-1,2,3,4-tetrahydroisoquinolin-6-ol, norcoclaurine, 4,6-dimethyl-
5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline, norreticuline, boldine,
coclaurine, 4-ethyl-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g] and
3-Hydroxy-N-methylcoclaurine) using both MS and NMR matches the ex-
perimental results for P. boldus from the previous studies 23.

4 Experimental section

4.1 Chemicals

HPLC grade Methanol and Ethyl Acetate, LC-MS grade formic acid and
HCl and NaOH were acquired from Tedia-Brazil (Rio de Janeiro, RJ,
Brazil); D2O (99.0%), methanol-d4 and chloroform-d1 were acquired
from Cambridge Isotope laboratory, Inc. (Andover, MA, USA); caffeine
and ferulic acid were acquired from Sigma-Aldrich (St. Louis, MO, United
States). Deionized water was purified by a Millipore Milli-Q Gradient A
10 System (Burlington, MA, USA).
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4.2 Plant Material and Sample preparation

Peumus boldus dry leaves from different brands were purchased from dif-
ferent commercial locations in Rio de Janeiro (RJ, Brazil). Samples of 1 g
of each were combined and an aliquot (1 g) was saved for the extraction.
This representative aliquot was extracted with aqueous HCl 0.02M (15
ml) at pH 2.5 under ultrasound for 5 minutes. Then, three successively
liquid-liquid extractions were performed with 5 ml of Ethyl Acetate. The
pH of the aqueous phase was increased to 9 with 1 ml of aqueous NaOH
(1 M) and three successive extractions were again performed with 5 ml of
Ethyl Acetate. The combined organic phases was concentrated to dryness
under vacuum to yield 22.6 mg of a crude alkaloid extract. This prepa-
ration was made in three replicates. The final samples were divided into
2 aliquots each. 20% of it was resuspended in methanol for LC-MSMS
analysis and the remaining 80%, in chloroform-d1 for the NMR analysis;
for the NMR analysis the replicates were combined. The caffeine and fer-
ulic acid mixture was prepared in methanol-d4 as concentrated samples,
centrifuged and transferred to 3 mm NMR tubes.

4.3 Liquid Chromatography-Tandem Mass Spectrometry
Analysis

Ultra-high performance liquid chromatography analysis was performed
on a 1260 Infinity Liquid Chromatography system (Agilent) consisting of a
quaternary solvent delivery pump and a column oven compartment. Sam-
ples (10 µL) were injected using and separated on an Agilent Extend-C18
column (2.1x50 mm, 1.8 µm particle size) at 300 µL min−1 maintained
at 40 oC. The mobile phase consisted of (A) 0.1% formic acid and (B)
0.1% formic acid in methanol in gradient elution mode (0 min 15% B;
0-10 min 100% B; 10-18 min, 15% B; 18.5-25 min 15%). The UHPLC
system was coupled to a Q-TOF high resolution and accurate mass spec-
trometer (Agilent) equipped with an electrospray ion source (Dual ESI;
Agilent) operating in positive ionization mode. Source ionization param-
eters were: spray voltage 3.5 kV; capillary temperature 350 oC; gas flow
10 l/min; nebulizer 25 psi; skimmer1 65; isolation width MS/MS medium
(˜ 4 amu); fixed collision energy for MS/MS 30. Samples were analysed
in the scan range of m/z 100 to 1700 (for MS and MS/MS) at a scan
rate of 3 spectra/sec followed by data-dependent MSMS (ddMS2 Top3
experiments) at a scan rate of 2 spectra/sec. The acquired data were
converted to mzML or mzXML files using the software MSConvert (Prote-
oWizard; proteowizard.sourceforge.net/tools.shtml). GNPS network pa-
rameters were: MS Fragment Ion Tolerance: 0.02; MS/MS Fragment Ion
Tolerance: 0.02; Minimum MS/MS Peak Intensity: 0.0; Run MSCluster:
on; Minimum Consensus Cluster Size: 1; Minimum Matched Peaks in
Network Edge: 4; Minimum MS/MS cosine score in Network Edge: 0.65;
Number of Neighbors to Retain in Network: 10; Maximum Connected
Component Size: 100. The resulted networks were plotted using the Cy-
toscape software (http://www.cytoscape.org).

4.4 Nuclear Magnetic Resonance Analysis

NMR data was collected using a 800 MHz and a 600 MHzBruker Avance
III equipped with a 1.7 mm TCI cryoprobe and a 5 mm DCH D/H-C car-
bon cryoprobe, respectively. The pulse sequence hsqcedetgpsp.3 under
non-uniform sampling mode (35% of NUS amount and 896 NUS points;
4096 and 5120 points for F2 and F1, respectivelly; 28.45 points/ppm)
was used to acquire the edited HSQC data (24 scans, optimized for 1JCH
=145 Hz; 18h 15 min), and hmbcetgpl3nd under non-uniform sampling
mode (30% of NUS amount and 768 NUS points; 4096 and 5120 points
for F2 and F1, respectively; 23.27 points/ppm) for the HMBC data (24
scans, optimized for3JCH=8 Hz; 14h 22 min). For the test sample (caf-
feine plus ferulic acid) the NMR data was collected using hsqcedetgpsp.3
under non-uniform sampling mode (1024 and 256 points for F2 and F1,
respectivelly) was used to acquire the edited HSQC data (4 scans, opti-
mized for 1JCH =145 Hz; 8 min), and hmbcetgpl3nd under non-uniform
sampling mode (4096 and 256 points for F2 and F1, respectivelly) for the
HMBC data (4 scans, optimized for 3JCH=8 Hz; 7 min).

5 Conclusion
We have demonstrated a method to infer a list of candidate compounds
for complex natural product mixtures. Our method combines MS and
NMR techniques to give confidence in the results. The MS step yields a
relatively broad result, ensuring coverage of all possible compounds. The
NMR step does not rely on predefined libraries, but ranks the suggestions
by using their predicted NMR spectra. The prediction can be done for a
range of naturally occurring products with a reasonable average error. 20

We found that a full distinction of the compounds in the spectrum is not
needed to rank the candidates. Since a full distinction is difficult and in
many cases not possible, we consider the combination of prefiltering and
ranking a promising approach. It gives reasonable results even if the peak
data are not optimal, due to problems in measurement or data processing.
There are indications that the results provide a good match with the actual
compounds, but more work to verify this is needed. In particular, larger
datasets will be examined by the authors.

We have used an artificial mixture to demonstrate the NMR filtering
step and have demonstrated the overall approach using an alkaloid en-
riched extract of P. boldus. A major advantage is that no special sample
preparation or experiments are needed. Both the MS and NMR exper-
iments are standard and can be used almost as default. Even though
better resolution and higher sensitivity will improve the results, the use of
older or less sophisticated equipment is still possible. Furthermore, once
the experiments are performed, the processing is relatively quick and will
be even more with more automation, which we intend to make possible.

5.1 Future work
The process as presented in this paper is only partially automated. The
computational parts are currently done in a command line interface with-
out possibility for user interaction. We aim to increase automation and
make the interface more user-friendly in a next step. We consider inte-
grating the program either into a workflow tool like KNIME or a platform
like Bioclipse. The inclusion of nJHH data in the NMR network analysis
will be part of this.

Concomitantly, we are applying this approach to other samples and
fractions for a broader range of applications; mainly the NMR filter will
benefit significantly by reducing the complexity and the dynamic range
with a low-resolution fractionation step. The goal is to establish a source
independent tool for dereplication of NP to be used as driving force to-
wards novelty discovery. The scripts will be made freely available and it
will enable data submission to databases as integral part. New samples of
terrestrial plant, marine organisms, microorganisms, fungi and corals are
some of the examples to be exploited in the near future.
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