
From Use Case Diagrams to Executable Context-

aware Ambients

Francois Siewe

Software Technology Research Laboratory

De Montfort University

Leicester, United Kingdom

fsiewe@dmu.ac.uk

Ahmed Al-alshuhai

Software Technology Research Laboratory

De Montfort University

Leicester, United Kingdom

p07143453@myemail.dmu.ac.uk

Abstract—This paper proposes an approach to translating a use

case diagram into an executable context-aware ambients. The

requirements of a context-aware system is captured and

represented in an extension of UML use case diagrams called

context-aware use case diagrams. Then an algorithm is proposed

that translates a context-aware use case diagram into a process in

the Calculus of Context-aware Ambients (CCA). This process can

then be analyzed using the CCA simulator. The proposed

approach is evaluated using a real-word example of a context-

aware collision avoidance system.

Keywords-Use case diagram; use context diagram; context-

aware use case diagram; calculus of context-aware ambients; CCA

I. INTRODUCTION

Context-aware computing envisions a new generation of
smart applications that have the ability to perpetually sense the
user’s context and use these data to make adaptation decision
in response to changes in the user’s context so as to provide
timely and personalised services anytime and anywhere.
Thanks to the advances in information and communications
technology, the emergence of small sensing devices (e.g. GPS,
accelerometer, and gyroscope) and miniaturized wireless
communication technologies (e.g. blue-tooth, WiFi, and
RFID) embedded in small handheld or wearable computing
devices such as smartphones is making this paradigm steadily
becoming a reality.

Unlike the traditional distribution systems where the
network topology is fixed and wired, context-aware
computing systems (CASs) are mostly based on wireless
communication due to the mobility of the network nodes;
hence the network topology is not fixed but changes
dynamically in an unpredictable manner as nodes join and
leave the network. These factors make the design and
development of context-aware computing systems much more
challenging as the system requirements change depending on
the context of use.

The notion of context-aware use case diagram has been
proposed [1] as an abstract, graphical notation for describing
the requirements context-aware systems. It is a powerful tool
for requirement capturing and analysis at the early stage of the
system development life-cycle. More importantly, it
seamlessly integrates both the functional requirements and the

context-awareness requirements, showing the dependencies
between the two types of requirements. However, these use
case diagrams can be interpreted manually but are not machine
executable. Therefore the analysis of these diagrams may be
time consuming and physically demanding, especially for
large scale systems. Meanwhile, a machine executable version
of these diagrams will ease and speed up requirements
analysis a great deal, and enable various scenarios to be tested
and validated timely.

The Calculus of Context-aware Ambients (CCA) [2] is a
process calculus for modelling context-aware and mobile
systems. The main features of the calculus include
concurrency, mobility and context-awareness. More
importantly, CCA processes are fully executable and can be
analysed using the SPIN model-checker [3].

This paper proposes an approach to translate a context-
aware use case diagram into a CCA process. This process can
then be analysed using the CCA tools such as ccaPL the
interpreter and ccaSPIN a model-checking tool based on
SPIN. The contribution of this work is threefold:

 An algorithm is proposed to translate a context-aware
use case diagram into a CCA process (Sect. IV).

 It is demonstrated how ccaPL can be used to analyse
system requirements through simulation (Sect. V).

 The proposed approach is evaluated using a real-word
example of a context-aware collision avoidance
system (Sect. V).

II. OVERVIEW OF CONTEXT-AWARE USE CASE DIAGRAMS

A context-aware use case diagram (CA-UCD) is built from
a set of use cases, use contexts, actors, context sources (CSs)
and their relationships. Use cases are used to capture the
functional requirements of applications. A use case describes
the desired behaviour of an application or part of an
application (i.e. what an application or part of an application
can do), without telling how that behaviour is to be
implemented. A use case has a name and is graphically
rendered as an ellipse as depicted in Fig. 1. Use contexts are
used to capture the relevant CIs that affect the behaviour of the
application under development, without having to specify how
the measurement of those CIs is actually implemented. They

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228198991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

also provide the developers a way to come to a common
understanding with the application’s end user and domain
experts as to what CIs the application must be aware of. They
are a description of a set of sequence of actions, including
variants that an application performs to acquire, to infer or to
aggregate CIs from CSs. A use context has a name and is
graphically rendered as a dashed ellipse.

An actor represents a coherent set of roles that users of use
cases play when interacting with these use cases [4]. Actors
can be human or they can be automated systems. An actor is
connected to a use case by an association (graphically
rendered as a solid line) which indicates that the actor and the
use case communicate with one another, possibly by
exchanging messages. An actor is represented graphically as a
stick figure like in Fig. 1. Context sources are to use contexts
what actors are to use cases. Use contexts communicate with
context sources to gather raw context data from which CIs are
calculated. Typically, context sources are sensors; physical
sensors (e.g. a temperature sensor or a light sensor) and virtual
sensors (e.g. a weather web service or a calendar) alike.
Graphically they are rendered as shown in Fig. 1. Context
sources may be connected to use contexts only by a context
association represented by a dashed line.

There are three kinds of relationships between use cases.
A generalization relationship between use cases means that the
child use case can inherit the behaviour and the meaning of the
parent use case; the child may add to or override the behaviour
its parent; and the child may be substituted any place the
parent occurs [4]. The generalization relationship is
represented graphically as a solid directed line with a large
open arrowhead. For example in Fig. 1, ‘use case 1’ is a
generalization of `use case 2'. Conversely, ‘use case 2’ is a
specialization of ‘use case 1’.

An include relationship between use cases means that the
base use case explicitly incorporates the behaviour of another
use case; while an extend relationship between use cases
means the base use case implicitly incorporates the behaviour
of another use case. Graphically, both relationships are
rendered as a dependency, stereotyped as <<include>> and
<<extend>> respectively. In Fig. 1, ‘use case 1’ includes ‘use
case 4’ while ‘use case 2’ extends ‘use case 3’.

These three kinds of relationships also apply to use contexts.
An include relationship is used to avoid describing the same
CI several times, by putting the common CI in a use context of
its own. An extend relationship is used to model the part of a
use context the user may see as optional CI. In this way,
optional CIs are separated from mandatory ones. The utilize
relationship is the only relationship between a use case and a
use context. A utilize relationship between a use case and use
context means that the behaviours specified by the use case
depend upon the CIs described by the use context. For
example, ‘use case 3’ utilizes ‘use context 2’ and ‘use context
3’. A utilise relationship is graphically rendered as a
dependency, stereotyped as <<utilize>>, like in Fig. 1. A
utilize relationship always points from a use case towards a
use context.

III. OVERVIEW OF CCA

This section presents the syntax and the informal
semantics of CCA. Table I depicts the syntax of CCA, based
on three syntactic categories: processes (denoted by P or Q),
capabilities (denoted by M) and context-expressions (denoted
by κ). We assume a countably infinite set of names, elements
of which are written in lower-case letters, e.g. n, x and y.
Keywords are highlighted in bold.

Processes: The process 0, aka inactivity process, does
nothing and terminates immediately. The process P|Q denotes
the concurrent execution of the processes P and Q. The
process (ν n) P creates a new name n and the scope of that
name is limited to the process P. The replication !P denotes a
process which can always create a new copy of P, i.e. !P is
equivalent to P|!P. Replication, first introduced in the π-
calculus [5], can be used to implement both iteration and
recursion. The process n[P] denotes an ambient named n
whose behaviours are described by the process P. The pair of
square brackets ‘[’ and ‘]’outlines the boundary of that
ambient. An ambient is represented graphically as:

n

P

A context expression specifies a condition upon the state
of the environment. A context-guarded prefix κ?M.P is a
process that waits until the environment satisfies the context
expression κ, then performs the capability M and continues
like the process P. The dot symbol ‘.’ denotes the sequential
composition of processes. We let M.P denote the process
true?M.P, true is a context expression satisfied by all context.
The selection ‘if κ1?M1.P1 … κm?Mm.Pm fi’ waits until at least

Figure 1. Context-aware use case diagram

TABLE I. SYNTAX OF CCA

P, Q

M

α

κ

::=

::=

::=

::=

0 | ‘P|Q’ | (ν n) P | !P | n[P] | κ?M.P |

if κ1?M1.P1 … κm?Mm.Pm fi

in n | out | α recv(y1, …, ym) |

α send(z1, …, zm)

↑ | n↑ | ↓ | n↓ | :: | n:: | ε

True | ● | n=m | ¬κ | ‘κ1|κ2’ | κ1˄κ2 | κ | ◊κ

one of the context-expressions (κi)1≤i≤m holds; then proceeds
non-deterministically like one of the processes κj?Mj.Pj for
which κj holds.

Capabilities: Ambients exchange messages using the
output capability α send(z1, …, zm) to send a list of names z1,
…, zm to a location α, and the input capability α recv(y1, …,
ym) to receive a list of names from a location α into the
variables y1, …, ym. The location α can be ‘↑’ to mean any
parent, ‘n↑’ to mean a specific parent n, ‘↓’ to mean any child
ambient, ‘n↓’ to mean a specific child n, ‘::’ to mean any
sibling, ‘n::’ to mean a specific sibling n, or ε (empty string) to
mean the executing ambient itself. The mobility capabilities in
and out are defined as follows. An ambient that performs the
capability ‘in n’ moves into the sibling ambient n. The
capability out moves the ambient that performs it out of that
ambient's parent.

Context model: In CCA, a context is modelled as a process
with a hole in it. The hole (denoted by ʘ) in a context
represents the position of the process that context is the
context of. For example, suppose a system is modelled by the
process ‘P | n[Q | m[R | S]]’. The context of the process R in
that system is ‘P | n[Q | m[ʘ | S]]’, and that of the ambient
named m is ‘P | n[Q | ʘ]’ as depicted graphically in Fig. 2. A
context-expression (CE, for short) is a formula representing
some property of a context model.

Context expressions: The CE true always holds. A CE
n=m holds if the names n and m are lexically identical. The
CE ● holds solely for the hole context, i.e. the position of the
process evaluating that context expression. Propositional
operators such as negation (¬) and conjunction (˄) expand
their usual semantics to context expressions. A CE κ1|κ2 holds
for a context if that context is a parallel composition of two
contexts such that κ1 holds for one and κ2 holds for the other.
A CE n[κ] holds for a context if that context is an ambient
named n such that κ holds inside that ambient. A CE κ holds
for a context if that context has a child context for which κ
holds. A CE ◊κ holds for a context if there exists somewhere
in that context a sub-context for which κ holds. The operator ◊
is called somewhere modality, while is aka spatial next
modality.

The following section demonstrates how a context-aware
use case diagram can be translated into a CCA process.

IV. TRANSLATING USE CASE DIAGRAMS INTO CCA

PROCESSES

Algorithm 1 shows how a context-aware use case diagram
can be translated into a CCA process. It calls

two other algorithms: Algorithm 2 which translates each actor
and each use case into an ambient; and Algorithm 3 which
translates each context source and each use context into an
ambient. The final process is the parallel composition of all
the ambients so created. Note that associations and
dependency relationships are modelled as interactions (i.e.
communications) between these ambients.

An actor is modelled as ambient that may interact with any
use case it is connected to by sending a message
REQUEST_USE_CASE to activate a use case (see (2)) and
receiving notifications as depicted in (1). The notation
compose(P1, …, Pn) represents one of the four different ways
an actor may invoke the use cases it is connected to:

 None: compose(P1, …, Pn) = 0

 Sequentially: compose(P1, …, Pn) = P1. … .Pn

 Concurrently: compose(P1, …, Pn) = P1 | … | Pn

 Randomly: compose(P1, …, Pn) = if true?M1.P1 …
true?Mn.Pn fi

Any combination of these patterns of actor's behaviours
may be considered during simulation and analysis, depending
on the application in hand.

Consequently, a use case is modelled as an ambient that
receives a request (from one of its actors, or from another use
case it extends, or from another use case it is included into)
and acquires all the CI it needs by interacting with the use
contexts it utilizes and then invokes all the use cases it
includes and a subset (possibly empty) of the all the use cases
that extend it (see (3) and (4)). The function FU in (3) is an
abstract representation of the intended behaviours of a use
case U; parameterised with that use case interactions with
others use cases and use contexts. The concrete specification
of this function is application dependent.

A context source is modelled as an ambient that passes
fresh sensed raw context values onto use contexts requesting
them (see (5)). Freshness is modelled by random selection of a
value from a representative sample of possible context values.
Of course the determination of such sample is application
dependent; and hence left to the system designer.

A use context is modelled as an ambient that receives a
request from a use case or from another use context that it
extends, or from another use context that includes it; then
reads all the raw context values it needs from context sources

Figure 2. Graphical illustration of the context of a process

and invokes all the use contexts it includes and a subset
(possibly empty) of all the use contexts that extend it. The
collected data are used to calculate the CI to be sent to the
requester. Similarly to a use case, a use context is an
abstraction of what CI an application needs and not how to
calculate them. Hence, the actual calculation of the CI is
application dependent and therefore cannot be specified in the
general case. The function FC represents such an abstraction
for each use context C.

The CCA process generated by Algorithm 1 can be
analysed and animated using CCA tools as shown in the
following section.

V. ANALYSIS OF USE CASE DIAGRAMS USING CCA

There are three main tools for analysis CCA processes: (i)
ccaPL: an interpreter that executes CCA processes, useful for
simulation; (ii) ccaGraph: a tool that represents the execution
traces of a process in the form of graphs (i.e. a communication
graph, a mobility graph or place graph, and a combined graph
that shows both types of information); and (iii) ccaSPIN: a
model checking tool that generates from a process a
semantically equivalent Promela program which is then

analysed using the SPIN model-checker [3]. Due the space
limit, only the first tool will be used in this paper to
demonstrate how CCA can be used to analyse context-aware
use case diagrams.

Consider the context-aware use case diagram of Fig. 3 for
a pedestrian collision avoidance system that enables a vehicle
to recognize and respond to potential pedestrian collision
situations. The system uses a stereo camera to monitor the
path in front of the vehicle and to detect the position and
velocity of a pedestrian on the road. A speedometer informs
the system of the vehicle current speed. Based on the vehicle
speed and the pedestrian position and velocity, the collision
avoidance system infers whether a collision may happen in
which case the driver is alerted and optionally the braking
control is activated. The breaking control applies torque to the
wheels to decelerate the vehicle to a safe speed.

Algorithm 1 is applied to the context-aware use case
diagram in Fig. 3 to generate the CCA process of Fig. 4, where
the ambient coll_av represents the use case collision
avoidance, the ambient detect_p corresponds to the use
context detect pedestrian and the ambient speed models the
use context vehicle speed. The camera senses the position and
the velocity of a pedestrian. The possible values for the
position are NONE (no pedestrian detected), CLOSE and
FAR; while the values for the velocity are 0 (zero), SLOW,
and FAST. As for the speed of the vehicle, the values are
LOW, MEDIUM, and HIGH.

The process in Fig. 4 is randomly simulated in ccaPL and
some simulation results are given below. The ambient coll_av
acquires the vehicle speed and the pedestrian position and
velocity from the respective ambients. The simulation shows
that:

 Scenario 1: If no pedestrian is detected then the driver
is not alerted and the braking control is not activated
as depicted in Fig. 5. The simulation output is
interpreted as follows. The symbol ‘-->’ represents the
reduction relation as defined in the formal semantics
of CCA in [5]; it corresponds to one execution step.
Each execution step is explained using a notation of
the form {A ===(X)===> B} which means that during
that execution step the ambient A sent the list of
messages X to the ambient B.

 Scenario 2: If a pedestrian is detected (close and not
moving) and the vehicle speed is high then the driver

is alerted and the braking control is activated (see Fig.
6).

 Scenario 3: If a pedestrian is detected and is far away
and the vehicle speed is low then the driver is alerted
but the braking control is not activated (Fig. 7).

Figure 3. A context-aware use case diagram for a pedestrian collision

avoidance system

Figure 4. CCA process corresponding to the use case diagram in Fig. 3

VI. RELATED WORK

UML is a diagram language which enables designers of
information systems to illustrate high level system
requirements, using use case diagrams, and to demonstrate
low level system requirements, using activity diagrams [6].
Choi and Lee [7] proposed a model-driven approach that uses
UML’s use case diagrams to elicit the requirement of context-
aware applications. In particular, the approach helps analysts

and stakeholders pay more attentions to context related issues
such as system platform, target users, intelligence, possible
context-aware services and agreement with other stakeholders,
and understanding contexts with decision tables and trees.

ContUML [8] is a UML-based language for model-driven
development of context-aware applications. However,
ContUML essentially extends the UML’s class diagram with
special classes for CIs and context-awareness mechanisms.
Our context-aware use case diagrams are more abstract than
class diagrams and so more suitable for requirement elicitation
and analysis. It is understood that ContUML may be used for
the realization of context-aware use case diagrams during
system development. Almutairi et al. [9] extended the UML’s
use case diagram and activity diagram to capture the security
requirement of context-aware application. In particular, they
introduces a “requires” relationship between a use case and
CIs to indicate the CIs the behaviours described by that use
case depend upon. In our approach, use context diagrams are
used to specify CIs and their corresponding CSs; separately
from the use cases that will utilize those CIs. This separation
of concerns between functional requirements and context-
awareness requirements is helpful, especially when dealing
with large scale or complex context-aware applications.

VII. CONCLUSION

This paper proposed an algorithm for translating a context-
aware use case diagram into a CCA process in the aim of
using the CCA tools to analyse the requirements of context-
aware systems. It is demonstrated how the CCA interpreter
can be used to execute and validate various scenarios of a use
case diagram. The pragmatics of the approach is illustrated
using a real-world example of a context-aware collision
avoidance system. In future work, it will be demonstrated how
the model-checking tool ccaSPIN can be used to analyze the
requirements of context-aware systems.

REFERENCES

[1] A. Al-Alshuhai and F. Siewe, “An extension of the use case diagram to
model context-aware applications,” in SAI Intelligent Systems
Conference, 2015.

[2] F. Siewe, H. Zedan and A. Cau, “The Calculus of Context-aware
Ambients,” Journal of Computer and System Sciences, vol. 77, no. 4, pp.
597-620, July 2011.

[3] J. G. Holzmann, “The model checker spin,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 1-17, May 1997.

[4] G. Booch, J.~Rumbaugh, and I.~Jacobson, The Unified Modeling
Language User Guide. Addison Wesley, 1999.

[5] R. Milner, Communication and Mobile Systems: The π-Calculus.
Cambridge University Press, 1999.

[6] A. Finkelstein and A. Savigni, “A framework for requirements
engineering for context-awareness services,” in First International
Workshop from Software Requirements to Architectures, 2001.

[7] J. Choi and Y. Lee, “Use-case driven requirements analysis for context-
aware systems,” in The Future Generation Information Technology
Conference. Springer, 2012.

[8] Q. Z. Sheng and B. Benatallah, “ContextUML: A UML-based modeling
language for model-driven development of context-aware web services,”
in International Conference on Mobile Business (ICMB05), 2005.

[9] A. Almutairi, A. Abu-Samaha, G. Bella, and F. Chen, “An enhanced use
case diagram to model context aware system,” in SAI conference, 2013.

Figure 6. Simulation output of scenario 2

Figure 7. Simulation output of scenario 3

Figure 5. Simulation output of scenario 1

