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Abstract The production process of ground granulat-
ed blast furnace slag (GGBS) aims to produce prod-
ucts of the best grade and the highest yields. However,

grade and yields are two competing objectives which
can not be optimized at the same time by one single
solution. Meanwhile, the production process is a multi-

variable strong-coupling complicated nonlinear system.
It is hard to establish the accurate mechanism model
of this system. Considering above problems, we formu-

late the GGBS production process as an multiobjec-
tive optimization problem, introduce a least square sup-
port vector machine (LS-SVM) method based on parti-

cle swarm optimization to build the data-based system
model and solve the corresponding multiobjective op-
timization problem by several multiobjective optimiza-

tion evolutionary algorithms (MOEAs). Simulation ex-
ample is presented to illustrate the performance of the
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1 Introduction

As a by-product of iron and steel-making, about 200
million tons of granulated blast furnace slag was pro-

duced in China in 2015. It has been a heavy environ-
mental and financial burden for both iron and steel
enterprises and the government. However, when dried

and ground into particles thinner than 400 m2/kg, it
becomes a new kind of product called ground granu-
lated blast furnace slag or slag cement. As a kind of

environment-friendly material, GGBS can be mixed in-
to cement to increase its strength and durability, im-
prove its resistance to chloride penetration, and reduce

cost (Chithra and Nazeer, 2012; Oner and Akyuz, 2007).
Due to its excellent characteristics, GGBS has been
widely used in high-rise buildings, hydraulic engineer-

ing, transportation and marine projects such as dams
and shore protection construction (O’Connell et al, 2012).
In recent years, the requirement for high-quality GGBS

has risen significantly. However, the reality is that with-
out optimal solution and system model as guidance, pa-
rameters are always tuned based on the experience of

workers so that the grade and yields are always far away
from the optimal solution and vary in a relatively wide
permissible range. In the practical production process,

it is still a challenging problem to produce high-quality
GGBS efficiently.

This challenge comes from two aspects, on the one

hand, grade and yields are two competing objectives in
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the GGBS production process caused by the vertical

mill operation mechanism. When higher quality prod-
uct is required, the efficiency of slag powder selection
must be reduced, leading to lower yields and vice versa.

On the other hand, vertical mill grinding is a multivari-
able, strong coupling, nonlinear process with complicat-
ed physical and chemical reactions. Hence, the accurate

mechanism model of GGBS production process is hard
to be established. Chen (2008) analyzed the fluid me-
chanics effect of particles in vertical mill, and discussed

the relationships between particles’ fineness and each
variables. Although Chen’s work has an important ef-
fect on revealing the grinding mechanism in vertical

mill, it dose not establish the whole mathematical mod-
el as the GGBS production is a comprehensive system
with multiple variables.

Instead of relying on the information of system mod-
el, data-driven control can achieve the modernization
and control between output and measurable process

variables, using only the online and offline data. For
the cement production process of vertical mill grinding
system, data-driven control is being widely studied, try-

ing to accurately identify the complex grinding system.
For cement raw meal grinding system, Cai et al (2013)
achieved indirect measurement by establishing a soft

sensor model of the material thickness based on the
method of least squares support vector machine (LS-
SVM). Lin and Qian (2014) built a production index

prediction model of vertical mill raw material grind-
ing using a wavelet neural network, and obtained the
optimal set points. However, to the best of our knowl-

edge, there are few papers studying data-based model-
s of the GGBS production process. Wang et al (2016)
discussed the establishment of the data-based model by

using a recurrent neural network, and realized the op-
timal tracking control for GGBS quality and grinding
pressure difference. However, it did not take yields into

consideration and the set points were predefined based
on experience rather than optimal values.

Grade and yields are the two competing objectives
which need to be taken into consideration in the GG-
BS production process. These multiobjective optimiza-

tion problems (MOPs) are different since there are a
set of alternative optimal solutions, rather than a sin-
gle one. Due to the ability to obtain the Pareto set in

a single run, evolutionary algorithms (EAs) have been
introduced to solve MOPs. Many popular algorithms
emerge, such as the nondominated sorting genetic algo-

rithm II (NSGA-II) (Deb et al, 2002), strength Pareto
EA 2 (SPEA2) (Zitzler et al, 2002), and decomposition-
based multiobjective EA (MOEA/D) (Zhang and Li,

2007).

In this paper, we consider grade and yields as the

optimal objectives for the GGBS production process.
Meanwhile, to maintain a stable operation, every con-
trol variable and grinding pressure difference must be

kept in permissible ranges. To establish the accurate
data-based models of objectives and constraint, par-
ticle swarm optimization (PSO) is introduced to opti-

mize the parameters in the LS-SVM algorithm. Further,
based on the above models and constraints, the MOP
of the GGBS production process is constructed.. Final-

ly, different multi-objective algorithms are explored to
obtain the ideal Pareto set.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the multiobjective optimization (MO)

problem of the GGBS production process. MO strate-
gies are presented in Section 3. In Section 4, an exper-
iment is conducted to show the result of the proposed

optimization strategy and Section 5 concludes this pa-
per.

2 MO problem of the GGBS production
process

In this section, the general description of MOPs is giv-
en first, then the GGBS production process and cor-
responding main objectives are briefly introduced, and

finally the MOP of the GGBS production process is
given.

2.1 Description of MOPs

In practical engineering, there are many design and de-
cision problems with multiple competing objectives. To

find the optimal solutions under multiple objectives and
constraints, the problem must be solved as an MOP
(Jiang and Yang, 2016).

Usually, an MOP can be defined to maximize (or
minimize) different objective functions under some con-
straints. An MOP can be formulated as
max /min [f1(x), · · · , fi(x), · · · , fp(x)]
s.t.

gj(x) ≤ 0, j = 1, 2, · · · , J
hk(x) = 0, k = 1, 2, · · · ,K

(1)

where x = (x1, x2, · · · , xm) denotes the state vector
with m elements, fi(x), i = 1, 2, · · · , p are the objective
functions, gj(x) ≤ 0, j = 1, 2, · · · , J and hk(x) = 0,

k = 1, 2, · · · ,K are system constraints.

In most cases, there is no single optimal solution
which is the best for all objectives. For example, one

solution is best for one objective, but may be worst
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in the sense of other objective since objectives are al-

ways competing. Hence, there are a set of optimal so-
lutions that no other solutions are better than them in
the sense of all objectives. They are known as Pareto-

optimal solutions. The goal of solving an MOP is to find
as many Pareto-optimal solutions as possible (Coello
et al, 2002).

2.2 Production process of GGBS

A GGBS grinding system mainly consists of belt weigher,
vertical mill, material conveyer belt, dust collector, and
fan equipment. After preprocess, raw material–blast fur-

nace slag–will be weighed by the belt weigher and then
transported into the vertical mill. Under the centrifu-
gal force caused by rotation of grinding disc, material

moves to the edge of the grinding disc, and falls into the
bottom of grinding roller, where it is ground by rotat-
ing roller under the hydraulic pressure and keeps mov-

ing towards disc edge. After grinding, material moves
across material barrier into wind ring, where it is dried
and taken up to the top of mill by hot high-speed wind

for further separation. Qualified powder will be extract-
ed outside the mill as GGBS product, and coarse par-
ticles drop down to the disc for further grinding. The

monitor screen and workflow of the GGBS production
process are shown in Fig. 1 and Fig. 2 respectively.

Fig. 2 GGBS grinding workflow

2.3 Process index of the GGBS production process

The main target of the GGBS production process is
to get the optimal solution for both grade and yields.
At the same time, grinding pressure difference must be

limited to guarantee a stable operation.

2.3.1 Product grade

Specific surface area (SSA) – indicator of the fineness
of product particles – is the index for product’s grade.

When slag is ground to be finer than 400 m2/kg, it can
be mixed into cement to improve the mechanical prop-
erty of concrete. Super fine GGBS is slag powder finer

than 500 m2/kg, which becomes more active and shows
higher mechanical property than the normal GGBS.

Fc

Fp

Airflow 

velocity

Tangential 

velocity

Fig. 3 Force analysis of GGBS particles

In the GGBS production process, many factors have
impacts on SSA. Feeding materials’ property, speed and

moisture content are important parameters affecting S-
SA. Hot air into mill not only dries materials in mill but
also takes particles up to the selector for selection. Hot

air’s volume, speed and temperatures at inlet and out-
let all have important effect on SSA. On the premise of
constant air speed, larger air volume will increase yields

of selector and decrease slag powder’s fineness and vice
versa. Air volume is controlled by tuning the opening
of the circulating air damper. The rotational speed of

the selector is the most direct parameter for product’s
grade and yields. As shown in Fig. 3, there are two main
forces acting on particles in the grading force field, the

centrifugal force Fc decided by the rotational speed of
the selector, and the pull force Fp caused by air speed.
These two forces decide what kind of fineness can be s-

elected as qualified product. When the rotational speed
is faster, the centrifugal force gets larger and only finer
particles can be selected, less qualified particles means

lower yields at the same time. As the air volume and
speed out mill do not vary too much, adjustment of the
rotational speed of the selector is the main method to

control the grade of GGBS.

2.3.2 Product yield

Besides product grade, yields of GGBS is another im-

portant target in the production process. In above anal-
ysis about production grade, it is obviously that the
feeding material, air volume in mill and rotational speed

of selector also have effect on product yields at the same
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Fig. 1 Monitor screen of GGBS production process

time. In practical production process, grade and yields

are two coupling and competing objectives.

2.3.3 Grinding pressure difference

Grinding pressure difference (GPD) denotes the error
between the pressure under selector in the mill and the
pressure at the inlet of hot wind. In normal circum-

stance, GPD is stable, which means that it achieves a
dynamic balance between the amount of material into
the mill and the amount of material out of the mill. De-

creased GPD indicates that materials into mill is less
than that out of mill, thickness of material layer will
continue decreasing until the mill vibrates and shut-

s down. On the other hand, increased GPD indicates
material into mill is more than that out of mill. In se-
vere case, it will lead to saturated grinding and mill

vibration. Generally, GPD can be adjusted by tuning
the slag feed rate, and it is kept within 25–35 mbar to
ensure the stability of the GGBS production process.

2.4 GGBS production process as an MOP

Based on the above analysis, grade and yields of the

GGBS product are the two most important indexes for
the GGBS production process, and these two targets
are both decided by some identical variables which are

interrelated and interactive. If we demand higher grade,

the efficiency of powder selector will be reduced and G-

PD will be increased. To avoid mill vibration caused by
high GPD, the slag feed rate must be decreased, lead-
ing to the decline of product yields. If we demand high

yields, high efficiency is needed to balance the GPD,
resulting in worse product grade.

Table 1 Daily reports of LUXIN mill line 3

No. Time Average yields Average grade

Hrs MT/Hr m2/kg

1 24 82.8479 443.9333

2 9.5 87.5415 429.5254

3 24 76.8333 436.2417

4 24 80.7342 429.4106

5 24 86.3438 435.7083

6 24 86.2838 434.2583
...

...
...

...

59 23.5 84.8507 421.0917

60 24 84.8373 423.4758

Through analysing the daily reports of LUXIN mil-
l line 3 from 12 January, 2013 to 31 March, 2013, we
obtain 60 groups of production data describing the av-

erage yields and average grade of the product during the
operation hours in each day as shown in Table 1. After
unreasonable data deletion and data normalization, we

get 34 groups of data depicting the grade-yields rela-
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tionship shown as Fig. 4. The average grade and yields

of GGBS in practical production process are negatively
related and the correlation coefficient is calculated to
be −0.7305. Although the rough curves can not illus-

trate the accurate relationship between grade and yield-
s, they are in accordance with the mechanical analysis
in Section 2.3 that grade and yields are competing and

can not be optimal at the same time.

Fig. 4 Relationship between grade and yields

For the production process of GGBS, the main op-

timization goals are to maximize grade and yields of
GGBS product and to let the GPD vary in a given
range, corresponding variables are the slag feed rate,

separator rotor speed, wind temperature at mill inlet,
circulating air damper opening and roller pressure. Be-
cause the system is hard to be modeled mechanically

as it is multivariable, strong coupling, complicated and
nonlinear, we try to establish the data-based system
model as

(y1, y2, y3) = F (x1, x2, x3, x4, x5, x6) (2)

where, y1 is the grade, y2 is the yields of GGBS, y3 is the
GPD, x1 is the slag feed rate, x2 is the roller pressure,

x3 is the separator rotor speed, x4 is the temperature
at mill inlet, x5 is the temperature at mill outlet, and
x6 is the opening of the circulating air damper.

As these two objectives in the GGBS production
process are negatively related and competing with each
other, there is no one solution which is best for both

objectives at the same time. Hence, the GGBS produc-
tion process is a typical MOP which can be formulated
as {

max y1

max y2

s.t.


xl
i ≤ xi ≤ xu

i

yl1 ≤ y1
yl3 ≤ y3 ≤ yu3
(y1, y2, y3) = F (x1, · · · , xi, · · · , x6)

(3)

Table 2 Permitted ranges of variables and GPD

Variables Maximum Minimum Units

x1 115 75 103kg/Hr
x2 130 100 bar
x3 1210 860 r/min
x4 300 190 ◦C
x5 125 75 ◦C
x6 95 30 %
y3 30 20 103kg

where i = 1, 2, · · · , 6, xl
i and xu

i are the lower and upper

bounds of xi, y
l
1 and yu1 are the lower and upper bound-

s of y1, y
l
3 and yu3 are the lower and upper bounds of

y3. The first constraint guarantees every control vari-

able in given ranges, the second constraints the SSA to
guarantee the production qualified, and the third con-
strains the GPD to ensure the production process safe

and stable. According to the physical constraints of ev-
ery actuator and the experience of expert engineer, the
permitted ranges of variables and GPD are listed in

Table 2.

3 Multiobjective optimization strategy of the
GGBS production process

As mentioned above, the production process of GGBS
is an MOP. Meanwhile, the process is hard to be mod-

eled because it is a multivariable strong coupling com-
plicated nonlinear system. To address these problems,
we apply the proposed multi-objective strategy to op-

timize the system based on an established data-based
model.

3.1 The multiobjective GGBS process optimization
model

In this section, we will preprocess raw data, analyze

control targets, variables and constraint conditions, fi-
nally establish the data-driven model between control
targets and variables based on the LS-SVM method

(Suykens and Vandewalle, 1999).

3.1.1 Data preprocessing

A neural network (NN) is a model identification strat-
egy driven by process data, so the effect of NN identi-
fication relies on the quantity and quality of samples.

However, practical production process is usually influ-
enced by many factors, leading to inevitably inaccurate
sample data. Therefore, quality improvement of sam-

ples plays a critical role to establish an accurate model.
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Table 3 Production data of LUXIN mill line 3

No.
Slag Poller Separator Temp. at Temp. at Opening of

SSA Yields GPD
counter pressure rotor speed mill inlet mill outlet air damper

103 kg/Hr bar r/min ◦C ◦C % m2/kg mbar 103kg

1 100.46 120 1069.07 215.00 100.00 67.27 423.20 29.83 92.97

2 105.05 125 1029.64 240.90 100.10 59.81 426.40 27.43 95.75

3 103.29 126 999.91 252.80 111.29 59.58 434.20 26.16 96.24
...

...
...

...
...

...
...

...
...

...

523 108.19 126 1080.12 260.40 107.77 59.38 423.20 29.05 99.77

524 96.06 105 1050.03 263.70 114.33 61.08 440.10 25.93 89.36

525 95.19 118 1129.97 244.00 105.88 54.89 430.30 26.56 89.33

In this paper, we collected 525 samples in LUXIN

the GGBS production process from 12 January, 2013 to
28 February, 2013 as shown in Table 3. The sample set is
denoted as {xj ,yj}Mj=1, where M is number of samples,

xj ∈ Rm and yj ∈ Rn. Denote zj =
(
xj ;yj

)
∈ Rm+n.

To reduce the gross error and get high-quality samples,
raw data is preprocessed in the following procedure

1. Delete data group zj which contains 0 or empty
element. M = width {z}.

2. According to Grubbs’ criterion (Grubbs, 1950), delete

data group zj if any of the following equation holds
for i = 1, · · · , (m+ n),

|zji − z̄i| ≥ 3si (4)

where z̄ ∈ Rm+n is the mean value vector and
s ∈ Rm+n is the standard deviation defined as si =
{
∑M

j=1(z
j
i − z̄i)

2/(M − 1)}2. M = width {z}.
3. To eliminate the random noise of samples, the fol-

lowing 7 points moving average smooth method is
adopted

zk =
1

7

3∑
r=−3

zk+r k = 4, 5, · · · ,M − 3 (5)

4. Data normalization.

3.1.2 PSO based LS-SVM model

The LS-SVM has been tested as an effective data-based
modeling method which is suitable for many online ap-

plications (Shrivastava et al, 2015; Lu et al, 2016). For
any nonlinear system, this method has proved its uni-
form approximation ability, and shows attractive char-

acters such as only solving linear equations, simple al-
gorithm and less computation.

To establish the data-based models between output
and variables shown in Eq. (2) and Fig. 5, we adopt the

following LS-SVM algorithm.

PSO-LSSVM

Slag Counter

Separator
rotor speed

Temperature 
at mill inlet

GGBS yields

Temperature 
at mill outlet

Roller Pressure
SSA

Grinding pressure

difference

Opening of circulating 
air damper

1x

2x

3x

4x

5x

6x

1y

2y

3y

Fig. 5 PSO based LS-SVM model of the GGBS production
process

For a given sample set {xj ,yj}Mj=1, three data-based
models in regard with grade, yields and GPD are ex-
pected to be established where xj ∈ Rm is the input

data and yji ∈ R, i = 1, · · · , n is the output data re-
spectively.

To model the unknown system precisely, the follow-
ing equation should be optimized

min
ω,b,ξ

J(ω, ξ) =
1

2
||ω||2 + 1

2
γ

M∑
j=1

ξ2j

s.t. yji = ωTφ(xj) + b+ ξj , j = 1, · · · ,M

(6)

where the nonlinear function φ : Rm → RN maps the
input to a higher dimension space, ω ∈ RN , b ∈ R
denotes the bias term, ξj is slack variable and γ is a

positive real constant denoted as a tuning parameter in
LS-SVM.

Predicted output by LS-SVM can be obtained as

ŷi(x) =

M∑
j=1

αjK(x,xj) + b (7)

where αj and b are solved by a system of linear equa-

tions (Suykens and Vandewalle, 1999). In this paper,
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we adopt the radial basis function (RBF) as the kernel

function,

K(x,xj) = exp(||x− xj ||2/σ2) (8)

where σ is the width of RBF.

It should be noted that parameter σ in the kernel
function and tuning parameter γ are critical for the
performance of SVMmodeling. Compared with EAs, P-

SO has the advantages of less parameters, simpler algo-
rithm and faster optimizing speed. In PSO algorithms,
there is no evolution operator like crossover and varia-

tion, and each particle tracks the current optimal parti-
cle to realize the search for the solution space (Navalert-
porn and Afzulpurkar, 2011). Hence, we adopt the PSO

algorithm to optimize the above-mentioned two param-
eters.

The performance of LS-SVM is defined as follows

~ =
1

M

M∑
j=1

(yji − ŷji )
2 (9)

Actually, ~ can be viewed as the compound function

of σ and γ. Therefore, we define the following optimiza-
tion problem

min
σ,γ

~ =
1

M

M∑
j=1

(yji − ŷji )
2

s.t. γ ∈ [γmin, γmax], σ ∈ [σmin, σmax]

(10)

where σmin, σmax and γmin, γmax are the permitted min-

imum and maximum values.

In summary, we build the the LS-SVM model, at
the same time, use the PSO algorithm to search the
permitted area to decrease the fitness value ~ gradu-

ally. Finally, ~ converges to its minimum value, and
corresponding σ and γ are the optimal algorithm pa-
rameters. Accordingly, corresponding αj and b are the

optimal model parameters of LS-SVM.

PSO based LS-SVM algorithm is given as follows,

Step 1. Load and preprocess the sample set.

Step 2. PSO initialization. Initialize algorithm param-
eters, initialize iteration counter k = 0, let the
maximum iteration times kmax be a large posi-

tive integer, initialize maximum population size
Γ , ω, and parameters c1, c2, r1 and r2 are ran-
dom values in [0, 1].

Initialize particles randomly and form the pop-
ulation. Generate initial velocities Vτ = (vτ1, vτ2)
of each particle. Initialize particle’s initial po-

sition Uτ = (uτ1, uτ2) as its best position Pp,
and the position with the best fitness ~τ (cal-
culated by Eq. (9)) of the all particles as the

best position of the entire swarm Pg.

Step 3. k = k+1, update particles’ position and veloc-

ity,{
Vτ=ωVτ+c1r1(Pp−Uτ )+c2r2(Pg−Uτ )

Uτ=Uτ+Vτ , τ=1, · · · , Γ
(11)

Step 4. Evaluate fitness ~′

τ of new position and up-

date the best position as follows. If ~′

τ < ~τ ,
then ~τ = ~′

τ and the particle’s best position
Pp = Uτ . Denote ~′

g = minΓτ=1 ~
′

τ , and corre-

sponding position P
′

g represents the new global

best position. If ~′

g < ~g, then ~g = ~′

g and

Pg = P
′

g.
Step 5. If k < kmax, turn back to step 3. Otherwise, the

global best position Pg is the optimal param-

eter vector (γ, σ) of LS-SVM. With these op-
timal parameters, the LS-SVM optimal model
can be calculated by Eq. (7).

By applying above PSO based LS-SVM algorithm,
three data-based models in regarding with grade, yields
and GPD can be established respectively. In this sense,

the MOP as shown in Eq. (3) is completely formulat-
ed. In the following, this MOP will be solved based on
MOEAs.

3.2 NSGA-II based optimization strategy for the
GGBS production process

Since EAs have great advantages in solving MOPs, in

recent years, many MOEAs have emerged and show
satisfying performance. Adopting the elite decision and
diversity preservation mechanisms, NSGA-II shows ex-

cellent characters such as good performance, high effi-
ciency and simple computation, and is one of the most
successful and commonly used MOEAs.

The main procedure of NSGA-II algorithm is shown
in Algorithm 1.

4 Simulation

In this section, the PSO based LS-SVM model of the
GGBS production process is established based on pro-

cess data. Thereafter, the NSGA-II method is applied
on this model to obtain the optimal solution of the mul-
tiobjective problem.

4.1 Data-based model validation

Firstly, the PSO based LS-SVM model of the GGB-
S production process is established based on the PSO

based LS-SVM algorithm. According to the operation
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Algorithm 1 NSGA-II algorithm
begin:

Initialize the parent population P0 randomly;
Based on nondomination, P0 is sorted, and according to
nondomination level, each solution is assigned a fitness
value;
After selection, recombination and mutation, offspring
population Q0 of size N is created.

1: while Generation times less than the maximum do
2: New population Rt of size 2N is generated by com-

bining members of previous population Pt and current
population Qt, i.e. Rt = Pt

∪
Qt.

3: Sort Rt based on constrained nondomination, and a se-
ries of non-dominated set Fi and corresponding fitness
are generated.

4: New population Pt+1 of size N is generated from Fi

based on the following principles,
5: 1. Select Fi if i < j.
6: 2. Select the member in Fi with less crowding dis-

tance in the ith level.
7: Create a new offspring population Qt+1 of size N after

selection, crossover and mutation.
8: t = t+ 1.
9: end while

report of LUXIN GGBS mill line 3, we selected 200 sam-
ples from the preprocessed data as the training sample

set Str = {xj ,yj}200j=1 and 100 samples as the test sam-

ple set Ste = {xj ,yj}100j=1, where xj ∈ R6 is the input

vector and yji ∈ R, i = 1, 2, 3 are the outputs for SSA,
yields and GPD respectively. To optimize the LS-SVM
parameters γ and σ, a PSO algorithm is introduced

with parameters set up as Γ = 20, ω = 0.6, kmax = 200,
c1 = 0.5, c2 = 0.7, γ ∈ [0.01, 1000], σ ∈ [0.1, 100]. As
a result, three models in regarding with SSA, yields

and GPD are obtained respectively as in Fig. 6–8. Op-
timal parameters (σ, γ), cross validation mean square
error (CV MSE), training and test errors of those three

models are shown in Table 4.
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Fig. 6 PSO based LS-SVM model of SSA
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Fig. 7 PSO based LS-SVM model of GGBS yields
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Fig. 8 PSO based LS-SVM model of GPD

Table 4 Optimal parameters and modeling error

Model (σ, γ)
CV Train Test
MSE MSE MSE

SSA (15.5599, 62.1863) 0.047428 0.1683 0.2312
Yields (0.0172, 67.2530) 0.001596 0.0074 0.0088
GPD (0.0016, 51.7413) 0.017194 1.8317 0.7082

As seen in Fig. 6–8 and Table 4, for the three data-
based models, the training and testing errors are very

small, which means the estimated value can fit and
predict the actual value precisely. Due to the severely
fluctuated material components in mill and many un-

predictable conditions, above data-based models show
satisfying performance and can be used to provide the
basis for optimal control of vertical mill.

4.2 Optimal solutions by MOEA algorithms

For the MO problem of GGBS production process for-

mulated as (3), based on the three LS-SVM model,
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Fig. 9 Optimal solutions by NSGA-II algorithm

NSGA-II algorithm is applied to search the optimal so-
lutions. Fig. 9 gives the Pareto-optimal front for the
quality and yields of GGBS production process. The

quality of SSA decreases with the increasing of SSA
yields. This kind of negative correlation is in accor-
dance with the mechanism and data analysis in section

2.4. Considering customer’s needs in terms of quality,
relevant technical staff can choose appropriate operat-
ing conditions from the Pareto-optimal solutions to im-

prove the yields of product and maximize the compre-
hensive benefit. It can be observed that a minimum of
quality is incurred no matter what the yields is beyond

point A. This case matches the fact that in produc-
tion process, when the yields is more than 106 MT per
hour, the SSA of GGBS product will not be improved

although the yields is decreased.

Further more, it should be noted that point B and
point C are the two most interesting solutions for de-
cision maker, which are called the ‘knees’ by Branke

et al (2004). These two solutions are characterized that
around these points, a small improvement in either di-
rection will cause a large deterioration in the other di-

rection. This character makes moving towards any ob-
jective not attractive for decision maker.

Table 5 Statical information about HV value of different
MOEAs

Method Mean Standard deviation

NSGA-II 224.9827 10.94632

NSGA-II+SBS 227.8992 10.61037

NSGA-III 226.0506 12.79157

According to historical data and the expertise from
domain experts, obtained Pareto-optimal solutions by

NSGA-II algorithm as shown in Fig. 9 can be an effec-

Table 6 Significance of different methods

NSGA-II NSGA-II+SBS NSGA-III

NSGA-II 1 0.299 0.730

NSGA-II+SBS 0.299 1 0.545

NSGA-III 0.730 0.545 1

tive guidance to optimize the GGBS production pro-

cess. To better verify the performance of the NSGA-II
algorithm in dealing with the MOP of the GGBS pro-
duction process, we take some state-of-the-art MOEAs

like NSGA-III (Jain and Deb, 2014) and NSGA-II+SBS
(Li et al, 2014) as comparison. The performance metric
is defined by Hypervolume (HV) which gives a compre-

hensive evaluation, including the convergence, diversity
and uniformity of the obtained solutions (Hierons et al,
2016). By running above two algorithms and NSGA-

II for 30 independent runs respectively for the GGBS
production process, the statical information including
mean and standard deviation of above three kind of

methods are shown in Table 5. Table 6 shows that there
is no significant difference among the performances of
three algorithms at a 0.05 level of significance by a two-

tailed t-test. In this case, the relative simple and easy-
to-use NSGA-II algorithm has satisfying performance
on the convergence, diversity and uniformity of the ob-

tained solutions and it is selected to solve the GGBS
MO problem.

5 Conclusion

The GGBS production process is analyzed to be an
MOP. Based on the intrinsic characteristic that the pro-

cess is hard to be mathematically modeled, data-based
models between objectives and variables are established
using the PSO based LS-SVM method. Further, sev-

eral constrained MOEAs are introduced to obtain the
Pareto-optimal solutions for the best yields and quality
of GGBS production, at the same time, the modeled

grinding pressure difference is guaranteed to vary in
given range to maintain the production process stable.
Experiment shows that the established models are effec-

tive and the obtained Pareto-optimal solutions supply
important guidance to optimize the production process.
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