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Abstract—Three Stage Optimal Memetic Exploration
(3SOME) is a recently proposed algorithmic framework which
sequentially perturbs a single solution by means of three
operators. Although 3SOME proved to be extremely successful
at handling high-dimensional multi-modal landscapes, its
application to non-separable fitness functions present some
flaws. This paper proposes three possible variants of the original
3SOME algorithm aimed at improving its performance on
non-separable problems. The first variant replaces one of the
3SOME operators, namely the middle distance exploration, with
a rotation-invariant Differential Evolution (DE) mutation scheme
, which is applied on three solutions sampled in a progressively
shrinking search space. In the second proposed mechanism, a
micro-population rotation-invariant DE is integrated within the
algorithmic framework. The third approach employs the search
logic (1+1)-Covariance Matrix Adaptation Evolution Strategy,
aka (1+1)-CMA-ES. In the latter scheme, a Covariance Matrix
adapts to the landscape during the optimization in order to
determine the most promising search directions. Numerical
results show that, at the cost of a higher complexity, the
three approaches proposed are able to improve upon 3SOME
performance for non-separable problems without an excessive
performance deterioration in the other problems.

I. INTRODUCTION

A function of n independent variables is said to be separable

if it can be expressed as a sum of n functions, each of

them depending on only one variable. From an optimization

viewpoint, these functions are relatively easy to handle as the

optimization problem in n variables can be tackled efficiently

by perturbing separately each variable. However, real-world

applications are often (if not always) characterized by non-

separable fitness functions, i.e. functions in which there is

some degree of non-linear inter-variable interaction. According

to the number of interacting variables, a function can be fuzzily

considered fully separable, moderately separable, moderately

non-separable, fully non-separable. Modern testbeds tend to

classify test problems according to similar criteria, see [1]. It

is important to remark that, even if non-separable, an objective

function can still be handled by perturbing separately each

variable. Even though this approach does not lead, in general,

to the detection of the optimum, it may still be able to detect

promising areas of the decision space. Thus, an algorithm com-

bining such a mechanism with some other components more

suited for non-separable problems, i.e. involving simultaneous

perturbations of multiple variables (diagonal moves) can turn

out being efficient and robust.

The idea of performing diagonal search moves is not

new: classic optimization methods, such as Rosenbrock and

Powell algorithms, already included diagonal moves back to

the ’60s. In modern computational intelligence optimization,

many move operators, e.g. several kinds of recombination in

Evolutionary Algorithms (EAs), naturally perform diagonal

moves. On the other hand, it is interesting to notice that the

separability is explicitly addressed only in a minor portion

of literature. An interesting approach is introduced in [2],

where non-separability is handled by means of structured

populations. Another famous example is the Covariance Ma-

trix Adaptation (CMA) integrated within Evolution Strategy

(ES) frameworks, see [3]. The general algorithmic idea is

that new trial solutions are generated by a distribution which

progressively adapts to the fitness landscape and thus performs

search moves along the most convenient direction. Other

relevant algorithms based on the CMA have been proposed

in literature, e.g. [4], [5], and [6].

However, despite their efficiency, many other modern

nature-inspired algorithms inherently perform a biased search

along specific axes. This situation occurs for example in

Differential Evolution (DE), where crossover is executed in-

heriting some variables from parent to offspring solutions.

As a consequence, even on fitness landscapes where DE is

very efficient, if a rotation operation is applied the algorithm

performance may dramatically deteriorate. It must be observed

that the rotation operation (with respect to the original axes)
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over a separable function jeopardizes the separability of the

problem making it non-separable. In order to handle these

conditions, several corrections to the DE operators have been

designed. For example, in [7], a reference rotation procedure

is integrated within DE crossover and in [8] a modified DE

crossover is introduced by making use of the centroid point. A

classical but still efficient way to obtain a rotationally invariant

DE is to combine an arithmetic crossover within the mutation

scheme. This mutation scheme, namely DE/current-to-rand/1,

has been presented in [9].

Recently, in [10], it has been shown that algorithms with a

simple structure can be as efficient as more complex methods.

This fact has been explained in the light of the Ockham’s

Razor, and suggested a simple algorithmic design practice for

Memetic Computing (MC), based on building up the algorithm

with a bottom-up approach. In MC, an algorithm is seen as a

structure composed of multiple operators which interact and

cooperate to tackle various optimization problems, see [11]

and [12]. Following a bottom-up approach, the algorithm is

designed from scratch adding the minimum amount of as

simple as possible components, each one with a well-defined

algorithmic role. As an example of this approach, in [10] a

novel MC approach is introduced, named Three Stage Optimal

Memetic Exploration (3SOME). Despite its versatility, the

main drawback of 3SOME was that the non-separability was

not explicitly addressed and thus the algorithm displayed rel-

atively poor performance in some cases. This paper proposes

three new variants of the 3SOME structure, where different

components specifically designed to tackle non-separability

are included in the original algorithmic framework. The re-

mainder of this paper is organized in the following way.

Section II briefly introduces the basic structure of 3SOME.

Section III describes the proposed variants. Section IV displays

the experimental testbed and numerical results related to

comparison among 3SOME and the new variants. Section V

gives the conclusion of this work.

II. THREE STAGE OPTIMAL MEMETIC EXPLORATION: THE

ORIGINAL IMPLEMENTATION

In order to clarify the notation in this paper, we refer to the

minimization problem of an objective function f (x), where
the candidate solution x is a vector of n design variables (or

genes) in a decision space D. The original 3SOME algorithm

consists of the following. At the beginning of the optimization

problem one candidate solution is randomly sampled within

D. In analogy with compact optimization, see [13], we will

refer to this candidate solution as elite and indicate it with

the symbol xe. In addition to xe, the algorithm makes use of

another memory slot for attempting to detect other solutions.

The latter solution, namely trial, is indicated with xt. The

algorithmic structure is composed of three operators (i.e.

exploratory stages) which perturb a single solution, thus ex-

ploring the decision space from complementary perspectives.

During the long distance exploration, similar to a stochastic

global search, a new trial solution xt is sampled within the

entire decision space, inheriting part (αe % of n) of the current

elite solution xe by means of the exponential crossover typical

of DE, see [13]. In other words, this exploration stage performs

a global stochastic search, attempting to detect unexplored

promising basins of attraction. On the other hand, while this

search operator extensively explores the decision space, it

also promotes retention of a small section of the elite within

the trial solution. This kind of inheritance of some genes

appears to be extremely beneficial in terms of performance

with respect to a stochastic blind search, which would generate

a completely new solution at each step. This mechanism is

repeated until it does not detect a solution that outperforms

the original elite. When a new promising solution is detected,

and thus the elite is updated, the middle distance exploration

is activated, so to allow a more focused search around it.

In the middle distance exploration stage, a hyper-cube

whose edge has side width equal to δ is constructed around

the elite solution xe. Within this region, k×n trial points are

stochastically generated by random perturbing the elite along

a limited number of dimensions, thus making a randomized

exploitation of the current elite solution. In other words, this

stage attempts to focus the search around promising solutions

in order to determine whether the current elite deserves further

computational budget or other unexplored areas of the decision

space must be explored. If the elite is outperformed, it is

replaced. A replacement occurs also if one of the newly

generated solutions has the same performance of the elite, in

order to prevent the search getting trapped in some plateaus

of the decision space. At the end of this stage, if the elite has

been updated a new hypercube is constructed around the new

elite and this mechanism is repeated. On the contrary, if the

middle distance exploration does not lead to an improvement,

an alternative search logic is applied, that is the deterministic

logic of the short distance exploration.

This final search stage perturbs the variables separately

and attempts to quickly and deterministically descend the

corresponding basin of attraction. The meaning of the short

distance exploration is to perform the descent of promising

basins of attraction and possibly finalize the search if the basin

of attraction is globally optimal. De facto, this operator is a

simple steepest descent deterministic local search algorithm,

with an exploratory move similar to that of Hooke-Jeeves

algorithm, or the first local search algorithm of the multiple

trajectory search, see [14]. The short distance exploration stage

requires an additional memory slot, which will be referred

to as xs (s stands for short). Starting from the elite xe, this

local search, explores each coordinate i and samples xs[i] =
xe[i] − ρ, where ρ is the exploratory radius. Subsequently, if

xs outperforms xe, the trial solution xt is updated (it takes the

value of xs), otherwise a half step in the opposite direction

xs[i] = xe[i] +
ρ
2

is performed. Again, xs replaces xt if

it outperforms xe. If there is no update, i.e. the exploration

is unsuccessful, the radius ρ is halved. This exploration is

repeated for all the design variables and stopped when a

prefixed budget (equal to 150 iterations) is exceeded. After

that, if there is an improvement in the quality of the solution,

the focused search of middle distance exploration is repeated



subsequently. Otherwise, if no improvement in solution quality

is found, the long distance search is activated again to attempt

to find new basins of attractions.

As a remark the original 3SOME algorithm applies a

toroidal management of the bounds. This means that if, along

the dimension i, the design variable x[i] exceeds the bounds

of a value ζ, it is reinserted from the other end of the interval

at a distance ζ from the edge, i.e. given an interval [a, b], if
x[i] = b + ζ it takes the value of a + ζ. The same toroidal

mechanism is used also in the algorithms proposed in this

paper. For further details about 3SOME, the interested reader

is referred to [10].

III. IMPROVING UPON 3SOME: THREE POSSIBLE

APPROACHES FOR NON-SEPARABILITY

A careful analysis of the 3SOME structure described above

suggests that the long and the short distance operators are

somehow algorithmically necessary to properly balance ex-

ploration and exploitation, see [15], [16], [17] and [18]. In

addition to that, the deterministic short distance search is

clearly very efficient at handling separable functions, while its

application can be detrimental with non-separable problems.

This observation is also supported by an empirical study of

the original 3SOME dynamics we performed on a set of non-

separable benchmark functions. Thus, in order to improve

upon 3SOME, balancing the effect of the deterministic local

search, a simple idea is to slightly modify its original structure

replacing the middle search operator with an operator specifi-

cally tailored for handling non-separability. In this section we

propose three different variants inspired by this consideration.

A. Rotation Invariant Shrinking 3SOME

The first approach for handling non-separability, we here re-

fer to as Rotation Invariant Shrinking 3SOME (RIS-3SOME),

applies instead of the middle distance exploration operator

the following mechanism. Around the solution xe returned

by the long (or short) distance exploration, a hypercube is

considered. This hypercube has an initial volume empirically

set equal to one fifth of the volume of the entire decision space

D and is centered around xe. Within this hypercube, three

points xr, xs, and xv , are sampled (from an implementation

viewpoint they are sampled one-by-one and allocated into the

trial solution to occupy only one memory slot). These points

are then combined with xe by means of DE/current-to-rand/1

to generate xt:

xt = xe +K (xv − xe) + F ′ (xr − xs) (1)

where K is the combination coefficient, which should be

chosen with a uniform random distribution from [0, 1] and

F ′ = K ·F . Exactly like in the case of DE mutation, the scale

factor F is a parameter of the algorithm. It the trial solution

xt displays a higher performance than the current elite xe, a

new repetition of sampling and mutation is repeated within

the same hypercube. Otherwise, the volume of the hypercube

is halved (shrinking). This process is repeated until the search

volume reaches a threshold ε in terms of ratio of the entire

Fig. 1. Coordination scheme of RIS-3SOME

decision space. When this condition holds, the short distance

exploration is applied, as in the original 3SOME.

In order to understand the algorithmic contribution of this

mechanism, i.e. the generation of points by eq. (1) within

a shrinking hypercube, it is important to remark that, sim-

ilarly to the original middle distance operator, this mech-

anism encompasses a form of inheritance from xe to xt.

However, in this case the inheritance is implemented by

means of a linear combination and a search along all the

directions simultaneously. As it can be geometrically proved,

this component is rotation-invariant, thus it is supposed to

tackle, in a simple and computationally inexpensive way, non-

separable problems. Furthermore, the shrinking progressively

narrows down the search space, thus promoting a progressive

exploitative pressure.

Figure 1 shows the coordination scheme of the three com-

ponents of RIS-3SOME. Similar to a Finite State Machine

(FSM), the algorithm is described as a composition of states,

each one corresponding to a single operator (or meme). Each

operator processes an elite xe and returns, as an output, a

(possibly) fitness-wise improved elite solution. The operator

can be said to “succeed” if it is able to improve upon

the incoming elite, otherwise it can be said to “fail”. With

reference to figure 1, the arrows represent the interaction

amongst memes. The “S” and “F”, represent success and

failure, respectively, of the meme, while the condition on the

search volume in the shrinking component is labeled explicitly.

B. Micro-Population Differential Evolution 3SOME

The second variant we propose uses a micro-population

Differential Evolution instead of the original middle distance

exploration. The operating principle of this algorithm, named

µDE-3SOME, is the following. Whenever the long (or short)

distance exploration returns a new elite, a micro-population

of m individuals is sampled within a hypercube centered

around xe, whose volume has been empirically set equal to

40% of the volume of the entire search space. The worst

individual of the micro-population is then replaced with the

current elite. Subsequently, for a fixed number of iterations,

a run of DE/current-to-rand/1 with exponential crossover is



Fig. 2. Coordination scheme of µDE-3SOME

executed over the micro-population. When the given budget

allotted to the µDE operator is reached, if an improvement

is found a new hypercube is constructed around the new elite

and µDE is repeated. Otherwise, the short distance exploration

is activated. Compared to 3SOME and RIS-3SOME, the only

difference in the inter-operator coordination logics is that, in

order to force a more frequent activation of the µDE operator,

thus guaranteeing its convergence, a budget limit equal to 5%
of the total budget (in terms of fitness evaluations) is imposed

over each activation of the long distance exploration. After this

limit is reached, µDE is activated regardless the long distance

exploration has improved upon the current elite or not. This

additional control also guarantees a balance in the activation

of each of the three operators similar to that one of 3SOME

and RIS-3SOME.

It should be noticed that, similar to RIS-3SOME, the

µDE meme naturally embeds a form of “shrinking” over

the most promising search region. Moreover, the current-to-

rand/1 mutation scheme again guarantees a rotation-invariant

behaviour. However, compared to 3SOME and RIS-3SOME

this variant is slightly more expensive on a memory viewpoint,

because it needs m additional memory slots to store the

micro-population. On the other hand, the computational cost

is comparable to the two previous algorithms.

Following the same notation used in figure 1, figure 2

shows the coordination scheme of the three components of

µDE-3SOME, where the additional budget control on the long

distance exploration is explicitly indicated, and the self-loop

on the µDE meme denotes a repetition in case of success.

C. 3SOME with 1+1 Covariance Matrix Adaptation Evolution

Strategy

The last 3SOME variant we propose in this paper replaces

the middle distance exploration with the (1+1)-CMA-ES al-

gorithm presented in [6]. The latter algorithm combines a

classic (1+1)-ES scheme with an improved Covariance Matrix

Adaptation mechanism [3], where an incremental update of

the covariance matrix Cholesky factors is performed instead

of computing the Cholesky decomposition. In addition to that,

(1+1)-CMA-ES does not employ a population of solutions

- unlike CMA-ES - but rather it explores the search space

using a single solution. Even so, (1+1)-CMA-ES requires to

Fig. 3. Coordination scheme of (1+1)-CMA-ES-3SOME

store a covariance matrix, with a memory employment that

grows quadratically with the problem dimension. On the other

hand, (1+1)-CMA-ES is computationally less demanding and

numerically involved than CMA-ES, still being able to obtain

similar performance, especially on non-separable problems.

The resulting combination of (1+1)-CMA-ES and 3SOME

makes use of the same coordination scheme of 3SOME, in

which a run of (1+1)-CMA-ES is executed in place of the

middle distance search operator, for a fixed budget. Similarly

to µDE-3SOME, each activation of the long distance stage is

given a maximum budget equal to 5% of the total budget of the

algorithm. This mechanism ensures a better balance among the

three stages, thus preventing budget mis-allocation. We should

remark that, due to the covariance matrix, (1+1)-CMA-ES-

3SOME requires more memory than the first two variants. For

the sake of clarity, figure 3 displays the coordination scheme

of (1+1)-CMA-ES-3SOME.

IV. NUMERICAL RESULTS

In order to understand the algorithmic contribution provided

by each of the three variants described above, we compared

them with the original implementation of 3SOME on the entire

noiseless Black-Box Optimization Benchmark 2010 (BBOB)

[1], consisting of 24 test functions with different properties

in terms of modality, separability, and ill-conditioning. To test

the scalability of the proposed approaches, we ran the whole

benchmark in 10, 20, 40 and 100 dimensions, thus considering

24× 4 = 96 functions in total.

As for the parameter setting, 3SOME was executed using

the parameters suggested in [10], namely inheritance factor for

αe = 0.05, δ and ρ respectively equal to 20% and 40% of the

total decision space width, and coefficient of generated points

at each activation of the middle distance exploration k = 4.

RIS-3SOME was executed with the same parameter setting

for αe and ρ, while the DE/current-to-rand/1 mutation was

applied with scale factor F = 0.4, and the threshold ε was set

equal to 1e− 4.

Also µDE-3SOME was executed with the same values of

αe and ρ, m = 5 individuals, scale factor F = 0.75, and
number of DE iterations equal to the problem dimension n.



The same values of αe and ρ where used also in (1+1)-

CMA-ES-3SOME. As for (1+1)-CMA-ES, the standard values

used in its original Java implementation available on [19] and

suggested in the original paper were used, namely cp = 1/12,
ptargetsucc = 2/11, pthresh = 0.44 and σ0 = 1. The budget for

each activation of (1+1)-CMA-ES was set to 10× n.
Each algorithm has been run for 5000×n fitness evaluations

for each run. For each problem 100 runs have been performed.

All the experiments were implemented in Java and executed on

a cluster of 160 Pentium 2.4 GHz cores using the optimization

platform Kimeme [20].

Numerical results are shown in tables I-IV, expressed as

average final value and standard deviation. The best results

are highlighted in bold face. In order to strengthen the statis-

tical significance of the results, the Wilcoxon Rank-Sum test

has also been applied according to the description given in

[21], where the confidence level has been fixed at 0.95. The
symbols “=” and “+” (“-”) indicate, respectively, a statistically

equivalent performance and a better (worse) performance of

original 3SOME compared with the algorithm labeled on the

top of the column.

In 10 dimensions, RIS-3SOME is able to improve upon

3SOME in 10 out of 24 functions, while in 11 cases they

are statistically equivalent, and only in 3 cases RIS-3SOME

degrades the original performance of 3SOME: two of these

three functions, namely f3 and f4, are indeed separable. In

general, RIS-3SOME seems to performs better than 3SOME

especially on non-separable multi-modal functions showing

an adequate or weak of “global structure” [1], particularly

the group of functions f15-f19. As for µDE-3SOME, it out-

performs 3SOME in 15 cases, it is outperformed only in 3

unimodal cases (f3, f10, and f12), and it shows a similar

performance in the remaining 6 cases. Thus µDE-3SOME

seems to consistently and regularly improve upon 3SOME,

especially on non-separable multi-modal functions. Similarly,

(1+1)-CMA-ES-3SOME outperforms 3SOME in 15 cases, it

is outperformed in 4 cases (2 separable functions), and it is

equivalent in 5 cases. In this case the improvement provided by

the CMA-ES scheme seems to be less focused on a specific

group of functions, but rather “structural”, since it displays

a better performance both on separable (e.g. f1 and f2) and
non-separable functions, particularly unimodal (f11, f12, f14).
In 20 dimensions, a similar trend emerges. RIS-3SOME

improves upon 3SOME in 11 cases (again on non-separable

multi-modal functions with global structure), while it is out-

performed in 6 cases and it equals 3SOME in the remaining

7 cases. Similarly, µDE-3SOME outperforms 3SOME in 11

cases, it is outperformed on 5 functions, and it shows the

same performance as 3SOME on 8 cases. In general µDE-

3SOME seems to be indeed better suited than 3SOME for

non-separable functions (both unimodal and multi-modal, es-

pecially with global structure). Also (1+1)-CMA-ES-3SOME

clearly outperforms 3SOME: in 17 cases out of 24 it obtains

a better result, while it degrades the 3SOME performance

only in 4 cases. Again, (1+1)-CMA-ES-3SOME seems to be

globally better than 3SOME, although seems to be extremely

good especially on unimodal functions, both separable and

non-separable (e.g. f1, f2 and the function group f10-f14).
Similar results were obtained also on 40 dimensions. RIS-

3SOME displays a better performance than 3SOME in 12

cases (especially non-separable multi-modal functions with

global structure), and a worse performance in only 4 cases

(among which again f3 and f4). µDE-3SOME outperforms

3SOME in 11 cases, while it is outperformed in 6 cases:

once again it seems to obtain better results especially on non-

separable functions, both unimodal and multi-modal. (1+1)-

CMA-ES-3SOME instead outperforms 3SOME on 15 test

functions, with different properties in terms of modality and

separability, and it is outperformed in 6 cases (either separable,

see f3 and f4, or not, see f8 and f9).
These results are confirmed even in 100 dimensions, al-

though in this case the advantages obtained modifying the

original structure of 3SOME appear less prominent. In par-

ticular, RIS-3SOME outperforms 3SOME in 9 cases, it is out-

performed in 7 cases, and it equals 3SOME in the remaining

8 cases: similarly to lower dimensionalities, the improvements

are more evident on non-separable multi-modal functions, but

in this case only on those having an adequate global structure

(function group f15-f19). µDE-3SOME performs better than

3SOME in 11 cases, while it is outperformed in 8 cases.

Also in this case the pattern suggests the µDE is better suited

for non-separable multi-modal functions with global structure.

Finally, (1+1)-CMA-ES-3SOME displays a better performance

than 3SOME in 13 cases (either separable or non-separable),

while 3SOME is more promising in 9 other cases. However, in

this case there is no clear evidence of a global scheme, except

that (1+1)-CMA-ES-3SOME seems to outperform 3SOME

especially on non-separable unimodal functions (f10-f14).
From the numerical results above summarized a few con-

clusions can be drawn. First of all, it is quite evident that the

three 3SOME variants here proposed are all able to improve,

sometimes remarkably, upon 3SOME. This is specially true for

non-separable functions with lower dimensionalities (from 10

to 40), while on semi-large scale problems (100 dimensions)

the performance improvement is relatively limited. On lower

dimensions, the results obtained in this study show also some

more specific trends. Referring to the property taxonomy used

to structure the BBOB 2010 benchmark, it seems that the two

variants based on DE/current-to-rand/1, namely RIS-3SOME

and µDE-3SOME, are able to better exploit the global struc-

ture of some landscapes, and in general they show similar per-

formances on the whole benchmark from 10 to 40 dimensions,

tending to outperform 3SOME on non-separable functions,

especially multi-modal. In a nutshell, these two variants can

be considered equivalent in terms of global performance: this

can be explained considering that, although their coordination

scheme is different, both RIS-3SOME and µDE-3SOME rely

on the same DE/current-to-rand/1 mutation scheme. On the

other hand, the combination of 3SOME with the (1+1)-CMA-

ES structure seems to produce the best global results on lower

dimensions, both on separable and non-separable functions.

However, compared to the first two simpler schemes, (1+1)-



CMA-ES-3SOME leads to minor improvements. A possible

interpretation of these results is that, despite its robustness

and mathematical elegance, (1+1)-CMA-ES is still prone to

converge to local optima, especially on highly multimodal

problems. Thus its application within the 3SOME structure

appears to be beneficial only on those landscapes whose

number of optima does not grow with the problem dimension.

In other words, especially on high dimensional problems,

simpler approaches like 3SOME or RIS-3SOME are already

successful without adding more complexity. This finding is in

line with the Ockham’s Razor [10].

Related to that, it must be remarked that the proposed

approaches are characterized not only by different computa-

tional complexity, but also by different memory footprint. As

in [10] and [13], we measure memory footprint in terms of

number of “memory slots” needed for the algorithm execution,

i.e. n-dimensional arrays of numeric values (floating/fixed

point double/single precision numbers, according to platform

and implementation). More specifically, while RIS-3SOME

requires only three memory slots (one for the elite, one for the

trial solution, and one to store the initial elite which is used for

replacements in the short distance operator), µDE-3SOME em-

ploys 3+m slots, where m additional slots are needed to store

the micro-population (5 in our experiments), and (1+1)-CMA-

ES-3SOME uses employs 3+n2 slot, where the quadratic term

refers to the covariance matrix. Thus the first two methods are

more suited for those applications plagued by severe memory

constraints (e.g. embedded systems, wireless sensors, wearable

devices, micro-robots, etc.), while µDE-3SOME and (1+1)-

CMA-ES-3SOME should be applied, respectively, in cases in

which memory is moderately or largely available (from FPGAs

to tablets and PC). Thus, if one has to find the best trade-off

between performance and memory consumption, RIS-3SOME

and µDE-3SOME should be preferred.

V. CONCLUSION

This paper proposes three novel variants of the 3SOME

framework, attempting to improve upon its performance on

non-separable problems. The proposed approaches replace

the original middle exploration operator with three different

algorithmic structures, two of them being based on DE/current-

to-rand/1 (RIS-3SOME and µDE-3SOME), and one on (1+1)-

CMA-ES. In addition to that, they slightly modify the original

coordination logics of 3SOME, still keeping a simple structure

and processing only one solution. Apart from (1+1)-CMA-

ES-3SOME which stores a covariance matrix, the other two

variants are also characterized by modest memory require-

ments, thus being suitable for embedded implementations.

Numerical results on the BBOB 2010 benchmark executed

with different dimensions show that the proposed approaches

outperform 3SOME especially on non-separable functions,

without degrading its global performance. The conclusion of

this study is that, although (1+1)-CMA-ES-3SOME seems to

be slightly more promising than the other two algorithms,

the best trade-off between complexity/memory footprint and

robustness is provided by simpler approaches such as RIS-

3SOME and µDE-3SOME.
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TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST IN 10 DIMENSIONS (REFERENCE = 3SOME)

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e + 01 ± 1.21e − 14 7.95e + 01± 0.00e + 00 - 7.95e + 01± 1.06e − 14 = 7.95e + 01± 1.03e − 14 =

f2 −2.10e + 02 ± 1.63e − 14 −2.10e + 02± 0.00e + 00 - −2.10e + 02± 1.52e − 14 = −2.10e + 02± 1.35e − 14 =

f3 −4.61e + 02 ± 1.18e + 00 −4.56e + 02± 2.69e + 00 + −4.60e + 02± 9.81e − 01 + −4.54e + 02± 4.41e + 00 +

f4 −4.60e + 02 ± 1.39e + 00 −4.55e + 02± 3.12e + 00 + −4.60e + 02± 1.54e + 00 = −4.51e + 02± 6.80e + 00 +

f5 5.33e + 00 ± 2.91e + 01 6.41e + 00± 3.04e + 01 = −4.99e + 00± 8.59e + 00 - −7.56e + 00± 9.86e + 00 -

f6 8.25e + 01 ± 2.83e + 02 1.50e + 02± 7.66e + 02 + 3.70e + 01± 1.13e + 01 - 3.59e + 01± 1.71e − 03 =

f7 1.05e + 02 ± 1.23e + 01 9.32e + 01± 4.00e − 01 - 1.01e + 02± 4.58e + 00 - 1.03e + 02± 9.01e + 00 =

f8 1.49e + 02 ± 1.86e − 01 1.49e + 02± 0.00e + 00 - 1.49e + 02± 1.51e − 01 = 1.49e + 02± 1.49e − 01 =

f9 1.25e + 02 ± 1.69e + 00 1.25e + 02± 1.50e + 00 - 1.24e + 02± 9.47e − 01 - 1.26e + 02± 1.01e + 01 =

f10 3.95e + 03 ± 2.63e + 04 2.26e + 03± 2.31e + 04 - 4.03e + 03± 1.10e + 04 + 2.60e + 02± 1.60e + 02 =

f11 1.57e + 02 ± 3.36e + 01 7.63e + 01± 0.00e + 00 - 1.29e + 02± 2.62e + 01 - 1.36e + 02± 2.72e + 01 -

f12 −6.12e + 02 ± 1.33e + 01 −6.21e + 02± 1.02e + 00 - −6.00e + 02± 2.19e + 01 + −6.08e + 02± 1.63e + 01 =

f13 4.26e + 01 ± 1.28e + 01 4.06e + 01± 1.08e + 01 = 3.83e + 01± 8.89e + 00 = 4.09e + 01± 1.11e + 01 =

f14 −5.23e + 01 ± 3.05e − 05 −5.23e + 01± 1.94e − 11 - −5.23e + 01± 2.01e − 05 - −5.23e + 01± 2.40e − 05 =

f15 1.10e + 03 ± 6.38e + 01 1.08e + 03± 4.71e + 01 = 1.06e + 03± 2.48e + 01 - 1.06e + 03± 2.92e + 01 -

f16 7.97e + 01 ± 4.63e + 00 7.83e + 01± 3.91e + 00 - 7.59e + 01± 2.19e + 00 - 7.71e + 01± 3.53e + 00 -

f17 −1.03e + 01 ± 6.57e + 00 −1.28e + 01± 2.39e + 00 - −1.32e + 01± 3.40e + 00 - −1.45e + 01± 1.50e + 00 -

f18 5.80e + 00 ± 2.56e + 01 −2.47e + 00± 9.57e + 00 = −4.37e − 01± 1.65e + 01 = −9.02e + 00± 4.48e + 00 -

f19 −9.80e + 01 ± 2.98e + 00 −9.94e + 01± 1.81e + 00 - −1.00e + 02± 1.49e + 00 - −1.00e + 02± 1.38e + 00 -

f20 −5.46e + 02 ± 2.59e − 01 −5.45e + 02± 3.69e − 01 + −5.46e + 02± 2.64e − 01 - −5.45e + 02± 3.02e − 01 +

f21 5.36e + 01 ± 1.34e + 01 4.82e + 01± 7.15e + 00 - 4.46e + 01± 4.07e + 00 - 4.73e + 01± 6.24e + 00 -

f22 −9.88e + 02 ± 1.55e + 01 −9.91e + 02± 1.29e + 01 - −9.98e + 02± 3.03e + 00 - −9.94e + 02± 8.23e + 00 -

f23 7.86e + 00 ± 4.95e − 01 7.86e + 00± 5.54e − 01 = 7.60e + 00± 3.09e − 01 - 7.88e + 00± 5.66e − 01 =

f24 1.92e + 02 ± 4.46e + 01 1.72e + 02± 2.72e + 01 - 1.57e + 02± 1.57e + 01 - 1.61e + 02± 2.03e + 01 -

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST IN 20 DIMENSIONS (REFERENCE = 3SOME)

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e + 01 ± 1.70e − 14 7.95e + 01± 0.00e + 00 - 7.95e + 01± 1.77e − 14 = 7.95e + 01± 1.68e − 14 =

f2 −2.10e + 02 ± 1.99e − 14 −2.10e + 02± 1.07e − 14 - −2.10e + 02± 2.33e − 14 = −2.10e + 02± 2.07e − 14 =

f3 −4.59e + 02 ± 1.86e + 00 −4.40e + 02± 7.82e + 00 + −4.56e + 02± 2.50e + 00 + −4.39e + 02± 7.33e + 00 +

f4 −4.57e + 02 ± 2.53e + 00 −4.37e + 02± 7.92e + 00 + −4.53e + 02± 3.25e + 00 + −4.37e + 02± 8.66e + 00 +

f5 2.05e + 01 ± 7.73e + 01 4.88e + 00± 5.59e + 01 - 9.27e + 00± 3.66e + 01 = −9.21e + 00± 2.07e − 13 -

f6 3.59e + 01 ± 5.12e − 06 3.59e + 01± 0.00e + 00 - 1.94e + 02± 1.12e + 03 + 3.59e + 01± 6.08e − 07 =

f7 1.16e + 02 ± 1.60e + 01 9.85e + 01± 4.74e + 00 - 1.11e + 02± 1.06e + 01 = 1.16e + 02± 1.40e + 01 =

f8 1.49e + 02 ± 5.28e − 01 1.49e + 02± 1.02e − 04 - 1.50e + 02± 7.77e + 00 = 1.50e + 02± 6.82e − 01 +

f9 1.25e + 02 ± 1.68e + 00 1.25e + 02± 1.59e + 00 - 1.26e + 02± 1.95e + 00 = 1.27e + 02± 7.63e + 00 +

f10 2.90e + 02 ± 2.34e + 02 −4.12e + 01± 8.58e + 01 - 2.04e + 04± 8.55e + 04 + 3.12e + 02± 2.70e + 02 =

f11 2.55e + 02 ± 8.50e + 01 9.35e + 01± 1.22e + 02 - 2.01e + 02± 4.94e + 01 - 1.97e + 02± 3.28e + 01 -

f12 6.89e + 06 ± 4.84e + 07 −6.20e + 02± 1.96e + 00 - −5.95e + 02± 2.71e + 01 - −6.05e + 02± 2.32e + 01 -

f13 3.78e + 01 ± 1.01e + 01 3.88e + 01± 1.24e + 01 = 5.07e + 01± 1.66e + 01 + 4.35e + 01± 1.36e + 01 +

f14 −5.23e + 01 ± 8.13e − 05 −5.23e + 01± 4.98e − 08 - −5.23e + 01± 7.97e − 05 - −5.23e + 01± 9.11e − 05 =

f15 1.27e + 03 ± 1.58e + 02 1.24e + 03± 9.68e + 01 = 1.17e + 03± 6.42e + 01 - 1.17e + 03± 7.33e + 01 -

f16 8.37e + 01 ± 5.89e + 00 8.28e + 01± 4.97e + 00 = 8.12e + 01± 3.85e + 00 - 8.02e + 01± 4.29e + 00 -

f17 −7.05e + 00 ± 5.64e + 00 −9.84e + 00± 2.66e + 00 - −1.15e + 01± 2.19e + 00 - −1.22e + 01± 1.90e + 00 -

f18 2.08e + 01 ± 2.63e + 01 8.62e + 00± 1.18e + 01 - 6.08e + 00± 1.20e + 01 - 2.35e + 00± 7.42e + 00 -

f19 −9.60e + 01 ± 3.34e + 00 −9.82e + 01± 2.14e + 00 - −9.93e + 01± 1.48e + 00 - −9.89e + 01± 1.43e + 00 -

f20 −5.46e + 02 ± 1.91e − 01 −5.45e + 02± 2.23e − 01 + −5.46e + 02± 2.07e − 01 - −5.45e + 02± 2.27e − 01 +

f21 5.97e + 01 ± 1.80e + 01 5.32e + 01± 1.36e + 01 - 5.19e + 01± 1.19e + 01 - 5.00e + 01± 1.04e + 01 -

f22 −9.84e + 02 ± 1.50e + 01 −9.87e + 02± 1.44e + 01 - −9.89e + 02± 1.15e + 01 = −9.90e + 02± 1.11e + 01 -

f23 7.94e + 00 ± 6.06e − 01 8.08e + 00± 5.71e − 01 + 7.89e + 00± 4.42e − 01 = 7.95e + 00± 5.39e − 01 =

f24 3.69e + 02 ± 1.16e + 02 3.16e + 02± 6.29e + 01 - 2.72e + 02± 4.16e + 01 - 2.69e + 02± 5.46e + 01 -

[19] N. Hansen, “The CMA Evolution Strategy,” 2011, http://www.lri.fr/
∼hansen/cmaesintro.html.

[20] Cyber Dyne Srl Home Page, http://cyberdynesoft.it/.
[21] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, 1945.



TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST IN 40 DIMENSIONS (REFERENCE = 3SOME)

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-3SOME

f1 7.95e + 01 ± 2.56e − 14 7.95e + 01± 0.00e + 00 - 7.95e + 01± 2.18e − 14 = 7.95e + 01± 2.62e − 14 =

f2 −2.10e + 02 ± 3.28e − 14 −2.10e + 02± 1.45e − 14 - −2.10e + 02± 3.13e − 14 = −2.10e + 02± 3.44e − 14 =

f3 −4.54e + 02 ± 3.44e + 00 −4.16e + 02± 1.21e + 01 + −4.39e + 02± 4.92e + 00 + −4.15e + 02± 1.05e + 01 +

f4 −4.51e + 02 ± 4.06e + 00 −4.08e + 02± 1.43e + 01 + −4.31e + 02± 6.85e + 00 + −4.05e + 02± 1.43e + 01 +

f5 5.63e + 01 ± 1.78e + 02 1.23e + 01± 1.05e + 02 - 7.67e + 01± 1.42e + 02 + −9.21e + 00± 8.58e − 13 -

f6 3.59e + 01 ± 9.31e − 07 3.59e + 01± 0.00e + 00 - 3.59e + 01± 4.52e − 06 = 3.59e + 01± 8.18e − 08 =

f7 2.10e + 02 ± 6.39e + 01 1.25e + 02± 1.06e + 01 - 1.63e + 02± 3.21e + 01 - 1.76e + 02± 3.20e + 01 -

f8 1.53e + 02 ± 1.69e + 01 1.53e + 02± 3.53e + 00 + 1.52e + 02± 1.36e + 01 = 1.49e + 02± 5.23e − 01 =

f9 1.25e + 02 ± 1.53e + 00 1.31e + 02± 3.32e + 00 + 1.25e + 02± 1.07e + 00 = 1.25e + 02± 1.48e + 00 +

f10 1.95e + 05 ± 1.40e + 06 9.23e + 01± 6.56e + 01 - 1.62e + 05± 4.48e + 05 - 8.93e + 02± 2.94e + 02 =

f11 3.80e + 02 ± 6.30e + 01 8.16e + 01± 5.16e + 01 - 3.13e + 02± 5.82e + 01 - 3.24e + 02± 4.72e + 01 -

f12 −6.11e + 02 ± 8.98e + 00 −6.11e + 02± 8.50e + 00 = −6.16e + 02± 6.47e + 00 - −6.15e + 02± 6.46e + 00 -

f13 4.19e + 01 ± 1.28e + 01 4.07e + 01± 1.35e + 01 = 4.39e + 01± 1.06e + 01 + 4.20e + 01± 1.05e + 01 =

f14 −5.23e + 01 ± 7.18e − 05 −5.23e + 01± 6.31e − 07 - −5.22e + 01± 1.88e + 00 + −5.23e + 01± 5.67e − 05 =

f15 2.06e + 03 ± 4.04e + 02 1.75e + 03± 2.12e + 02 - 1.37e + 03± 1.21e + 02 - 1.45e + 03± 1.57e + 02 -

f16 8.87e + 01 ± 5.44e + 00 8.95e + 01± 5.53e + 00 = 8.72e + 01± 5.46e + 00 - 8.45e + 01± 4.71e + 00 -

f17 −5.52e + 00 ± 3.25e + 00 −9.42e + 00± 1.41e + 00 - −1.07e + 01± 1.53e + 00 - −1.05e + 01± 1.27e + 00 -

f18 2.56e + 01 ± 1.47e + 01 1.14e + 01± 5.42e + 00 - 7.91e + 00± 5.93e + 00 - 7.21e + 00± 4.66e + 00 -

f19 −9.33e + 01 ± 3.68e + 00 −9.54e + 01± 2.38e + 00 - −9.80e + 01± 2.12e + 00 - −9.68e + 01± 1.94e + 00 -

f20 −5.46e + 02 ± 1.28e − 01 −5.45e + 02± 1.61e − 01 + −5.46e + 02± 1.97e − 01 + −5.45e + 02± 1.59e − 01 +

f21 5.28e + 01 ± 1.62e + 01 4.96e + 01± 1.22e + 01 - 4.44e + 01± 6.26e + 00 - 4.54e + 01± 8.39e + 00 -

f22 −9.85e + 02 ± 1.31e + 01 −9.88e + 02± 8.83e + 00 - −9.87e + 02± 7.35e + 00 = −9.90e + 02± 9.58e + 00 -

f23 8.10e + 00 ± 5.26e − 01 8.42e + 00± 6.70e − 01 + 8.10e + 00± 5.52e − 01 = 8.16e + 00± 5.76e − 01 =

f24 9.44e + 02 ± 2.79e + 02 6.49e + 02± 1.43e + 02 - 5.17e + 02± 7.50e + 01 - 5.80e + 02± 1.18e + 02 -

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST IN 100 DIMENSIONS (REFERENCE = 3SOME)

3SOME (1+1)-CMA-ES-3SOME µDE-3SOME RIS-S3SOME

f1 7.95e + 01 ± 3.29e − 14 7.95e + 01± 0.00e + 00 - 7.95e + 01± 3.96e − 14 = 7.95e + 01± 4.10e − 14 =

f2 −2.10e + 02 ± 5.69e − 14 −2.10e + 02± 2.45e − 14 - −2.10e + 02± 5.49e − 14 = −2.10e + 02± 5.72e − 14 =

f3 −4.39e + 02 ± 7.28e + 00 −3.34e + 02± 2.37e + 01 + −3.64e + 02± 1.64e + 01 + −3.34e + 02± 2.09e + 01 +

f4 −4.27e + 02 ± 8.70e + 00 −3.07e + 02± 2.66e + 01 + −3.36e + 02± 2.14e + 01 + −2.96e + 02± 2.48e + 01 +

f5 7.40e + 00 ± 1.65e + 02 −8.18e + 00± 3.02e − 01 - 2.43e + 02± 4.90e + 02 + −9.21e + 00± 4.28e − 12 -

f6 3.59e + 01 ± 8.86e − 08 3.59e + 01± 1.48e − 03 + 1.33e + 04± 1.32e + 05 + 3.59e + 01± 3.89e − 08 =

f7 5.97e + 02 ± 2.83e + 02 2.90e + 02± 7.06e + 01 - 3.90e + 02± 1.06e + 02 - 3.96e + 02± 1.03e + 02 -

f8 1.83e + 02 ± 3.31e + 01 2.13e + 02± 1.99e + 01 + 1.84e + 02± 4.08e + 01 = 1.89e + 02± 4.24e + 01 =

f9 1.76e + 02 ± 1.36e + 01 1.89e + 02± 1.36e + 01 + 1.78e + 02± 2.38e + 01 = 1.78e + 02± 1.34e + 01 +

f10 2.68e + 03 ± 6.96e + 02 1.59e + 03± 4.52e + 02 - 6.99e + 04± 5.83e + 05 + 2.97e + 03± 6.44e + 02 +

f11 3.83e + 02 ± 8.22e + 01 7.63e + 01± 5.83e − 03 - 6.82e + 02± 1.21e + 02 + 7.26e + 02± 8.46e + 01 +

f12 −6.09e + 02 ± 1.83e + 01 −6.12e + 02± 1.65e + 01 = −6.17e + 02± 6.31e + 00 - −6.17e + 02± 9.12e + 00 -

f13 3.35e + 01 ± 4.87e + 00 3.30e + 01± 4.63e + 00 = 3.64e + 01± 5.08e + 00 + 3.61e + 01± 4.80e + 00 +

f14 −5.23e + 01 ± 5.47e − 05 −5.23e + 01± 2.08e − 06 - −5.23e + 01± 5.56e − 05 - −5.23e + 01± 5.89e − 05 =

f15 4.53e + 03 ± 5.89e + 02 3.65e + 03± 4.54e + 02 - 2.26e + 03± 2.81e + 02 - 2.49e + 03± 4.94e + 02 -

f16 9.51e + 01 ± 6.11e + 00 9.90e + 01± 4.38e + 00 + 9.28e + 01± 8.46e + 00 - 8.94e + 01± 3.94e + 00 -

f17 −2.63e − 02 ± 3.97e + 00 −6.72e + 00± 1.91e + 00 - −8.67e + 00± 1.82e + 00 - −7.28e + 00± 1.79e + 00 -

f18 4.55e + 01 ± 1.54e + 01 2.34e + 01± 7.42e + 00 - 1.44e + 01± 7.27e + 00 - 1.91e + 01± 6.52e + 00 -

f19 −9.08e + 01 ± 3.39e + 00 −8.89e + 01± 3.68e + 00 + −9.39e + 01± 2.07e + 00 - −9.27e + 01± 3.76e + 00 -

f20 −5.46e + 02 ± 9.61e − 02 −5.45e + 02± 1.04e − 01 + −5.45e + 02± 1.01e − 01 + −5.45e + 02± 9.12e − 02 +

f21 5.19e + 01 ± 1.21e + 01 4.95e + 01± 9.21e + 00 - 4.81e + 01± 6.53e + 00 - 4.94e + 01± 8.84e + 00 =

f22 −9.82e + 02 ± 1.47e + 01 −9.84e + 02± 1.38e + 01 - −9.87e + 02± 1.04e + 01 - −9.87e + 02± 1.06e + 01 =

f23 8.21e + 00 ± 4.93e − 01 8.75e + 00± 5.79e − 01 + 8.30e + 00± 5.67e − 01 = 8.24e + 00± 4.56e − 01 =

f24 2.79e + 03 ± 4.75e + 02 1.86e + 03± 2.86e + 02 - 1.30e + 03± 1.44e + 02 - 1.82e + 03± 3.01e + 02 -


