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Abstract—The aim of this paper is to distinguish between some
of the more intrinsic differences that exist between grey system
theory (GST) and fuzzy system theory (FST). There are several
aspects of both paradigms that are closely related, it is precisely
these close relations that will often result in a misunderstanding
or misinterpretation. The subtly of the differences in some cases
are difficult to perceive, hence why a definitive explanation is
needed. This paper discusses the divergences and similarities
between the interval-valued fuzzy set and grey set, interval
and grey number; for both the standard and the generalised
interpretation. A preference based analysis example is also put
forward to demonstrate the alternative in perspectives that each
approach adopts. It is believed that a better understanding of
the differences will ultimately allow for a greater understanding
of the ideology and mantras that the concepts themselves are
built upon. By proxy, describing the divergences will also put
forward the similarities. We believe that by providing an overview
of the facets that each approach employs where confusion may
arise, a thorough and more detailed explanation is the result.
This paper places particular emphasis on grey system theory,
describing the more intrinsic differences that sets it apart from
the more established paradigm of fuzzy system theory.

I. INTRODUCTION

Uncertainty by its very nature is uncertain in its description,
there is no notion of general uncertainty but rather, uncertainty
that is context specific. Different facets of life will invoke
different facets of uncertainty, it is only when the scope of the
domain is somewhat known that a more informed approach
can be undertaken. An understanding requires a perspective
on which an assumption can be based. Defining a perspective
provides the foundation on which to model, infer and reason
from. Many approaches have been put forward as a means
to tackle the various aspects of uncertainty, with each one
taking a unique perspective; genetic algorithms (GA), neural
networks (NN), particle swarm optimisation (PSO), principle
component analysis (PCA), support vector machines (SVM)
and so on. The very fact that there exists different models
for uncertainty, reinforces the point that no one approach can
be seen as a universal approach or a Jack of all trades. As
the life and times of humanity progresses, so do the types
of uncertainty that are associated. As a result, new paradigms
may be proposed or existing paradigms maybe paired to create
hybridised concepts. This paper will briefly describe two very
prominent approaches, fuzzy system theory (FST) and grey
system theory (GST). With the main aim being to provide for
a readily accessible piece of work that clearly and concisely
identifies the differences between the two.

The motivation for this paper comes from the lack of a
precise understanding that describes the differences between
the two concepts. Ergo, we believe that this paper in part
helps with quashing some of the misinterpretations that can
be associated with grey systems, via a clear, concise un-
derstanding of what actually sets the two approaches apart.
In some instances, grey systems are generally considered to
be an extension of fuzzy sets. This is true under certain
considerations but not all, understanding when and where the
differences occurs undoubtedly provides for a clearer picture.
The close relationship between an interval-valued fuzzy set
and a grey set is described. As is the subtly when describing
the differences between interval representation and the gener-
alised grey number. The added example based on preference
analysis should also add the to the reader’s understanding of
what perspective each approach is adopting when tackling the
problem of preference ordering. From two different schools of
thought; the two paradigms are indeed very similar, however
intrinsic differences still exist. The creation of this paper
and the intended follow up papers will provide for a readily
available, concise and detailed explanation of what differences
exist between the two concepts.

Section II will go onto provide the foundational prelim-
inaries for each approach, presenting some of the notation
used. Section III will provide the observations, highlighting
the differences and by proxy touching upon the similarities.
Also included is an example of preference analysis done from
a fuzzy and grey perspective. Section IV will draw out the
conclusion and summarise upon the divergences that this paper
has identified.

II. PRELIMINARIES

The paper will now go on to provide some of the core def-
initions needed in order to grasp the concepts being discussed.

A. Fuzzy Preliminaries

We begin with fuzzy theory and its associated extensions.
The most fundamental aspect of fuzzy as with grey, is its
understanding of numbers. A fuzzy number is ideal for de-
scribing linguistic phenomena, where an exact description of
its state is unknown. For example, the following statement
‘it’s roughly 4pm’ contains uncertainty, as allowances either
side of 4 are included. This allows for a fuzzy number to be
described in terms of a linguistic modifier, such as; nearly,
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almost, around and so on. In the literature there is often no
distinction between a fuzzy number and a fuzzy interval, as
both terms are used interchangeably. It can be stated that any
interpretation involving a fuzzy view is an extension of a fuzzy
number. This is true for a crisp number, an interval number,
a number which is reference to about a point, or an interval
which describes how near it is to a point. A fuzzy number and
a fuzzy set are essentially the same, both mathematically and
descriptively.

Definition 1 (Fuzzy set [8]): Let U represent the universe
and let A be a set in U (A ⊂ U). The fuzzy set A is a set of
ordered pairs given by the formal expression:

A = {〈x, µA(x)〉 : x ∈ U} (1)

A = µ(x1)/x1 + µ(x2)/x2 + . . .+ µ(xn)/xn

where µA : U → [0, 1] is the membership function and
the value returned by µA(x) quantifies the belongingness of
the element x with respect to the fuzzy set A. In essence, the
process of associating a membership value to an element is
known as fuzzification. If µA(x) = 1, this signifies complete
and absolute inclusion, whereas µA(x) = 0 signifies complete
and absolute exclusion from the fuzzy set A. Any real value
in the range [0, 1] signifies that it belongs in part to the set by
some degree. A fuzzy set can also be represented by having
an interval in place of a single crisp membership value, this is
referred to as an interval-valued fuzzy set.

Definition 2 (Interval-valued fuzzy set [3]): Let D[0, 1]
be the set of all closed sub-intervals of the interval [0, 1]. U
represents the universe, x is an element and belongs to the
universe x ∈ U . An interval-valued fuzzy set is given by the
formal expression:

A = {〈x,MA(x)〉 : x ∈ U} (2)

where MA : U → D[0, 1]

The membership of an interval-valued fuzzy set itself is
an interval. We omit the definitions for the various additional
extensions to the standard fuzzy set; Atanassov intuitionistic,
shadowed and type-2 fuzzy sets, as they are not compared
against in this paper.

B. Grey Preliminaries

We will now present the preliminary concepts associated
with grey systems, from which comparisons will be made. A
grey set makes use of grey numbers g±, and considers the
characteristic function values of a grey set as grey numbers.
There are several classes of grey numbers that the reader
should be made aware of:

• Lower limit grey number: g± ∈ [g−,∞)

• Upper limit grey number: g± ∈ (−∞, g+]

• Interval grey number: g± ∈ [g−, g+]

• Black number: g± ∈ (−∞,+∞)

• White number: g± ∈ [g−, g+] ∧ g− = g+

With the aforementioned classes one can interpret what is
meant by white, black and grey. A white number is absolutely
known and has an associated exact value. A black number is
absolutely unknown, both in its exactness and the range in
which it is to be found. A grey number is a halfway house
between the two, where the exact value is unknown but the
range in which it is to be found is known.

The generalised grey number presented in [5][6][7], is used
in place of the standard grey number, as the allowance of both
discrete and continuous values are perfectly acceptable. The
notation that follows uses closed brackets, but its should be
understood that both closed and open intervals are accepted.

Definition 3 (Generalised grey number [5][6][7]): Let
g± ∈ R be an unknown real number within a union set of
closed or open intervals, presented as follows:

g± ∈
n⋃
i=1

[
a−i , a

+
i

]
(3)

where i = 1, 2, . . . , n and n is an integer value and 0 <
n < ∞, a−i , a

+
i ∈ R and a−i−1 ≤ a−i ≤ a+i ≤ a−i+1. For any

interval
[
a−i , a

+
i

]
⊆
⋃n
i−1
[
a−i , a

+
i

]
, pi is the probability for

g± ∈
[
a−i , a

+
i

]
, if the following two conditions hold true:

• pi > 0

•
∑n
i pi = 1

If so, g± is a generalised grey number. g− = infa−i ∈g±a
−
i

and g+ = supa+i ∈g±a
+
i are respectively referred to as the

lower and upper limits of the grey number g±. Based on this
interpretation, it is impossible for there to be more than one
number that is the underlying white number, contained within
its candidate set. The generalised grey number is particularly
important as it allows for the inclusion of both discrete and
continuous datum to be contained in the candidate set. The
very fact that both open and closed intervals may be included
means that gaps may also be included, which would otherwise
not be the case if using a standard interval representation.

Much like a fuzzy membership function value, a grey
number g± can also be attributed to a membership like value.
In this instance the value is refereed to as the degree of
greyness.

Definition 4 (Degree of greyness [4]): Quantifies the
significance of the unknown grey number to the interval
containing the information. The formal expression is given as:

g◦(g±) = f(g−, g+) (4)

where f is a function to determine the significance of
the grey interval to the grey number g±. There are several
variants for the degree of greyness, this paper will adopt the
one presented in Eq. (5). Let D = [dmin, dmax] be the domain
of values represented by a grey number g± ∈ [g−, g+]. We



then have dmin ≤ g−, dmax ≤ g+. We then can obtain the
degree of greyness using the following expression:

f(g−, g+) =
|g+ − g−|
|dmax − dmin|

(5)

As this is a measure for greyness of a grey number g±, the
value returned can be understood thusly:

• White number : g◦ = 0 ⇔ g− = g+

• Black number : g◦ = 1⇔ g− = dmin ∧ g+ = dmax

• Grey number : g◦ = [0, 1]⇔ {g− ≤ g± ≤ g+}

Understandably, if the degree of greyness is 0 then no
uncertainty exists, meaning that the value is white, known and
crisp. If the degree of greyness is 1, absolute uncertainty exists
and therefore deemed a black number. Any real value returned
that falls in the range [0, 1] is a grey number.

In the same way a fuzzy set is an extension to the idea
of a fuzzy number, a grey set is an extension to the idea of
a grey number. The notion of grey sets themselves could also
be described as either being; white, black or grey.

Definition 5 (White sets [5][6]): For a set A ⊆ U , if the
characteristic function value for all xi elements with respect
to A can be expressed as crisp white numbers belonging to
v ∈ [0, 1]. The set A can be assumed to be a white set.

Definition 6 (Black sets [5][6]): For a set A ⊆ U , if the
characteristic function value for all xi elements with respect
to A can only be expressed as black numbers, then set A can
be assumed to be a black set.

Definition 7 (Grey sets [5][6]): For a set A ⊆ U , if the
characteristic function value for all xi elements with respect to
A can be expressed by grey numbers, g±A ∈

⋃n
i=1

[
a−1 , a

+
1

]
∈

D [0, 1]
±. Where D [0, 1]

± is the set of all grey numbers within
the interval [0, 1]. Then set A is assumed to be a grey set.

Similar to the expression of a fuzzy set as defined in
Definition 1, the elements constituting the set are presented
with their associated grey numbers:

A = g±(x1)/x1 + g±(x2)/x2 + . . .+ g±(xn)/xn

The degree of greyness for an element belonging to a set
can also be calculated, much like Definition 4, which presented
the degree of greyness of the grey number with relation to its
interval. The greyness measure for an element in relation to
its set is presented as follows:

Definition 8 (Degree of greyness for an element [5][6]):
Assume that U is a finite universe of discourse and x ∈ U . For
a set A ⊆ U , the characteristic function value of element x
with regards to A is g◦A(x) ∈ D[0, 1]±. The degree of greyness
for an element is given by the following expression:

g◦A(x) = |g+ − g−| (6)

Based on the degree of greyness for an element, the degree
of greyness for a set can also be computed, which is presented
as follows:

Definition 9 (Degree of greyness for a set [5][6]): Assume
U is a finite universe of discourse, A is a grey set such that
A ⊆ U . Each xi element is with regards to the grey set A,
xi ∈ U = i = 1, 2, . . . , n, where n represents the cardinality.
The degree of greyness of a set is given by the following
expression:

g◦A =

∑n
i=1 g◦A(xi)

n
(7)

III. OBSERVATIONS

As grey numbers are predominantly associated with in-
tervals, there is a very close relationship with interval-valued
fuzzy sets. So much so that they are often regarded as being
one and the same. Under certain considerations this is true, by
using a grey set represented by only interval grey numbers an
interval-valued fuzzy set is equivalent. There are some intrinsic
differences between grey numbers and intervals, and grey sets
and interval-valued fuzzy sets. If the perspective that a grey
set and a interval-valued fuzzy set is equivalent, then one has
ignored the possible inclusion of discrete data. Assume that
the interval [0.4, 0.6] and the discrete set {0.4, 0.6} are two
possible variances to represent a grey number g± defined on
[0, 1]. As the first is an interval, there are an infinite number of
possible candidates. The second variance, a discrete set, cannot
be modelled using an interval, therefore having a different level
of uncertainty associated with it. The generalised grey number,
presented in Eq. (3), allows for the inclusion of all possible
situations, whether discrete, continuous or a combination of
both. It allows for potential gaps to be included and to be
apart of the candidate set. For example, g± ∈ {[1, 4], [6, 10]}
is a grey number where its underlying white number may
belong to the interval [1, 4] or [6, 10]. We know absolutely
that it cannot be found between the values (4, 6). An interval
encapsulating the same scope [1, 10] would include (4, 6) as
possible candidates as it can not selectively ignore values in-
side the interval. If the grey number belonged to the candidate
set g± = [1, 10], then the values (4, 6) would be perfectly
acceptable for both grey number and interval. The generalised
approach could also be be used to represent a finite set of
candidates, g± = {2, 4, 6, 8, 10}, which is not representable by
an interval. The dynamic nature of the generalised grey number
far exceeds that of the interval in terms of encapsulation. The
grey approach allows one to be selective, as to what should
and should not be included in the candidate set. The following
properties hold true for the generalised grey number [5]:

• g± is a continuous grey number g± ∈ [a−1 , a
+
n ] iff

a−i = a+i−1(∀i > 1) or n = 1

• g± is a discrete grey number g± ∈ {a1, a2, . . . , an}
iff ai = a−i = a+i

• g± is a mixed grey number iff it is made up of both
crisp values and intervals

If there are no gaps between the candidate values, then a
grey number and a interval are essentially the same. With the



inclusion of gaps, the grey number is indeed different from the
interval and an interval-valued fuzzy perspective.

A. Sets

Definition 5 defined a white set for a grey system, where
for each value of x with respect to its set A, its characteristic
function value was a single white number. A type-1 fuzzy set
can be regraded as a special instance of a white set. A crisp set
is obviously a white set, and a crisp value is a white number;
there is no associated uncertainty involved with either. A type-
1 fuzzy set will provide an accompanying membership degree
for each and every element of its set, which is a white number
and satisfies the definition for a white set. A white set has
a clear and transparent relationship between its elements and
the set itself. It should not be confused with the traditional
interpretation of a crisp relationship. A element in a grey
set, much like that of a standard fuzzy set, may be given
a white number for its characteristic values. Replacing the
grey characteristic function with that of a fuzzy membership
function, a white set undoubtedly becomes a typical type-1
fuzzy set [5].

A fuzzy approach only deals with the notion of belong-
ingness from a single perspective. A grey approach allows for
three different variations; white black and grey, each with their
own perspective. The is true not only for the number itself but
also for sets, this is extended further to describe the elements
of a set. Labeling an element as either being a white, black
or a grey number with respect to its set, provides for a better
understanding. Obviously the term white carries a connotation
of completeness, fully knowing, but because of the existence
of black and grey elements, relationships between elements
and sets may be incomplete or unknown. A means to quantify
this uncertainty due to incompleteness gave rise to the idea of
a degree of greyness for a number, element and a set.

Assuming that U is a finite universe of discourse and that
A is a grey set, A ⊆ U . Where x is an element and x ∈ U , and
the characteristic function value of x is given by g±A(x). g◦A(x)
is the degree of greyness of g±A(x), and g◦A is the degree of
greyness for the grey set A. If and only if, g◦A = 0 and g±A(x) ∈
[0, 1] for any any x ∈ U , then it can be said that A is a standard
type-1 fuzzy set. Also, if and only if, g±A(x) is a continuous
grey number for any x ∈ U , then A is an interval-valued
fuzzy set. This enforces the the understanding that grey sets
extend that of fuzzy and interval-valued fuzzy sets. Only when
a grey number is represented by discrete or mixed sets, does
the difference between an interval-valued fuzzy set become
apparent.

A grey set will only be equivalent to an interval-valued
fuzzy set when the characteristic function values are repre-
sented by interval grey numbers. Where the interval in the
interval-valued fuzzy set is understood to be an unknown value
within a known bounded scope [5].

B. Degrees of uncertainty

A fuzzy approach describes its element via the notion of
a fuzzy membership function, assigning each element with
a degree of membership µA(xi). A value of 1 indicates
absolute belongingness, 0 absolute exclusion, and [0, 1] partial
inclusion to some degree, all with respect to its set. The degree

of greyness of a grey number is concerned with relativity
rather than absoluteness, the degree returned is based upon
the limits of the grey number over the defined universe. To
illustrate this point assume two grey numbers, x± ∈ [25, 75]
and y± ∈ {25, 75}, defined on the universe [0, 100]. x± is
an interval with an infinite number of possible candidates
to choose from, y± contains two discrete numbers, meaning
two possible choices. Using Eq. (5), the following degrees of
greyness are returned for x± and y±:

x± =
75− 25

100− 0
= 0.5 y± =

75− 25

100− 0
= 0.5

Both grey numbers return the same degree measure even
though their cardinality are extremely different. This alludes
to the fact that the degree is relative to the grey number itself,
and not to the candidate set that it belongs. A degree of
1 has the opposite meaning to that of a fuzzy membership
value, as a 1 according to grey systems indicates that absolute
uncertainty exists and nothing is known. A degree of 0 means
that the grey number has no uncertainty associated with it and
everything regarding it is known. Using the degree of greyness
to infer about a grey number can provide an understanding if
the number is white or black. A value of 0 for the degree of
greyness signifies that the number is white, and a value of 1
indicates that the number is in fact black.

C. Preference analysis

Preference analysis is the general understanding of group
decision making policies. Inspecting the collective contribu-
tions of society, group or populous, to make an informed
decision. Fuzzy preference involves the use of scoring; given
a selection of criterion, experts are asked to score the criteria
based on their opinions. A fuzzy approach allows for the
use of multiple techniques to be incorporated. An individ-
ual could give their preference based on an ordered vector,
X = {x1, x2, . . . , xn}, from best to worst. Utility values,
providing a U = {x1, x2, . . . , xn}, where xi ∈ [0, 1]. In
this case each alternative is scored based on a real value in
accordance to the individual’s preference. Given a preference
based on the ordering vector, one can derive the utility values
for the same domain. The intrinsic link between preference
ordering ⇒ utility values ⇒ preference relations, allows for
extreme versatility. A fuzzy preference relation is given by;
µpk : X × X → [0, 1], where µpk(xi, xj) = pkij denotes the
preference degree or the intensity of the alternative xi over xj .

• pkij = 1
2 : there is indifference between xi and xj

• pkij = 1: xi is unanimously preferred to xj

• pkij >
1
2 : xi is preferred to xj

A fuzzy preference relation is a matrix that can be intu-
itively read and inferred from. The use of the non-dominance
concept further enhances the ability to understand which
characteristic is preferred over another alternative, based on
the opinion of experts [1].

A grey approach to preference analysis makes use of a
system’s incidence sequences. Even though traditional grey
preference based relations do away with human experts,



human opinion and expert knowledge can still be factored
into the system [9]. For sake of simplicity we describe the
traditional grey ethos to preference analysis. Grey systems
takes into consideration the characteristic sequences of a
system Y1, Y2, . . . , Yn, against its behavioural factor sequences
X1, X2, . . . , Xm, all of which must be of the same magnitude.
In much the same way the fuzzy approached applied several
techniques to quantify the data, grey preference analysis makes
use of the degree of grey incidence, Γ = [γij ]. Where each
entry in the ith row of the matrix is the degree of grey
incidence for the corresponding characteristic sequence Yi, and
relevant behavioural factors X1, X2, . . . , Xm. Each entry for
the jth column is reference to the degrees of grey incidence
for the characteristic sequences Y1, Y2, . . . , Yn and behavioural
factors Xm. One could also make use of the absolute matrix
of grey incidence A = [εij ]n×m. The relative matrix of grey
incidence B = [rij ]n×m, and the synthetic matrix of grey
incidence C = [pij ]n×m. Each variance of incidence takes a
different perspective when inspecting the relationships between
characteristics and behaviours, which like the fuzzy approach
allows for additional versatility.

TABLE I. RECORDED VALUES FOR CHARACTERISTIC AND
BEHAVIOURAL FACTORS

Years
1984 1985 1986 1986

Production revenue: Y0 10,155 12,588 23,408 35,388
Fixed capitals: X1 3,799 3,605 5,460 6,982

Circulating capitals: X2 1,752 2,160 2,213 4,753
Labour forces: X3 24,186 45,590 57,685 85,540

After-tax profits: X4 1,164 1,788 3,134 4,478

TABLE II. EXPERT PREFERENCE ORDERED VALUES

X1 X2 X3 X4

Expert1: 3 4 1 2
Expert2: 4 3 1 2
Expert3: 3 4 1 2
Expert4: 4 3 1 2
Expert5: 3 4 1 2
Expert6: 3 4 1 2

Table I contains real information regarding an economy that
consists of non-governmental enterprises owned individually
and collectively. The data was taken from enterprises based in
the Henan Province of China, from the years 1984 through to
1986. The question being asked is, which factors should be
given increased attention in order to maintain healthy growth
for the coming years, so that Y0 continues to trend positively?

We will first describe the grey process, Y0 in this instance
acts as the characteristics sequence, the sequences which is
used to compare against the identified behavioural factors
X1, X2, . . . , X4, in turn. The preference that will be identified
is solely based on the data presented in Table I, there is no
need to require the input of human intuition or experts. The
majority of the working out has been omitted from this paper
in order to save space, but assume that the zero starting point
images for each Y0 and Xi have been established. At this
point we could simply compute the degree of grey incidence,
this would provide a general overview. However, the more
typical thing to do given this situation is to compute the
absolute degree of incidence (εij) and the relative degree
of incidence (rij). From which the synthetic degree (pij)

of incidence can be computed. Each variation inspects the
characteristic sequence in relation to each of the behavioural
factors from a different perspective, based on the geometric
shape of the sequence curves. As this is a rather trivial example
with only one characteristic sequence, the returned matrices
for absolute, relative and synthetic will all be [1 × 4]. The
absolute perspective inspects the characteristic and behavioural
relationship in its entirety of absolute change, whereas the
relative perspective inspects the relationship based on the
data’s initial starting points and relative rates of change. The
synthetic perspective is a halfway-house between the two,
which uses a variable coefficient θ ∈ [0, 1] to stipulate how
much of both to incorporate. Generally speaking, θ = 0.5,
so that an equal amount of absoluteness and relativeness can
be factored into the preference ordering. Assuming that the
absolute and relative degree of incidence matrices have already
been calculated, we use them to produce the synthetic degree
of incidence using Eq. (8):

pij = θεij + (1− θ)rij (8)

Which will result in the following C = [pij ]:

C = [pij ]1×4 = [ 0.6263 0.6618 0.7862 0.7355 ]

The synthetic approach is often the one chosen as it
employs qualities of both absolute and relative perspectives.
Inspecting matrix C we have the following order for prefer-
ence; p03 > p04 > p02 > p01. From which it can be concluded
that:

X3 � X4 � X2 � X1

Which states that X3 is the most preferred, followed by
X4, then X2, with X1 being the least preferred factor. That is
to say that labour forces have the greatest effect on production
revenue Y0, after-tax has the second greatest effect, followed
by circulating capitals and finally fixed capitals. This ordering
agreed very well with the actual situation of the region the data
was based on. Echoing the same qualitative understanding that
many human experts would have also given.

Using the fuzzy approach we must include the notion
of human experts. The values contained in Table II are the
preference ordering values given by six different experts. They
were asked to order the importance of each of the behavioural
factors contained in Table I, scoring them them in order of most
important to least significant. For example Expert 1 identified
factor X3 as the most important and factor X2 as the least
important. It is noteworthy to mention that the characteristic
factor Y0 is not used. There is no need to utilise it in the same
way as a grey approach, because the experts are providing
their own assumptions in the ordering of preferences. The grey
approach needed Y0 to act as the characteristic sequence so
that the geometric curve could be compared against each of
the behavioural factors. Based on each of the experts’ scores,
a fuzzy preference relation must be created. Using the non-
dominance concept, we can derive an order for the factors,
based on which is most strongly agreed with to the least
agreeable. Assuming that P is a fuzzy relation on X , pij is the
preference degree of xi over xj . Whereas, pji is the preference



degree of of xj over xi. If pji−pij > 0 then we can say that xi
is dominated by xj at degree d(xi, xj) = max{pji − pij , 0}.
We can also determine by what intensity xi is not dominated
by xj at degree 1 − d(xi, xj). The degree up to which xi is
not dominated by any of the elements of X is given by:

µND(xi) = minxj∈X (1− d(xi, xj)) =

1−maxxj∈Xd(xi, xj) (9)

The maximum non-dominated elements in X is given by:

XND = {xi ∈ X | µND(xi) = maxxj∈XµND(xj)} (10)

The use of the average (AVG) operator was utilised to
aggregate each indexed element for all six of the fuzzy
preference relations, other t-norms are perfectly acceptable.
Being the average, it lies directly between an optimistic lower
bound and pessimistic upper bound, a halfway-house approach
much like that of the synthetic degree of incidence when
θ = 0.5. Averaging each indexed fuzzy preference relation
matrix entry for all experts will produce a final single matrix
from which we can derive the order of preference. Again we
omit a considerable amount of working out in favour to present
the final non-dominance degree matrix:

ND =

 0.00 0.00 0.78 0.44
0.11 0.00 0.89 0.56
0.00 0.00 0.00 0.00
0.00 0.00 0.33 0.00

 =

 0.22
0.11
1.00
0.67


Inspecting the ND matrix and the with use of Eq. (9) we

have the following order for preference; p03 > p04 > p01 >
p02. From which it can be concluded that:

X3 � X4 � X1 � X2

Interestingly enough, both the grey and fuzzy approaches
identified that X3 as the most important behavioural factor,
followed by X4. The difference between the two approaches
came for the 3rd and 4th positions. The fuzzy perspective using
the AVG operator and non-dominance concept agreed that X2

(circulating capitals) was the least significant. Whereas, the
least significant factor according to a grey approach using the
synthetic degree of incidence with θ = 0.5 was X1 (fixed
capitals). As this was based on a real example using historical
data, the grey order of preference was better suited as it echoed
more accurately what indeed was the case [4]. The striking
similarities of the order of preference from both approaches
given the fact that they were derived via different means, was
to be expected. Granted, the example was trivial and small, but
using the same ethos, both approaches will generally agree
on the same preference. A fuzzy approach requires human
interaction in order to encapsulate intuitiveness, whereas a grey
approach concentrates solely on the underlying meaning of
the data itself. With the addition of the various degrees of
incidence one could use to generate the preference, the grey
approach is more versatile than a standard fuzzy approach.
Sometimes human expertise may be unavailable and therefore
a grey approach will be more applicable. Grey systems are
ideally suited where the data being used is minimal, grey
forecasting can be done with a data sequence as small as

four elements [2]. A grey approach can also be adapted to
incorporate human expertise [9], making it even more versatile
and adaptable to any given situation. This coupled with the fact
that grey systems have reduced computational overhead, a grey
approach will often be a good first choice [4].

IV. CONCLUSION

This paper has set about describing some of the diver-
gences between grey and fuzzy systems, in doing so it has
also touched upon instances where similarity occurs. They
are two distinct paradigms because they tackle the problem
of quantifying and encapsulating uncertainty from different
perspectives. As grey systems can be seen as an extension,
or in specific cases a special interpretation of fuzzy systems,
misunderstandings or misinterpretations can occur. The very
foundations that the approaches themselves are built upon are
different from one another; fuzzy is unclear intention clear
extension, and grey is clear intention and unclear extension.
The assumption that an interval-valued fuzzy set is the same
for a grey number is only true when the notion of a grey
number is understood as not being able to contain discrete data.
As one can see from the generalised grey number presented
in Definition 3, a grey number can indeed contain discrete
data and a combination of continuous data. The additional
robustness allows for the generalised approach to extend and
even regress back to a standard interval-valued fuzzy set. Also
described was how the concept of sets are understood from
each approach. The difference in preference analysis from both
paradigms was also discussed, identifying how each approach
inspects the data to provide for an order of preference. The
follow up to this paper will go into considerable more detail,
outlining more in depth aspects of shared instances, with
the overall goal of providing a detailed explanation of the
divergences.
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