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Abstract—Interval-valued complex fuzzy logic is able to handle
scenarios where both seasonality and uncertainty feature. The
interval-valued complex fuzzy set is defined, and the interval-
valued complex fuzzy inferencing system outlined. Highly perti-
nent to complex fuzzy logic operations is the concept of rotational
invariance, which is an intuitive and desirable characteristic.
Interval-valued complex fuzzy logic is driven by interval-valued
join and meet operations. Four pairs of alternative algorithms
for these operations are specified; three pairs possesses the
attribute of rotational invariance, whereas the other pair lacks
this characteristic.

I. INTRODUCTION

In the 50 years since Zadeh [27] introduced the type-1 fuzzy
set, the concept has undergone further development. In 1975,
Zadeh went on to define the type-2 fuzzy set [28], [29], [30].
Complex fuzzy sets, applicable to the modelling of periodic
phenomena, are a relatively recent development in fuzzy set
theory, proposed by Ramot et al. in 2002 [22].

Data is frequently characterised by both uncertainty and
seasonality. Uncertainty in the data may derive from factors
such as corruption, or from elements being missing. Season-
ality, whereby the data has an underlying repeating, cyclical
pattern, is a very common characteristic of data. Examples
of seasonality are: 1) Temperatures tend to be higher in the
summer and lower in the winter; 2) There is more traffic on
the roads during the rush hours.

Ramot et al. [22, page 171] present complex fuzzy sets as
type-1 fuzzy sets extended by an additional phase term which
permits them to intuitively represent fuzziness in time-series
applications. According to Dick [5], “... the proper role for
a complex fuzzy set is a remarkably efficient representation
of approximately periodic phenomena, and as the underlying
mathematical foundation of regularity.”

At the beginning of the millennium, potential applications of
complex fuzzy logic were envisaged as including the analysis
of solar activity as measured by the recorded number of
sunspots [22], signal processing [22], stock trading on the New
York Stock Exchange [21], and prediction of voter turnout
in elections [21]. Two of these potential applications have

since been realised with research reported on the prediction of
annual sunspot numbers [18], and financial time-series fore-
casting [16]. Additionally, successful applications have been
developed in relation to prediction of solar power output [26],
Australian bushfire danger rating (involving multi-periodic
factors) [18], and multi-variate time-series forecasting of hotel
occupancy and revenue generated in Victoria, Australia [25],
monthly flour prices on commodity exchanges in the USA
[25], and precipitation in Tennessee, USA [25]. Complex fuzzy
logic is proving to be a significant and growing topic of
research and application.

Type-2 fuzzy sets [28], [29], [30] are an extension of type-
1 fuzzy sets in which the sets’ membership grades are them-
selves type-1 fuzzy sets. They respond to a major shortcoming
of type-1 fuzzy sets by offering a conceptual scheme within
which the effects of uncertainties in fuzzy inferencing may be
modelled and minimised [20, page 117].

Type-2 fuzzy logic, well-suited to reasoning under un-
certainty [10], [7], and complex fuzzy logic, pertinent to
inferencing with seasonal data, have so far been developed
independently, but there is no reason why they may not be
combined into type-2 complex fuzzy logic [8], able to deal
with both uncertainty and seasonality, to allow a more subtle
and faithful treatment of data, leading to more precision in its
analysis.

Type-2 fuzzy sets take two forms, generalised, and the sim-
pler interval. Interval type-2 fuzzy sets have increasingly been
used in applications [11], [15], [2], [6], [14], [24], [13], [23]
as they offer a more sophisticated model of uncertainty than
their type-1 counterparts [17], whilst lacking the computational
complexity of the generalised type-2 fuzzy set [20], [12].

Another form of fuzzy set is the interval-valued fuzzy set,
which is regarded as equivalent to the interval type-2 fuzzy
set [3, Definition 1, page 217]. In [9] the concept of the
Interval-Valued Complex Fuzzy Set (IVCFS) was introduced, a
combination of interval-valued fuzzy sets and complex fuzzy
sets. The IVCFS may be thought of as an adaption of complex
fuzzy sets such that the membership function assigns each
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point of the domain to an interval.
The research presented in this paper builds upon that of [9],

in which the operations constituting the Interval-Valued Com-
plex Fuzzy Inferencing System (IVCFIS) were outlined. This
paper’s particular emphasis is on the join and meet operations
forming the core of the IVCFIS.

In the next section, the IVCFS is defined, the IVCFIS
discussed, and the concept of rotational invariance presented.
Following that, in Section III, algorithms are presented for the
interval-valued complex join and meet operations driving the
IVCFIS. Section IV concludes the paper.

II. INTERVAL-VALUED COMPLEX FUZZY LOGIC

A. Interval-Valued Complex Fuzzy Sets: Definitions

The definition for the complex fuzzy set may be adapted so
that the membership function assigns each point on the domain
to an interval, giving the IVCFS. Before formally defining the
IVCFS, we define concept of the dot product set.

Definition 1 (Dot Product Set). Given two sets A and B and
an operator · such that given a ∈ A and b ∈ B the element
a · b exists, the set A ·B can be defined:

A ·B = {a · b; a ∈ A ∧ b ∈ B}.

Definition 2 (Interval-Valued Complex Fuzzy Set). An
interval-valued complex fuzzy set over a universe of discourse
U is defined by a membership function

µS : U → I [0,1] · Ḋ

µS(x) = rS(x) · e
jωS(x)

where I [0,1] is the set of all closed subintervals of [0, 1], Ḋ
is the frontier or boundary set of the unit disc D ⊂ R × R,
rS(x) ∈ I [0,1] is the interval-valued membership magnitude,
j =
√
−1, and ωS(x) is the membership phase. Each element

of the universe of discourse U is thus associated with a set
of complex numbers with moduli in a subinterval of [0,1]
representing the range of possible truth-values associated with
that element’s membership in the complex fuzzy set, and a
real-valued phase.

Figure 1(a) shows the conventional 2-D representation of
the time series consisting of sunspot numbers observed on
a monthly basis [1]. Figure 1(b) shows these sunspot data
displayed as a 3-D complex fuzzy set. In an interval valued
complex fuzzy set, each point on the domain is mapped to
an interval as opposed to a crisp number. Graphically, the 3-
D interval-valued complex fuzzy set forms a band of points
of global variable width and constant local phase within the
complex plane unit circle.

Definition 3 (Membership Interval). The interval valued mem-
bership magnitude as used in Definition 2 will be referred to
as the membership interval.

Definition 4 (Vertical Slice). A vertical slice of an interval-
valued complex fuzzy set is a line which intersects the x-axis
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(a) Conventional representation of the sunspot data.
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(b) Representation of the sunspot data as a complex fuzzy set in which the
phase is determined by the month of observation. The modulus is greater
than 1 because the sunspot data has not been normalised.

Fig. 1. Monthly observations of sunspot numbers [1].

and is parallel to the membership interval at the point of
intersection.

Definition 5 (Lower Membership Grade). The Lower Mem-
bership Grade (LMG) of a vertical slice of an interval-valued
complex fuzzy set is the lower bound of its membership
interval.

Definition 6 (Upper Membership Grade). The Upper Mem-
bership Grade (UMG) of a vertical slice of an interval-valued
complex fuzzy set is the upper bound of its membership
interval.

B. The Interval-Valued Complex FIS

An interval-valued complex FIS is a hybrid of a complex
FIS and an interval-valued FIS. An interval-valued FIS is



equivalent to an interval type-2 FIS. It would be unsurprising
if the interval-valued complex FIS were to inherit properties
from both the complex FIS and the interval type-2 FIS. Figure
2 shows the various stages of the interval-valued complex FIS.
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Fig. 2. The interval-valued complex Mamdani FIS [9].

C. Rotational Invariance
Ramot et al. point out that phase is relative, and that there-

fore the absolute value of the phase term is inconsequential:
“Due to the relative nature of phase, the absolute
value of the phase term is often of little significance.
In fact, the absolute value of ωS(x) is usually deter-
mined according to some arbitrary reference, which
may vary from one application to another. Therefore,
neither a value of π nor zero may be considered as
a high or low value of membership phase. Instead,
the important parameter is dominantly the relative
phase between x and other elements in the support
of S.” [22, page 173]

Based on this observation, Dick characterises the ‘intuitively
appealing property’ of rotational invariance:

“The assertion that “phase is purely relative” can
be taken to mean that a uniform phase shift in the
arguments of a union, intersection or complement of
complex fuzzy sets should induce the same uniform
phase shift in the result of these operations. Thus, if
we rotate two vectors about the origin by a common
value (say ϕ), a union or intersection of those vectors
will be rotated by the same value.” [5, page 409]

Definition 7 (Rotational Invariance [5]). Let D be the unit
disc D ⊂ R× R. A function F : D×D→ D is rotationally
invariant iff

F (xejα · ejk, yejβ · ejk) = ejk · F (xejα, yejβ)

for all elements xejα, yejβ ∈ D.

III. INTERVAL-VALUED COMPLEX JOIN AND MEET

A. Complex Union and Intersection

The fuzzification stage, and the antecedent combination and
implication substages of the inferencing stage are driven by
union and intersection operations in the type-1 case. Ramot et
al. [21, page 452] extend these operations to complex fuzzy
sets. Union is defined thus:

“Let µA(x) = rA(x) · ejωA(x) and µB(x) = rB(x) ·
ejωB(x). Then, the membership function of A∪B is
given by

µA∪B(x) = [rA(x)⊕ rA(x)] · ejωA∪B(x) (1)

where ⊕ represents a t-conorm function.”
Suggested techniques for calculating ωA∪B are [21, page 452]:

1) Sum: ωA∪B = ωA + ωB ;
2) Maximum: ωA∪B = max(ωA, ωB);
3) Minimum: ωA∪B = min(ωA, ωB);

4) Winner Takes All: ωA∪B =

{
ωA, rA > rB

ωB , rB > rA.

Options 2, 3 and 4 are rotationally invariant. Intersection is
defined analogously to union (using a t-norm instead of a t-
conorm). Suggested methods for calculating A ∩ B are the
same as those for calculating A ∪B [21, page 453].

B. Interval-Valued Complex Join and Meet

The definitions of complex union and intersection may be
extended to interval-valued complex join and meet. Consider-
ing join first, the t-conorm in Equation 1 for complex union
may be replaced by the interval type-2 join operation [19]. Of
the techniques suggested for finding A ∪ B, the first three
are independent of the modulus, so may be employed for
interval-valued complex join without adaptation. The fourth
technique includes moduli among the parameters. These are
crisp numbers, as opposed to intervals. The intervals in the
interval-valued complex membership functions need to be
reduced to crisp numbers in order for the fourth technique
to be applicable, which can easily be achieved by taking the
mid-point of the interval as a representative value. Then the
definitions of complex union may be applied, with the moduli



replaced by the interval mid-points as a representative value,
though any method of ordering interval numbers [4] would
be a valid alternative. The meet operation may be defined
analogously to join.

The four techniques for calculating A∪B together with the
four corresponding strategies for calculating A ∩B, give rise
to eight algorithms (Algorithms 1 – 8). In Algorithms 2 – 8,
lines 1 – 7 are the same as in Algorithm 1, so have not been
stated explicitly.

As they are based on Options 2, 3 and 4 of the suggested
complex union and intersection techniques (Subsection III-A),
Algorithms 3 to 8 possess the important property of rotational
invariance.

Algorithm 1 Join using sum for union of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set J

1: xi i = 1, 2, . . . , N ← the domain values of the vertical
slices into which S1 and S2 are discretised

2: S1i i = 1, 2, . . . , N ← the membership intervals of the
vertical slices into which S1 is discretised

3: S2i i = 1, 2, . . . , N ← the membership intervals of the
vertical slices into which S2 is discretised

4: LS1i ← LMG of rS1(xi)
5: US1i ← UMG of rS1(xi)
6: LS2i ← LMG of rS2(xi)
7: US2i ← UMG of rS2(xi)
8: for all vertical slices do
9: LJi

← max(LS1i , LS2i) . LJi
= LMG of J i

10: UJi
← max(US1i , US2i) . UJi

= UMG of J i
11: ωJi

← ωS1i + ωS2i . ωJi
= phase of J i

12: end for

Algorithm 2 Meet using sum for intersection of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set M

8: for all vertical slices do
9: LMi

← min(LS1i , LS2i) . LMi
= LMG of M i

10: UMi
← min(US1i , US2i) . UMi

= UMG of M i

11: ωMi
← ωS1i + ωS2i . ωMi

= phase of M i

12: end for

Algorithm 3 Join using maximum for union of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set J

8: for all vertical slices do
9: LJi

← max(LS1i , LS2i) . LJi
= LMG of J i

10: UJi
← max(US1i , US2i) . UJi

= UMG of J i
11: ωJi

← max(ωS1i ,ωS2i) . ωJi
= phase of J i

12: end for

Algorithm 4 Meet using maximum for intersection of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set M

8: for all vertical slices do
9: LMi ← min(LS1i , LSS2i) . LMi

= LMG of M i

10: UMi
← min(US1i , US2i) . UMi

= UMG of M i

11: ωMi
← max(ωS1i ,ωS2i) . ωMi

= phase of M i

12: end for

Algorithm 5 Join using minimum for union of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set J

8: for all vertical slices do
9: LJi

← max(LS1i , LS2i) . LJi
= LMG of J i

10: UJi
← max(US1i , US2i) . UJi

= UMG of J i
11: ωJi

← min(ωS1i ,ωS2i) . ωJi
= phase of J i

12: end for

Algorithm 6 Meet using minimum for intersection of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set M

8: for all vertical slices do
9: LMi

← min(LS1i , LS2i) . LMi
= LMG of M i

10: UMi
← min(US1i , US2i) . UMi

= UMG of M i

11: ωMi
← min(ωS1i ,ωS2i) . ωMi

= phase of M i

12: end for

Algorithm 7 Join using Winner Takes All for union of phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set J

8: for all vertical slices do
9: LJi

← max(LS1i , LS2i) . LJi
= LMG of J i

10: UJi
← max(US1i , US2i) . UJi

= UMG of J i
11: hS1i ←

1
2 (LS1i + US1i) . hS1i = mid-point of S1i

12: hS2i ←
1
2 (LS2i + US2i) . hS2i = mid-point of S2i

13: if hS1i ≥ hS2i then
14: ωJi

← ωS1i
15: else if hS2i > hS1i then
16: ωJi

← ωS2i
17: end if . ωJi

= phase of J i
18: end for



Algorithm 8 Meet using Winner Takes All for intersection of
phases
Input: Two discretised interval-valued complex fuzzy sets S1
and S2
Output: A discretised interval-valued complex fuzzy set M

8: for all vertical slices do
9: LMi

← min(LS1i , LS2i) . LMi
= LMG of M i

10: UMi
← min(US1i , US2i) . UMi

= UMG of M i

11: hS1i ←
1
2 (LS1i + US1i) . hS1i = mid-point of S1i

12: hS2i ←
1
2 (LS2i + US2i) . hS2i = mid-point of S2i

13: if hS1i ≥ hS2i then
14: ωMi

← ωS1i
15: else if hS2i > hS1i then
16: ωMi

← ωS2i
17: end if . ωMi

= phase of M i

18: end for

IV. CONCLUSION

This investigation presented a selection of algorithms for
the join and meet operations of interval-valued complex fuzzy
logic. It was shown that six out of the eight algorithms
documented possess the intuitive and significant property of
rotational invariance.

A. Further Work

1) Lattice-Theoretic Analysis: The understanding of
interval-valued complex join and meet operations would be
advanced by investigating whether the algorithms presented
here form a complete, distributed lattice over [0, 1].

2) Prototype Interval-Valued Complex FIS: The develop-
ment of a prototype interval-valued complex FIS would be
welcome, dealing with uncertain inputs where either sea-
sonality is a consideration. Its performance could then be
contrasted experimentally with a non-interval complex FIS and
a conventional interval type-2 FIS.

3) Generalised Type-2 Complex FIS: Following naturally
from the work reported in this paper would be research into
generalised type-2 complex fuzzy join and meet operations.

4) Aggregation Operators: There is some communality
between join and meet operators and aggregation operators.
In [9], the subject of aggregation operators for the IVCFIS
was touched upon, but more research is necessary to specify
suitable algorithms.

5) Restriction of Phases to Principal Values: Amending
the definition of rotational invariance (Subsection II-C) so
that phases are restricted to principal values has implications,
most notably that Options 2 and 3 for union and intersection
(Subsection III-A) would cease to be rotationally invariant.
The impact the principal values restriction would have on the
IVCFIS as a whole is a topic warranting further investigation.
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