
A Standard Methodology for the InteroperabilitY of
Heterogeneous Information Sources

By

Jehad Saleh Ashir

A Dissertation Presented to the
Faculty of Computing Sciences and Engineering

De Montfort University

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
Institute of Mathematical and Simulation Sciences
Faculty of Computing Sciences and Engineering

September 2001

1

Abstract
A temporal layer to facilitate the interoperability between the heterogeneous information
sources is presented. The way in which this layer can provide better connectivity, security,
manageability and robustness to the different disparate information sources in the Internet is
studied. In addition, a definition of the various web enabling parameters required to undertake
the process of information sources interoperability is given.

A standard is developed (based on a technical perspective) of the system architecture
requirements to interoperate between heterogeneous databases in the light of the current
Internet advances. Such approaches attempt to facilitate the integration of distributed
heterogeneous databases in a dynamic incremental manner. It provides the shape, feel and
the look of a universal database viewing architecture. A study is undertaken of the different
issues relating to metadata hosting that forms the basis for integrating and aggregating
distributed heterogeneous information sources. Further, the design of a linkage between
distributed heterogeneous information sources and permitted distributed user groups is
presented. The number of indispensable services such as the universal syntactic/semantic
data dictionary that categorizes the meanings and formats of different components of the
cooperating information sources discussed.

The major contribution of the work in this dissertation is a study of the requirements for an
interoperability for Database Management Systems that are able to handle unification for the
various dissimilar processes between the heterogeneous distributed information sources. The
work requires the development of a solid strategy to be followed by different DBMS vendors
on the data exchange formats in a unified manner. There are also many processes that
require standardization and unification such as data types, code pages, indexing techniques,
and application to application calling techniques.

As a subsequent contribution to the main research, a unified methodology is created to
advertise any schema type that is accessible as an information space using the web browser
as a local communicator between global information producers and consumers. The
proposed solution requires a specialized proxy server responsible for communications
between cooperating information producers and a specialized search engine responsible for
keeping the different information consumers informed about the available information space.

The goal of this research is the design and partial implementation of adaptive methodologies
and toolkits for the interoperation between heterogeneous information sources in large-scale
and rapidly growing network environments. The solution is to implement a prototype
responsible for the delivery of information for the normal information consumers who do not
really care about what schema type they are accessing or do not have knowledge and/or
experience of multiple schema usage. The most important aspect is to pick the information
they need from disbarred information sources, merge them in their schema, manipulate them
and obtain the reports they need. The most comprehensible shape for the information is when
it is a basic non-normalized shape. These features allow the information consumer to insert
the data in any local schemas regardless of their type.

The prototype aims at developing toolkits which make use of the treelike nature of the
different database schemas and their different schema components to facilitate the
interconnection between information consumers and information producers. The main
purpose of utilizing the treelike structure of the different schemas is to make the concept of
interoperability as simple as possible. The bond which forms the relationship between
different schemes is a relatively straightforward task. Necessary database services related to
the reliability, maintainability and ease-of-use of the heterogeneous database interoperability
process are studied. The prototype consists of several interrelated components that can join
information from disparate information repositories in a transparent manner and reflect the
gathered information to the information consumer in a shape that is clear and transparent.

2

The main services the prototype provides includes: (i) the registration of shareable
information source portions; (ii) the propagation of shareable information sources to global
information consumers; (iii) metadata management; (iv) local schema constraint enforcement;
(v) heterogeneous database schema migration; (vi) data replication management and unified
database security management. This thesis presents the design of the proposed prototype
and its partial implementation. The prototype is responsible for forming the interoperation
layer that simplifies the heterogeneous information sources integration.

The approach proposed, provides a mechanism that enables database application users to
be informed about the available information space they can gain from global information
producers. It also enables them to share information with other information holders in a
transparent, expandable and autonomous manner. The design of the prototype is
accomplished in a way that encourages collaboration with metadata capable of web proxy
servers so that they become heterogeneous databases accessible by web browsers.

3

Acknowledgements
I would like to express my sincere gratitude to my supervisors Professor Jonathan Blackledge
and Dr Mohammad Jaffar without whom I would never have completed this thesis.

Also, I wish to thank Yusuf Abdullah for the helpful and generous discussion during the
implementation for some of the ideas for this research thesis.

I am also very grateful to my friends and colleagues from the Central Statistics Organization
of the State of Bahrain for being a 'surrogate family' during the many years I stayed there and
for their continued moral support thereafter.

I would also like to thank the people who offered essential moral and emotional support
throughout this long project, in particular, to my family: mother Lulwa, brother Salah, sisters
Aneesa, Dhabia, Fatema and my children Mohammed and Sara.

Finally, my wife Faiza assisted me in many ways; without her patients and encouragement,
this work would never have reached completion. Hopefully, now I can spend less time in far-
off places and more time with the people I most love.

4

Contents
Contents 	 5

Chapter 1 	 8

Introduction 	 8
1.1 Perspective in Next Generation Database Technology 	 10
1.2 Scope of the Thesis 	 11
1.3 The main contribution of the thesis 	 12
1.4 Outlines of the Thesis 	 12

Chapter 2 	 14

Related Research in the Area 	 14
2.1 Database Management Systems Required Services 	 18
2.2 An overview of Multidatabase Systems 	 21
2.3 Database Schema Integration 	 22
2.4 Heterogeneous Database Systems 	 23
2.5 Object-Oriented Analysis and Design 	 26
2.6 Object-Oriented Databases 	 28

Chapter 3 	 30

Close Study in the Heterogeneous Databases Schemas 	 30
3.1 The Relational Schema 	 30
3.2 The Hierarchical Schema 	 31
3.3 The Network Schema 	 38
3.4 The Object-Oriented Schema 	 40
3.5 The Object Relational Technique 	 43
3.6 Perspective in the Amalgamated Database Schema 	 44

Chapter 4 	 47

A Perspective on Database Interoperability 	 47
4.1 Requirements Analysis 	 50
4.2 Autonomy Requirements in the Interoperation 	 50
4.3 The Cooperative Interoperation in the IE 	 51

Chapter 5 	 52

The possible Cooperation between the Different Schemas 	 52
5.1 Representations of data models 	 53
5.2 Integrity constraints in data modeling 	 53
5.3 Schemas cooperation process in the IE 	 54
5.4 The Heterogeneous Schemas cooperation 	 56
5.5 Wrapper usage in the IE 	 60

Chapter 6 	 62

Application Design Issues in the Interoperation Systems 	 62
6.1 Query processing in the IE 	 64
6.2 The different schemas components security subsystem in the IE 	 67
6.3 Sub systems constraints 	 68
6.4 The access view by the IE 	 68
6.5 Schema design constraints validation in the IE 	 70

5

Chapter 7 	 72

The Interoperation Engine System Architecture 	 72
7.1 The Proposed Approach in Brief 	 73
7.2 The Proposed Prototype Architecture 	 75
7.3 IE Operations 	 76

Chapter 8 	 79

The Interoperation Engine System Design 	 79
8.1 Database Interoperability Requirements 	 79
8.2 Overview of the IE 	 82
8.3 Description of Participating Components in the IE 	 84
8.4 Metadata Handling Protocol in the Distributed IEs 	 89

Chapter 9 	 91

The IE Supporting Services 	 91
9.1 The IE Syntactic/Semantic Data Dictionary 	 91
9.2 The IE History Tracking Manager 	 94
9.3 The IE Replication Manager 	 97
9.4 The IE Indexing Unifier Manager 	 98
9.5 Benefits of the IE Supporting Services 	 99

Chapter 10 	 100

The IE Unified Security Manager Design 	 100
10.1 Background of the problem 	 102
10.2 The proposed unified security system solution 	 103

Chapter 11 	 105

Existing Middleware Solutions Need a Middleware 	 105
11.1 Current database middleware solutions 	 107
11.2 The IE prototype 	 108
11.3 The IE different processes 	 109

Chapter 12 	 112

The Interoperable Engine User Interface 	 112
12.1 System startup 	 113
12.2 Information producer metadata registration 	 114
12.3 Information consumer facilities 	 115
12.4 Database Administrators facilities 	 115

Chapter 13 	 117

Conclusions, Results and Future Work 	 117
13.1 Summary 	 117
13.2 Results 	 118
13.3 Ongoing and future work .	 119

Reference List 	 120

6

Appendix A	 128

The IE UML classes 	 128

Appendix B 	 144

The Heterogeneous Communication Protocols Layer 	 144
Abstract 	 144
B.1 Introduction 	 b, 	 144
B.2 Carrier services approaches 	 145
B.3 The communication protocols 	 146
B.4 Communication protocol layers 	 147
B.5 The communication protocol interoperability requirements .	148
B.6 The design of the communication protocol layer 	 149
B.7 Background from the literature survey 	 151
B.8 Conclusions 	 152

Appendix C 	 153

Analysis & Design Methodology for the IE 	 153
Abstract 	 153
C.1 Introduction 	 153
C.2 Analysis and design methodologies 	 154
C.3 Object oriented operating systems 	 168
C.4 Object-Oriented Programming Languages 	 168
C.5 Conclusion 	 169

Appendix D 	 170

Information sources cooperation example 	 170

Appendix E 	 171

Published Papers 	 171

\

7

Chapter 1

Introduction

The rapidly growing amount of information available over the worldwide networks and the
distributed heterogeneous nature of the information is having a major impact on the field of
information sharing. It is always true that any information certainly exists somewhere in the
universe but reaching this information is not always a straightforward task. For this reason,
knowledge distribution and discovery for the distributed heterogeneous databases are very
important facilities that should exist in all cooperating databases to facilitate the data sources
interoperation. As the information highway is rapidly expanded this requirement will be
increasingly true. The proper management for the required information about the cooperating
data sources is the major solution to the problem. Hence, the gathered information should be
capable of giving global users the necessary knowledge about the provided information space
that the information producer will offer.

Multidatabase researches are divided into the classic approaches, the federated approach
and the distributed object management approach. The classic approaches for multi-database
only depend on creating a global schema by which a common query language is normally
used for updating the global repository. The federated approach relies on multiple import
schemas and the customized integration at various multi-database levels is enforced by the
local system. The heterogeneity problems are solved at the schema integration stage. This
approach cannot scale well when new sources are to be added because the component
schema cannot evolve without the consent from the integrated schema. The object
management approach on the other hand has generalized the federated approach by
modeling the heterogeneous databases as objects in an object space. This technique
requires the definition of a common object model and a common object query language.

It is well known that databases are collections of related data stored electronically in storage
media. Database management systems, which are a collection of programs, enable users to
create and maintain databases. They are considered as general-purpose software systems
that facilitate the processes of defining, constructing and manipulating information sources for
various applications. Throughout their milestone database schemas, or as they are sometime
called data models, come in a number of shapes in term of their storage technique. The first
generation is considered to be the hierarchical schema data model. The second generation is
network data models. The relational and the object-oriented data models are known as the
third generation databases. So far the proposed data models fall into three different groups:
object-based logical models, record based logical models, and physical models
[Silberschatz97]. The three groups will be thoroughly discussed in the next chapter.

Originally, all databases where largely centralized in the sense that all the system
components where resident at a single computer or site. The components include the
database, the database management software and the secondary storage where all the
operations are done. However, in recent years there has been a rapid move towards the
distribution of computer systems over multiple sites that are interconnected via a
communication network. This demand has led to the birth of the distributed database
management systems DDBMSs.

Furthermore, the distributed databases are either homogeneous from similar types or
heterogeneous from different types. In case they are homogeneous, there will be no need for

8

the homogenization process, which is only used when different types of databases are to be
used together. In many situations, sites with different DBMSs (Relational, Hierarchical,
Network, and Object-Oriented) exist and accessed by various numbers of local and global
users. In addition, there is a great demand nowadays for distributing the databases because
of the new changing business requirements. Building an interoperation mechanism between
the different databases require knowledge about the interoperating data sources (i.e.
database name, place, type, provided information space, etc.) and middle engine support.
The main task of the middle engine is to act as a custodian between the cooperating
distributed heterogeneous data sources so that the necessary parameters are exchanged
easily between the cooperating databases. Also, the middle engine metadata knowledge will
facilitate the work currently required by many management components. Among the
components are: schema translation management, programming languages translation
management, semantic inconsistency management, and other aspects related to the
operating system and the communication protocols layers which are considered as outside
the database realm research. In a large network of interoperable autonomous heterogeneous
databases, the architecture should be flexible enough to allow negotiation to take place to
establish grouping of databases. In such a large environment, it is important that databases
be made aware of the other participate databases in an incremental and dynamic fashion
[Bouguettaya94, Raschid94]. Users need to be incrementally and dynamically informed about
the available information and where it is located.

In addition, each of the databases has their own constraints over the stored schemas and
their attributes. Constraints in data modeling are divided into five different areas, which are: 1)
domain constraints, 2) key and relationship constraints, 3) general semantic integrity
constrains, 4) inheritance, implicit, and explicit constraints, and 5) state versus transition
constraints [Elmasri94]. Constraints are considered as powerful procedures enforced by the
DBMS on the substituted values entered by the users. Applying constraints in the distributed
heterogeneous databases is a must by which retaining them as they appears at their place is
forming a major factor of the success of the data interoperation. The cooperation of the
distributed heterogeneous databases is assumed not to violate any of the five constraint types
during the cooperating process. The cooperation process can be defined as a linkage
between two non-related data sources for the sake of getting collaborated information.
Basically, cooperation between information sources could be a relationship operation with
other data sources, a unification process or an intersection process with the other data
sources.

The overall objective of this dissertation is to present a new, modular and dynamic facility for
the knowledge distribution and cooperation in the distributed heterogeneous databases to
facilitate the interoperation mechanism between the data sources utilizing the current Internet
advances. The distributed data sources should know about the other data sources willing to
cooperate in sharing and exchanging information. The size of information domain provided by
others is an important factor that should be known by which it would simplify the cooperation
that can happen between the information sources. In order to know the behavior of the
different database schemas a close study to the heterogeneous schemas was involved to get
a close idea about the necessary parameters that should be known by the interoperation
engine. The proposed engine also built to retain the distributed data sources own constrains
which is a major issue to be included in the proposed interoperation engine design.
Accordingly this research will design, partially implement, and test an experimental prototype
within the framework of the interoperation engine experimental system.

As subsequent complementary objectives of this research is to design a unified security
manager and other assistance services for the heterogeneous databases based on the
deliverables of the main overall objective. Additionally, this thesis will study, develop, and
standardize specifications for the technology necessary to support heterogeneous distributed
database interoperability.

This dissertation is aimed at characterizing the necessary knowledge from the heterogeneous
databases (i.e. relational, hierarchical, network, and object-oriented) and created the
necessary interfaces and connection protocols that will cooperate in keeping users
incrementally and dynamically informed about the available information space and where it is

9

located. This is because the static approach to user education cannot be considered as
reasonable in an information environment that is rapidly growing. The experiment of this work
is based on the relational data model schema, the IMS system schema, the IDMS system
schema, and the 02 system schema respectively. In this dissertation the problem various
dimensions has been researched and a prototype has been proposed, which forms the
foundation of an important task that should be undertaken soon. The proposed prototype is
aimd at simplifying the interoperation process of the heterogeneous databases by having a
single point of access to different schema types. This process will simplify accessing the
different schema types from outside. The proposed engine will unify the reflected information
to the outside requestors regardless of the schema type.

1.1 Perspective in Next Generation Database Technology
The tremendous explosion of networking technology has led to the ubiquitous Internet and the
large-scale accessibility of diverse information sources. Past studies in the mid 90s estimate
that there are ten million hosts and twenty million users on the Internet with numbers doubling
roughly every year and probably these days the number of users doubling each month. The
interoperation of the numerous incompatible Internet protocols has also led to large number of
users accessing the Internet and seeking information. This has resulted in a wide variety of
hosts providing information of many types (statistical data, flat files, multimedia files,
databases, etc.). Currently existing Internet browsers are mainly designed to support
extracting HTML format files from all over the world. They do not distinguish between the
information source types whether they are flat files or databases. Internet service tools have
not adequately resolved these issues. The result is that the information consumers are left
with the daunting tasks of resolving information heterogeneity and learning different
information access methods. The development of a database-capable World Wide Web to
link data sources is becoming a must these days. This will resolve many issues of which the
data consumer may spend 75% of his time trying to resolve such as transferring the
information of interest to his data pool. The achievement of such task has many prerequisites
by which one is to make the heterogeneous data sources able to define themselves on the
web so that others know them, which is the current objective of the work at the moment.

In an environment such as the Internet it is difficult for users to manage getting information of
interest they are looking for in the light of the expansion in the data sources. Users in this
case need to know (what) available data is of interest. It will be helpful to them if they know
where the information is, if this will effect their application, which the prototype conducts the
(where) in a transparent manner. The (what) part is been addressed by the FINDIT
[Bouguettaya91], which the prototype considers as an extension. Also, the problem has been
looked to from a different elevation in a way to make the prototype behave as routing device
for the cooperating data sources. In general terms, the problem is typically associated with
the size of the available data, the heterogeneous nature of the data, and the extraction and
handling of the necessary information that will form the knowledge which will facilitate the
interoperability of the distributed heterogeneous databases.

In addition, the existing Internet client browsers are still considered as general purpose
extracting applications. They mainly deal with server browsers to extract the required
information from a database stored in the server known as proxies provided by Internet
service providers. Although browsers succeeded in dealing with number of operating
systems, they are still not dealing with the interoperation of the heterogeneous databases. At
the present time, there is a great demand for enabling the existing browsers to support the
heterogeneous databases. Systems such as FINDIT [Bouguettaya95a, Bouguettaya95b] and
Sybil [King] have addressed the problem of the knowledge discovery in large-scale
heterogeneous databases. But, still dealing with the heterogeneous databases needs to be
done in a systematic manner. By so the different constraints supported by the different
cooperating database schemas are retained, and no doubt the near future browsers will take
care of the heterogeneous databases.

Current Internet searching engines totally handle non-structured information sources based
on indexing and keyword searching. There are nowadays numerous search engines that can
be found on the web handling the unstructured information sources employing different

10

techniques to build indices some of which are more intelligent than others. Users usually
spend horrendous amounts of time sifting through a huge amount of pages. In contrast with
this the proposed prototype has been mainly designed to managed fully structured metadata
related to distributed life running database systems having schema type (i.e. relational,
hierarchical, network or object-oriented). The result of a searching operation is displayed in a
unified manner as the result of searching the web in the normal unstructured information
sources. The prototype is designed to act as another level of integration between the
information producers and information consumers in a seamless way using a specialized
heterogeneous schemas capable proxy server and search engine.

A key aspect of making data being useable across heterogeneous databases involves
schema or partial schema unification, and it is imperative to develop a method that can
perform this task with a dynamic way, useable to both the normal and novice users. In this
dissertation the term "unification" or "cooperation" to refer to the interoperation mechanism
between the heterogeneous data sources has been used. Metadata means objects that
represent the structural part of the database or the conceptual schema itself. Metadata is
descriptive information about the structure and meaning of data and applications and
processes that manipulate data. Rather than unifying complete schema with each other,
which is a difficult and costly process, partial schema unification is considered in the proposed
prototype selectable by demand from the provided information spaces. One of the
fundamental problems to be solved before one can successfully unify between schemas or
partial schemas is that of metadata handling between the interoperating information sources.
In the database context, this is referred as data about data.

1.2 Scope of the Thesis
This thesis presents the design and discusses the partial implementation of a prototype
responsible to facilitate the interoperation process between different distributed
heterogeneous database schemas, namely the Interoperation Engine, which is abbreviated
as IE. It is consisting of two stages: the first stage is the metadata knowledge base and the
second stage is the supporting engines to derive the interoperation. This prototype illustrates
the ability to automate the interoperability of the distributed heterogeneous databases in a
transparent, cooperative and incremental. The aim behind such a design is to make the
information consumers get more accurate information from multiple information producers, as
well as, create an atmosphere by which the information producers can easily advertise about
the information pool they would like to make it known to the public. Additionally, the prototype
is considering the full autonomy to be on the hand of the information owner over their
information pools. The prototype also includes the description of the algorithms, which makes
the interoperation process between the different schema types possible. The prototype is
mainly dealing with several components that gather information from structured data sources,
and present the gathered information in terms of the consumer's local DBMS and interface
description. The main component services that the IE prototype addresses include the
information producers' information source registration with all the related database
components, the related permissions on the information source, and the users profiles the
access should be given to them. This thesis will present the initial prototype effort by a work-
through example with the objective of demonstrating the database interoperability process
and highlighting the different requirements by investing the existing interoperation facilities.

The overall work in the research of this area is directed towards achieving a number of
strategies that are necessary for accomplishing the interoperability process among the
distributed heterogeneous databases. The initial main strategies that are undertaken during
the work in this field are:

1. The definition of the metadata related to the heterogeneous schemas that will
contribute in the interoperation and dynamically allow new information
sources to be incorporated into the cooperation.

2. Build the strategy of metadata registration, which acts as the infrastructure
that will be used by the information producers to advertise the existence of
certain information.

11

3. Binding the local schemas with the global cooperating schemas so that
incremental addition in the global cooperating schemas should not affect the
ongoing tasks.

4. Provide the authorized information consumer with the ability to bind their own
information sources with the global information space that has the necessary
authority.

5. Provide the necessary management services for the interoperation such as
security services; syntactic/semantic data dictionary services; history
tracking and replication services.

6. The requirements towards providing database services for current Internet
browsers.

Throughout this thesis, a number of existing approaches are used to make sure that the
prototype has been tested and considered to be an extension for them, does not have any
major conflicts or repetitions with regard to what has already been achieved in the area.

Also, throughout the design phase of the IE proposed prototype it is intended to initiate a
number of mechanisms and standards to be followed by the information owners to
interoperate with other information sources having similarities. The standard part of the IE
defines the following:

1. A common way for the database information producers and consumers to
access data and perform data sharing operations in a unified manner.

2. A mechanism for keeping the information consumers informed about any
changes in the global information space they might already get access on.

3. A standard "metadata and data" handling mechanism and a set of database
interoperation standards.

4. A standard and mechanism to be followed by the database producers to follow
when exchanging information with other non-similar information sources.

1.3 The main contribution of the thesis
In general, the overall contribution of the work in the area of database interoperability is to
setup the requirements towards having interoperability capable Database Management
Systems that are able to handle the interoperability requirements for the various dissimilar
processes between the heterogeneous distributed information sources. A summary of the
original contributions undertaken in this thesis is as follows:

1. Research systems in the area of information interoperability and the different
schema capabilities and limitations to interoperate with each other.

2. A framework responsible for the heterogeneous information sources
interoperability in a dynamic manner using the Internet facilities.

3. An architecture of a prototype designed from scratch to provide maximum
flexibility for information interoperability.

4. Detailed analysis on most of the supporting areas for information
interoperability such as security, transaction management, replication
management, histoty tracking, data dictionary and indexing facilities.

5. Highlight different areas required that contribute to the research by presenting
most of the past supporting services that require significant research to be
undertaken.

6. Designing the access control system that links the different distributed users
to the heterogeneous distributed information sources that is considered as the
bond between the information sources.

7. Partially implement the proposed algorithms for the Computer Services
Directorate, [State of Bahrain].

1.4 Outlines of the Thesis
The remainder of this thesis is organized as follows: Chapter 2 provides a detailed
explanation of related research in the area and an initiation of a personnel perspective of the

12

proposed prototype. Chapter 3 gives a study of various behaviors of the known database
schemas. Chapter 4 gives a perspective on the database interoperability and discussion of
the various requirements towards the achievement of the database interoperability. Chapter 5
discusses the cooperation behavior of the heterogeneous information sources. Chapter 6 is
on the various issues to be considered when designing an interoperable information source.
Chapters 7, 8 and 9 are concerned with the architecture, the design and the various
supporting services of the proposed prototype respectively. Chapter 10 is mainly concerned
with the various security advances considered by the proposed prototype design. Additionally,
Chapter 11 provides a discussion on the design of the proposed prototype. Chapter 12
discusses the various interfaces of the proposed system. The conclusion to this thesis and
future work are considered in Chapter 13.

13

Chapter 2

Related Research in the Area

The need for software to support data distribution has resulted in the development of the
distributed database management software, which has itself been given impetus, by the rapid
developments in telecommunications and network technologies. Distributed databases are a
collection of multiple, logically interrelated databases that are distributed over a computer
network, together with a distributed database management system which is a software
system through which distributed databases are managed and through which the distribution
is transparent to the user. Some distributed databases are homogeneous in nature, which
means that the local database managers composed of a single DBMS product. Others are
heterogeneous in nature, where different DBMS products make up the local data manager
group [Simon95].

The most familiar names describing differences in Database Management Systems data
models are "heterogeneous databases", "distributed databases", "multidatabase systems",
and "federated databases". They relate to the problem of making different types of databases
communicate and exchange data between each other in such a way keeping all
performance, security, reliability, and simplicity to an acceptable level for the users. Systems
will mainly provide a standard interface, which will make it possible for the databases to
interoperate with each other. Systems such as Sybase provide an open interface, which
includes commands such as "begin-transaction", "prepare-to-commit", "commit", and "abort".
Similarly, Oracle provides an "explain" command which can be used to ask the system how it
has optimized a given query. The information obtained this way can be used in global query
optimization. Also, Ingres has released the open Ingres version, which is a distributed
Information manager that allows a user to treat information resources within an organization
as one unified information resource with the characteristics of a single local relational
database. The data, which is accessed by Open Ingres in any local or remote databases,
should be completely supported by Ingres. None of those is considered as the complete
solution to the database interoperability problem. Early work on these topics indicates that
they need to provide integration mechanisms for schema and process, while most of the
work to date has concentrated only on schema integration.

The approach to cooperating databases should ensure that no bad effect on the other normal
services offered by the database management systems and should support all the
complementary services given by most of the existing will-known DBMSs, especially those
related to constraints enforcement and owners' autonomy. Among those services are:
schema translation management, programming language translation management, semantic
inconsistency management, and other aspects related to the operating system and the
communication protocol layers which are considered as outside the database research realm.
Also, there are many other areas supporting the success of the database interoperation.
Some of those areas are: dynamic access management, history tracking management,
transaction management, data replication management, security and constraints enforcement
management, data dictionary management, query decomposition management, and probably
many other important services that are still unknown to research realms. Figure 2.1 shows a
preliminary design of the interrelationship between the different services as seen at the
present time. In Section 2.1 a thorough discussion of these different database services is
given. In addition, the figure highlights the major areas of research in the database
interoperability and the interrelationship between the different components.

14

in a technical manner. The mission of gripping information from multiple sources is done as a
joint process between the information sources that will reply the query.

In general, most approaches to integrating heterogeneous information sources rely on
another external form of representation usually based object models. Definition of
relationships between the various objects is usually defined at an abstract and global levels
rather than at the level of each resource, which the proposed layer is designed to achieve.

All those issues make a strong demand towards having a new dynamic mechanism for the
cooperation process for the heterogeneous distributed data sources. This issue needs to be
looked at in a new way. Although there is currently number of suggested static definitions for
the cooperating data sources, no one considered the ideal solution for the rapidly increasing
number of heterogeneous distributed data sources requires cooperation. Disco project
[Tomasic96] is one example of the static definition of the necessary databases interoperation
parameters and which this personnel view is considered, to an extent, as a dynamic
implementation of parts of the Disco project.

A proposal for a middle engine based on number of hypothesis plus number of operations
based on some prepositional standards for the proposed middle engine, which could act as
an added-on facility on the Internet browsers, responsible for binding only these
heterogeneous distributed data sources of interest has been discussed. This middle engine
does not require the set of related applications to agree on one global view. The approach is
based on the information availability and information demand. It is also depending on the
information advertisement technique for the purpose of advertising an available information
source. The infrastructure is also forming the foundation for all the supporting areas in the
distributed databases to take place towards the interoperability support.

Works such as FINDIT [Busse94a] and DIOM, stands for Distributed Interoperable Object
Model [Cardenas80], has addressed the problem of finding information in a large scale
network of autonomous and heterogeneous databases and educating users about the
available space of information. FINDIT mainly intended to advertise locally about the
shareable local data sources. In this case, global users need first to send queries to remote
information owners, and second the local user query will be sent in an indiscriminate manner
to unknown database server. This is because not every database server knew about the
available global information space it can access. The only available shareable information to
the local site is the database servers linked directly with the local user server of that site.
User servers are linked together so that they can exchange information. The local user query
in this case may traverse to the outside world and may get rejected or the result of the query
may not form any interest to the sender. By this it cost the user the time of sending the query
till the answer is received.

Recently, substantial attention in the DBMS area has been attracted to the problem of
heterogeneous database integration systems design. The practical importance of this
direction consists at the development of tools making possible the coexistence of different
DBMS supporting various data models, which meet applications requirements. The
methodological importance of this direction arises from the fact that integration of
heterogeneous databases requires methods of equivalent data model transformation and
methods of constructing unifying data models and languages promoting generalization of
various approaches to the development of DBMSs programming language [Kalinichenko90].
Because of this, a number of projects have been established in this area such as the Jupiter
System, which is a prototype for multidatabase interoperability. In this system, the majority of
the work has been done on the mapping mechanism between the different schemas of the
databases. The mapping of schema has been considered between autonomous and possibly
some heterogeneous databases [Murphy94]. Also, there are other projects in this area such
as IRO-DB and ESPIRIT III. They provide a method of integrating heterogeneous data
sources from the design perspective and the data perspective. They allow for the integration
of heterogeneous object-oriented and relational DBMSs [Busse94c].

For the purpose of distribution it has been suggested that three sub-layers be created in the
ISO/OSI application layer to form the mechanism of distribution process is supplied by

16

[Gligor84]. These three sub-layers will be responsible for global data management, distributed
transaction management, and the structured data transfer protocols respectively. Four
approaches have been worked out from past suggestions. Those are the CSIN, which is the
Chemical Substances Information Network project [Smith811; the UCLA DBMS project, which
uses the ER model as its global - conceptual model [Cardenas80]; the XNDN project, which
uses the relational model as its global model [Keimbleton81]; and the Multibase project, which
does not require any changes to be done to the local databases or their DBMSs [Smith81]. All
of the four approaches mainly apply the recommendations of the first sub-layer of the
suggested proposal which is the global data management leaving the other two sub-layers
with relatively little or no research until now. Also, non have treated schema integration
between the heterogeneous databases as a dynamic process, and all of them are defining the
integration as a static bridges between the different databases.

Solutions such as the one defined by the Jupiter system [Siberschartz94] are intended to
define two schemas: the participation schemas, and the export schemas, which are normally
part of the local schema for the global usage. In this case, if the link between the local
schema and the global schema is down, then this will not affect the global schema users but
they may get old data. This is subject to the changes that may take place during the downtime
between the local and the global site. Also Jupiter uses a single uniform database language
for the global access, where the users should learn to use this language.

There are some other approaches written especially for newly developed object-oriented
database interoperability and as an extension they also capable of importing and exporting
data from and to other databases [Busse94]. The Common Object Request Broker
Architecture CORBA standard has been designed for the newly designed applications, and is
considered as a standard to let objects over a heterogeneous environment to talk to each
other regardless of the communication protocol used in each side of the internetwork
[Burleson94]. As indicated in the literature, the real problem concerns legacy systems.
CORBA is considered as a significant step in satisfying the needs of applications, and it
makes a substantial contribution to interoperability and provides a high-level view for
developing and integrating applications. However, it is limited to the classical object model
and lacks an explicit view of resources [Kulkarni94]. The real significance of CORSA
specification is for application developers who want to build new client/server applications
that will work across disparate platforms.

Also, security adapted by CORBA is still a question. In the start, all the security applied by
CORBA is mainly securing the object. It is different from the known security which is applied
in databases, such as a particular person is allowed to view, update, or delete data, or as a
person may be allowed to run some programs. All the security in CORBA is dependent on the
power of the objects themselves and their behavior. It is been assumed that the object will not
exceed its behavior. No doubt CORBA will facilitate linking the three-tier architecture data
sources in a transparent manner to users. The Orbix product is CORBA compliant software
enables users to downsize mainframe applications on Unix boxes and NT based networks.

CORBA is considered by many workers as the future standard distributed computing
architecture. It only supports object-to-object interoperability and does not directly support
distributed data or distributed transactions. It allows several heterogeneous object-oriented
systems to co-operate and provides interoperability between applications on different
machines by interconnecting multiple object systems through a remote object invocation
mechanism. It would do so by means of what are termed object services (i.e. a DDBMS
service and a transaction service attached via a gateway to the architecture.) IDL of CORBA
stands for interface definition language. IDL specified methods can be written in and invoked
from any language that provides CORBA bindings (currently C, C++, Smalltalk.) For one
CORBA object to request something from another object, it must know the target object
interface. The CORBA interface repository contains the meta data that lets components
discover each other dynamically at run time.

Representative projects in the area of integration of heterogeneous information sources
[Wiederhold92, Wiederhold93] include TSIMISS [Garcia94, Papakonstantinou95], which
introduces an object exchange model and a specialized query language for integrated

17

information access. Other projects include work at USC [Macleod93], HP Labs [Shan93], and
IBM Almaden Research Center [Carey94]. The entire area of distributed object management
[Ozsu93] has also important impact on this research.

In addition, much of the work in the heterogeneous databases interoperability are also relevant
[Tomasic96, Liu95, Sheth90]. However, our viewpoint is somewhat different from the previous
research on the integration of the heterogeneous databases. Instead it is looked at the
interoperability of databases from the perspective of making the interoperating data sources
understand each other in terms of the database structure. The cooperating information
sources would only create a view that can be understood by everybody in the cooperation
process. All the created views will be governed by access rights system on the site where it
resides for all the permitted users on that view.

Instead of applying static interoperation as applied by most of the existing solutions, which
may affect the local autonomy, the full autonomy on the information source is given to the
owner to decide about what parts of his data to be in the interoperation and who should use
this data. The advances in the Internet could be utilized to propose a prototype to act as the
basement for the database metadata management in a way similar to the existing HTML
based search engines.

The current provided solutions requires human studies samples of the data, and determines
the procedure to follow towards making use of the provided information space. In contrast to
this, the IE intended to provide all the users with a unified interface on the available
information space they can access. Users can chose the information parts that matches their
requirements, merge them to their own information space, or only use them as a standalone
information source.

2.1 Database Management Systems Required Services
Integration of data from heterogeneous data sources is an important aspect of database
interoperability. When different database schemas are to be accessed from remote sites, the
problem of schema and data inconsistency is seen as a major requirement. Along with the
integration process there should exist some other assistance services to retain the reliability,
the accuracy and the maintainability of the interoperation. The connectivity of the different
components required in this regard was shown in Figure 2.1. The following sections are
further explanation of each of the required components forming our vision for the database
interoperation problem. It is an evaluation of all the requirements to interoperate between the
different existing DBMS schema types. A review of the existing solutions to different parts of
the whole problem has also been presented. A critical discussion to the current contribution
needed in the area is discussed. Also, the major required features should exist in the future
distributed databases have been defined. The interrelationship between the different
interoperability components presented and discussed. A highlight to the different areas
requires the research realm contribution also been presented.

2.1.1 Dynamic schema translation manager
The dynamic schema translation task is considered as the core problem of the database
interoperability. Existing schema integrators read the metadata stored in a database and
translate them into another ready schema. This will (first) duplicate the same information into
two different schemas, (second) requires the receiving schema to be ready prior to
translation. What is really required for interoperability of the heterogeneous databases is a
dynamic engine capable of translating certain schema to other schema type without
integrating the actual database records in another table. The migration size of the actual
records between the different schemas should only be done according to the request. The
dynamic schema translation manager should read any schema and transparently translate it
to any other schema type for the global users. The proposed prototype is assumed to take
care of the schema translation process in a transparent manner without intervening in the
actual design of the database. So, it becomes evident that to achieve effective interoperation
of remote, heterogeneous DBMSs, users must have a uniform, integrated access to the
different DBMSs. The fundamental need for the uniform, integrated access to such databases
arises because users cannot be expected to learn the use of many different DBMS and the

18

operational differences between them [Copmputer79, Gligor84]. The proposed prototype has
taken care of the schema translation management in a way by reinventing the database in its
non-normalized shape.

2.1.2 Transaction manager
Transaction managers [Verma95, Munakata97] where introduced to run classes of
applications that could service thousands of clients. They do this by providing an environment
that interjects itself between the remote clients and the server resources. By interjecting
themselves between clients and servers, transaction managers can manage transactions,
route them across different systems, load-balance their exception, and restart them after
failures. The transaction manager can manage transactional resources on a single server or
across multiple servers, and it can cooperate with other transaction managers in
interoperation arrangements. For managing transactions within the information sources
interoperation, for example, each user may have a certain level of importance on certain
information sources defined into the transaction manager knowledge base. This manager is
responsible of taking the definition from the knowledge base in the proposed prototype and
grants the user the priority and access time to process his transactions according to the
information given in the knowledge base. This manager should take care of the transaction
flow in the interoperation and prioritize using, for example, criteria based on either the user
level or database level to process the request. General-purpose transaction managers usually
work in the kernel of the operating systems where the DBMSs are working under them and
because of this reason they are not covered by the thesis in details. Rather referring to the
required functionality by them in the database interoperability.

2.1.3 DBMS Programming Language Interpreter
The actual work of such interpreter is the responsibility of switching between the different
DBMSs query programming language syntax [Burleson94]. As will be discussed later, the
proposed prototype is designed so that the query interpretation is done on a simple non-
normalized single table to simplify the interoperation process as much as possible to the end
users i.e. information consumers. The interpretation process on the heterogeneous schemas
is a lengthy and even complicated process if it is considered on the different schemas. It
appears during the work in this thesis that part of the complete study is to design a compiler
capable of understanding the different requirements of the heterogeneous schemas
interoperation. Also, the interoperable compiler, as it may be called, should be enough
capable of undertaking the diversion of the remote requests that may occur in the program
source code. If the consideration is that users will be using the PL attached with their DBMSs
then the remote data they will access should be part of their original database schemas.
Translating between the different queries is considered as a tedious research that has not
been yet undertaken and not the target of this research.

2.1.4 Query Decomposition Manager
Query decomposition processes [Kulkarni94] are the ones usually responsible to break down
the incoming and the outgoing queries for the purpose to simplify the process. Of course,
such process would speedup the query fetching operations. In case an ambiguous query is
given to any of the heterogeneous schemas in the cooperation this manager will resubmit the
query after rewriting it in a better manner. Query decomposition is a difficult task mentioned in
the database research realm. Such process is normally activated after the query is first
translated to the called data source query language. The proposed prototype handles the
decomposition in a transparent manner by which all the queries are submitted to a single
database table as will be explained later in chapters 7 and 8.

2.1.5 Data Dictionary
In addition to its normal rules, in the proposed prototype, it is responsible of clarifying the
meanings of the local data definitions to the global information consumers. This would help
the different users in matching between the different naming on the different distributed sites.
This subsystem will cooperate in solving the problem of semantic inconsistency
[Bouguettaya95], and will make users queries to reflect the actual needs as much as possible.

The data dictionary plays important rule in the database systems life cycle. It is considered as
more general software utility than a catalog. Data dictionary systems are used to maintain

19

information on system hardware, system software, documentation and users, as well as other
information relevant to system administration. A thorough discussion of the proposed data
dictionary design is presented in Section 9.1.

2.1.6 Security Manager
The security manager mainly makes benefit of the treelike shape of the gathered metadata
and users in accessing the information sources. The security manager is the part responsible
for the entire schema types security issues. Access to the different schemas would be mainly
done through this interface. Chapter 10 provides a detailed study on the IE unified security
manager design.

2.1.7 History tracking manager
The history tracking manager subsystem [Murthy, Miura95] is a knowledge base responsible
for keeping track of the status of the operations takes place in the local site. It should be also
responsible for continuing the suspended operations handled by the transaction manager. It is
in a position to be capable of giving the history about the sites where certain database
operations are applied on them. Such services are handled in a transparent manner to the
users. If certain critical operation fails this subsystem should be capable of exactly mentioning
where the failure was and forward it to the transaction manager, which will be responsible for
the continuation of the suspended processes. The schemas where indexes are used, the
benefit of the history tracking will be much more than if the schema does not support indexing
technique such as in the legacy hierarchical and network schemas where record fetching
process is done similar to the linked list. This topic will be discussed in Section 9.2.

2.1.8 Replication Manager
Replication managers [Simon95] are those capable of liaising with other sites to get
permission where a backup data store can be created for certain critical databases. This part
should play an important role when the main site is down by transferring all processes to the
backup site, and when the fault is over it should be capable of restoring all the changes to the
master database and convert the process back to the original site. Also, it would play an
important rule in the load balancing and data mirroring techniques. More discussion about
replication and how it is handled by the IE proposal is given in Section 9.3.

2.1.9 Dynamic Access Manager
Dynamic access managers are mainly responsible for user ID's and passwords over the
distributed sites and their attached database [Brodie95]. For our setup, this manager will also
be liaising with other sites to authenticate and authorize users through the distributed
databases. Because access to such data is a critical process and users have to access a
strong authentication process then assigning such process is a strong recommendation. The
process recommended by [Grimsom95, Cardenas80] can cooperate in security constraints on
the distributed systems.

Requests are supplied to the dynamic access manger, which is the first contact point with
every local 1E, of course, after crossing the wide area links and the local operating systems
layers. The dynamic access manager is assumed to carry two types of prioritization on the
information source. First, local data stores and their categorizations according to their
importance so that some of them are of higher priority on the others (compare this process
with the weighted fair queuing in routing). Second, prioritization could be based on the group
where the user belongs. In this case if the user or the user group is of high importance then
the request will get more priority over the other requests. A third type evolving from the two
types is the combination of both types. This type, of course, will give more priority over the
two individually.

2.1.10 Overview of the Operating systems & communication protocols layers
Those two layers will be responsible for resolving differences in operating systems and
communication protocols involved with the distributed databases. This should be handled
transparently without the sense of the users. A preliminary study on the requirements from the
communication protocol layer has been conducted in appendix B. People, whom have the
knowledge of the current operating systems and communication protocols they are using, can
define the parameters of these two layers [Tanenbaum87]. Also, there is a strong demand for

20

Access Tim

Storag

Memor

1960	 1970	 1980	 1990

a very strong cooperation between research in the area of the distributed operating systems
and the distributed databases in order to reach the required success in the interoperability
area. Although operating systems area is considered out of the database research area, it will
have a very strong contribution in the distributed database area. Some research areas are:

1. Changes in the names or locations of the stored databases involved in the
interoperation should be reflected transparently to all the related sites at the time of
change.

2. The distributed operating systems should liaise with the attached routers and
should have briefing capabilities such as those exist in today's routers to keep users
lists short, maintainable, and manageable.

3. It should give the full support required by the transaction manager described in
section 3.2, or it may work on behalf of it.

4. It should contain a dispatcher to manage the movement of requests from local and
global users. Also, It should consider all the users and their level of importance
according to the priority list saved in a knowledge base.

5. It should consider multitasking only for large requests having low priority. This
should involve cutting these requests into smaller parts and passing them one after
the other. This should be done with the support of the query decomposition manager
described in 2.1.4.

6. The OS is the part responsible for control access and protection of users.
Authentication is the process where the user either gains access to the system or
not. This is basically via a password or multiple passwords. This part of the operating
system should be capable of handling the interoperability of all the required dynamic
access needs to the distributed systems.

7. The difference in speed between storage and memory is an important factor not
only for databases but also for all the operations, which requires swapping between
memory and storage. As the speed of both becomes closer this will assist in solving
most of the speed problems. Operating systems should be capable of creating its
encryption mechanism and standards so that other responsible site should only
know them. Although the encryption has disadvantages related to the speed, this
can be negligible since the factor of the difference in speed between the memory
and the storage becomes very close in today's systems as shown in Figure 2.2.

Figure 2.2

2.2 An overview of Multidatabase Systems
Computer applications in general, and databases in particular, are an integral part of the daily
function of different groups of users and organizations. Databases in each of these
environments have developed independently to meet specific requirements. Moreover,
different DBMSs, which are usually incompatible with each other, have evolved to meet the
varying needs in these independent environments. However, in today's networked world,
separate autonomous data sources are no longer able to meet increasingly sophisticated user

21

needs. Related information important to the global application or request may exist in multiple,
incompatible local databases. Users cannot be expected to manage system details of sending
multiple requests in different languages (and possible different data models) to multiple
information sources. Multidatabase systems provide integrated global access to autonomous,
heterogeneous local databases in a distributed system. An important problem in the current
multidatabase systems is the identification of the semantically similar data in the different
local database [Bright94].

2.3 Database Schema Integration
The sources of data have been classified into three different classes. These are structured,
unstructured, and semi-structured. Database in general, whether relational or the other
schema types are considered as structured data sources. The web pages are examples of
the unstructured data sources. The semi-structured data sources are the web pages with
some known fields. This dissertation is only dealing with structured schema types in the
experiments and for the future work all the schema types will be considered.

Heterogeneous database schema integration is defined as an approach to database design,
application and management providing for the achievement of number of objectives. In most
of the known systems these objectives where only partly achieved [Kalinichenko90]. The
objectives are:

1. Joint usage of data from several heterogeneous databases as from a logically
single database;

2. Multidatabase management (homogeneous presentation for an application
program of a collection of various databases, maintenance of its integrity,
provision of a common data manipulation language);

3. Data description and data manipulation language unification for various data
models;

4. Maintenance of DBMS-independent generalized level of an application domain
description;

5. Provision of application program independence of DBMS;
6. Continuous embarrassment of an extending spectrum of data representations

and operations in computers.

Distributed databases provided the earliest solutions to information sharing in distributed
environments [Alonso91]. It assumes that a single and integrated conceptual view of the
databases must be provided to the users. Federated database schema and system
architecture design have partially benefited from this effort. The design of both distributed and
federated systems include functionality such as schema integration, query processing and
transaction management. The federation database is just an extended technique of
distributed databases. The main difference between them is that users of the distributed
database systems access shared data only through the single conceptual schema as a
centralized database. On the other hand, federated database systems support two classes:
federation users manipulate shared distributed information through one or more federated
schemes; and local users, to whom the federation is transparent, access local data only
[Anderson93].

During recent years, there has been an increase not only in the automation of reasoning
tasks, but also in the awareness that complex reasoning tasks need to be automated. Until
recently, developments in the theory and practice of databases have proceeded largely on the
assumption that users will consult a single appropriate knowledge base when they require
information. This assumption is valid in many situations where knowledge/data are stored in a
single knowledge base. Complex reasoning tasks on the other hand, may need to integrate
information from a multitude of different sources. These sources may be databases (relational
or otherwise), or knowledge bases (of logical or other forms) [Subrahamanian94].

The integration of existing databases provides for a uniform access to data stored by different
database systems. Besides the integration of different data models and query languages,
transaction management has to be provided. So atomic commitment for heterogeneous

22

database systems is needed. In homogeneous distributed systems, two phase commit is the
most commonly used protocol. It uses a ready state for local transactions in order to wait for
the global commit or abort decision. In heterogeneous systems, the use of a ready state is not
feasible, since this requires all participating existing transaction managers to provide that
state [Muth91].

2.4 Heterogeneous Database Systems
The provision of access heterogeneous distributed databases where each working under
different environment becomes increasingly important in the most aspects of the daily life. It
has been the subject of intensive research for at least a decade, yet the solutions published to
date have addressed only part of the problem and have, in general, failed to provide an
acceptable solution. Also it can be argued that the provision of easy access to heterogeneous
distributed databases is the key problem in information systems today. The problem can be
considered from the environment the databases working under them. Those are the different
operating systems surrounding the databases, as well as, the different communication
protocols used to transfer queries between distributed databases.

The distribution of databases is considered as one of the main overheads challenging the
success of full interoperability among the databases. On the other hand, the heterogeneity of
the environments is also considered as the second overhead, which challenges the success
of database interoperability. It has been said that control of the distributed databases even if
they are homogeneous and working under homogeneous environments is much more difficult
than controlling heterogeneous and non-distributed databases. This is because distribution
must take care of hardware problems such as differences in communication protocols, and
software problems related to software compatibility such as operating systems and security
issues.

Heterogeneity ranges from those differences in hardware to the differences in software.
Hardware heterogeneity is the difference in networking topologies, data-links that represent
the hardware interfaces between networks, and the physical communications, which
represent the hardware connections between networks. On the other hand software
heterogeneity is the one related to the differences in communication protocols, operating
systems, and going to the lowest level of the DBMSs, which is the database schema
representation. Both hardware and software in different systems has to adopt a
standardization methodology so that communication between systems can be applied safely.

Data processing was adopted heavily by business during the 1950s and early 1960s, and
large organizational data banks began to develop. At first, these where based on primitive file
systems organized sequentially on magnetic tapes. In time, they progressed to indexed file
systems on Direct Access Storage Devices (DASDs). In this way the term "database" became
popular as a term for referring to all the data in any given domain.

The next attempt toward providing structured Data Base Management System "DBMS" came
with the development of hierarchical DBMS, in the 1960s. The hierarchical model uses the
concept of the record (or entity) as a collection of named fields to represent each individual
element in the application domain.

The network model, which was refined in the 1971 by the CODASYL Data Base Task Group
(DBTG), comes as a modification of the hierarchical model, which gives the freedom for any
entity to be related to any other entity, those creating a network of related entities.

In 1967 Dr. F. Codd working as a research scientist for IBM in the USA, wrote a paper entitled
"Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks," which
analysis the use of Relational mathematics as a new technique for storing data. This was
followed in 1970 by Codd's Landmark paper to the ACM "A Relational Model of Data for
Large Shared Data Banks". These papers and the work, which followed, caused the
revolution of relational databases. Today, the majority of DBMS products are based on the
relational model.

23

The entity-relationship (E-R) data model, which was refined in 1976 by P. Chen [Chen911, is
based on a perception of a real word, which consists of a set of basic objects called entities
and relationships among these objects. It was developed in order to facilitate database design
by allowing the specification of an enterprise scheme. Such a scheme represents the overall
logical structure of the database.

The next to come is the object-oriented model, which is accepted now by database
programmers and is considered as an extension of the E-R model, and is based on object-
oriented programming paradigm. This approach to programming was first introduced by the
language Simula 67, which was designed for programming simulations. More recently, the
language C++ and Smalltalk have become the most widely known object-oriented
programming languages.

The Database Management System which is abbreviated as "DBMS" is the only term
nowadays that carries the meaning of storing the data using one of the previous models and
managing that data to get useful information. On the other hand, new DBMSs nowadays are
using entirely different technologies than the relational data model, which is the most known
model in the field of databases. This addition to existing data models gives some sort of new
technology such as engineering design, and multimedia facilities such as pictures and
sounds. By these new additions, tracking the old technology, which is in use, and adding the
new facilities to them are very costly and difficult processes, and of course, time-consuming.
This situation makes scientists and practitioners think of some sort of interoperability between
those data models for the purpose of eliminating the gap in technology between those various
types, and exchanging the new added technology in between them [Claude93].

Interoperability is required in three places: interoperability of process, interoperability of data,
and interoperability in technology. On the other hand, interoperability of databases can be
focused on three directions: heterogeneity of schemes, autonomy, which is distribution of
control, and distribution of data. The next subsequent paragraphs are mainly talking about the
different parts of heterogeneity faced by the databases.

A data model is a set of concepts that is used to describe the structure of the databases
includes data types, data relationships, data semantics, operations, and consistency
constraints. The various data models that have been proposed fall into three different groups:
object-based logical models, record-based logical models, and physical data models.

Object-Based logical models are used in describing data at the conceptual and view levels,
those, which links the external and internal levels of the databases. They are characterized by
the fact that they provide fairly flexible structuring capabilities and allow data constraints to be
specified explicitly. There are many different models and more are likely to come. Some of the
more widely known ones are the entity-relationship model, the object-oriented model, the
binary model, the semantic data model, the infological model, and the functional data model.

Record Based Logical models also used in describing data at the conceptual and view levels.
In contrast to object-based data models, they are used both to specify the overall logical
structure of the database and to provide a higher-level description of the implementation. Also
they are so named because the database is structured in fixed format records of several
types. Each record type defines a fixed number of fields, or attributes, and each field is
usually of a fixed length. The reason behind keeping the record size for the models fixed is
that, the insertion and deletion on the files of fixed length records are quite simple to
implement, because the space made available by a deleted record is exactly the space
needed to insert a record. If records of variable length are allowed in a file, this is no longer
the case. An inserted record may not fit in the space left free by a deleted record or it may fill
only part of that space. Some of the more widely known ones are the hierarchical model, the
relational model, and the network model

Physical data models are used to describe data at the lowest level, which is the physical
schema of the database. Those models are describing details of how data is stored, record
formats, record orderings, and access paths. In contrast to logical data models, there are very

24

few physical data models in use today. Two of the widely known are unifying model, and
frame memory.

Heterogeneity in networks means the differences in networking topologies such as those bus
architecture networks, star, ring, mesh, etc. The heterogeneity in networking, illustrated in
Figure 2.3, is measured by the differences in the networking protocols within each of the
connected networks. This is considered as the real part affecting the performance of networks
inter-connectivity in terms of packets sent between networks, and differences in packets
bandwidths sent and received by each of the networks.

Figure 2.3

Networking protocols or as been some times called communication protocols are those set of
conventions or rules used by a program or operating system to communicate between two or
more endpoints. They are many different types, although they all allow information to be
packaged, sent from a source point within one system, and delivered to a destination point in
another system.

Communication protocols are those techniques ranging from single character-by-character
transmissions with no error checking to those complex rules for moving large amounts of data
among many devices. In general, communication protocols comprise three major areas: the
method in which data is represented and coded; the method in which the codes are
transmitted and received; and other non-standard information exchanges by which two
devices establish control, detect failures or errors, and then initiate corrective actions.

There is often need to share data between systems purchased by any organization overall the
world to support the needs of different business areas. Satisfaction of this need has been
frustrated by an inability to provide the proper communication between the hardware and the
software from different manufacturers overall the distributed networks. Sending requests
across different distributed networks by using different communication protocols is a difficult
peace of work; although it is a must based on an urgent need to it these days.
Communication protocols on this situation have to be compatible and able to talk/exchange
data between each other to handle the problems of differences in communication protocols.

So, exchanging data across different networking topologies throughout all the heterogeneous
networks will be taken care by the routers, bridges, and hubs during the transmission process
from point-to-point. So at this situation the network topology and type has no effect over the
transmitted data overall the communication media sense the other networks know each node
by its unique address.

For the purpose of sharing heterogeneous databases residing in or working under different
operating systems the situation for such an environment is much different than if they are
residing in a homogeneous operating systems environment. Functions handled by almost all
the operating systems overall the world are related to controlling or managing the hardware,
process management, scheduling or resource allocation, controlling the I/O access, memory
management, file system services, support for hardware heterogeneity, and much more. The
Data Base Management Systems need much more than the normal services of the operating

25

systems to handle much better, reliably sharable databases. It would need full transaction
support with more complicated access methods. Of course, such methods are not similar to
the normal file system services provided by operating system. Also they will need better
memory and cache buffer management, and concurrency control [Ozsu93a, Jung97].

The normal existing services of current operating systems are not satisfactory to take over all
the required database management tasks. This is especially true when it comes to the
interoperation side of distributed and probably heterogeneous information sources. This is
why the DBMSs are trying to adopt such services in their own areas, and such work is
considered as an added drawback for the DBMSs [Ozsu93a].

The vision is to have the database management systems to interoperate between each other
in a way to make any information source connectable with any regardless of where physically
they are. For the purpose of simplicity the following scenario will clarify the situation; let's
assume that three database pools trying to get information from each other to complete the
requested process submitted by one of them. Suppose that the database pool 1 tries to get
some information from tables residing in database pool 2, and database pool 2 also tries to
get information from database pool 3 to complete the request of database pool 1, those can
be considered as nested requests. Here it is assumed that each of the pools running a
different operating system than others. Additionally, data sources are running under different
communication protocols. By such situation the operating systems are facing some
incompatibility factors, such as those related to the allocation tables, memory and catch buffer
management, and others related to bandwidth fetching and handling. This example explains
how the proposed system could deal with recursive-like requests.

2.5 Object-Oriented Analysis and Design
Analysis is the study of a problem, prior to taking some action. It means the process of
extracting the needs of a system, what the system must do to satisfy the client, and not how
the system will be implemented. The study of analysis comes as the result of software
expansions and complexity. The problem of software expansions and complexity makes
researchers and practitioners revise the problem-definition phase to add structure to the
entire process to manage and control software development. Many practitioners came up with
ideas and methodologies in analysis defined as the process of breaking down the problems to
simplify them for the coding step. The most popular are those given by Yourdon and DeMarco
in the structured systems analysis and design methodologies, while Fusion, OMT/Rumbaugh,
Booch, CRC, and Objectory are the most successful object-oriented approaches.

As it has been said, "Necessity is the mother of invention", analysis and design
methodologies are aimed at helping to simplify the way people think about problems. Object-
oriented analysis and design methodologies complement the process of the previous analysis
and design methodologies. They are consisting of mixture of the best steps applied in the
previous analysis and design techniques. It is then said, objects better represent the world as
people view it, rather than abstract the process to simplify the flow of data.

During the 1980's, hardware technology advanced considerably, which resulted in greater
efficiencies and lower prices. By contrast, the software development process during the same
period has been improved at a rate barely discernible. This situation has created a gap
between the two technologies, leaving software designers unable to follow the speed and
power of available hardware platforms. However, the development of object-oriented systems
could place software development at the start of decreasing the gap in between the two
technologies [Bertino93].

Analysis is using problem definition/modeling, while design focuses on solution
specification/modeling. This means, systems design transforms the problem representation
into a solution representation.

Systems analysis and design methodologies where introduced as the result of software
expansion and complexity at the same time. During the analysis phase the problem is broken
down into entities and relationship between these entities. The problem of software expansion

26

and complexity makes it necessary for researchers and practitioners to revise the problem-
definition phase to add structure to the entire process to manage and control software
development.

The object-oriented analysis and design methodologies have evolved from the structured
systems analysis and design. Yourdon, who is the inventor of structured systems analysis and
design, describes object-oriented analysis and design as an extension for the structured
analysis and design methodologies.

Object-Oriented software development, including object-oriented analysis, object-oriented
design, and object-oriented programming, is a promising approach to developing software
systems in order to reduce costs and increase flexibility in general during analysis and design
phases by allowing reusability, extendibility, maintainability, and programming in large
[Luker94]. Although alone it will not eliminate all the analysis problems (and hard work and
dedication are still needed to produce the best and most efficient software possible) it is the
most promising. Many software-engineering researchers have proposed an object-oriented
approach to software design, because they see that this approach generally imitates reality
better than traditional data flow or state transition design approaches. By this approach, which
is the same in all the analysis and design approaches, the problem is broken down into
entities and communications among these entities. The entities then conceptualized in a
hierarchical manner to use the properties of inheritance. In many ways the analysis is the
design in object-oriented analysis, once the problem is analyzed. Object-Oriented analysis
technique involves modeling the process as seen by those who work with the system. This
makes the object analysis process easier and straightforward than other techniques. Also
there is another reason behind the success of object-oriented technique, which is the
combination of the data description and operations performed on that data into one entity,
which traditional analysis techniques provide separately. This enable objects to capture more
information of greater importance about the process being modeled than virtually all other
techniques [Coad91].

This section proposes an analysis and design technique for the IE [Ashir2000] and in the light
of the study discusses systems, which benefit from the object-orientated techniques such as
object-oriented operating systems, and object-oriented languages.

Analysis is the process of investigating how a particular business system currently operates,
modeling the system and determining the essential characteristics of potential automated
solutions. This often involves observing complex processes, interviewing people involved in
the process and laying out the process as a data flow, state transition, or other pertinent
modeling methods.

The main goal of the analysis phase is to build a problem model - that is, to create a
description of just what exactly is needed. These may take the form of interviews,
specifications as to level of performance [Yourdon93].

In the present time most of the analysis techniques in use are those based on data flow
diagrams. Yourdon, Constantine, DeMarco, Page-Jones, and others have written about
SA/SD. Ward and Mellor have added real-time extensions to the SA/SD. SA/SD is pervasive,
applicable to many problems, and well documented. SA/SD supports three orthogonal views
of the system: object, dynamic, and functional models. It stresses functional decomposition. A
system is viewed primarily as providing one or more functions to the end user [Frank95].

In addition, endless demand for better software development methodology that reduce both
overall systems development and maintenance has led to the acceptance of object-oriented
analysis and design methodologies recently. As an overall process, object-orientation tends to
use the normal human thinking in expressing problems. Also, the methodology is considered
as a new toolkit that can be added to the traditional approaches (such as data flow, process
flow, and state transition diagrams); and it is not in place to replace those traditional
approaches. In recent days most client/server application development tools are emphases
object-oriented features, because it is found to be very effective in business problems.

27

The boundary between object-oriented analysis and object-oriented design is not clearly
defined in the literature. Some processes used by one author during analysis may be included
in another author's design technique. Some authors said that object-oriented design could be
considered as a superset of the object-oriented analysis phase. They define the object-
oriented analysis as the one model the problem domain by identifying a set of semantic
objects that interact and behave according to systems requirements. On the other hand, they
define object-oriented design, which is suppose to be language independent to, as the part
models the solution domain which includes the semantic classes and other classes defining
(interfaces, applications base utilities, etc.) identified during the design process.

Many course syllabi and textbooks subscribe to the notation that object-orientation requires
nothing more than a change in language. But it is considered as a true paradigm shift in
software engineering. It requires a complete change of worldview [Luker94].

The most important issue to figure in object-oriented analysis and design is the identification
of classes, attributes, and methods or it is also called behavior. The relationship between
classes is also part of the identification process.

There are three categories of object-oriented analysis and design methodologies that can be
figured from the existing methodologies: 1) process only, 2) representation only and 3)
process and representation. The first is the procedural methods supporting object-oriented
analysis or design and not including any object-oriented analysis and design diagrams or
notations. The second refers to graphical notations or diagrams for depicting the output of
object-oriented analysis and design and focus on visually representing a design, and not on
how to derive a particular design. The third is encompasses both processes for performing
object-oriented analysis and design and representations for specifying the results. Next, at
this comparison of three object-oriented analysis and design methodologies only category
three will be considered [Monarchi92].

After a preliminary study of the analysis and design methodologies the Object Oriented
Modeling and Design with the Unified Modeling Language UML as the modeling language
that will be followed as the standard modeling notation to create the different kind of
flowcharts [Rumbaugh91, Fowler97, Booch99, Rumbaugh99] has been chosen. This
selection has been made based on the fact of the availability of the different assistance
documentation of methodology as well as the facilities that are available in the methodology
that will facilitate the design process. Also, the quick understanding of the different modeling
stages is behind choosing the methodology. This part of the thesis, which is thoroughly
discussed in appendix C, was not aiming to compare the different analysis and design
methodologies rather it aims to select the most appropriate analysis and design methodology
that fits the different stages requirements of the proposed prototype.

2.6 Object-Oriented Databases
Object-oriented database management systems are considered as the rich type systems that
supporting user defined abstract types. Also, they are supporting more complex object
structures with nested objects and richer languages, which overcome the well-known
impedance mismatch problem. The relational model, complete objects cannot be defined or
modeled directly, because relational model does not support the notion of inheritance.
Contrary to the relational model, there is no universally specified object model. There are
number of features that are common to most model specifications, but the exact semantics of
these features are different in each model.

An object-oriented database inherits all the facilities provided by the object-oriented analysis
and design and programming and the supported object-oriented languages. The main
strength of this type of DBMS is the usage of the new programming techniques provided by
the object-orientation by which the most are inheritance and encapsulation.

Storage techniques for object oriented database management systems proposed up to date
stay between two main approaches known as the direct model and the normalized model. In
the direct model, which is the same as the one used in relational database management

28

systems, objects are stored in the same way in which they are defined in the conceptual
schema; that is, the unit of storage is the same as the semantic unit. More specifically, objects
belongs to the same class are stored in the same file and each file record is an object
instance of the class. The high transfer rate of complete objects her is considered as an
advantage. On the contrast if access is to be done on some of the attributes in the object it
needs lot of process in the sense the field sizes are not stable. Also, it is difficult to add new
attributes to the existing object unless spare attributes already considered at the end of the
object. Additionally, if the majority of the existing attributes are null value these can be
considered as a waste of space. In the normalized model, the objects are decomposed into
atomic components stored in different files. The relation between the various components is
maintained by means of object IDs.

A hybrid approach between the direct model and the normalized model can be adopted.
Complex objects are decomposed, but components are grouped together according to access
patterns and the components that are accessed contemporaneously are stored in the same
file. Although this approach is very efficient it requires having prior knowledge about the exact
access pattern for the classes that are equivalent to the tables in the relational databases.
The proposed interoperation layer IE has considered such access pattern information. The
assumption here is to have a direct model similar to the relational model of storage that is
capable of using the OID to handle the different objects stored in the different files. Also, for
easier manageability, the similar attributes will be of similar sizes.

The saving in the storage usage and the accompanied rapid information retrieval of the
object-oriented databases are a well-known advantage behind the strength of this technology.
On the other hand such advantages will create difficulties in the manageability of the
information stored using such technique. The object-oriented databases use a technique
known as the property list to trace the places of each of the object attributes. This technique
has information such as an identifier for each attribute of each individual object that is
different from the OID followed by the attribute information size to be used and the value.

29

Chapter 3

Close Study in the Heterogeneous
Databases Schemas

As known from the literature, the international definition of the primary goals of the database
systems is to provide an environment that is both convenient and efficient to use in retrieving
and storing database information. The basement for such requirement is the database
schema that is derived by the business rules and the different constraint assignments.

Database schemas almost look the same. The only difference between them is in the way the
different levels related to each other. For example, the hierarchical schemas always having
the relationship between the different record types is either a one-to-many or a many-to-one
between the adjacent levels, which means lateral links between levels or files are not allowed
as shown in Figure 3.1(a). On the other hand, the difference in the relationship between the
adjacent levels of the network schema is arbitrary, which means that the relationship can also
defined as many-to-many as shown in Figure 3.1(b). The relationship on the relational
schema in between the different levels can take the shape as many-to-many, many-to-one,
one-to-many, and one-to-one at the same time. Also the main difference in the relationship
between the different levels is that it can be done between any of the level. This is because
the definition of the different levels is represented in the form of files as shown in Figure
3.1(c).

(a)
	 (b)

	
(c)

Figure 3.1

In general, the enhancements applied to the database schemas are the same to those
applied to the networks connectivity overall the world. The relational schema is the one
equivalent to the fully meshed network. In such networks if the link from one side is inactive it
could be activated from another side, which is the same situation if a relationship between two
tables is corrupted from one side than still it could be built from the other table. If the relational
schema is compared with the non-relational schema, it will be known that using such
schemas is more secure than using other non-relational schemas in the sense they are the
most rebuild-able schema types.

The overall objective of this chapter is to present the most common approaches on DBMSs
and give, while trying to put them into the correct context of history. The different sub
objectives of this chapter are to thoroughly study the behavior of the different schema types,
highlight the differences and similarities while discussing each of the schema types, discuss
the different scenarios of schemas amalgamation techniques and design the necessary
algorithms that make the schema. Additionally, a highlight to the object-relational DBMSs will
be discussed with highlighting the most important advantages of such technology advances.

3.1 The Relational Schema
Edgar F. Codd first introduced the mathematical relational model in [Codd70] and later in
number of papers [Codd71a, Codd71b, Codd71c, Code72]. It is representing the database as

30

EnViloYees Projects Locations

a collection of relations. Informally, each relation represents a simple table or simple file. Each
relation also consists of at least one attribute, which is equivalent to the field name in a table.
The relation also consists of tuples, which forms the records in the table. Most of the relational
schema engines will reserve space for the full record size regardless of how much data has
been entered of the record. The relational engine will provide dynamic pointers between the
attributes and between tuples in a relation. Also dynamic pointers are established in the time
of binding between the relations. Dynamic binding is considered as a drawback when the
process speed was low, but with the improvement in the process speed this drawback has
become negligible. Of course, the statically defined pointers are considered as an advantage
over the dynamically defined pointers, especially in retrieving operations when having
enormous number of records in the table.

The relational model differs from the network and the hierarchical models. It does not use
pointers within the database management system programming language. Instead, the
relational model relates records by the values they contain in both sides of the tables, which
are internally predefined by the relational engine. This freedom from the use of pointers
allows a formal mathematical foundation to be defined. This is why the network model and the
hierarchical model are tied more closely to the underlying implementation of the database
than is the relational model.

The relational schema should not be conflicted with the nested relational data model. The
nested relational data model is a non-normalized data model. It is considered as a non-first
normal form relational data model. In this model all the data is represented as a single table.
As an example, the representation of a department schema which almost looks like a
spreadsheet as displayed in Figure 3.2.

Department Schema

Nuttier
	

Name
	

Manager
	

Name I Department I kie
	

Name I Location
	

Department I Location

Figure 3.2

In the relational model, complex objects cannot be defined or modeled directly, because
relational model does not support the notion of inheritance. Such feature only supported by
the object-oriented databases. Although such facility could be met by using the relational
schema, but this is considered as an additional work compared with the object-oriented
database features, which are thoroughly explained in Section 3.4.

3.2 The Hierarchical Schema
Hierarchical database management systems became commercial available in the late 1960s
with IBM IMS and the DL/1 language. The hierarchical databases have a treelike structure
with every node of the tree representing different tabular file. Hierarchical databases are not
binary trees. Each file is related to one another through the link to the record above or below.
Hierarchical databases do not allow lateral links between files. Also, in the hierarchical model
an owner record or file can have many members, but the member records can only be owned
by one owner record. A treelike structure is a root node with sub-trees t t.. 1 , -2, • • • , .41 that are
themselves trees and have no nodes in common.

A hierarchical database consists of a collection of records that are connected to each other
through links. The record is similar to the network model and the relational database model.
Each record is a collection of fields, each of which contains only one data value. A link is an
association between precisely two records. A link here is similar to the link in the network
model. Links in the hierarchical and network databases are considered as a static links, while
in the relational databases they are considered as dynamic links. Links in the relational
databases for the different relations are established when required by applying relational
algebra equations.

Consider a database that represents the library reservation and searching database in a
university. There are four record types: subject information, publisher information, author

31

information, and book information. All the sub-trees in the hierarchy are assumed to be in
ascending order. A sample relationship database appears in Figure 3.3 for the four level
hierarchical database.

Library Database

Subject Information

nr.n
IPublisbr Inforrnatic.n

1- n	
Author Information

ISBN, -nue, Reservation claite, Return clate, FieServer Id

Figure 3.3

The most basic hierarchical schema representations are those, which accept duplications in
records in some of their tree levels. Such hierarchical databases are very basic and not using
virtual parent-child relationships VPCR. The VPCR is the representation for the hierarchical
schemas where two separated schemas could be linked. The VPCR technique considered as
an overcome to the problems of M: N relationship, the case where a record type participates
as child in more than one PCR type and N-arry relationships with more than two participating
record types. Also, a dynamical VPCR is useful in establishing relationship operations
between the hierarchical model and the other models. For the purpose of this thesis the
simulation will use the simplest hierarchical schema representations and will discuss the
possibilities of simulating the most complicated hierarchical schemas databases.

The nature of the hierarchical databases differs from the nature of the relational files. The
hierarchical files are those trees with root and branches. While in relational databases each
record or file has a set of attributes and a set of entities that forms the table. Separate tables
relate to one another through a common attribute. Any attribute in the table used as a key link
with the other tables. In the case of the hierarchical files no relationship between the different
records is defined other than the links established by the hierarchy itself. Only one-to-many
and one-to-one relationships are directly represented in the hierarchical model. The many-to-
many relationship is much more complicated. Each level of the hierarchy in the hierarchical
database considered as a table in the relational database. The only way to set a relationship
between a hierarchical database and a relational database is to search for the required
relationship key from the hierarchical database or it can be done through using VPCRs. After
finding the related record, links to other hierarchy levels traced through the static links created
by the hierarchical schema. For the example given in Figure 3.3, the relationship key between
the library subsystem, which is a hierarchical database, and the student registration
subsystem, which is a relational database, is the personnel number of the persons. In this
case if any student reserve a book then his number will be recorded into the hierarchical
database, which forms the relationship pointer between the two schemas.

Hierarchical schema may consists of a number of hierarchical schemas. Each hierarchical
schema or hierarchy consists of number of record types and parent-child relationships.
Parent-child relationships are those links represented as pointers between the different levels
of the hierarchy. Figure 3.4 shows a simple hierarchical diagram for a hierarchical schema
with six record types and five parent-child types.

32

aEsvra_ae=lta-s 	 'type {
•tle szr nB %rasa a" I aa lb e 	;
"tyrip.m. •n••aamr-liaablle 2 ;

Ty roes V' MI a-1 a Iza• I oe.
;

Record Type A
Fiala 1 I Fiala 2 Field 31 Field 4

Record Type B
Field 1 1 Field 2 1 Fiala 3

Record Type

Record Type C
Fiala 1 'Field 2 Field 31 Field 4

Record Type	 Resccorcl Type F
Field 1 1 Field 2 Field 1 1 Field 2 Field 1 1 Field 2 'Field 3

Figure 3.4

Simulating the hierarchical schema of figure 3.4 will involve defining all the necessary links
between all the levels of the hierarchy. Also, the schema should contain pointers between the
records in any of the levels and between the different levels. The following seven record types
are representing the hierarchy of Figure 3.4.

Start Pointers (Record Type A Head, Record Type A Tail)
Record Type A (Field 1, Field 2, Field 3, Field 4, Successor Record Type A, Predecessor

Record Type A, Record Type B Head, Record Type B Tail, Record Type C
Head, Record Type C Tail)

Record Type B (Field 1, Field 2, Field 3, Successor Record Type B, Predecessor Record Type
B, Record Type D Head, Record Type D Tail, Backward Record Type A)

Record Type D (Field 1, Field 2, Successor Record Type D, Predecessor Record Type D,
Backward Record Type B)

Record Type C (Field 1, Field 2, Field 3, Field 4, Successor Record Type C, Predecessor
Record Type C, Record Type E Head, Record Type E Tail, Record Type F
Head, Record Type F Tail, Backward Record Type A)

Record Type E (Field 1, Field 2, Successor Record Type E, Predecessor Record Type E,
Backward Record Type C)

Record Type F (Field 1, Field 2, Field 3, Successor Record Type F, Predecessor Record Type
F, Backward Record Type C)

The representation for the record type in the hierarchical structure using structured
programming languages such as C or Pascal will looks like the code shown in Figure 3.5.

Figure 3.5

For the hierarchical data type representation, this will involve creating all the record types as
defined in the structure of Figure 3.5. After creating all the structures, the necessary links
between them must be created. This step will involve defining the owner of the structure and
the members for that structure. For the purpose of representing the hierarchical schema, the
definition on the owner side will be defined, as the side has no duplication. On the other hand,
the member side should accept duplication to form the many side of the relationship.

The treelike structured files came in number of shapes. The simplest are those balanced and
binary trees. Balanced if the number of levels is equal or nearly equal for all branches of the
trees. Given that record requests are uniformly distributed, a balanced tree will require on the
average the least number of block accesses to locate a record. On the other hand, the binary
trees are those where each record contains only one value and two branches. Such
representation is of interest for two reasons. The first is, the structure is appropriate for
memory because of its simplicity, and hence is also useful within a block of file storage. The
second reason is that the behavior of dynamically changing binary trees has been
investigated both theoretically and statistically.

In general the algorithm displayed in Figure 3.6 is used for obtaining records serially from a
tree. The proposed algorithm can find records either in ascending or descending orders.
Figure 3.7 explains how the records in any of the levels are to be sorted. Later in this thesis

33

preowed :	 do to tee left etre-tree
It not lerrnired erre=

elm=
tft	 4 1 ens le

Cre uP to tem reel fer lel= ere-tree
It Otero = record.

te=n de	 r	 d
oe te tn.= next ere-tree
preeeed.
end;

alea: do 3

	

d tele le tem reel Ter	 entlre
leen dene

ale=

dena. end:

•ula-tree pointer

Level 1 Record 1
	

Levert Record 2

supporting algorithms will explain the maintenance of the flow of the records in case of
addition and deletion of record within the sub-trees.

Figure 3.6

Internally hierarchical database uses the properties provided by the linked list. Those
properties consist of preparing the linked list for sorting operations, such as sorting the list in
ascending and descending orders. Figure 3.6 shows how the links are provided between the
different records in the hierarchical databases. There are two types of links provided in the
hierarchical databases. The first are the vertical links which are the links making the
hierarchical structure building of the tree. Those are basically linking the levels of the tree.
The second are the horizontal links, which are the links forming the alphabetical or the
numerical order of the different records of a single level of the tree. Making use of the two
links the movement within the tree is shown in Figure 3.7.

Figure 3.7

As the example for representing the hierarchical schema in Figure 3.4. Tables representing
the example data simulated to work as a hierarchical database are given in Figure 3.8. All the
supporting algorithms working with those five tables are depending on the traversing
algorithms written to simulate the hierarchical database schema.

The hierarchical model is usually implemented by using hierarchical files, which preserve the
hierarchical sequence of the database. In addition, various options including hashing,
indexing, and pointers are available, so efficient access to individual records and to related
records can be gained. Most hierarchical systems provide many such options for tuning the
performance of a database system.

34

Physics

PINS-Kent	 ACM	 IEEE

ONCamas

Computing	 Sports

Figure 3.9

H. .d
	

b I. ot•
S u blot c tH e a d	 1.....a

-
Address Subject 0 therInfo NextSubJect Publish•ri4 •ad

I
.,	--

1 Computer - 2 1

-1"
2 Sports ' 3 5
3 Physics • 0 4

,----
Pu bits h •	 r •

A d d re s s P u b lis h a r 0 th e r In I o Nes !nubile hr A uthorHsad .
1 MoORAW 2 4
2 0 sborn 0 1
3 PW S-Kent • 0 0

.^..r"

4 ACM 3 7
5 IEEE • 0 0
6 P rIn tic H a I • 7 0

...,-...,

7 JohnW Hay • 5 5

...
Author.

-•,.--,.	 ,..-.. —....—,-

A ddrs a a A u th o r 0 th • rill to N s x tA uthor BookH•ad
1 Alien 2 6
2 A nibs! ' 3 7 .	 .
3 A mmon • 0 a

4 Barbara • 5 1
a B•11 • a 2
a Bradley • 0 4
7 C•ri ' 0 5
B Charles • 0 10
El Cl_gt ' 10 11

10
_

Davis 0 12 .

.., -	L. ,
.

•
B oo k.

A ddrs a s ISBN Title ReservationDate Re to rnDat• Re•erv orC PR N a x tB oo k
1 A BC ComF 0
2 L•arning	 C • 3
3 V Jetta! Bas • 0
4 V Is ual C .4 . 0
5 in te rn • t	 DI ' 5
5 M a a te r	 In tt • 0
7 Window. • 0
5 Using	 W or • 0
5 B u ild in g	 A •• 0

10 S Int p le	 Eli, • 0

11 E le m • n ta r1 • 0
12 World	 Cup • 0

Figure 3.8

When representing the data of Figure 3.8 using the pointers defined in all the five tables
starting with "Head" record, which defines the "Subject Head" and ending with "Next Book"
pointer, it will involve visiting all the defined pointers as in the linked lists to form the tree
shown in Figure 3.9.

Library Database

As an example reading Head will give the Subject Head as record number 1 in the table
"Subjects" which is Computer. From this record the Publisher Head will be taken which is in
this example record number 1. Visiting the Publishers table will again give the link to the
Authors table. These processes will only end up when the "Next Subject" in table "Subjects" is
0, which means there are no other subjects defined. This process complies with the contents
of the algorithm of Figure 3.6. Figure 3.10 explains the complete algorithm of traversing the
data defined in figure 3.8 tables which forms the tree of Figure 3.9.

Hierarchical database traverse algorithm
Make all the databases ready in the open mode

Locate the pointer to the first record in the root record types of the hierarchy
Do while not end of the linked ilst in the highest record set

if the required record then
Apply the required operation on that record
Get the head pointer of the next level

Else
Do while not end of the linked list In the next child record set

If the required record then
Apply the required operation on that record

Else
	 Get the head pointer of the next level 	

n

Point to the next record in the lowest hierarchy data set
End of lowest record set in the hierarchy

Point to the next record in the second hierarchy data set
End of second level record set in the hierarchy

Point to the next record in the root hierarchy data set
End of the root record set in the hierarchy

Close all the opened data sets
End of the hierarchical database traverse algorithm

Figure 3.10

As one of the most important rules for dealing with hierarchical databases is to keep the
continuity in the flow of the linkage between the records of the different levels in such
databases. A hierarchical database does not allow disconnection in the linkage between any
two adjacent levels of the structure. If such situation occurs then there is no way to get all the
related information to such disconnected records. Assume a hierarchy with four levels as
illustrated in Figure 3.11. The data entry user should be able in this case to enter only the
subject record type. Also, entering the subject and the publisher data is another acceptable
case. The following table explains all the necessary cases and whether it is acceptable case
or not when entering new records in the hierarchical database of Figure 3.11.

In general, there are many feasible methods of designing a database using a hierarchical
model. In many cases, performance considerations are the most important factors in choosing
one hierarchical database schema over another.

Subject Publisher Author Title in fo Result
o o o 0 Rejecte d
0 o o 1 R ejected

R ejected0 0 1 0
0 0 1 1 R ejected
0 1 0 0 R ejected

R ejected
R ejected

0 1 0 1
0 1 1 0
0 1 1 1 R ejected
1 0 0 0 Accepted

R ejected1 o 0 1
1 0 1 0 Rejected

Rejected

Accepted
Rejected

1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0 Accepted

Accepted

N o te
	

0
	

Em pty Field
I
	

Entered Field

Figure 3.11

The many-to-many relationship in the hierarchical database can either be met by duplicating
records, such as what happens in the past library example in between the publisher and the
author information or by creating more than one hierarchy and establishing a PVCR between
them. Figure 3.12 shows the hierarchical add algorithm listing.

36

lierarclici database add algorithm
Male all the data sets ready In tie open nue
If data entered we valid alit leep the carectivity betheen tie hierarchy levels

Paty lierarshical database write record algorithm
Be

Flalect the data entry sese
Bid

aose all the opened data sets
Bid of lierarcNcal database add aigorittrn

Hierweical database wite recad algettin
Is pointer edst for the first record In lie first level lierardw
If edst

Set Indic:shall "Rrst level recon:1 seX' first mad = true
Set Indic:stag) "Previous record in tie first lest record set pokier"
Do ythile first level data set not pointing to the end of the record at

Point to the first read In this level (First)
If tie key field In tNs record Is less than the entered ckt

Keep trireme:don of the prevlots recati address
Get the pointer to the ned record from the anent record
Change incicator(2) = Ned record ackiess tremble anal record
Change Ind) =false

Be if the ley field In this record Is equal to the entered data
From the first level reoord set get the pointer to the seed level record set heed pointer

Set indicate:0 'Second level record et' first record = true
Set Inficatorif) 'Pre/taus remit] In the secaxl leed recorded pointer' 4
Do while second leel data set not pointing to the end of the record set

RAM to the first recced in tNs ievd (Second)
title ley field In this recad is less than the entered data

Keep Inform:dim of the previous record adckess
Get the pointer to the red record fmmthe anent read
Change Incicatorft) = isd record adiess franthe anent record
Change Incicator(3) =false

Be If the ley field In this record is equal to the entred dala
From the seoand leel nerd set gat the poiner to the red level record set head poker
Set Incicato3) "Second 'eel record et' first record = true
Sat indcabor(4) "Previous record In the second level record set pokier"

Process the Nth level ceded
If exist

Be rressage record Is edst
Be

Check if Incicator(M) = true
Change the pointer In the level before the last to point to the new record address
Only all a nev mead set In the lowest level of the hierarchy

Be (This nean the record is less than the last traced record ad cans before it)
Altst the coinkr In the previous reccrd to point to tie new record
Add the new record and set the red mord pointer to point the pre/tots record red record Pointer

End

Be
Check if inciatali) =true
Change the pointer In the level before tie last to pant to tie new record adckess
Only all a new record set in tie lovest eel of the Nerardw

Be (This rrean the record is less than the let traoad record and axes before it)
Pciust the pointer In the previous record to point to the new record
Add the raw read and set the next record pointer to point tie previous recad ned record coiner
kld the ned levels records

End
Be

Check if incicator(1) = true
Change the pointer In tie level Woe the last to point to the new record ackkess
Only all a new naoatl set in tie loved level of the hierarchy

Be (fliS ITEM the read is less than the last traced record and conies before it)

Figure 3.12

37

1 DBD NAME = OF FIGURE 5
2 SEGM NAME = RECORD TYPE A, BYTES =40
3 FIELD NAME = FIELD 1, BYTES = 10, START = 1
4 FIELD NAME = (FIELD 2, SEQ), BYTES = 5, START = 11
5 FIELD NAME = FIELD 3, BYTES = 15, START = 16
6 FIELD NAME = FIELD 4, BYTES = 10, START = 31

7 SEGM NAME = RECORD TYPE B, PARENT = RECORD TYPE A, BYTES = 20
8 FIELD NAME = (FIELD 1, SEQ), BYTES = 5, START = 1
9 FIELD NAME = FIELD 2, BYTES = 10, START = 6
10 FIELD NAME = FIELD 3, BYTES = 5, START = 16

N DBDGEN
N+1 FINISH
N+2 END

Figure 3.13

Adjust the pointer In the previous record to point to the new record
Add the new record and set the next record pointer to point the previous record next record pointer
Add the next levels records

End
End of the second Do

End of the first Do
Otherwise

Sets are empty, Add the first record In the sets
End

Close all the opened data sets
End of Hierarchical database write record algorithm

Cont. of Figure 3.12

The physical database representation refers to the hierarchy that is actually stored. As an
example, in the IMS this is represented in the form of a physical Data Base Definition DBD
using the DL/1 language. The following figure 3.13 shows the definition of part of a physical
database that corresponds to the hierarchy shown in figure 3.4.

3.3 The Network Schema
The relationship between records in the network databases is always represented as many-
to-many, which makes an arbitrary links between the different records. Also they can be one-
to-many and many-to-one at the same time. The one-to-many relationship in the network data
models known as a set type. This kind of data model allows the definition of system owned
set, which is a set with no owner record type. Also, it allows the multimember sets, which are
similar to those defined in Figure 3.4. In addition, it allows the definition of recursive sets in
which the same record type plays the role of both the owner and member.

A network database consists of a collection of records connected to one another through
links. A record is in many respects similar to an entity in the entity-relationship E-R model.
Each record is a collection of fields, each of which contains only one data value. A link is an
association between precisely two records. Thus, a link can be viewed as restricted form of
relationship in the sense of the E-R model.

If the representation of a network database is viewed for two records, the relationship
between them can be seen as one-to-many from both sides. As an example, suppose two
record types linked with each other by an arbitrary links. Simulating such case using the
relational database schema would yield in representing those two records with an address

38

Table A

Field Address

Al 1
A2 2

A3 3

A4 4

Table B

Field Address

B1 1

B2 2

B3 3

B4 4

field associated with each record type, then creating a third record type for representing the
arbitrary links of the other two. Figure 3.14(a) shows the two record type representation. The
relationship between the two fields of the middle record is a many-to-many. The outcome of
the two record types is depicted on Figure 3.14(b)

Links Between Table A and Table B

A
Address

B
Address

1 2

1 3

2 1

3 2

2 2

3 1

2 4

4 1

1 4

(b)

Figure 3.14

In the network database the links between the different record types is represented as an
arbitrary graph. The relationship between any two record types may be either one-to many or
many-to-many. So, the relationship between any two record types should be represented as a
pointer between any two record types. This stipulation in the network database offers more
freedom in the traversing process. Also, it minimizes the duplication in the records, which is
considered as one of the drawbacks in the hierarchical databases. The network model differs
from the relational model where data are represented by collections of records, and
relationships among data are represented by static links. Figure 3.15 shows the code
requirements if the network database for two record types simulated using the relational
database engine.

Record Type A

Field 'I I Field 2 I	 Field S

!Record "Type Et

Field 1 I Field 2

Head (Record Type Name, Head Address)
Record Type A (Field 1, Field 2, Field 3, Next Record Type A)
Record Type B (Field 1, Field 2, Next Record Type B)
Link Table (Record Type A Address, Record Type B Address)

Figure 3.15

39

The network model is usually implemented by using pointers and circularly linked list. Most
network DBMSs also present the option of implementing some set by clustering; that is, the
owner record followed by the member records in physical contiguity for each set instance.
The clustering of member records next to their owner record can be done only for a single set
type that a record type participates in as member, because records can be physically
clustered using the member based on only one logical 1:N relationship type. The set type that
is used most frequently in accessing the records should be chosen for physical clustering. In
many cases indexing or hashing on certain attributes of a record type can also be
implemented on the ring file for fast access to individual record of a particular type.

3.4 The Object-Oriented Schema
Object-orientation provides facilities not existing in any of the other non object-oriented
languages. The facilities for inheriting types and methods are very strong options offered only
by object-orientation. Inheritance facilities, generalization or specialization means the same
thing with different views. All those facilities are behind the flexibility gained by such
technology when compared with the other non object-oriented technology.

Performance is a basic requirement in any database management system. In an object-
oriented database system this is influenced by many factors, mainly stemming from the
complexity of the object-oriented data such as the inheritance and the complex objects.
Those, appropriate storage techniques for objects, as well as adequate indexing techniques,
are needed to provide a good performance level. Complex objects so far proposed as the
database schema for the OODBMS.

Polymorphism technique in the object orientation means the ability of different objects to
respond each in its own way, to identical messages. It results from the fact that every class
lives in its own name space. The names assigned within a class definition won't conflict with
names assigned anywhere outside it. Both of the instance variables in an object's data
structure and of the object's methods are protected. Method names are part of an object's
interface. When a message is sent requesting an object to do something, the message
names the method the object should perform. Because different objects can have different
methods with the same name, the meaning of a message must be understood relative to the
particular object that receives the message. The same message sent to two different objects
could invoke two different methods. The main benefit of polymorphism is that it simplifies the
programming interface. It permits conventions to be established that can be reused in class
after class. Instead of inventing a new name for each new function you add to a program, the
same names can be reused. The programming interface can be described as a set of abstract
behaviors, quite apart from the classes that implement them.

The entity type schema in both the network and the hierarchical models is defined as a record
type description. In the formal relational model it is defined as a relation schema, which is
equivalent to a table description in the informal relational model. In the object-oriented model
the entity type schema is defined as a class description. This leads to the fact that the content
of the different schemas are defined different for each schema type where each may behave
differently during the run time.

The entity set is known as the relation set in the formal relational model. In the network and
the hierarchical models this is known as a record type instances. This is equivalent to
collection of objects in the object-oriented model.

As a relationship between the similar schemas types the only models which got a real
definition for the relationship in the building of the schema are the network and the
hierarchical models. A static definition is created between the records at the time the different
related record are created. On the other hand, there is no corresponding concept on the
relational and the object-oriented model. The relationship in the relational model is
established by using foreign keys while in the object-oriented model the relationship is
established using references through object identifiers.

40

The object-oriented systems provide persistent storage for complex-structured objects. They
typically employ indexing techniques to locate disk pages that store the object, which is the
entity instance or row as defined in the informal relational model. Here the objects are often
stored as byte strings and the object structure is reconstructed after copying the disk pages
that contain the object into system buffers. A number of object-oriented and relational
systems are using some form of client server architecture.

In order to increase the efficiency of the application in object-oriented databases, direct
access to the attributes of objects is implemented as system-provided operations. This will
also avoids the development of a large number of conventional methods by the programmer.

The object-oriented model has been criticized to be a step backward the navigation time
compared with the hierarchical and network models. If the case is navigation using CAD or
artificial intelligence applications, than the object model only provides the nested structure of
the objects. Figures 3.16 and 3.17 show respectively the EER diagram of the conceptual
schema for the library database and the 02 version of the class declaration of the EER
diagram.

Figure 3.16

41

type Phone : triple (area code : integer,
number : integer);

type Date : tuple (year : integer,
month : integer,
day : integer);

class Person
type tuple (CPR : string ,

narre : tuple (

number : integer,
address tuple (

fust_narre : string,
middle_narre : string,
las t_narre : string) ,

house_number : integer,
road : string,
block_number : integer,
city : string ,
state : string) ,

birth_date : Date,
sex: character)

method method num : return value type
end

class Press inherit Person
type tuple (press_narre : string,

publication_date : Date)
method	 rrethod narre : return value type

end

class Authors inherit Person
type tulle (place_of work : string,

year of publication : Date,
title_of_periodical : string,
title_of conference : string)

method	 rrethod narre : return value type
end

class Book
type triple (ISBN : string ,

title : string
reservation_date : Date,
retum_date : Date,
reserver : Person,
publisher :Press
author : set (Authors),

method method nal= : return value type
end

method body method narre : return value type in class class name

body of the rrethod

Figure 3.17

The object-oriented model is considered as the amalgamated model of the three other
models. The outcomes of combining the relational model, with the hierarchical and the
network model will result in a model similar as the object-oriented model. Of course, there are
many additional facilities bounded with the object-oriented model known as object orientation
capabilities. From those capabilities are the inheritance, aggregation, generalization,
encapsulation and many other added facilities in which it will make the application easily
maintained and new elements easily added to it.

For the purpose of storing data in an object-oriented database there are two proposed
approaches. Those are known as the direct model and the normalized model. In the direct
model, which is the one similar to the storage technique used in the relational database,
objects are stored in the same way in which they are defined in the conceptual schema, that

42

is, the unit of storage is the same as the semantic unit. This means that objects which are
belong to the same class are stored in the same file and each record in that file is an object
instance of the class. An advantage of this approach is that transferring of the whole object is
a very efficient process; sense join operations are not required to reconstruct objects that
have been previously decomposed. On the other hand, accessing certain set of attributes
within the class is considered as a disadvantage.

In the normalized model, objects are decomposed into atomic components where each is
stored in different file. The relation between the different components is maintained by means
of object identifications or OlDs.

Generally, an intermediate approach between the two proposed approaches can be adopted
in which complex objects are decomposed where components are grouped together
according to access patterns that are accessed continuously are stored in the same file.

The Object Database Modeling Group ODMG is the industrial party working towards
standardizing the object based components industries. They have already achieved
remarkable arrangements in areas like how object interfaces are defined, how operations are
called on objects, how objects are distributed such as in the CORBA standard and what type
of object services are used. An early agreement on an object database standard would
undoubtedly eliminate most exploration of new ideas by DBMS vendors. In this case unless
vendors extensively compared and evaluate each other inventions in the area consumers
would not be able to get the best object-oriented databases technology features.

A very tangible feature of object orientation remains in its ability to have a collection of objects
as a data type feature. The ODMG has defined four collection types to be supported by the
standard. Those are the set, bag, list and array. Sets are an unordered collection of elements
with no duplicates allowed. On the other hand, bags are the same as sets with possible
duplicates. Lists are considered as an ordered collection of elements. Arrays, on the other
hand, are considered as collection with a fixed number of elements that can be located by
position.

One of the important strengths of the object-oriented model remains in its ability to sudden
changes in the relationship design between its various classes. This ability has minimized the
overall required changes in cases such changes happen to the business requirements.

Also, does polymorphism appear in the heterogeneous information sources interoperability? If
yes, where? It seems that all the provided explanations and a different discussion happens in
this are towards the programming part of the whole story of this broad area. The discussion
was mainly towards simplifying the application programmers' mission in cases when
modification and redesign of the actual life application is compulsory. In the IE polymorphism
is applied by the nature of the prototype design. In this sense the user will be able to send the
same query structure to different schemas without having to know the actual database
structure he queries.

Questions remain to be answered; will the object-oriented schema be able to accommodate
all the other models as partners in its complex data types? If yes, what are the likely impacts
in the response time?

3.5 The Object Relational Technique
The object relational database management system is considered as the newest commercial
breed that uses object orientation technique and at the same time using the relational schema
as the backend data store. Also, object relational will support some of the object extensions
needed by today's more complex applications.

Object relational database management systems add new object storage capabilities to the
relational systems at the core of modern information systems. These new facilities integrate
management of traditional fielded data, complex objects such as time-series and geo-spatial
data and diverse binary media such as audio, video, images, and applets. By encapsulating

43

methods with data structures, an object relational database management system server can
execute complex analytical and data manipulation operations to search and transform
multimedia and other complex objects [Reinwald96].

The tenets in [Stonebraker90] have stated that the next generation database management
systems are assumed to support richer object structure and rules, subsume second
generation database management systems and has to be open to other subsystems. Also,
the accompanied 13 propositions have also discussed the desired facilities to be in the new
generation database management systems. Most of the work in this research has been
concentrated in fulfilling tenets 2 and 3. Also, a consideration to proposition (1.3), (1.4), (2.3),
(2.4) and (3.1) respectively.

As an evolutionary technology, the object relational approach has inherited the robust
transactional and performance management features of its relational ancestor and the
flexibility of its object-oriented cousin. Database designers can work with familiar tabular
structures and the well-known data definition languages while assimilating new object-
management possibilities. Query and procedural languages and call interfaces in object
relational database management systems are familiar: SQL3, vendor procedural languages,
and ODBC, JDBC, and proprietary call interfaces are all extensions of relational database
management system languages and interfaces. And the leading vendors are, of course, quite
well known: IBM, Informix, and Oracle.

In addition, extended relational and object relational are synonyms for database management
products that try to unify aspects of both the relational and object databases. Although, there
is not yet an official definition of what an object relational database management system is.
Won Kim, founder of UniSQL, recently published a white paper describing a framework with
which to evaluate the completeness of a product's compliance with seven major categories of
capabilities of object relational databases. Also, efforts to interoperate between the object
based and relational based schemas are considered as an ongoing research which this
research tackles only part of the full picture.

3.6 Perspective in the Amalgamated Database Schema
When comparing the basic hierarchical database that is represented as a pure tree structure
to the basic network database, many commonalties found with differences in the relationship
between the different records. In the basic hierarchical databases the relationship between
the different records always either one-to-many or many-to-one and never both sides
relationship comes together. In the network databases the relationship between the different
records is arbitrary. As an example, suppose there are two types records A and B. The
relationship from A to B is one-to-many and from B to A is also one-to-many. There are many
complicated scenarios that can be represented in both the hierarchical and the network
databases may not be part of the experiment in this research.

The entrance for the hierarchical databases is limited and can be started through the
hierarchies occurs in each hierarchical structure. In the network databases this can be done
using the same philosophy by entering from number of record types, which is again limited.
From the relational databases point of view this process can be applied from any of the
relationship tables, which is unlimited such as the two previous schema types.

The simulation of both the network and the hierarchical databases using the relational engine,
this is done without using any of the facilities offered by the relational database engine. This
means that all the links between the different data records should be done manually to reflect
the behavior of such legacy databases. This will involve designing two functions to enforce
the behavior of both the one-to-many and the many-to-many relationships.

Network and hierarchical schemas use static or physical references, while the relational
model uses logical or symbolic references. The network model can resemble the relational
model if duplication for the key in the owner record is done in the member records. The
hierarchical model also represents relationship explicitly, but it has series limitations
compared to the network model. A record type in the network model can be a member in any

44

number of set types, while in the hierarchical model it can have only one real parent and one
virtual parent. Generally, the hierarchical model is considered as inferior to both the relational
and the network models in its modeling capabilities.

The network and hierarchical models resemble the object-oriented model in at least two
things. First, both support some form of data nesting or cyclic objects. Both accept objects,
which refer to other objects such as values of their attributes. The fundamental difference in
this is that the implementation of cyclic objects in network databases tuff and requires artificial
structures to be introduced in the schema. Second is, references in both are the same. This
technique is referred to as object identifier, which is equivalent to pointers in the network and
hierarchical models. Object identifiers are defined as logical pointers in object models, while
these are defined as physical pointers in the network and hierarchical models and cannot,
therefore, be used for checking referential integrity.

The point is not yet clear about object-oriented database technology i.e. its ability to
mathematically prove its various concepts as in the other database schemas. It is well known
that this kind of management systems could not directly access the various objects i.e.
records directly without doing it through the class accompanied methods if available.
Furthermore, the access to the various objects should be only applied according to what is in
the accompanied class a method without even dropping single attribute.

Meanwhile, many projects are been undertaken for developing extensible database
management systems. When these types are compared with the object-oriented database it
shows that the extensible databases can provide physical or architectural extensibility. The
extensibility in any system prepared by using any of the conventional languages is the system
architecture dependent, which is not the same case if object-oriented technique is used.
Object-orientation provides logical extensibility, which is the ability of defining new types of
data and operation on an operational system.

When comparing the relational data model with the object-oriented model it is clear that the
former does not directly support the complex object definition and it does not provide the
notion of inheritance, whereas the latter support both. Also, the behavioral semantics of the
objects in the former are dispersed in the application programs, while in the latter these are
associated in the class definition. Additionally, the relational data model does not support the
concept of object identity, which is the unique identification technique used by the object-
oriented schemas for the purpose of making the object immutable to the outside world. Many
comparison points have been made during the elicitation of data models earlier.

Indexes are basically considered as structure access techniques for the purpose to speed up
the retrieval of records in response to certain conditions. They do not affect the physical
placement of records on disk; rather they provide alternative search paths for locating the
records efficiently based on the indexing fields. The most popular indexing techniques are
based on ordered single-level indexes and tree data structures, which are the multiple
indexes or B+ trees. Indexes can also be constructed based on hushing or other data
structures. The relational and the object-oriented databases only support dynamic indexing.
This makes them flexible in a way to change the indexing key according to the requirements.
On the other hand, the hierarchical and network schemas data models supports statically
indexes in the insertion mode only. This makes them not flexible when change is required.

The idea behind the de-normalization process that would be undertaken by the 1E, which will
be applied to the normalized databases, will takes us to another broader ideas for the further
broad amalgamated database schema. Normally, the purpose of the normalization process is
to first get rid of the redundant data, which is basically a preservation process to the storage
usage. Secondly, is to I provide better chances to apply the security constraint to a subsets of
the complete data. Thirdly, which is the most know advantage, is to allow fast and rapped
retrieving of the information in cases such having huge number of record.

If the de-normalized information will fit in a database that is similar to the spreadsheet than a
balanced database having all the information in a single record could be considered. Of
course, single record containing all the information related to the record, which is considered

45

as an object, can be understood easily by everybody. This is because it does not yet carry the
different thought of design flavors of the systems designers. Also, the aim is to get the
spreadsheet fully normalized in terms of storage usage and to be exactly equivalent to the
original database system design.

This will lead us to the idea of having an amalgamated spreadsheet and supporting database
operating system and security manager taking care of all the database operations and issues.
All the database facilities such as the necessary screen building tools and the security
assignment system are all available at one time. The implementation of such idea will cutoff
the necessary time for building the tables, the attributes and the entity relationship diagrams
for the database application implementation phase.

In general, for all the schema types the structure of the record is first red from the database
management system tables that are holding the different attributes definitions with the types.
Those are stored as metadata definitions for the entire systems working under this database
management system. Although, some small businesses database management systems
does not have the metadata information in a common place. The IE is first considering only
the inclusion of the metadata of the information sources that will be shared with the global
users. Second it conveys only the related metadata information parts to only the related
information consumers in a fully controlled atmosphere. Third, it uses a special browser to
display the metadata to specifically the related information consumers and not as the current
Internet browsers that display the same pages to any requester.

This study is towards allowing database management systems implementers to create object
like records that can be stored to and retrieved from any data store in any format. It allows
clients to use their own designed interfaces regardless whether the record is stored in file
system, relational database, object-oriented databases, or other data stores.

This thesis describes work in progress towards creating the heterogeneous information
sources interoperation. It describes the interface used for storing and restoring records from
heterogeneous information sources distributed over the Internet in a dynamic manner. Also, it
describes all the related tools necessary for simplifying, securing, and retaining autonomy of
that interoperability mission.

46

from many databases, as well as many DBMSs from many vendors, they are still considered
as bridges built as an afterthought.

The federated approach to database management is very different from distributed database
management. Whereas distributed databases are often carefully planned, federated
databases are often evolve as a result of external circumstances. Unlike a true distributed
database a federated database characterized by loosely coupled applications and diverse
data models [Won90]. Although it has strong contribution in the interoperability of databases,
federation is not yet considered as the final solution. The federated approach through
import/export schennas makes integration more tractable in large multidatabase systems
although this approach gets less tractable as the system size grows [Heimbigner85, Sheth90].
So building specific bridges between database islands is not a feasible process when it is
intended for a long period and changes to the database internal schema representation are
considered. For this purpose, database research should work towards building a solid
infrastructure for the interoperability of the databases taking into consideration allowing
different schema types data stores to interoperate with each other and by offering the highest
security environment to all the interoperating data stores.

Management of heterogeneous databases, which is the second dimension in the taxonomy of
Figure 4.1, is one of the most important areas of research and engineering today [Daya184,
Litwin88]. The ultimate objective of research and development in heterogeneous databases is
to produce a system and a set of user aids, which will allow the users to access a set of
heterogeneous databases, using the local database language, as if they where a single local
database. Introducing heterogeneity may not involve significant additional difficulty to the final
solution. This, of course, is true only from the perspective of database management. There
may still be significant heterogeneity problems from the perspective of the operating system,
the attached communication protocols, and the underlying hardware [Won90].

A legacy information system is any information system that significantly resists modification
and evolution to meet new and constantly changing business requirements [Brodie95,
Jeffery95]. Legacy information systems fall into three creation categories, which are:

(1) Data are mixed with the program code and both are mixed with the
operating system which is the most difficult to deal with.

(2) Only data is mixed with the program code and both are separated from the
operating system.

(3) Data is separated from both the deriving programming language and the
operating system. Although this research aim is towards total information
sources interoperability most of the design algorithms are based on this
category.

Existing database schemas are not designed so that they can interoperate with other schema
types, which make the problem of database interoperability not an easy problem to deal with.
As part of the research in database interoperability, a study should be conducted on the
existing DBMSs to determine their ability to interoperate with other similar or different types of
databases. The solution would list a number of policies, algorithms, and other roles to be
applied by each of the DBMSs in order to be able to interoperate with other distributed and
possibly heterogeneous databases.

Building bridges between different types of databases is, to an extent, support for the
heterogeneity interoperability problem but does not solve it. The full solution would only be
considered if it is a generic solution in a sense to be transparent, as well as, dynamic. If any
changes are made to the databases, these should directly be reflected in the local, as well as,
the global world [Brodie95].

Database heterogeneity can fall into a number of different areas. The heterogeneity of
databases are defined by [Bouguettaya95b] as follows :

(1) Transaction Management is a mean to maximize concurrency and ensure
consistency by using transactions to organize and control database

48

activity are the hardest to interoperate [Sheth90]. This is especially true in
distributed databases willing to interoperate. [Baker90] has addressed the
reliability and execution of transactions in multidatabase systems.

(2) Integration of different schemas of the same or different models.
(3) The interoperation of different query languages.
(4) Interaction of different database applications.
(5) Other lower levels involving operating systems and communication

protocols, which are considered outside the database research realm.

Because interoperability, in general and not specifically for databases, is not a simple task,
there should exist a technique capable of handling all the issues needed in such environment.
Object-oriented technology is a promising and powerful technology, which is considered as
the technology that will cooperate in solving such problem. Object-orientation has got the
properties of encapsulation of operations, distribution of autonomy, processing concurrency,
and reactive control structures. It may be the most appropriate model for designing the
multidatabase system, of course after resolving the problems of the networking heterogeneity
[Browne93]. Because of these reasons, and many others, it has been suggested that object-
oriented technology may solve the interoperability problems. It can contribute in handling the
heterogeneity aspects of interoperability by encapsulating systems and hiding their
heterogeneity. It may also contribute to the uniform handling of object distribution. However,
the more difficult problem of autonomy are the problems created by the heterogeneity in the
layers where those databases are working under them such as the operating systems and the
communication protocols that still needs to be dealt with [Ozsu93a]. Furthermore, the three-
tire client/server application programming techniques and open systems technology in
conjunction with the object-orientation may have an excellent contribution to the
interoperability process.

There is now a realization that DBMSs and operating systems perform both similar and
complementary functions and that a better cooperation paradigm needs to be found. This
topic has not yet been fully researched and understood, and still there is no clear
understanding of how an operating system should be structured to provide adequate support
for the DBMS functionality [Ozsu91].

Moreover, database security is an important issue in today's distributed systems. Many
security services have been designed and implemented on many different platforms. However
these implementations are often not compatible [Decker92]. The incompatibility of the security
in the DBMS created the discrepancies in today's databases. A unified security manager to
manage a single site running number of database platforms each running a different schema
type would make the control of the security issue as easier task.

Gateways are those bridges built when there is a need for them to convert between different
schemas. They are not considered as a dynamic solution engines for schema translation
process. Examples of gateways are Ingres/Star and Sybase, which provide access to several
standard relational database engines as well as more widely used for file systems such as
RMS and VSAM. Gateways only offer an interim solution to heterogeneity. Also, the existing
gateways do not incorporate the business rules of the information source.

According to Chris Date's rules [Date95], the distributed database is a collection of data
distributed over different computers in a network, and that despite being physically dispersed,
that data appears to programmers and users as a single database and this is sometimes
called the single-image model. Full database interoperability can be only accomplished when
and only when Date's Distributed Database rules of interoperability are fully met
[Edelstein90].

Much research has been done for the purpose of providing some sort of compatibility
between different databases. Those databases range from those providing only textual
facilities to those providing full multimedia facilities such as picture, voice and video. However,
the problems of interconnecting heterogeneous networks and databases remains to be solved
before integration of diverse information sources can take place [Browne93].

49

Many articles and books in the literature have defined the overall problem of interoperability in
general. None of the existing works until now is considered as the ideal solution to the
problem. Of course the problem is so broad and need not only to deal with practical solution,
but also need to standardize policies and procedures for this purpose. Interoperability does
not only concern databases, but is it meant by all data types (i.e. databases, flat files, spread
sheets, audio and video), including text based and non-text based data by which this research
deals with the known database schemas (relational, hierarchical, network, and object-
oriented). The total picture of this research is any manageable information source.

4.1 Requirements Analysis
By analyzing the traditional assumptions on data consistency and schema stability it is found
that most of the existing solutions has been built around those two assumptions by basically
having a global valid database schema that has the central authority of the database
administrators. However, in the proposed solution a definition of a dynamic mechanism using
the Internet as the backbone with keeping all the interoperating data sources know about
each other and get the updates in a dynamic manner has been undertaken.

A real world of multidatabase system may include thousands of information sources managed
individually by different database management systems by which the heterogeneity in this
case is nature and unavoidable. The information sources maybe heterogeneous in the logical
data structure, in type and attribute naming, and probably in representational semantics. The
heterogeneity in the information sources has resulted in the difficult communication between
the information sources. Some information sources have similar data contents, but different
representations. This is strongly true for such data sources created and managed by separate
organizations. Moreover, different heterogeneous factors my have different effects in the data
sources interoperability such as the heterogeneity in the types of data model, query
languages, and transaction management protocols.

Representing data with different data modeling tools creates lots of heterogeneity problems
because of the inherited powers and limitations of individual data models. Heterogeneity in
query languages not only involves the use of completely different data access techniques, but
also covers differences in languages even when the individual systems use the same data
model. Also, different query languages that use the same data model often select very
different methods for expressing identical requests such as DB2 uses SQL, while INGRES
uses QUEL.

Existing solutions prototypes of heterogeneous distributed database systems can be broadly
divided, based on their philosophy of integration, into three categories: total integration, partial
integration and interoperability. Total integration is when storing all the database components
under a centralized database management system to provide a unified global view of all the
data to the user who can pose the query on this global schema. The other extreme, which is
the interoperability, does not provide a global schema. Rather, the user is presented with
functions in visibly distinct schemata, which bear resemblance to schemata in existing
databases. The intermediate category of partial integration is considered as a hybrid of total
integration and interoperability. Systems such as MULTIBASE [Smith81], MERMAID
[Templeton87], NDMS [Staniszkis], IMDAS [Krishnamurthy87] and ADDS by [Breitbart86] are
in the category of total integration. MRDSM [Litwin86] is in the category of interoperability and
PRECI [Deen851 is in the category of total integration. The focus of this thesis is on total
integration of partial information sources selected dynamically by both information producers
and information consumers.

4.2 Autonomy Requirements in the Interoperation
Autonomy usually refers to the distribution of control, not the data. It indicates the degree to
which individual database management systems can operate independently. Autonomy is a
function of number of factors such as whether the component systems exchange information,
whether they can independently execute transactions, and whether one is allowed to modify
them [Gligor84, Gligor86]. The considerations for this research is to design the information
sources autonomy in a way to provide a repartitioning on the interoperating information

50

sources without violating any of the DBMS primitive facilities. This should provide the
information source owner the capabilities to define logical views on his information sources
and define the access rights on the information source up to the level of permitted users.
Requirements of an autonomous system have been specified in a variety of ways. For
example, some researchers says that the local operation of the individual DBMSs are not
suppose to be affected by their participation in the multidatabase system. Also, they stated
that global queries on certain information source should not affect the manner in which the
individual information sources process local queries and optimize them. Additionally,
compromisation for the system consistency or operation should happen when new
information sources join and leave the interoperation.

On the other hand, some researchers have segregated the autonomy into three dimensions.
The design autonomy refers to the freedom that each information source could use in terms
of the data models and transaction management techniques. The communication autonomy
refers to the freedom each individual information source should have in terms of to what type
of information it wants to provide to the other information sources or to the software that
controls their global execution. The last type is the execution autonomy that refers to the way
each information sources in the interoperation want to execute the incoming transactions. The
execution autonomy requires that the submitted transactions should get translated to the way
it can be understood. The proposed solution has considered all the above autonomy
proposals.

4.3 The Cooperative Interoperation in the IE
The cooperative interoperation could be best described by the mutually benefit relationship
between number of information sources in terms of exchanging information and using each
other information results in a cooperative manner. To expand the information samples it is
most desirable to get similar information from others and set a cooperative share with them.
The only obstacles behind this scenario if the others information sources either using different
schema type and/or is fully designed different than my local information source. The IE has
considered the cooperative interoperation in a way by adding additional layer that will deal
with all the conflicts that may exist during the interoperation process. Part of its tasks is to
manage and coordinate the syntactic and semantics discrepancies. Such process would be
accomplished through using a management interface with the IE.

51

Chapter 5

The Possible Cooperation Between the
Different Schemas

Database schemas are the main buildings of any database application. The different existing
schemas (relational, hierarchical, network and object-oriented) may cooperate with each other
where the cooperation mechanism is governed by each schema constraints. On the other
hand, the amalgamated database is the technique using more than one type schema at the
same time. This seems to be the future of the database management systems remains to be
achieved. Either new DBMS will offer connectivity with different types of schemas, or they will
offer different schemas under a unified platform. This consideration is true because of many
reasons where one of them is hierarchical systems are much stronger than the relational in
the retrieving and the reporting capabilities. Of course, each of the schema representations
has their own advantages and disadvantages. Depending on the nature of the application
requirements the amalgamated database can cooperate in developing the most feasible,
interoperable and tractable database management system. This chapter is mainly examining
the different possible cooperation between the different schemas and the different constraints
belong to each of the schemas that influence the cooperation. The main contribution of this
chapter is the highlight of the possible cooperation between the different schemas in the light
of the individual schema different constraints.

One of the research targets in distributed heterogeneous database world is to achieve an
amalgamated schema support systems by which no lost, no rewrite, no migration and no
even amendments required to be applied on the legacy database systems. But still there are
many things govern this technology by which the interoperation techniques must respect to
get things done correct. Assume someone is setting in one side of a local area network with a
LAN based DBMS such as the relational DBMS and wants to access a remote mainframe
hierarchical DBMS. He/she therefore will be able to set a relationship between my local
relational databases and the remote hierarchical databases. Many operations to be assigned
such as add, delete, edit, query and any other operation that can be applied locally it should
be true on the remote databases.

Schema type is normally only judge about the constraints, which forms the overall behavior of
the database system. Even the newly used DBMS schema, which is the object-oriented, have
the difference from the other schemas in having data types complex type of type schema or
record in ordinary database language. The rest of this chapter is a discussion of the possible
cooperation on the four type schemas (relational, hierarchical, network and object-oriented).
With an example the possible cooperation in the four schemas will be explained.

By the known terminology the database is the store, which may consist of one or many tables.
The most important data element that users are normally dealing with is the table. The 1E,
which stands for the Interoperation Engine, is designed to deal with the database table level
[Ashir2000]. Local databases may cooperate with many remote tables they may spread over
in many databases. The IE is assumed either to read the metadata from an already defined
database or by using the IE GUI it will be possible to create the text that will create the
database definition.

The cooperation between the distributed data sources is normally done on the table level
where the metadata of the data sources are known for both sides. The IE considers the main
data source is the one where the local application program will be written against it, which

52

mostly is a local table. The IE design is done so that all the cooperating data sources to be
accessed by a local application are remote. In this case, the metadata of the accessed data
source will be mainly the variables defined by the local application, which the local IE will take
care of defining and creating the data sources that will be accessed. Assume dealing here
with three remote data sources (i.e. tables) such as T, which is the local data source and T1,
and T2 as remote data sources. The operation between them is T Union T 1 Intersection T2.

The IE will first apply T Union T 1 , then the new T, which already contains the result of the first
operation with T2 as Intersection operation between them.

In this chapter all the different cooperation cases that could happen between the
heterogeneous and possibly distributed data sources will be considered. All of the different
integration cases between the heterogeneous information sources are considered to be
supported by the IE prototype such as unification, intersection and differences in the records
of the cooperating information sources.

5.1 Representations of data models
The representation of relationships in data models differs in the different data models. In
the relational data model the relationship is represented as foreign key attributes in one
relation that reference the primary key of another relation. The tuples in both relations that
have matching values in the foreign and primary key attributes are logically related and not
physically connected. On the other hand, similar one-to-many connections between two
record types in the network model are explicitly represented by the set type construct and
physically connected by the DBMS. So, relational model uses logical references while the
network model used physical references.

Compared with the network model, the hierarchical model has serious limitations. Record
type in a network model can be a member of any number of set types while in the hierarchical
model it can have only one real parent and one virtual parent. Hierarchical models mainly
have serious problem in expressing many-to-many relationship types and usually solutions to
such problems are difficult. In general, the hierarchical model is considered as an inferior to
both the relational and the network data models.

Object-oriented models uses the object identifiers (01D) for the relationships that are almost
similar to the foreign key in the relational model, except that internal system identifiers are
used rather than user defined attributes. The object-oriented models support complex object
structure by using tuple, set, list and other constructors. Also, the object-oriented models
support many techniques such as inheritance and the specification of methods. The object-
oriented models resemble to an extent the nested relational model, which supports the
creation of hierarchically structured relations in addition to flat relations.

5.2 Integrity constraints in data modeling
Constraints are the different stipulations assigned by the DBMS to insure the integrity of the
data in the process of inserting new information and destroying certain information from the
database. Throughout the DBMS lifetime there are number of constraints assigned while
information added, amended and deleted from the database. They are domain constraints;
key and relationship constraints; general semantic integrity constrains; inherent; implicit and
explicit constrains.

Domain constraints are those ones related to the different data types assigned for the
attributes in the tuples. This includes voice, video and the other complex data type supported
by the object-oriented based data types.

Key and relationship constraints are basically the primary unique keys assigned mainly by the
relational, network and the object-oriented model. The key is known as the unique field and
the object identifier respectively in the network and the object-oriented models.

General semantic integrity constraints are those which cannot be specified on the bases of
key and relationship constraints. The mechanism by which defining such constrains is still

53

1. Notes:
2. The gray means note.
3. The boldface means database information as shown in figure 4.
4. Italics means fields as shown in figure 4.

5. The algorithm:
6. Open the schema cooperation profile table
7. Take the link for the table by keeping the source schema code

8. Open the attribute cooperation profile table
9. Get all the table profile fields, their types, and size

10. Create table profile <Name> as
tt	 Field 1	 :	 type,	 size,
12. Field 2	 :	 type,	 size,
13. Field 3	 :	 type,	 size,
14.
15. .
16. Field N	 :	 type,	 size,
17. Path of the profile, Access profile
18. Close

19. If profile depend on source table then
20. Append all source records into the table profile
21. Else
22. This means the source table is noL exist and will be emptytable
23. Append all first cooperating data source related records in the table profile
24. End

25. Parallel process
26. Open the schema cooperation profile table

27. Go to the reference of the first cooperating table in the schema cooperation profile table

28. Memorize the operation

29. Open the attribute cooperation profile table
30. Do while the schema cooperation profile next reference not = 0
31. Set the next reference
32. Do while the attributes cooperation profile source schema code =
33. schema cooperation profile source schema code and
34. attributes cooperation profile target schema code =
35. schema cooperation profile target schema code
36. Other checking related to security done at this point

37. The local IE to the target schema will extract the real data from the data store
38. Store all the attribute values into tem porary memory variables
39. Check where to create the tem poraty table profile based on the definition line 10-18
40. Create a tern porary table profile
41. Append the record contents into the site temporary table profile
42. End
43. Go to next reference in schema cooperation profile
44. End
45. Close the attribute cooperation profile table
46. Close the schema cooperation profile table

requested by the application program that using the table profile. The generation of the table
profile will follow the algorithm given in Figure 5.2.

Figure 5.2

As a further step for adding the related records to the local table profile, which will be
accessed by the users' local application, the algorithm displayed in Figure 5.3 is responsible
for carrying out this process when it is required. The accumulation of the remote data to the
local table, which is called a local profile, will be done in series. This is because it is not
possible at this stage to do the process in parallel as been done while preparing the remote
tables to be readable by the local application schema. As an example, the unification,
intersection, and difference operations requires the table to be completely known prior to
applying the operation.

55

1. At this stage all the cooperating databases are ready for applying the operations in the schema cooperation
2. profile table. The main profile will be the source schema, which the application deals with. all the updates
3. from the target schemes will be done to the source schema. if necessary target schemas will get converted
4. to behave as the source schema.

5. Open the schema cooperation profile table

6. Go to the reference of the first cooperating table in the schema cooperation profile table
7. Memorize the operation

8. Do while the schema cooperation profile next reference not = 0
9. Set the next reference
10. applythe operation between the source schema code and the target schema code schem as
11. Append the record contents into the source table profile
12. Go to next reference in schema cooperation profile
13. End
14. Close the schema cooperation profile table

Figure 5.3

Line 8 of the above algorithm shows the tracking of the cooperation process is done
according to the pointer defined by the next reference. This operation is done after the
preparation of the distributed heterogeneous schemas homogenization is completely done by
the local IEs and the cooperating tables are ready and equivalent to the local table which is
considered as the main that the local application will be written across.

5.4 The Heterogeneous Schemas cooperation
As a very popular standard, the relational algebra operations are the standard mathematical
operations on sets. They are applied on the relational model, which is defined to be a set of
tuples and can be used to process the tuples in two relations as set. Several set theoretic
operations are used to merge the elements of two sets in various ways, including UNION,
INTERSECTION, and DEFFERENCE. These operations are binary as applied to two sets.
The two sets should have the same number of attributes and that each pair of attributes has
the same domain. The proposed distributed IE layer is designed to take care of the
compatibility of the different cooperating information sources. It will play the rule of the
homogenization layer between the incompatible unbalanced information sources.

The cooperation processes in the IE are considered to be the three relational algebra
operations. They are the ADD, DELETE, and UPDATE, which are normally applied by the
operational algebra operations. Also, the relationship between local and global information
sources could also be applied through the IE.

The cooperation between the different distributed schema types may occur in many shapes. It
could be a combination of multiple distributed tables according to any of the said cooperation
process. This could also be further combined with the normal database system operations.
So, the cooperation process of local information source with global information sources via
the IE will take over the responsibility of ensuring the appliance of the various constraints
belongs to the local and global information sources.

In this section the case of making each schema type cooperate with the others is illustrated
by examples. The various rules each IE plays in facilitating the process of data interoperability
are also discussed. The IE in each of the sites is responsible to make the attributes of the
different sites compatible with each other and make sure the cooperation between the tables
is a successful process.

The relational engine, which is the first schema example, provides dynamic pointers between
the attributes and the tuples in the relation. Dynamic pointers are established in the time of
binding between the relations. Dynamic binding is considered as a drawback when the
process speed was low, but with the improvement in the process speed this drawback has
become negligible. Of course, the statically defined pointers are considered as an advantage
over the dynamically defined pointers, especially in retrieving operations. This section

56

negotiates the process of cooperating a relational schema as the source schema type with
the other types. The negotiation is supported by examples as possible to clarify the idea of
interoperating heterogeneous and possibly distributed database schemas.

Interoperation of relational data sources with another relational one is considered to be the
normal case. If the source file is equivalent to the target then the possible connectivity
between both could be the union, intersection and difference operations. In the case of non-
equivalence than the possibility is relationship bearing in mind that both have connection
foreign keys. The different interoperation operations will depend on indexes that both sides
provide rather than migrating to unified pool as conventionally done. Regardless of the
number of the cooperating data sources the IE will handle the different operations in parallel.
Only the migration to a unified single pool by the IE will be applied in the case of reporting
from all the cooperating data sources and will be done temporarily until the request is over.
Further, the IE will take care of the homogenization process in the unbalanced information
sources in case unification, intersection and difference operations to be applied.

If the target data source is hierarchical then this will be seen by the local relational database
as a single record. The local IE of the target hierarchical database would convert these
hierarchical schemas into a single table to make it simple and straightforward when accessed
or queried by the source application. This conversion will only be done if the source table is to
merge with the target by either unification or an intersection operation. If the operation
between the two tables is a relationship then a foreign key in the relational database linked
with a key in the stub record of the hierarchical schema side should exist. The IE in the
hierarchical database side will take care of searching the required records and converting
them to be readable by the source system. In this case, the IE will be leasing with both
information sources as a custodian. It will send the pull procedures to the target information
source, which is the hierarchical, and will send the result to the source IE prior to pulling the
information by that source database.

There are many other scenarios where some are complicated. For example, if the target data
source, which is the hierarchical, permits addition of new records then the source data store,
which is the relational, has to apply the target data source constraints. The constraints are
either to be enforced by the source database or the target database that the constraints are
originally belongs to. In this case, the mediator which is responsible for the interoperation
process is suppose to be responsible for enforcing the necessary constraints in case of
adding new record and alteration of an existing records. It is considered a complicated case if
the added new records are to be done in the source relational database while the data
integrity constraints are done according to the target data source, which is the hierarchical. In
this case the relational data source design has to be in a position able to cater and accept
records in the light of their local constraints stipulations. Different constraints will be recorded
by the related IEs to keep records flow between different information sources balanced as will
be shown later. As an example for the above discussion consider the following equivalent
relational and hierarchical schemas which are presented in Figure 5.4.

57

EMPLOYEE
	

DEPARTMENT

'ARTMEN

I DNA M E I DNI MI3PR I MGRSSN MGRSTARTDATEI

Ins TM RIAD/ °CATION'

DITT_LOCATION

PROJECT

I1'NAME1=0/4 PLOCA riosIDNUM I

WORKS_Or.)
NAM Ei SSNI HOURS

WORKER

irszizsu lI IO URS
Illerarchical ,dn.. Tor COMPANY &tame

rrrPRO

PNUM ER I PLOCATIONIPNAME

EMPLOYEE

PNA MI4 MINITI LNA M El SSN IODATE' ADDRESS 'SEX' SALARY

1

DEPENDENT
	

SUPER 515153

DEPENDENT-NAMEI SEX I !MATE

IFNANILI miNrrl LNAMEIS-Sa I BDATEI A DDRIISS I SIDI SALARY' SUPIRSSN I DNO D A 1E1 DNU 1BLAI 1GRNAME IGIUTARTDATI.

NAME I SAN

Figure 5.5

DEJINDENT

lLI Phn1)1'1 NAME I SER I BDATE [RELATIONSHIP I

Relatlenal .thensi for COMPANY Mabee

Figure 5.4

The main restriction in the hierarchical schema is that for reading or writing operations the
start has to be from level 0, which is the department record. The pointer then goes to the first
record of level 1 records and continues until reaching the last level record. In the last level
record the pointer follow the next point until reach the null pointer it then goes one level up
and again take the pointer to one level down until it traverse all the records. Figure 5.5 the
illustrates the movement of the pointers in the hierarchical schema.

1. A,B,D
2. A,B,E
3. A,B,F
4. A,C,G
5. A,C,H
6. A,C,I

The first assumption is to unify the local relational schema, which is the employee table, with
the remote hierarchical schema employee record. In this case the relational schema is the
local schema and the hierarchical schema is the remote schema. The reading in the remote
hierarchical company will start from department as level 0, then employee as level 1, and
finally with supervisee as level 2. The relational employee table is equivalent to data from
three hierarchical records. Those are the department, employee and supervisee. Collecting
attributes belong to a single record type from a hierarchical schema is always involving
traverse the entire tree to fetch the records. This may be problematic in some very large
hierarchical systems.

The relational database, which is our source database, is to have a unification operation with
the target database, which is the hierarchical COMPANY in the above example, it will involve
migrating temporarily all the hierarchical records to the relational shape before applying the
unification process between both of them. The migration here is done only when required by
the source application in cases such as reporting involve all the records in the target
database. In cases such as querying which only require a single record of specific number of
records this will involve only migrating a single record at a time. The local IE will take the
responsibility of the full and partial migration of the target schema according to the source
application requirements. This mechanism is made according to the assumption that the
differences in the operational and the behavioral characteristics of the storage compared with
the memory are not distinguishable.

The cooperation between a source relational and a target network schema is a simple case
because the network model is the closest model to the relational. Migrating network schemas
to equivalent relational schemas is a simple case since the later is the closest in shape and

58

type 'Date: tuple (year : integer,
month : integer,
day :	 integer)

class Employee
type tuple (first-name :	 string,

middle-name :	 string,
last-name :	 string,
social-serial-number: string,
birth-date :	 Date,
address :	 string,
sex :	 character,
salary :	 string,
supervisor :	 Employee,
department :	 Department

class Department
type tuple (name :	 string,

number :	 integer,
dept-manager :	 tuple (manager : Employee,

start-date : Date)
locations :	 set (string)
employees :	 set (Employee)
projects :	 set (Project))

class Project
type tuple (number :	 integer,

name :	 string,
location :	 string,
responsible-department : 	 Depaiuuent,
works-on-the-project : 	 set (worker :	 Employee,

working-hours : integer)

class Dependent
type tuple (employee :	 Employee,

name :	 string,
sex :	 character,
birth-date :	 Date,
relationship :	 string

behavior to the former with one difference related to the relationship between the different
records. As explained earlier the network model differs from the relational in the relationship
references. The references are defined statically in the network model and dynamically in the
relational model. The local IE is responsible for the negotiation between the different schemas
in a compatible atmosphere.

Object-oriented databases are also not differing much from the relational databases in terms
of schema representation and this make them easily converted to relational schema. Class of
objects is equivalent to table in relational terms. Each object is equivalent to a record or row in
relational schema. Because object-oriented databases support complex data types there is no
need for the relationship operation to be there sense it is supported by default when using
complex data type facility. Figure 5.6 shows the equivalent 02 object-oriented schema of the
relational COMPANY schema. The only difference between both is the references used by
the object-oriented model as a replacement for the relationship facilities in the relational
model. The most important benefit of such facility appears in writing the program code.
Object-orientation techniques facilitate writing and modifying the programming code.

Figure 5.6

If the assumption that the source application, which is originally written against a relational
schema, queries about only certain cases from the cooperating data sources then only a
search for this type of data will be done in parallel against all the cooperating data sources.
The final view of the table profile will be according to the conditions specified in the first table
given in Figure 5.4..

The second case e is when a source hierarchical database and the targets are from
heterogeneous schemas. The first case is when the source is hierarchical and the target is a
relational database. For the relational database the IE follows the relationship between the
different tables and extracts the content of the record consisting of all the information from all
the related tables into one single record. Only when doing so the migration from the relational
back to a hierarchical schema could be achieved. Also, for the network and object-oriented
schemas the process of migrating records from them to an equivalent hierarchical schema will
involve first retrieving the record as a single record contains all the equivalent attributes to the
source hierarchical. As a subsequent step the single record is to be read and added as a new

59

record in the hierarchical schema in the case the source schema is ready to register the
distributed migrated records temporarily. This procedure will update the hierarchical database
from global heterogeneous databases. The added records could be deleted after finishing the
query if records being stored in the original database. Otherwise, according to the IE
recommendations, the new records will be added on a memory space by which it could be
flashed anytime.

As in the second example, the operation involves unifying the hierarchical database contents
first with the source relational database then intersecting the contents with the object-oriented
database records or the objects as called by this schema type. In this case either the
migration of the hierarchical COMPANY will be done in the target premises and will be read
by the source IE as a ready converted schema or will be read and directly stored as relations
in the source premises, which is a general case managed by the IEs in all the sites. The local
IE based on the source application requirement takes the decision of whether to migrate part
or the entire target schema. In the case if the source application only requires reading only
few records based on certain condition than the IE will only ask for that part of data to be
migrated, while having full picture for different users.

The network schema has similar case as the hierarchical schema in case it is the source
schema when taking records from different distributed schemas. The migration will be done
only after de-normalizing the target information sources data to a single flat record consisting
of the entire database attributes required by the inviting schema. The IE would take care so
that it is done in a way which does not break the business rules or constraints that has been
assigned initially by the DBMS and the application managing that information repository. The
de-normalized information will be sent a record at a time by the individual cooperating IE to
the calling IE either in parallel or serially as one repository at a time in the case of the
operation is intersection or difference.

The IE will keep returning the related tables to a single non-normalized one for the sake of
keeping the cooperation process as simple and reliable as possible and to make the pulled
information available to the information consumer as long as he/she needs them. The de-
normalization process can ensure the simplicity of retrieving any information from any single
non-normalized table in an easy manner. Also, it will facilitate the migration process between
the different schemas. Furthermore, the de-normalization can act as a standard for the
migration process between the heterogeneous information sources through a middle engine
as the proposed IE prototype.

In contrast to all other schema types the object-oriented schema can make the maximum use
of the facilities provided by the 1E, because the IE prototype mainly built using the object-
oriented technology. No doubt that object-orientation has changed the way people thinking
about data in a very simple and straightforward manner. Local IEs are considered as
temporary pools for the exchange of information among the heterogeneous data sources. By
using the techniques provided by the object-oriented databases, which are mainly running
object-oriented programming languages, it will be an easy task to get the necessary data from
any schema type that is built around object-orientation.

5.5 Wrapper usage in the IE

Wrapping is the technique of encapsulating part of the programming language in an envelope
and executes the contents of this envelope when required by either the local or a remote
open system capable operating system. The main purpose behind the wrapping technique is
to integrate the legacy applications into an object-oriented architecture, and perform this
integration in an inexpensive and timely manner. A wrapper usually communicates to the
legacy systems using its native communication facilities. The resulting integration is assumed
to be functional and robust in a sense that not much change is required for getting the
integration of the legacy database data.

The cooperation between the distributed and at the same time heterogeneous databases is
mainly done either querying certain conditions or reporting with no conditions which both
doesn't required code wrapping facilities. The only requirement for wrapping technique to take

60

place is in case an alteration to the original data source requires updates to be undertaken by
global users who not talk the same language as the information source owner. Chapter 6 is a
thorough explanation of the application design requirements in case interoperation is
required.

The interoperation engine IE framework has been built around the consideration of having
most of the business and database roles defined in the engine interface to minimize the
usage of the wrapping. Minimizing wrapping also adds strength to the solution in terms of the
generality and maintainability.

Also, part of the IE implementation is to buildup a framework to be undertaken by the
information sources owners willing to share and cooperate between themselves in a dynamic
and systematic manner using the Internet. This objective is mainly aiming to initiate a design
implementation framework and standards responsible to facilitate the interoperation
mechanism for the distributed heterogeneous information sources willing to cooperate. The
scope of the research is eliminated only on the design of the IE proposal which mainly deals
with the four different schemas (relational, hierarchical, network and object-oriented).

Wrapping facilities are only required if inserting new record to legacy systems is not possible
through IE or to assign constraints of the information source in the IE. Wrapping is not
flexible in terms of using part of the information source and could not fully managed if different
users to access parts of the original complete information source.

61

Chapter 6

Application	 Design	 Issues	 in	 the
Interoperation Systems

The majority of the existing database applications running over the Internet are mainly
designed to work on a single network atmosphere. Also, the distributed applications, where
replications exist for some parts of the data, are also replicating the code that enforces the
constraints to maintain the data integrity. There is still no solid standard supporting database
applications having heterogeneous schemas willing to interoperate and/or cooperate with
other information sources across the Internet. On the other hand, there are number of
requirements to be considered in any database application that wants to interoperate with
other distributed heterogeneous information sources written using different schema types.
Such consideration needs to be undertaken during the database application design phase.
This chapter discusses the prerequisites to be exist in the information sources applications
willing to interoperate with other unknown and unpredictable information sources in the light of
the different requirements in terms of constraint enforcement and security requirements
considered by the different database schemas. So, this discussion could be considered as the
start for a larger complicated research to be undertaken soon by the research realms.

In general schema constraints are considered as axiomatic that cannot be changed or
overwritten. Changing these constraints means simply alteration to the design of the
application that uses the schemas. This is mainly related to the relationships between the
database system different schemas, which are mainly derived by individuals different
database management systems.

Unlike distributed systems centralized systems have all the related components locally.
Components include the data, the database management system, the memory, and the
programming language are specially designed to access the data. Distributed database
applications are normally surrounded by number of layered environment. The DBMS where
applications are running under them considered the first layer. The local operating system
and the communication protocol also surround the DBMSs. The DBMS normally depends on
the local operating system to take over the distribution behavior of the database application.
There is absolutely no deference in designing the local and the distributed applications from
the design point of view. While if the design of the application considers the distribution nature
of the data then the database application will certainly act better. For example, the different
constraints in the application suppose to be as loosely defined as possible so that they can be
called as individual entities, which ultimately will require a slightly different design to be
considered for the database application source.

Another preparation step for the interoperation process is the breakdown of the relations has
to be studied carefully for the purpose to end up with the most suitable relations ready to
interoperate with the outside world. A study to the expected read/write hits to the local
databases by the global users should derive the set up of the system relations. The
interoperable application should also be designed taking into consideration the
categories/types of the distributed users accessing the local databases. This chapter
presents a study to clarify the design requirements for a database willing to interoperate in a
secure atmosphere with other schema type databases through the use of the Interoperation
Engine IE facilities [Ashir2000]. The IE is designed taking into consideration the treelike
relationship between the different database components such as the database, the tables, the
attributes and the users, for all the known structured schema types.

62

Also, as a party willing to interoperate my information sources with others I am assumed to
make the design of my information sources according to a standard that is understandable by
the others. For example, things like the primary keys breakdown; the different naming
conventions; the different required lookup table shapes and meanings has to be according to
a standard that is followed by everybody. Of course, the existing standards on this regard do
not include such low-level commitments and such need is considered as a massive task. The
start is to include standards about the different attribute sizes, types and the other constraints
related to the attribute. In addition, the likely recommended contents for the various
information sources (i.e. tables in relational or class in object orientation) so that it is made
known to others whom may be interested in the subject of that information source.

The IE is designed mainly for incorporating database-wide scalability and evolution support,
as well as, component composability into an interoperation framework. In an environment
where multiple information sources are dynamically connected to the Internet, it is highly
desirable for users to be able to work with other remote data sources and treat them in their
local application as if the data sources are local and from the same type. The IE assists
scalability, evolution, and autonomy of the joining information sources.

Different users or different sites may access local databases and group of users may belong
to number of sites and a single site may have number of user groups. For this reason my
local database should be designed in a way to deal with all those access types. Additionally,
the various type constraints in general should be designed in a way to accommodate the
services for the entire single users and user groups. The design of the constraint should be
done in way to fit with the local IE requirements. Also, as basic IE requirement the design of
the screens should totally be segregated from the data entry operation in a way they can be
called whenever they are required as, for example, objects or subroutines or in some cases
values substituted within the IE knowledge base.

Lookup tables are considered as small tables describing small number of cases created
mainly to facilitate the data entry and to avoid redundancy within the information. In most
cases, the lookup tables that are created by data owners are by default unchangeable. In that
the user who creates the lookup table doesn't al the time willing to open this kind of tables for
users alterations. Therefore, in the light of information cooperation this point is considered by
the design of the IE prototype.

Checking values related to the date and time in the IE is considered as an issue. Prior to
checking this type of data it is assumed to consider whether the checking throughout the
running database application assumed to be done according to the local source system time
or the remote target system time. The initial assumption for the IE is that the checking on date
values will be done according to the callers' system date. Also, checking on attribute values
can be done either across the source database values or across the destination database
values or even across both. This mainly depends on the information policies assigned by
individuals and applied by the distributed IEs.

Validation operations on certain attribute value could be fully controlled locally by each IE.
Checking for example the uniqueness of certain attribute value could be applied in all the
cooperating databases or it could be done only against certain databases as stipulated in the
IE knowledge base. This control assumption is applied in each local IE for the local database,
which is responsible for the correctness of the local operations.

Additional benefits on the software development have been gained from the client/server
development philosophy, which became the most appreciable technique that has ever
simplified application developer life. Such technique has improved rapidly the process of
writing a shareable application with having the information sources only lays over known
places. The term client/server is used in conjunction with the database management systems
if the application runs physically on one machine called the client, and the data storage and
access is handled by another machine called the server. Such technology improvements
have made the era of the specialized servers. Also, client/server architecture is considered as
the technique of activating both the client and the server in a cooperation manner to complete
a task.

63

6.1 Query processing in the IE
Queries on multiple heterogeneous databases are handled by the related IEs when
cooperating with each other. Query uses the naming convention and terminology used by the
information requester's database programming language. This process makes the mission
easier for the query writer by not aware of the differences in the naming conventions and the
other underlying information sources schema types. When the local system's database
application program submits a query the IE starts its main process. From the query nature the
local IE decide about the size of the data migration that should be applied by the two
cooperating IEs to the local database profile. A full migration to the cooperating databases is
only applied in cases such as reporting which normally requires the full database to be
present.

Through the local IE the database a user will be able to build up the metadata of the database
profile he/she will access by the local application. At the same time the database profile may
be consisting of databases from multiple sites including the local system database. The
databases may be heterogeneous in nature. The assumption here is a source relational
database cooperating with remote hierarchical and object-oriented databases as shown in
Figure 6.1. The final database is assumed to be relational database unified with the other two
heterogeneous data sources.

The normal process for opening a database is first to open the database that contains the
tables and than open the individual tables in that database. So, first the COMPANY database
is opened, the EMPLOYEE table, DEPARTMENT table, and continues until the DEPENDENT
table is opened. The local application normally prepared according to the local databases.
When cooperation between the local database and other global databases is required only in
this case the IE is used as a mediator. By using the IE many operations could be easily
applied by which the security is one of them. Other facilities such as the interoperability
between the local database and the other heterogeneous databases could be gained also.
When interoperable cooperation is to be done between the source database and other
distributed database the IE is activated by the application with passing the name of the
database profile.

After the IE receives the activation of the cooperation process for the COMPANY database it
prepares the database profile, which contains only the metadata structure. The local IE knows
the different cooperating data sources. The attribute equivalencies are defined to the
database profile that will be used by the local database application. Furthermore, the IE will
prepare an image of the access privileges on the COMPANY subsystem. So, if many
distributed users access COMPANY database, then the first user who will call will create the
access view, which is a policy similar to current proxy servers catching techniques. By the
viewing technique the security level in the IE could be increased by making sure users do not
exceed their access limits. This operation in the IE is considered as a joint effort operation
between the metadata subsystem and the security subsystem.

64

	

type Date: tulle (year	 integer,
month :

	

day :	 integer);

elms Employee
big to (first .nanu :	 suing,

middle-name :	 string,
last-name :	 string,
sociallmial.nurnber : string,
birth-date :	 Date,
address :	 string,
sex:	 character,
salary :	 string,
supervisor :	 Employee,
deportment:	 Department)

elms Department
My sample) norm:

norther:	 integer,

	

dent-manager : tuple (manager	 Employ.,
start-date : Dale),

	

bee irons	 set) string)
employees : oat) Employee).

	

projects :	 met) Project))

elms Project
type tuple (number	 integer,

name	 string,
locution:	 string,
responsible-deparu.nt : Department,
works-on-the-project: 	 set (worker:	 EnrioYee.

working-boors:	 integer))

elms Dependent
type sample) empbyee : 	 Employee,

name	 string,
sex:	 character,
birth-dote:	 Date,
relationship :	 string)

DEPARTMENT

DNAME NIGRSTARTDATEMGRNAME05051 BEE

EMPLOYFE

FNAMEI MENITI INAMEI sals. I BDATEI ADDRESS 'SEX' SALARY' SUPERSSN I DNO I

EPA RTMEN

IDNAMEIDNUMEERI MGRSSNI MGRSTARTDATEI

ILEIUMBER I Pt n1'ATION.1

PROJECT

IPNAMEIMMIERI PLOCATIONI, DNUM

WORKS_017)

IESSU lan I HOURS I

DEPENDENT

IESSISLIDECENDECILNAME 1SEK IBDATE !RELATIONSHIP 1

Religioni schema for COMPANYclatabese

IKarT_LOCATION

Callect-Orlentedsehenmfor CONWANYdstatmse

EMPLOYEE 	 PROJECT

FNA MEI MINITI LNA MEI SSN IODATE" ADDRESS 'SEX' SALARY 	 IPNA ME PNUMBERI PLCCATION

DEPENDENT

DEPENDENT-NAMEI SEX BDATE

SUPERV/SEE

NAME	 SSN
WORKER

NAME' SSNI HOURS

I lerarching schema for COMPANYdstatuse

Figure 6.1

In the past example, the local database is relational and the two targets are hierarchical and
object-oriented based. After the local IE creates the access profile, which is a copy of the
relational database metadata structure, it will start making the decision about what records
should be migrated. Here, in the example the proposal is a full migration to the three
databases would be applied. At the beginning all the local relational tables will be migrated to
the created profile. Then the 1E, where the hierarchical database works under it, will apply
three steps operation for the migration of the hierarchical records to the relational database
domain, which is the requester database. The first operation is the definition phase of the
metadata of the hierarchical database that will receive the hierarchical records one at a time,
which is considered as the interface socket that will pull data from the requested information
source and will migrate data backwards. As shown in Figure 6.1 above, this operation is
considered as the definition for the mediator that will take records from the hierarchical
COMPANY and will transfer them as one record at a time to the caller database profile. The
hierarchical record looks like a single record as shown in Figure 6.2. The structure of that
single record according to the hierarchical tree read operation regulations.

65

.16NAME MINIT NAMEDNUIV1BFR HOURSINAME SSNMGRSTAR1DATEMGRNAMEDNAME

(a) Intersection Algorithm.

Append contents ol the original Source Table Into the database profile
Do while not EOF Source Table

Put Current record into Source TEMP

Open Remote Table
Do while Current record not — Source TEMP

If FOUND
Keep the Current record Into the Source Table
Exist this loop

Else
Remove Current record from Source Table

End II
End Do

End Do

(c) Difference Algorithm.

Append contents ol the original Source Table Into the database profile
Do while not EOF Source Table

Put Current record into Source TEMP

Open Remote Table
Do while not eol Remote Table or not Found

If Current record = Source TEMP
Found True
Remove Current record from Source Table

Else
Skip one record In the Remote Table
Found = False

End It
End Do

End Do

(b) Unification Algorithm.

Append contents of the original Source Table into the database profile
Do while not EOF Remote Table

Put Current record Into Remote TEMP

Open Source Table
Do while Current record not Remote TEMP

II FOUND
Exist

Else
Add Remote TEMP to Source Table

End
End Do

End Do

Figure 6.2

After the hierarchical COMPANY IE finish this preparation, then it reads the hierarchical
database one record at a time and send it to the requester, which is the relational COMPANY,
database. In this case, the IE in the hierarchical COMPANY side will require the existence of
the routine which will reads the database one record at a time. Accordingly the hierarchical
COMPANY IE will send the records one-by-one to the relational COMPANY 1E, which will
take the record, break it down according to its relational tables, find out the operation between
the two tables, and update the relational database profile at the requester side.

At the time of checking the operation between the two tables IE will distinguish between the
operations to guarantee the result accuracy. If the remote database records are to be unified
with the source database records, which are the major used operation, then this will work by
receiving one record at a time from the remote database. But, in case the operation is an
intersection then this will involve reading the entire remote database and make it ready in the
source database premises so that the intersection operation can be applied faster. The
intersection operation between two databases will involve the existence of both tables prior to
applying the operation because the less number of records table should scan the table with
higher number of records to save time. The algorithms defined in Figure 6.3 make the
different processes between the different distributed cooperating databases. Such processes
are the unification operation between two non-balanced tables at one time, the intersection
and difference operations.

For cases such as the intersection and difference operations handled by the IE as shown in
Figure 6.3, the re-looping process is applied on the remote table records. The only difference
is when the record is found in the intersection process the record will be kept in the source
table and otherwise it will be removed, which is exactly the opposite in the difference
operation.

Figure 6.3

Usually when preparing the access database profile, which is basically the tables view, the
profile will initially contain the local records that will be migrated first to that profile in cases
like unification. Also, from the schema cooperation profile table, records from the distributed
cooperating data sources will be added to the profile. By first applying the operation between
the initial database profile, which initially contains the local table records, the cooperation
process will continues following the sequence link in the schema cooperation profile until the
completion of the last cooperation between the database profile and the rest of the
cooperating tables [Ashir2000].

66

User

#userad : String
-userEncriptedPassWord : String
-userBelongingHosts [1.1: SystemStamp
-belongingUserProfiles UserProfila
-bolongingSystemsProfiles [1..1: ShareableSubSystemProlle
balongingSystems	 ShareableSubSystem

+getSpecificSiteUsers()

1..n	 1..1

1..n

SharsahisSubSystamProfile

#profileOld : String
-profilePath : SystemPath
-belongingSubSystems [1.01: ShareableSubSystem

1..n

AccessProfits

#accessProfilead String
-accessProfileName : String
-profileUsers (1.01: UserProfile
-profilaSystems [1..1: ShareableSubSystemProf

UserProfile

#userProfileOid : String
-userProfileName : String
-belongingUsers [1..1: Us

6.2 The different schemas components security subsystem in the IE
Security implementation could take two distinct ends. It could be implemented as the highest
and the cost of this security strength is the performance or as the minimal and the
performance is too high with the cost of nothing is secured. For this purpose it is
recommended by security specialists to keep security in the middle so that the system is
considered secure and the performance is acceptable [Castano95]. This section is mainly
discussing the access right assignment part in the IE which is the security part dealing with
only the type of access given to the different users. This is a step further by making use of the
tree like relationship used in the implementation of the IE by no means of comparing this
approach with the different database security standards.

The IE considers all the databases as objects and have to be protected from the local and
global users. As a design matter perspective, the security subsystem in the IE is totally
segregated from the other subsystems. This is due to the security level the IE is designed to
achieve. Because different users maybe assigned different access rights on different
systems, the segregation of the security information will assist in accomplishing such facility.

The security issue in the distributed databases owned by different people is complicated and
not straightforward as in the centralized database systems. The cooperating database
systems may not have similar access rights on certain data or may not be treating the users
similarly. Assume that the local database, which is the relational COMPANY, permit full
access rights to the local users and varying partial access rights to the global users. On the
other hand, the other two cooperating databases, which are the hierarchical and object-
oriented COMPANY, do have some restrictions on their databases when accessed by the
global users. The policy of the IE security is to follow the rules of the database owner.

There are number of security assumptions to be undertaken and resolved by the local IE. One
assumption is the addition of new records on certain databases could be only accepted by
some of the global cooperating databases. In this case the checking on the uniqueness of the
entered record from the local database application is suppose to be done against both the
local database records and the global site records. As an example, assume the hierarchical
COMPANY schema shown in Figure 6.1 accept addition of new records by certain user
group. In this case the local IE should have a definition by which to add new records on the
remote hierarchical company and whether or not to add the same record to the local relational
COMPANY or not. This kind of decision is mainly handled by the IE security manager
according to the object-oriented classes structure as displayed in Figure 6.4.

Figure 6 4

Figure 6.4 illustrates the concept of inheritance between the three classes is valid in the IE
security management. The lower class, which is always carrying the one-or-many side in the
above figure, inherits the access rights of the higher class. For example, if a read operation is
only permitted on certain subsystem, then by default the access rights on the belonging
schemas and attributes of this subsystem could have read access or lower.

67

Constraints forming an important part of the database model security. The referential integrity
is measured based on the provided constraints by the model. Schema constraints are
considered as a constitutive matter defined by the database management system model that
cannot be changed or overwritten. Changing these constraints means simply alteration to the
design of the application that uses the schemas. This is belonging to the relationships
between the database system different schemas, which are mainly derived by the individual
database management systems. The Interoperation Engine prototype security manager is
considered as an additional security mediation layer considering the reassignment of the
original security given by the original information source database management system.
Hence, the IE security assignments has to be derived from the original information source
security assignments. For example, if the original information source database management
system assesses only read access on certain schema, than this constraint cannot be
reassigned by the IE security manager to access such as write on some of the attributes.
Section 6.3 will explain further the breakdowns of the security assignments on the shareable
subsystems in the IE.

6.3 Sub systems constraints
The IE security manager is designed to support two assignment types. It could be either
defined as many systems uses a single constraint or a single system uses composite
constraints as clarified in the UML class design as shown in Figure 6.4. The following are the
possible access assignments on the schema level.

• All read with some exceptional hides and writes on the schemas and
attributes

• All read
• All write with some exceptional reads and hides on the schemas and

attributes
• All write

Additionally, some information sources owners don't want to let other than specific number of
users to access their information source simultaneously. This is due to the quality of speed
(i.e. the load control) on storing and retrieving of the information parts required by the
information source owner or other security restrictions such as preventing group of users
profiles from accessing their information source.

Also, as for the future planned work, which is considered as an added of the constraint, is to
add the query or service type to be processed for the users according to some criteria related
to the level of the user accessing the information source. This criterion should indicate the
level of the user and accordingly his required service will be fit in the necessary queue. Each
criteria type will have a separate queue that takes a time slice on the service processor. The
different user categories are defined through the GolabUsersCategories and
LocalUsersCategories classes respectively.

The IE will take the responsibility of creating the different scripts of the different access flavors
for the distributed users on the distributed information sources in a dynamic manner using an
XML like language to define the various access profiles prior to the data transportation
process between the different distributed IEs.

6.4 The access view by the IE
As a single site provision, this site might have a number of shareable subsystems where
different groups with different access rights accessing them. One of the main objectives
behind the IE puts the access assignments on the different shareable subsystems under
control. By querying the IE it will be possible to exactly identify the access rights on certain
subsystems or for certain users or group of users. As identified by [Ashir2000] users are
defined to different IEs as two levels tree where the first is the site they are belonging to and
the second is the users themselves. The site that will give access to users may group them
again according to some internal site policies such as allowing only certain number of users

68

from each site or according to the users occupation. When users are given the access on the
information source by the site that owns the data, this site adds a new level to the tree, which
is the group. The levels of the tree are the group defined by the site, the different cooperating
system stamps, and the users defined under each system stamp.

After defining the subsystems and the access rights on them, the IE is ready to make the
access view for the users whom will access the cooperating database systems. At the
beginning the access will be created into two main parts. The first is the list of the user group.
The second is the access rights to the subsystem. The first list, which is the users group, is
the defined user groups in the local site. Those are consisting of the users given by the global
cooperating systems, as well as, users of the local site. The access rights are the predefined
access privileges given by the data owner plus the reassignments of the access privileges
done by the site where the access operations on the cooperating data sources will take place.

The access view of the users on the cooperating databases is completely controlled by each
local IE. It could be defined as a site wise, subsystem wise, subsystems profile wise, group of
users wise, or as users groups profile wise. The access view could either be created for a
group of users or a reassignment of the access privileges could be also generated for the
individual users in that group. In the first case two tables will be generated where one
contains all the related users and the second which is a single record table contains the
database system related tables and their attributes accompanied with the access right on
each of the database components. In the second case if the local IE DBA generate the whole
individual users access view this operation will replace the group access view which is
originally consisting of two related tables with a single table consisting of all the users and
their access rights over certain system.

In case the view definition is set up as a site wise the user from that certain site who will make
the request first will make the complete view prepared by the called IE. All the related users to
the cooperation are going to be included in the access view. Normally IEs receives users as a
list titled by the site information they are originally belongs to it. This access view will require
information about each individual user from that site specifically, information about the
systems the users are involved to, and information about each of the systems' involved tables
and attributes. In some situation the local IE DBA may define certain user group consisting of
users belong to different sites. In this case additional information about the original site of the
user is added to the previous information list. This situation is also applicable to a group of
users wise and users groups profile wise. The opposite operation is applied on the subsystem
wise and the subsystems profile wise. This case involve getting first information about the
cooperating subsystem and then include the information of all the local and global users
accessing this subsystem.

The final access view will be an amalgamated view of the pool each user should have access
to it plus the type of the access right to each of the database elements up to the field level.
The access view consists of data such as user related information, accessed subsystem
information where part of the data is the same as the one defined in Figure 6.2, and an
access right on each of the database elements. The process of converting the related records
to a single non-normalized record runs on all the schema models. This process will take over
the burden of checking the validity of the data model constraints. Also, it will assist the
migration process between the heterogeneous data models.

After the access information views are being created each of the IEs will take care of the
optimization process on each of the access views. For example if the number of users having
similar access to the same database then the optimizer will split the access view information
into two tables. The first will carry the information concerning the users and the second will
carry the information of the access to the database. By reaching this step it means the
cooperating data sources are converted in a simple form that is understandable to all the
users. After this stage comes the migration of the flat non-normalized data model to the
distention data model where all the process is completed for this final model. To clarify this
point as the example defined in Figure 6.1, it was assumed that the host schema type was the
relational COMPANY and the first target database schema was the hierarchical COMPANY.
Now, let us assume that a unification process is between both schemas. After making sure of

69

the validity of the user and the query, the transfer operation of the records will start by
sending one record at a time to the source database storage. Since the operation is
unification between the databases then according to the algorithm defined in Figure 6.3(b) the
new records will be migrated to the relational COMPANY. Each transferred record from the
hierarchical COMPANY will contain the contents of the six relational tables at the relational
COMPANY premises. As known from earlier explanation, the cooperation operations are
applied at the database level. At the table levels the information consumer will be able to
update only certain tables and blocking the others from update according to the business
requirements. In the case of the example shown in Figure 6.1, relational COMPANY the data
owned might only need to update the EMPLOYEE and the PROJECT tables and leave the
others as they are.

6.5 Schema design constraints validation in the IE
The schema design constraints are normally enforced by the DBMS either when reading from
the database or when writing to it. In the case of reading from any type data model the IE will
attend a de normalization process to simplify the mapping operation between the non-
equivalent and different data models. On the second case when writing to database the IE
has no option other than depending on the wrapping encapsulation technique [Mowbray95].
Especially if the database application was built on legacy database system then adding new
record has to be done through passing the record values as parameters if the PL of the
database system allows such thing. Also, the IE is designed to assist in simplifying the writing
mission. Different constraints could be gained from the ones recorded in the IE knowledge
base before doing the actual record write in the actual information source. In this case the
wrapped code part should be simple and straightforward.

To properly encapsulate a legacy database application PL with the assistant of the 1E, (1) it
must appear to the application requesting such service that it runs in its local environment,
which is location transparency. (2) If, for example, an application expects an initialization file
of a certain name to be in a certain place, the IE would make sure it is there prior to applying
the actual wrapping process. (3) If the application will write a temporary file in a specific place,
the IE would ensure that there are no conflicts in terms of process replication. (4) If other
application processes needs to be initialized and started because the target legacy
application requires them, the IE would do this preparation. This open-ended sort of
management is the source of considerable concern to those tasked with implementing
wrappers. The IE would do most of the checking using its pre-assigned knowledge in a step
forward to simplify and minimize wrapping required.

Consider an application that performs a simple data transformation. It reads an input file in a
certain format and writes an output file in possibly a different format. Simply to run such a
programme, a wrapper needs to take the following steps. (1) Ensure that there is no file
naming conflicts. (2) Create and write the input file in a specific format. (3) Invoke the
application. (4) Monitor and check completion status. (5) Read and parse the output file. (6)
Remove the input and output files. (6) Return the result. Even this trivial example requires a
number of actions to be achieved. It is easy to project the amount of complexity involved in
robustly wrapping a moderately complex application. The IE will contribute in the checking
stage of the different constraint prior to the actual record reading the will involve the wrapping
of the code that will only write to the information source. All reads constraint management will
be done according to the IE knowledge in each of the sites and will not require the actual
application intervention.

Constraint validation in the schema design of the heterogeneous databases is considered as
one of the most difficult areas of research in the database field. The design constraints are
simply reflecting the relationship between the different database records. Therefore, as an
indispensable requirement, enforcing the different design constraints involves the knowledge
of the schema design building. For example, approaching other than the root level record
directly in the hierarchical schema is illogic and should be rejected.

It has been assumed by the IE initial design that the information producers' IE will be
responsible for managing any of the constraint assignments defined by its domain database,

70

which will be considered as application design inputs. This step would be achieved after
preparing the necessary design of the database application that will interoperate with other
distributed and at the same time heterogeneous databases. The IE will receive the constraints
that will derive the different requests on that information source.

As for the example given in Figure 6.1, assume that a remote site is only interested in
knowing the current running projects where that remote site uses a hierarchical schema
COMPANY database. The local IE of that schema will traverse the hierarchical COMPANY
database and will extract only the records related to the query. Of course, the databases own
programming language through its local IE will only handle this process. The local IE will first
make sure of the compliance of the users' query with the schema design constraints. In this
case, the sequence in reading the records would complement the hierarchical schema rules
plus filtration rules if they exist.

This chapter highlights the requirements of the different schema interoperation in a manner to
make the mission of information cooperation easy so that the information consumers can
easily understand and merge them with their own information sources. It appears that there
are some other requirements to be met for the distributed heterogeneous schema cooperation
such as information reading and writing sequence in the information source. Although, the
heaviest involvement is to make my local database source application segmented in a way to
make the necessary cooperation with the other data sources and at the same time retaining
all my information source constraints. This requirement is for cases that are not possible to
register the constraints within the IE knowledge base.

It appears during the study that reading operation from the distributed heterogeneous
schemas while retaining the data source constraints can be applied much easier than in case
data source accept new records or updates. In that case the data source will need extra
checking over the written records and this means a technique such as the wrapping or
equivalent is required only in case constraint cannot be checked through IE knowledge base.
The main purpose of the undertaken study is to simplify the heterogeneous information
sources interoperation process with retaining the autonomy to the database owner. Even a
consideration of the differences in the database design of a similar schema type by the IE
has. Therefore, the prototype design mainly depends on the tree like relationship of the
different database components. The database interoperation research is an ongoing task. As
an extension to the work an initiation for a database interoperation standard that will stepwise
the design process of the new database applications willing to interoperate with other similar
and different databases will be discussed. As well as, a consideration of including the legacy
information sources in the interoperation process with no changes or minor additional steps
will be undertaken.

71

Chapter 7

The	 Interoperation	 Engine	 System
Architecture

The rapid growth in the number of users of global networks such as the Internet, the number
of systems used by those users, the amount of the available information, and the growth in
the bandwidth has made new demands towards finding new techniques for interoperating
between the enormous information pools that already exist. Many people from companies,
government, schools and individuals will have access to an increasing amount of data.
Indeed, users have already started to access huge amounts of information from disparate
sites. Thus, the problem typically associated with (1) the size of the available data, (2) the
heterogeneous nature of the data, and (3) the extraction of the necessary information that will
form the knowledge which will facilitate the interoperability of the distributed heterogeneous
databases.

The first problem, which is the available size of information sources, is caused by many
factors. The main one is the rapid connectivity of the local area networks, which forms the
global backbone of the public Internet. Moreover, the success of linking the three-tier
architecture (mainframe, mini, and Local Area Networks) has enlarged the size of the
problem. Instead, this has increased the number of databases becoming available over the
Internet. Also, the advances in linking heterogeneous communication protocols maximize the
size of the available information source and thereafter the problem.

The second problem, which is the heterogeneous nature of the information sources willing to
cooperate, is mainly caused by the ongoing demand in the field of information presentation.
The new powerful platforms that have emerged with the new data models such as the object-
oriented which support voice and video has changed the view of the new information
requirements. The situation ends up with new powerful information platforms coexisting with
old legacy systems using hierarchical, network, and relational data repositories. Legacy
systems cannot be discarded for many reasons, most of which relate to the huge amount of
information stored on them and the cost of translating and moving them to new platforms.
Sometimes, even if the data could be migrated to new platforms, the rewriting of the code is
an almost impossible process, and would be too costly. Additionally, the representation of
similar information may differ from one place to another, which may be caused by the
differences in thinking between people. Also, the representation of the information is derived
by many factors such as the data owners' business requirements and other related to the
data owner integration process of the new systems with the existing old systems.

The third problem is related to the information required by any one to be able to join the
cooperating data sources, so that the interoperation is done in a transparent manner, which is
a major issue. No one person can be considered familiar with all the different data sources
and that he may access only the information relevant to him. Such process considers that
person has the required knowledge about the information space of his interest that he can get
from the Internet. Also, he should have a way by which he is informed about any changes in
the information source he is already using. This is to stays up to date and gets the required
services from the remote information repositories when a change occurs. Because of such
difficulties, the problem related to the mechanism of dealing with the rapidly increasing
sources of data is significant. In order to cope with the rapid increase data sources
environment there should be a solid mechanism for gathering only the necessary information
about the cooperating parts of the distributed heterogeneous data sources. Among the huge
amount of data available over the global network a very small amount is of interest to

72

interoperate with other data sources. As long as this problem is not being dealt with, its
breadth will become uncontrollable. Having the required knowledge concerning the
cooperating databases is the major solution to the problem as a first step.

The approach to cooperating databases should ensure no bad effect on other normal services
offered by the database management systems. Among those services are: schema
translation management, programming language translation management, semantic
inconsistency management, and other aspects related to the operating system and the
communication protocol layers which are considered as outside the database research realm.

All these issues make a strong demand towards having a new dynamic mechanism for the
cooperation of the heterogeneous distributed data sources. This issue needs to be looked at
in a new way. Although there are currently a number of suggested static definitions for the
cooperating data sources, no one is considered as the ideal solution for the rapidly increasing
number of cooperating heterogeneous distributed data sources. Disco project [Tomasic96a] is
one example of the static definition of the necessary databases interoperation parameters
and which our view is considered as a dynamic implementation of parts of the Disco.

A middle engine that can act as an added-on facility on the Internet browsers, responsible for
binding only these heterogeneous distributed data sources of interest, has been proposed.
This middle engine will not require the set of related applications to agree on one global view.
The approach is based on the information availability and information demand. It will also
depend on the information advertisement technique for the purpose of advertising an
available information source. The infrastructure will also form the foundation to buildup all the
supporting areas in the distributed databases (i.e. security, transaction management, history
tracking, etc.)

7.1 The Proposed Approach in Brief
The current attention in the DBMS area is towards the development of tools making possible
the coexistence of different DBMS supporting various data models. This direction requires
methods of equivalent data model transformation and methods of constructing unifying data
models and languages promoting generalization of various approaches to the development of
DBMS language [Kalinichenko90]. Because of this, a number of projects have been
established in this area such as the Jupiter System that is considered as a prototype for multi-
database interoperability. in this system, the majority of the work has been done on the
mapping mechanism between the different schemas of the databases. The mapping of
schema has been considered between autonomous and possibly some heterogeneous
databases [Murphy94]. Also there are other recognized projects in this area such as IRO-DB
and ESPIRIT III. They are providing a method of integrating heterogeneous data sources from
the design and the data perspectives. They allow for the integration of heterogeneous object-
oriented and relational DBMSs [Busse94].

On the other hand, the proposed approach reserves the autonomy fully to the data owner.
The data owner is the only one who has the right to advertise about the shareable parts of the
data he owns. He is also the only one able to give certain users access to certain parts of the
data. The approach mainly deals with the heterogeneous data sources in a balanced and
unified manner.

The knowledge cooperation database in each of the sites is supposed to work as a custodian
process for all the cooperating databases, which are originally under the control of multiple
organizations. So, central control of the cooperating databases, which usually centralizes the
autonomy process through the creation of global schema, is not required by this approach.
Instead, the cooperating data sources will be loosely coupled by the distributed interoperating
knowledge of the proposed prototype. For the purpose of information sharing the IE support
two different approaches for information cooperation. They are the decision about the shared
parts of his/her information and the advertising about this information space.

In the first approach the data owner will decide about the parts of the data he owns and he
wishes to share with others. In this case the data owner should inform the others with the

73

necessary information about the data space he wishes to share with them and the way they
can get it so that they can share it with their own information sources. The data owner will be
able to specifically record the sites or even specifically the persons who have the right to
share his data. In this case users at any site will write their applications across the data in the
local cooperating knowledge, which will be responsible for the further related bindings with the
local and global data sources by using the IE knowledge base. Here in this method, the data
owners will decide about the commonalty in their data with the other remote data sources.

In the second approach the data owner will send an advertisement to all the cooperating data
sources asking either about the existence of certain information or clarifying what locally
exists and asking for information cooperation. The idea here is to make an atmosphere that is
similar to the current browsers. In that a specialized database search engines responsible to
get and connect with global information sources is designed. The advertisement for a
shareable information space will be propagated to every IE registered in the server
responsible of keeping the list of the cooperating information sources. Here every IE means
only those I am willing to inform about the information space I got for share. The registered
information sources addresses should exist at a number of sites where each backs up each
other. By this technique we are building up incremental information source knowledge
capable of handling the wide range of different existing knowledge areas.

The following example is to clarify what has been mentioned above, Suppose a company
ABC is specialized in importing products and interested in new consumable products.
Assume it is currently getting information from seven companies manufacturing products
where company ABC imports from them. The seven companies are known from the
knowledge acquired by the ABC interoperating system. ABC also may send a request for all
the other manufacturing companies asking for certain information. In this case if ABC gets a
number of other replies then they will be able to link the new suppliers with their list and
thereafter to the existing information sources so that all will act as if they are a single
information source. Here ABC queries are written across a profile in their interoperating
knowledge rather than directly to the distributed and possibly heterogeneous data sources. In
this case knowledge expansion is considered as an incremental dynamic process rather than
a static process, which may need many interventions until changes, gets work. The idea here
is to have a specialized database browsers and mergers to setup the required cooperation
between any information producer and any information consumer.

The main advantage of such approach is to create the cooperation atmosphere between the
different information sources in an incremental manner. Moreover, this cooperation will not
involve changing the existing compiled and tested programme source. The only changes that
will be taken automatically by the site IE are those done in the local interoperation knowledge,
which is the confirmation of the addition of new cooperation information sources. Most of the
cooperation processes in the IE are optional so that the user can set and reset whenever it is
required.

The overall approach is based on the advertisement of certain information sources and the
information cooperation requirements of individuals. However, for such an approach to be
feasible, cooperating data sources must give the proper authorities for others to cooperate in
a manner valuable for both. In particular, such an approach supports both incremental and
quick cooperation between the heterogeneous distributed information sources.

With this in mind the Interoperation Engine IE has been designed, which is a combination of
information about the cooperating data sources and routines bounded with route maps and
work flows for the different operations during the lifetime of the request. The information about
the data sources (metadata) is the part responsible for the heterogeneous data sources
linkage, as well as, the constraint enforcement of the different schemas. Additionally, the IE
contains a subsystem responsible for keeping the necessary information about the different
distributed users in the cooperation domain. This subsystem is considered as the first firewall
against unauthorized access to any of the cooperating data sources.

The major concern is to build a system, which is easy to use, as well as enabling the user to
use the programming language to which he/she already accustomed. Also, the flexibility in the

74

number of data sources that can be added to the cooperation is done in the background
without any additional requirements from both the data sources users and the application
programmers. The aim is to provide a fully friendly system with an easy interface so that the
DBA, who will be responsible for the bindings with the remote sources, has not much to do to
hit targets.

7.2 The Proposed Prototype Architecture
For the purpose of supporting the control of information interoperation and information
cooperation, the IE prototype has been designed to provide three main groups of services:

1. Proper information gathering about all the cooperating interoperating
information sources and all the related users including the management of the
information sources.

2. Management of the incoming requests to the local hosted information
sources through the local IE.

3. Management of the outgoing requests from the local to the global
information sources through the local IE.

Figure 7.1 shows the overall architecture of the IE system. The main work is conducted in the
cooperating local/global user management and the cooperating data sources knowledge
management. The IE design also facilitates the achievement of the work carried by both the
interoperation facilities manager and the general purpose DBMSs facilities manager.

Cooperating local! global
users manager

Cooperating data sources
knowledge manager

Interoperation facilities
manager

General purpose DBMSs
facilities manager

Figure 7.1

The gathered information about both the cooperating data sources and the users will be
mainly categorized as local and global data sources, as well as internal and external users.
The main role this part plays is the linkage between users and approved data source links.
Further, It will facilitate the workflow of the other two services.

The IE proposed solution has many interrelated components responsible for handling the
different areas of interoperation. The connectivity of the different components is shown at
figure 2.1 where each of the components provides services within its area. It also shows the
preliminary design of the overall IE system including the flow of the different services in the
system. These services form the four categories shown in Figure 7.1.

The preliminary proposal is to make the IE operate in three interrelated stages:

Stage 1: defining the different shareable components on the local IE repositoty.
State 2: advertise about the shareable information space, which consists of two sub-

stages:
Stage 2.1: the selection of the shareable parts of the total information

space.
Stage 2.2: the selection of the user groups whom can use the local

provided information space.

75

Get update
from IE

Knoeledge
of site 0

	•
Get update

from IE
Knoeledge
of site M

•

Update IE
Knoeledge

of site 1

Update IE
Knoeledge

of site 2

Update IE
Knoeledge

of site N

Get update
from IE

Knoeledge
of site Q

Stage 1:
Local IE

knowledge
definition

Stage 2
Global IE

knowledge
definition

Stage 3: define the links between the local and global information space that will be
used by the local applications using the local IE knowledge in this regard.

Figure 7.2 provides an explanation of the first two stages.

Figure 7.2

The local IE knowledge definition contains the definition of the whole local systems. Only the
shareable parts to the global users will be traversed to the global IE knowledge base side.
Here the local shareable IE will contain the necessary local and global information to bind the
cooperation data sources. At the same time the local shareable IE knowledge will get updates
about the shareable information space from the global cooperating IEs. The third stage is
meant to prepare the necessary linkage between local information sources and global
information sources into a data sources profiling manner so that the internal applications can
use those profiles rather than direct connection with the global data sources. The static
definitions of the parameters for linking heterogeneous information sources defined by
[Tomasic96b, Liu96] should benefit from the dynamic definition of this work. The advantage of
this approach is that any change in the information space does not require changes in the
application source. Also, the application reliability considered as high compared with
techniques requires application source changes.

7.3 IE Operations
In abstract terms, IE consists of three main operations each of which plays a role in the
success of user queries in manageable and secure manners. The three operations are the
incoming request management, the outgoing request management, and the other local
services such as the knowledge definition of the parts of the local cooperating schemas and
all the other related necessary maintenance operations, which is the basement step for the
interoperation scenario.

First, Incoming requests are the hits the local IE will receive from local and global requesters.
The local IE will basically authenticate the requester, check the authority against the
requesters' request and insert the request in the queue according to the requesters' level of
importance stored in the security manager knowledge base. The other facilities such as the
PL translation, query decomposition, transaction management and schema translation will
only be applied on-demand when necessary.

The incoming requests will first arrive in the incoming request pool. From this point, requests
are categorized into three main categories. The first are requests with high priority, which will
have the highest priority in getting executed over the others. The second are the medium
priority requests, and the last are the non-critical requests. This sort of categorization will
insure that the IE system does not block an important request from either internal or external
users.

76

According to Figure 2.1 the proposed prototype is supposed also to support requests
management. Requests will be first collected in the requests' pool. The local operating
system should handle the queuing process for the incoming requests. Tasks will then be
handed one at a time to the first level IE checking process, which is the dynamic access
manager. At this stage a decision should be made about which request is to be processed
locally and which one should be forwarded to the replicated sites. The dynamic access
manager, security manager, and the replication manager will handle this task. Once this
operation is over, it will start checking whether it is necessary to apply any of the on-demand
processes or not.

IE replication managers have two kind operations. The first is re-forwarding incoming
requests to be fetched from another which is either local or remote duplicated data store. The
second replicates local databases or part databases to remote data stores for security or load
balancing purposes. Hence, local replication manager may sometime transfer requests to
other replicated data store. This operation will be applied either for the purpose to balance the
load on the local data store or some other security purposes.

Replication manager also supports two types of replication mechanisms. Those are On-line
or off-line replications. On-line replication is the process of replicating records into different
local and remote data stores in parallel so that any changes will occur to the main data store
will be reflected to the replicated data store at once. This type of replication will insure all the
data copies to be up to date. Off-line replication is the one applied after certain amount of time
as a batch process or when activated manually.

Requests arrive from either remote or local user. After the user is authenticated, the request
elements, such as the system the user requests from and the related schemas and attributes
get authorized. As a further step the user ID plus the request data store path is forwarded to
the replication manager to check whether there is a re-forward to the request for another data
store or not. If no re-forwarding is recorded by the replication manager knowledge base then
this means the request will be fetched in the same place. Otherwise, an update will be sent to
the replication manager knowledge base, which has issued the request, so that any operation
on the specified database will directly be re-forwarded from the requestor site. Once the
update to the replication manager is done then other users have the same access rights on
the data set will make use of this update and will get the re-forwarding directly from the site
they belongs to.

Second, the outgoing requests will be first checked locally against the gained domain of the
user who applies the request. This step will prevent local users from losing time and effort
before their request reaches the remote site and get rejected there. The assumption here is
that any changes in the access domain for any of the users in the cooperation will take place
at the same time the change occurs and the user access space will be updated.

Third, in the local services first phase the user will start from defining the high level type of the
schema he wants to create. In this case the user will chose between the four known schema
types which are relational; hierarchical, network; and object-oriented. There are two
possibilities, either the schema already exists, or it is new and will be created by this part of
the process. If the schema is already exist then the IE will conduct checking to the entered
data to match them with the original schema. Also, in this case the user will be able only to
define the shared data parts by leaving the other non-shared data undefined. If the IE will
create the schema then the user will be able to handle the creation process into number of
phases so that the user will not need to setup the security access levels and the users profiles
prior to writing the database application. Of course, he/she needs to create the set up
together with other parameters such as the one related to data replication later after getting
the application running and after setting the users' policies in accessing the premises data.

Record definitions in all the record based schema types are the same. Object-oriented
schema definition also do not differ from others much. From a past study that has been
conducted on the four schemas (relational, hierarchical, network and object-oriented) a
conclusion has been reached considering that still there is no standard object-oriented

77

schema. Furthermore, the object-oriented schema seems to be the amalgamation of the
remaining three schemas. From investigation conducted it is seen that the shape of the
object-oriented database may looks like a quarter balanced tree in a way that the similar
information could be seen as a distinct peace from within the tree. The only difference
between the four schemas is the relationship between the different types. The user therefore
can start by giving information about the schemas in the local system, which forms the local
information space. At this stage the user will define the system, the related schemas, the
related attributes together with all the necessary information for sharing data with other
information sources.

78

Chapter 8

The Interoperation Engine System Design

There is currently a tremendous increase in the number of data sources that can be queried
across the Internet. Many of these data sources are databases. It is most helpful if the data
source is readable to the user who tries to access it. Additionally, the user needs to know how
to get the information of interest from the database. Furthermore, in order to remain current,
the user should update the data by downloading the database as and when necessary. To
solve these problems, the design of a knowledge base that will define and automate the
interoperation of the heterogeneous databases for web-accessible sources has been
presented. The contributions are as follows: (1) the process of handling the necessary
parameters that are required for establishing the interoperation operation between the
heterogeneous cooperating information sources and at the same time used in establishing the
mediator setup between the information sources; (2) designing the heterogeneous databases
metadata capable proxy server, the search engine, and the other necessary client interfaces;
(3) designing the access control system that links the different distributed users to the
heterogeneous distributed information sources.

All database systems, regardless of schema type (relational, hierarchical, network or object-
oriented), are mainly consisting of three building components. These are the system that
contains one or more schemas where each may contain one or more attributes. This
characteristic in data schemas may facilitate linking the distributed information consumers
with the available distributed heterogeneous data sources. The manner by which this link is to
be accomplished should be as transparent as possible so that the local user get the feel as if
he work and access local DBMS already known to him. Current Internet browsers do not fully
support the interoperability of the heterogeneous databases. As Internet browsers offer
browsing facilities for users by gripping information or data from the entire Internet connected
information sources this prototype is specialized only in facilitating and connecting local
databases to the heterogeneous databases scattered over the Internet in a manageable
transparent manner. Moreover, Web information management is one of the most important
current trends in data management technology and research area [Dogac99].

In the prototype, which is the Interoperation Engine shortened as 1E, the mechanism of
propagating the component databases of interest to the global in a dynamic way so that
distributed users know what available data sources they can access has been addressed.
The purpose of the prototype is to simplify the interoperability of the distributed
heterogeneous databases. Also, it will automate this process by giving the local users access
to heterogeneous databases through the use of profiles by which they contains information of
interest from more than one source. Also, in the prototype it is assumed that the database
schemas are not reasonable stable and may keep changing, and in certain stage they may
get excluded from a certain database cooperation accumulation.

8.1 Database Interoperability Requirements
Interoperability between heterogeneous information sources can be defined as the ability to
generate a single virtual view of heterogeneous schemas without sacrificing autonomy. An
important aspect of this is to coordinate changes of such autonomous schemas while
providing guarantees on the quality of the different schemas information flow and the quality
of the different services on the schema.

It is worthwhile to restate that the sentences data source, information source and schema will
be used interchangeably to mean a database. Also, interoperability phrase may be used for

79

familiar with all the different data sources and that he/her may access only the information
relevant to him/her. Such process considers that a person has the required knowledge about
the information space of his interest, which may exists overall the globe. Also, he/she should
have a way by which he/she is informed about any changes so that he/she stays up to date
and gets the required services from the remote information producers. Because of such
difficulties, the problem related to the mechanism of dealing with the rapidly increasing
sources of data is significant. In order to cope with the rapid increase data sources
environment there should be a solid mechanism based on a unified policy by which both the
information producers and consumers follow to update each other. Among the huge amount
of data available over the global network a very small amount is of interest to interoperate
with other data sources. As long as this problem has not been dealt with, its breadth will
become uncontrollable. As a first step, having the required knowledge about the cooperating
databases is the major solution to the problem.

As part of the proposed prototype a web-enabled database interoperation proxy server can be
used to form a virtual community, where participants in remote locations can exchange
metadata information about the cooperating information sources in electronic format. The
existence of such facility will have many advantages by which the most important is to have a
communication point between the information producers and information consumers. Figure
8.2 shows the initial metadata browser components to be implemented based on the
prototype design given in appendix A.

0 Shareable sub system 1 name, System type (I.e. Relational, Hierarchical, Network or Object-Oriented)
0 Access rights

0 Local users access
o Users Group 1
o Users Group 2
o Users Group 3

o Users Group n

0 Global users access
o Users Group 1
o Users Group 2
o Users Group 3

o Users Group n
0 Schema name 1

0 Access rights
0 Attribute 1, type, PK 0, Unique 0, FK 0 Ref . System name, Schema, Attribute

0 Access rights

0 Schema name 2 •

0 Schema name n
0 Shareable sub system 2 name

0 Shareable sub system n name

Figure 8.2

The overall goal of the work in the database interoperation is to demonstrate a new, modular
and dynamic framework for the knowledge handling from the information producers and
consumers side in the distributed, autonomous and heterogeneous databases that is
necessary for the interoperation process. The framework will consist of the necessary
parameters that should be known to the interoperating information sources and how the local
database applications will be able to interoperate with other heterogeneous information
sources via a proposed layer. A key aspect of making the knowledge about the interoperating
databases available to the information consumers involves assigning a unified metadata
handling protocol, which is imperative for developing methods that can perform tasks with as
little human intervention as possible. Such interconnected information sources supporting the
sharing of data may be called cooperating information sources by which the design,
construction, use and evolution of such system within the above paradigm will require
sophisticated technologies from many different areas of computer science.

The cooperation between the heterogeneous distributed data sources can take two distinct
paths. The first, which forms the major demand from the interoperation of databases, belongs

81

to the normal information gathering needs. This means the requesting user has an
information pool by which he needs to share it and cooperate with other people owning similar
information so that he can get better statistics for better business decisions. Such type of
requirement increases in areas like the medical statistics. The second path is considered
when an information source allows updates from the global either by anybody or by specific
people. This type of operation is very much similar in nature to some existing Internet HTML
services. In reality it is an advertisement about existence of information pool and cooperation
between information sources of possibly different schema types. The difference in the normal
HTML services is they don't know about the other information sources available around.
While in the case of the IE the information source will be open in a sense to give the
information services to the information consumers in a way by merging their information pools
with other information owner pools having similar information. In the case of the IE the
distributed information consumers will be informed about the available information they can
access from the global information producers sources. The information consumers will be
able to use their own data entry screens of their database applications rather than having to
use a pre-prepared data entry screen, which means they will not be able, to merge their
information pools with the other related information pools. Furthermore, when adding new
record or editing an existing record is allowed then this type of operation should apply the
stipulated constrains assigned by the information owner.

8.2 Overview of the IE
The most important feature is that the approach of databases cooperation ensures no effect
on the other normal services offered by the database management systems. Among those
services are: schema translation management, programming language translation
management, semantic inconsistency management, and other aspects related to the
operating system and the communication protocol layers which are considered as outside the
database research realm.

All these issues make a strong demand towards having a new dynamic mechanism for the
cooperation of the heterogeneous distributed data sources. This issue needs to be looked at
in a new way. Although there are currently a number of suggested static definitions for the
cooperating data sources, no one is considered as the ideal solution for the rapidly
increasing number of cooperating heterogeneous distributed data sources. The Disco project
[Tomasic96] is one example of the static definition of the necessary databases interoperation
parameters and which this view is considered as a dynamic implementation of parts of the
Disco.

At this stage it is important to provide an infrastructure capable of linking the heterogeneous
distributed data sources in an incremental manner and for only those related portions of the
data sources. This infrastructure is also responsible for sending queries to all the cooperating
sources asking for certain information of interest. Also, this infrastructure should deal with all
the users in the globe having access to its local data sources. The main contribution of this
work is an infrastructure for an interoperation atmosphere serving the heterogeneous
distributed databases and having a behavior similar to the Open Shortest Path First OSPF
[OSPF99] routing mechanism.

OSPF is a routing protocol used within larger autonomous networks in preference to the
Routing Information Protocol RIP, an older routing protocol that is installed in many of today's
corporate networks. Like RIP OSPF is designated by the Internet Engineering Task Force
IETF as one of several Interior Gateway Protocols IGPs.

Using OSPF, hosts that obtain a change to a routing table or detect a change in the network
immediately multicast information to all other hosts in the network so that all will have the
same routing table information. Unlike the RIP in which the entire routing table is sent, the
host using OSPF sends only the part that has changed. With RIP, the routing table is sent to
a neighbor host every 30 seconds. OSPF multicasts the updated information only when a
change takes place.

82

Ii
GlobalSystem

information system UML based classes are shown in Figure A.1 (Appendix A) and Figure A.3
shows the global IE information system.

The shareable data sources profiling system is where database profiles are created and
accessed by the local application programs. Basically it links information about data sources
from both the local and global IE information systems.

Although, the design of the IE in its preliminary stages, this will involve assigning an
information handling strategy between the cooperating data sources in which the exchange of
the updates for the necessary metadata between the information sources can be done. The
strategy should guaranty the maximum reliability and minimum intervention to the
interoperation services.

8.3 Description of Participating Components in the IE
The actual building infrastructure of the IE is assumed to be the Internet by which nobody
owns the backbone. Figure 8.3 displays the overall architecture of the different IE
components and how they are linked together. It can be seen that the main components are
the Interoperation Engine layer; the heterogeneous databases repositories and the metadata
proxy server.

Subsequently the 1E local knowledge consist of three interrelated components of which each
plays an important rule in the success of the interoperation mission of the distributed
heterogeneous databases. The three interrelated components are (1) users and shared
systems profiling, (2) heterogeneous schema management, and (3) cooperating schemas
profiling. Those are explained graphically in Figure A.1.

8.3.1 User and shared systems profiling
The IE system supports two type of users. These are the ordinary information consumer and
the IE administrator. The one who will mostly benefit from the IE is the ordinary information
consumer. The administrator is the person who will create users profiles, systems profiles
and access profiles. User profiles are the grouping of the local and global users according to
local site policies. Systems profiles are the same as user profiles but on the local and global
systems. Access profiles are the link between a user profile and systems profiles. The
following example explains the profiling technique in the IE system including user
management. Figure 8.4 shows the relationship between the class diagrams for both the
local and global profiling management subsystems. For more details regarding the
participating components, see the figures of Appendix A.

AccessProfile

1

1

UserProfile

1

SystemProfile

11

1

LocalLber

1
1.*

1
L.*

User Sys em

1 1
1 1

GlotolUer LocalSystem

Figure 8.4

Initially users and user profiles are defined locally in the local profiling management
subsystem for all users of a single site. Only those who will share global data sources are
listed in the global profiling management subsystem. The local administrator in each site is
able to access the global profiling management subsystem to assign global users to local

84

DB1	 DB2

DB7 I	 I DB8

DB6

Si	 S2

R1	 	 >„. R2 nn•nn•n)11.. R3

DB1 I	 DB2

DB3

=—.
DB4 DB5

system profiles. Also, he/she who creates the cooperating schemas profiles to be used by
the database application programmers, which was thoroughly discussed in Section 4.3. The
breakdown shown in Figure 8.4 the IE is intending to send only the shareable parts of the
information sources to the global information consumers. Access permissions of the global
users on the local information sources will be checked two times. The first in the query
originator IE and the second in the target IE and the synchronization and accuracy of the
applied information will be checked prior to the query submission. Queries or requests are
only passes if and only if information in both sites the same.

Having dedicated information for the local site and other for global sites will increase security
and reliability of information. Local site will have total information about the existing
information systems. However, only the part of the information sources supposes to be
shared with the global users are copied in the global profiling management subsystem.

As indicated earlier, profiling simply means grouping. Profiling is one of the proposed
facilities to be provided by the IE. The main purpose of profiling is to make the work more
controllable, manageable and traceable. The IE mainly supports three types of profiling
techniques: user profiles, cooperating system profiles, and access profiles. User profiles are
simply grouping users into groups according to different policies such as they have similar
access on certain systems or maybe according to user's original site. Cooperating systems
profiles are the parts users will get access on them. Each site may have many systems by
which each system has number of subsystems forming the possible accesses in a local
database system. Each group is known as a route in the IE. Figure 8.5 explains how single
site schemas will looks like.

Local IE systems and the routes supported by each system
Figure 8.5

As shown in Figure 8.6 the local site mainly supports two systems (will be called as S r, for
system and n for the system number) where each system has a number of routes which can
be accessed by the global users R. Furthermore, DB1 may consists of a number of tables
(t1 , t2, t3, • • • , tn) • Tables also will consist of number of attributes (a l , az, az, ..., an). System 1
as shown supports three routes.

S1:(R1, R2, R3)
S2: (R1 f R2).

The routes in each of the two systems are defined as follows:

%Ai : (DB1, DB2, DB3)
S 1 .R2 : (DB2)
S 1 .R3 : (DB2, DB5)

S2 . 1,1 1 : (DB1, DB4, DB5, DB6)
92.R2: (DB3, DB6, DB9).

85

On the other hand the local site have got four users profiles as follows:

UPi: (U1, U29 U39 U4)
UP2: (U1) U3, U79 U9)
UP3: (U10/ U 119 U12)
UP4: (U50, U70, Uso)

Also, the local site has decided to establish the following system profiles (SPs) on the two
defined systems from the defined routes according to private information policies.

S i .SPi : (Si.Ri, S1 . R2)
S 1 .SP2 : (Si.Ri, S 1 . R3)
S1 .SP3 : (S1.R2, S 1 . R3)

S2.SP1: (S2-131)
S2 .SP2 : (S2 .13 19 S2. R2)

Once the system profiles and user profiles are defined then connecting users with systems
becomes an easy task. The following is the connection of user profiles to system profiles,
which is called access profile APR.

APi : UP1 can access Si.SPi, S1SR2
AP2: UP2 can access Si.SPi, S2SR2

Now, any additional system profile which will be added later to the user profile are added to
the list related to that user profile.

Until now the consideration is that users are permitted access on the full schemas defined as
DBN . In some cases the database owner may need to specify the grants a step forward by
giving access to certain attributes within some schemas. In this case he/she should specify
routes contains certain schemas and attributes. These will be defined in the global shareable
subsystem in each local IE and fired to the global IE side when required. It is clear from
Figure 8.5, that S 1 mainly supports three different routs, which appears in the global IE as
different systems entities. If S i .R i : (DB1, DB2, DB3) has recalled with the assumption that
DB1 has three attributes (A 1 , A2 and A3), DB2 has four attributes (A 1 , A2, A3 and A4), and DB3
has again four attributes. Here still more than one route on the same three databases
showing each time different attributes to be supported by each route could be defined. In this
case the subsequent details, which will appear in the route definition, are the attributes
supported by each route. The routes in each of the two routes of S 1 can be defined as
follows:

%Ai : (DB1[A3], DB2[A3, A4], DB3[A3, Ad)
S1 .R4: (DB1[A2], DB2[A2,A3, Ad, DB3[A2, Ad)

8.3.2 Heterogeneous schema management
As indicated earlier, the local administrator is the one who makes the data sources ready for
application programmers by creating the required application profiles and attaching them to
the user profiles as access profiles. In this case application programmers access system
profiles in their applications rather than directly accessing the original data source. This step
has got many facilities of which the application programmers does not need to change in the
application source code when new data sources added into the cooperation process. The
following few paragraphs are explaining in an example how the distributed heterogeneous
information sources are managed. Also, explain how application programmers should deal
with the profiles of the IE in their applications.

The cooperating data sources are either contains similar or dissimilar information. If they
contain similar information then the possibility operations between them is unification,
intersection or difference between the records. In the case if they dissimilar the only possible
operation between them is relationship through some common field in both that can be
considered as a primary and foreign keys.

86

requirements to make the cooperating information sources linked together, as well as,
synchronize with each other. This task is purely related to the operating systems since they
will be responsible to share memory and open files between the operating system processes,
protect pages of memory which has the cooperating information sources records and linking
the distributed cooperating information sources memory pages together considering the
sorting constraints.

The main advantage of this approach is the creation of the cooperation atmosphere between
the different information sources which can be achieved by an incremental manner. Also,
this cooperation process will not involve changing in the already compiled and tested source.
The user will only change in the profile related to the system using the IE provided facilities.

According to the IE stated design, the information producers will not be able to interrupt any
running query against their information sources. The changes in the permitted information
space will be carried out in two stages. The first stage involves the changes on the permitted
information space prepared through the local IE. Once the changes finish it will be migrated
to the global IE side and the old information space will be replaced with the new one. Figure
8.7 illustrates how the IE deals with the queries and where the filtration against the access
rights are applied.

This technique also has another advantage where the global part of the system will not be
interrupted, as well as, modifications in the available information source for the global can be
accomplished in the local site and then fired to the global. Changes will take place and the
necessary parameters in the global IE services will be modified.

8.3.3 Cooperating Schemas Profiling
As explained earlier, application programmers depend on accessing data sources profiles
rather than actual databases. The data sources should be available to them so that they can
call them from within their application. Databases are called one at a time from within any
DBMS programming language. The database administrator is the one who normally builds the
data sources profiles that may consist of more than two information sources. He is the one
responsible to give the information consumers the different reports about the provided
information source they gain from the global information owners. The plan is also to let the
individual users having access on global information sources to create there own cooperating
schemas profiles.

At this stage the data sources profiles are available be called from within the application
program. Assume that each of the three databases has a number of attributes, and the first
database DB1 that the example is about having three attributes (Al, A2 and A3). As a normal
case the three attributes may be accessed by their names in the application program. In the
case if there are other cooperating databases with DB1 than the access to the attributes is
through the use of the data sources profile. Assume the local system is able to cooperate with
other three global systems having equivalent data as the local system. Those are S2, S3 and
S4 respectively. Assume again S2 database 1 has four attributes (A1, A2, A3 and A4), S3
database 1 has again four attributes (A1, A2, A3 and A4) and 54 database 1 has five
attributes (Al, A2, A3, A4 and A5). The definition step of the equivalent global attributes to the
local attribute is given by

Local A1 = S2-Da1.A1, S3.DB i .A2, S4.1)131.A4
Local A2 = S2.Da1.A2, S3.1)E3 1.A4, S4-1DBi.A1
Local A3 = S2.DB1./44, S3.1)B1.A3, S4.0131.A3

There are two possibilities when linking the cooperating data sources with the local
application. The first is when local application accesses a local database as in the above
example where local database cooperates with global systems S2, S3 and Set. The second is
when the local application doesn't have any local database and will directly access remote
global databases where in this case the local attributes will be considered as the local
application parameters.

88

8.4 Metadata Handling Protocol in the Distributed IEs
The Extensible Markup Language XML will have much input to the interoperation process. In
that, the XML has added a powerful transport mechanism to the rapid database
interoperation requirements. Sense the different information handling mechanism between
the different interoperating information sources can use this language as a method for putting
structured data on a text stream. The transmission of information should depend on the
policies that are assigned by the proposed interoperation engine IE when applying the
different database operations.

Handling protocol of exchanging the metadata within the cooperating database systems is
considered as a strategy task by which all the cooperating sites have to agree on certain
handling methodology. This section does not form any comparison to any international
standard rather than considering a methodology that fits the different requirements of the
heterogeneous database interoperability. It is understood that the functional programming
languages may contribute in the design of such protocol, but at the time being this is beyond
the scope of this chapter. For the sake of this chapter, a protocol which satisfies the initial
requirements and defined by the IE prototype has been proposed. The protocol, which is XML
based, is assumed to deal with the shareable database systems metadata and all the related
information for the purpose of exchanging this information for all the cooperating IE sites.
Since each schema type has its own definition procedure with different constraint
assignments it would be difficult to provide a unified protocol to handle all the schemas. As a
first attempt it is planned to tackle the general protocol shape in this section. A further step is
to extend this protocol i.e. to make it unified as possible in order to handle any schema type
requirements. Figure 8.8 explains the basic required information to be processed by the
proposed protocol.

Shareable System
Stamp Information

Shareable System
Path Information

Sub System
Information & Access

Rights

• - - - --- ---

Sub System Schema 1
Information & Access

Rights

Sub System Schema 2[
Information & Access

Rights

Sub System Schema n
Information & Access

Rights

Schema 1,
Attribute 1,

Access Right

Schema 1,
Attribute 2.

Access Right

Schema 1,
Attribute m,	 	

Access Right

Schema n,
Attribute 1,

Access Right

Schema n,
Attribute 2,

Access Right

Schema n,
Attribute y,

Access Right

Figure 8.8

Based on the above figure, if the relational schema shareable system defined as displayed in
Figure A.2, the global IE is considered, then a definition for the different components to cover
the whole schema design is needed.

In this chapter, architecture has been presented by which a distributed and heterogeneous
information sources can cooperate together in an interoperation atmosphere to share
information taking into consideration the current advances in the Internet facilities. More
specifically, a mechanism that enables information producers and consumers to have a
common pool by which they know each other and the information space provided for each
has been described. This mechanism accomplishes the goals without any effect on the
autonomy of the participating information sources. The plan also is to conduct more research
in refining this architecture. Some parts of the prototype has been implemented and working
to implement the prototype as a whole to validate the design ideas presented in this chapter.

89

Several issues for sharing information in a cooperative manner across autonomous
distributed heterogeneous information sources have been addressed. It is well known that
the more there is sharing, the less autonomous databases are. For instance, the use of
schema integration increases data sharing dramatically while bringing database autonomy to
nonexistence. In contrast the above-described prototype designed to increase cooperation
between the distributed heterogeneous databases without dimensioning database autonomy.
This approach provides a mechanism that enables database application users to be informed
about the available information space they can gain from the globe information producers. It
also enables them to share information with other information holders in a transparent,
expandable and autonomous manner. The design of this prototype is established in order to
contribute with metadata capable web proxy servers so that they become heterogeneous
databases accessible web browsers.

90

Chapter 9

The IE Supporting Services

The most important operation in the cooperation process is the process of the integration
between the heterogeneous data sources. The integration is simply the hashing technique
between the different heterogeneous data sources elements. Further, the migration of the
data records takes place between the data sources. The IE proposal has defined such
framework, as well as, defined some other assistant services for facilitating the interoperation
process. On the other hand, there are some other assistant services facilitate the cooperation
process such as the syntactic and semantic data dictionary resolvers, history tracking tools,
data replication management and many other supporting services. The IE design is capable
of incorporating within its processes many facilities that could simplify the cooperation
process. In the coming sections illustration to the design tips that could take place in
conjunction with the IE design will be discussed.

Regardless of the schema type the database management uses, there is also requirement for
assistance services that can improve things such as standardization of the application,
standardization of the naming conventions used by the database schemas, tracking facilities
and other service availability related tools. Achieving such goals in an environment where
different database schemas are interoperating is an important requirement where the gains
behind are major. The tree like design of the IE does simplify the existence of such services.
In the following sections three different services have been discussed: syntactic/semantic
data dictionary, history tracking and the replication services for the heterogeneous distributed
databases. The purpose of such discussion is to highlight the IE design capabilities that could
be invested in the existence of such important assisting services.

9.1 The IE Syntactic/Semantic Data Dictionary

9.1.1 The IE Syntactic/Semantic Data Dictionary Design
It was reported in Chapter 8, the backbone of the IE prototype proposal is assumed to be the
Internet by which nobody owns it. Also, the assumption is this part supposed to be active
throughout the lifetime of any local interoperation process. The process will be responsible for
clarifying the meaning of a data definition to the global users during the interoperation process
between the distributed heterogeneous data sources. This will help the different users in
matching between the different naming on the different distributed sites. This subsystem
should co-operate in solving the problem of semantic inconsistency [Stonebraker94j, and
make users queries to reflect the actual needs as much as possible. Semantic inconsistency
across heterogeneous information systems is a much more complex technical problem with
no general solution yet devised, and it is still an open research challenge. Also, by the
assistance of the dictionary it should come up with techniques that will identify interesting
patterns of information and thus help the user to be aware of potential sources of interest.
Users should be able to issue queries by the assistance of the dictionary and get the proper
answers without knowing which remote sites are involved in answering the query. The sites
involved in answering the query could be found by the assistance of a link tracking subsystem
responsible to start the query by taking the links from the data dictionary subsystem
information knowledge, which is capable of keeping track of the different processes in the
interoperation. The extended plan of the data dictionary of this sort is to provide the users with
the necessary links about where to find certain information. The data dictionary is capable of
including the link to the site that provides certain information in case the information producer
is interested to provide the information to the consumers directly and without any permission
restrictions.

91

As an extended proposal, this part of the prototype is also responsible for the advertisement
process about the availability of certain information or the registration of the areas where
information producers and consumers are interested in and where this information can be
found. Information of interest can be registered at this stage and stored at a common pool by
which it is reachable by the information consumers. The advertisement can do two different
tasks. On the first hand, the information producer who is at the same time an information
consumer can advertise about the information he owns. On the other had, he/she can also
ask the other information producers about certain information type. Through the data
dictionary usage it would be possible to link the information producers with each other and
to glow the similar areas of interests with each other sense the data dictionary will have the
different areas of interests and their related sites. The initial plan is to make this part of the
process to deal with the international e-mail services and to update the areas of interest
whenever new area appears. Figure 9.1 is the UML based classes and the relationship
between them. Both the SystemStamp and the SystemPath classes are part of the data
dictionary implementation.

1 *
SystemStamp

ipAaddress : String
dns Name : String

1

Are as OfInterest

Site ID : Sys temStamp
Interests : set (Interests)

Sys temPath
s ys te mCode : String.
sys te mVolume : String
sys te mPath_: String

1

Figure 9.1

9.1.2 The IE Syntactic/Semantic Data Dictionary building blocks
The semantic data dictionary SDD is built from three components: servers, query clients, and
the SDD meta information. The SDD server main duty is to store data dictionary information
related to their client users. As a secondary task for the SDD servers is make connection with
other SDD servers to resolve clients' queries. The query clients are the members of the
cooperation. They can send queries to their SDD servers. As the IE indicated, most of the
queries will be handled transparently while the user deals with the different database
components. The only static queries are the ones done by certain users searching for specific
information. This type of queries will be broadcasted to every global IE registered by the
global system stamp class. Since the SDD is distributed, it is also necessary to store where a
domain can be found. This can be done with the help of the global system stamp class in the
local IE system.

The data dictionary knowledge base is a single class consists of attributes such as the code,
the database element name, its type (system, table, or attribute), the description of the
database element, and a set consisting of the likely links to the information sources where the
information has been mentioned. As an extended facility it has a list of the system stamps
they appears into them so that the query can be done across the sites.

The content of each of the data dictionaries must be maintained, which is the responsibility of
each of the local IEs. For this reason each IE host must manage all the database components
and provide the semantic meaning for them.

92

Masts. OCM.
Carver

"Mgoaser. Mumma , .1•0112.allm Mr , r....ell
••••n••••••n al.•••••••n none nem nreemnor 4011,7C11 Miwyr.

Sr WV •nn••••=orIII2_ puIlm mew ..wmg.enare.......
mImem....= Ivens M.. • weplgrew0 MOLD .0.....•• IN

Rrywano. non
Is...ors

T.= MOO
kimobl.manab

Loan, IE 11111.11 1.• ...

9.1.3 The IE Syntactic/Semantic Data Dictionary architecture
Without clear architecture for the semantic data dictionary the semantic conflicts in the
cooperation between the distributed heterogeneous databases cannot be effectively resolved.
Possible architecture is shown in Figure 9.2 for the SDD architecture where a distinction is
made between the backbone SDD and the LAN SDD. The backbone SDD has information
about the whole Intranet. Within the backbone a division is made into master SDD server and
regional SDD servers. The master backbone SDD server passes data into the regional SDD
servers. Each IF SDD has information about only the related cooperation information of its
own. The local IE SDD asks the regional SDD for the information that is not known locally. In
this case, the reliability increases as the backbone SDD is geographically dispersed.

Query clients are considered as automatic resolvers in the above scenario. They first
approach the local LAN SDD. f they did not found what they want to know then they can
fallback to the backbone SOD. This arrangement minimizes the usage of the bandwidth of the
wide area network and the time of the process until it gets done. Also, the local SDD will
always hold the necessary information related to the local cooperation requirements. With this
setup the required information about any database component will be known as quickly as
possible. Furthermore, this set up gives extra robustness in two ways. Getting the necessary
information about any database component is applicable either if the local SOD is down or the
backbone SDD is down provided that the backbone SOD servers are reachable.

Figure 9.2

To make the optimal use of the SOD services, a naming convention is vital. A naming
convention defines the architecture of the content. It describes the structure and roles for the
database components naming that are in use within a single IE domain. A practical naming
convention ensures that names need to change as little as possible, and that they have a
logical structure. At the same time, the naming convention must also have both a technical
and a human dimension. The technical dimension gives the relationship between the different
database application components. The human dimension is concerned with ensuring that the
end users and administrators can apply the convention in practice.

9.1.4 The process
The process of assigning the SOD clarification starts at the metadata definition phase of the
database. The interaction starts with the local IE SDD server that will provide all the related
syntactic/semantic clarifications. While the information source owner defines his/her own
database elements he will be in a position to clarify the meaning of each of the database
elements. This clarification could either be selected from the local IE SDD knowledge base or
it could be new element added to the local IE SOD repository. To prepare the new added
databases to be ready for the global user, an advertisement about this new information need
to be sent to the related information consumers. According to the individual application
owners' business rules the clarification to the database element will be broadcasted to either
selected partners or to the global where the updates will be sent to all the global master SOD
servers. The updates will be broadcasted to the selected partners if they are predefined to the

93

local IE prior to the syntactic/semantic clarification process. Otherwise, the updating step
could be deferred until a business requirement occurs by the data owner and a late update
can be taken as a later process.

So, as planned for the IE SDD, the final information will form a standard naming conventions,
as well as, it will clarify the conflicts that maybe caused by different users using different
languages and different business requirements.

9.2 The IE History Tracking Manager

9.2.1 The IE History Tracking Manager Design
In case the process fails the History Tracking Manager [Lee97, Barbra91] has the capability to
resubmits the process again from the point it fails. This part deals only with the actual query
submitted to the IE. According to a predefined time a collection of the reached record values
will be stored by the IE. The resubmission of the process, which completes a suspended
process and the glow operation of the finished part with the resubmitted part, is the
responsibility of the Transaction Processing Manager that is initially not included in this thesis.

History tracking management is one of the most important services in the distributed
heterogeneous database environment, as well as, the other distributed services providing
queries on remote databases and are subject to suspension. The most important benefit of
such facility is the restart of the suspended processes from where they have been stopped.
Although, this task should be handled by the DBMS where the query runs and the Operating
System where the DBMS works under. Here a highlight to the facilities that could be gained
from the IE design and how to make the maximum benefits by including such services in the
distributed heterogeneous database interoperation process has been given.

The history tracking can only be applied to processes i.e. queries which are using sorting
facilities such as the indexing technique used in the relational and object-oriented databases.
The main problem causes not being able to use the full functionality of the history tracking in
the legacy hierarchical and network databases are because they are not table-based
databases. Rather, they are database-based databases. Also, the redundancy in both the
hierarchical and network databases makes the tracking management facility a difficult task for
such databases. There is no other way than tracing the databases serially in the hierarchical
and network based legacy database. On the other hand, in the relational and object-oriented
databases it will be possible to go to the point where the query has suspended by locating the
place of the suspension in the resubmitted query. In such databases, making use of the
indexes by using the binary chop algorithm could be done [Islam97].

The analysis of the binary chop algorithm is a little more complex but can proceed in the
same way by considering the best case, worst case and average case situations. The best-
case situation in this circumstance would be for the item to be located in the middle of the list,
in which case it will be found on the first iteration. The worst case situation, where the item
being sought is not in the list, is a little more complex to determine and can be approached by
considering lists of different lengths. For a list of one element it will take single iteration of the
main loop for it to be determined that the single item in the list has not been sought. For a
structure with two elements two iterations would be required. The first iteration will decide that
the item been considered has not been sought and the second iteration will be restricted to a
sub list contains the remaining element. Figure 9.3 shows the summary behavior table of the
binary chop algorithm.

94

Order analysis for tliebinarv clto search a ofithm

Best case 1

Worst case. log2n

Average case if item is not in the list. log2n

Average case if item is in the list. —log2n

Average case. Pf(—log,2n) + Pm(log2n)

Figure 9.3

This subsystem therefore forms a knowledge base and will be responsible for keeping track of
the status of the operations taken by the local site base on certain defined time interval. It will
also be responsible for continuing the suspended operations handled by the transaction
manager. Also, this will be capable of giving the history about the sites where a certain
command has been applied to them, because these types of operations should be handled in
a transparent manner to the users. If certain critical operation fails this subsystem should be
capable of exactly mentioning where the failure has been occurred and forward it to the
transaction manager, which should be responsible for the continuation of uncompleted
processes.

In cases where the legacy database schema is hierarchical based or network based, the
resubmission of the suspended operations will not gain the maximum benefits of the history
tracking management if restarted from the point where they have been stopped. The only
gained benefit is the time saving of the already delivered part of the original submitted query.
This because the tracing operation in both database types for reaching the point where the
interruption occurs is done purely serially in the present work.

9.2.2 The IE History Tracking Manager building blocks
The history tracking manager requires dealing with three interrelated components: time, query
and the resubmission of the adjusted query in case of failure. The time is considered as the
interval between a query status at certain time and its status at the next registration time. In
this work, a status means that the record that has been reached at the predefined time
interval. The purpose of defining the time in a static manner is to retain the response time,
since the history tracking operation is considered as a burden process on the running
systems' response time. The resubmitted query in case, of non-completed query which
maybe caused by any of the failure reasons has to be modified according to the point where
is was reached in the original query. In this case the IE where the failure occurs for a certain
query will send the failed query identification to the IE that sends the query by which the
sender will only send the resubmission again. When the remote IE receive the resubmission
request it will resubmit the query based on the information it holds about where the original
query reaches.

9.2.3 The IE History Tracking Manager architecture
The building architecture of the history tracking manager is mainly depicted from the IE
architecture. Since, it is considered as a complementary component dependent on the IE
building components. Figure 9.4 displays the steps which form the architecture of the IE

history tracking manager.

95

The Interoperable Engine Layer

Select • from
tablet, table2,
table3,table4

Table 1 Table 2

Table 3 ITable 4

Database

2

Table 1 attributes	 Table 2 attributes	 Table 3 attributes	 Table 4 attributes

3 At certain point while the query is executed a failure occurs. In this case the IE where the
query Is getting executed will record the values of the indexed fields where the query was
suspended. The IE will also send a unique code to the query originating IE so that the query
can be re-executed again using the new values.

4
	

ITable 1 attribute 1, Table 1 attribute 2 I

Relational database

Select •
From tablel,table2,table3,tabled
Where attribute I > XXXXX and

attribute 2 > YYYYY.

Hierarchical databases

Network databases

Table I. attribute I = 'XXXX';
&FIND ANY Table I USING attribute I;
if DB_STATUS = 0 then

begin
WET Table I;
Writeln (Table 1.attribute I,", Table I. Attribute 2);
$FIND DUPLICATE Table 1 USING attribute 1
•orl•

02SOT. databases

SGET FIRST Table 1 WHERE attribute 1 >"XXXXX";
while DB_STATUS = 0 do

begin
WriteM (Table Lattribute I,", Table I. Attribute 2);
SGET NEXT Table I WHERE attribute 1> "XXXXX";
end;

Select tuple (variable 1: t.Table Lattributel
variable 2: t.Table Eattribute2)

from t in Table 1
where Lattribute.sub-attribute > "XXXXX"

Figure 9.4

It is obvious from Figure 9.4 that the resubmission process of the stopped queries will be
submitted to the IEs in the form of the original query modified to restart from where it stops.
When the stopped query code comes to the IE it will modify the predefined query belongs to
the original query fired by the information consumer and through the IE layer it will start to
hand over the missing part of the information which is the continuation of the original query.
The operation is, of course, done on the universal view that has been created on the
information's owner side. Here, the view is referred as a universal because it is simply flat
non-normalized in the sense that could be understood by everyone. The view will
automatically create all the required indexes from the knowledge it has about the information
source. The advantage of accessing the information through the created view is that the view
will define the necessary indexing facilities to access the data even if the indexing facility does
not exist in the original databases system than may run legacy database. Also, sense the
view could be created to run by and DBMS or even a spreadsheet, then any composite index
can be created for the users accessing the view.

9.2.4 The process
As shown in Figure 9.4, there are five steps to record before a query is stopped. The first is
when queries are fired against the IE. First the IE will record the first record information and
set the time of the next information taking process that is step four. When the time interval
reached the previous information will be overwritten with the new values. In case of failure the
values generated by step four will be taken and the original query is modified by the new
values and restarted again by the IE at that site.

96

9.3 The IE Replication Manager

9.3.1 The IE Replication Manager Design
One of the most important facilities in the database interoperation is to be able to replicate
similar information from certain database schema type to different schema type. As the
original IE design stated, the replication management should form a security advantage when
forwarding specific requests to the replicated pools. Furthermore, replication is useful in
improving the availability of data. The most extreme case is the replication of the whole
database at each site in the distributed system; thus creating a fully replicated distributed
database. This can improve availability remarkably because the system can continue to
operate as long as at least one site is up. It also improves performance of retrieval for global
queries, because the result of such query can be obtained from the nearest site; hence the
query can be processed locally if that site has copy of the data. The disadvantage of the full
replication is that it may slowdown the update operations drastically, since a single logical
update must be performed on every copy of the database to keep the copies consistent.

This manager plays the role of backing up the original site repositories or part of them, as well
as, re-forwarding some requests to the replicated data stores for purposes such as load
balancing or security enhancements. In the IE the replication process could be identified to
any part of the database regardless of its design. As stated earlier, the database elements are
defined as tree like in the IE design, which simplifies the replication management process.
Also, when data are extracted from the data stores they get de-normalized prior to sending
them anywhere. This feature will give the flexibility to write the record to any schema type
since the whole information will arrive to the other site as a single non-normalized record,
which makes it easy to be inserted in any schema design.

The simultaneous multithreading technique would simplify the replication process.
Multithreading is a technique that permits multiple independent threads to issue multiple
instructions each cycle. It is the ability of an operating system to execute different parts of a
program, called threads, simultaneously. The programmer must carefully design the
programme in such a way that all the threads can run at the same time without interfering with
each other.

Normally, the site where new records are added and updated will take the replication decision
to which site it will be applied. In fact, the replication process will only start after successfully
passing all the constraint types defined in the master database application. Also, operations
such as updating and deletion will take place any time the master database gets changes.
The required knowledge for such operation will be the address of the database where the
replication will take place. Assuming that the local relational database has a replication
constraint on records or even part of the records to another remote hierarchical database then
the relational related records should first de-normalize before packetized and traverse to the
remote hierarchical replica database.

Replication manager [Narasimhan97] is the one capable of liaising with other sites to get
permission where a backup data store can be created for certain critical databases. This
should play an important role when the main site is down by transferring all the process to the
backup site, and when the fault is over it should be capable of restoring all the changes to the
master database and convert the process back to the original site.

9.3.2 The IE Replication Manager building blocks
The replication management process requires the existence of components to be achieved
easily. It requires the existence of the database component that is required to be replicated
somewhere, information about the place that will take the replication which is considered as
the target for such operation, the communication management with the targets and the
mechanism the will drive the operation. Replication management is not an easy task because
it is considered as the main issue behind keeping backups, which of course affect the system
reliability and availability measures. Normally, the replication could either be considered as an
instant process, which is most of the time costly or it can be applied according to a predefined
time schedule in the case of the used system is not highly critical. In the IE implementation an

97

initiation of a solid building for a replication manager that is capable of taking both replication
management philosophies has been initiated.

9.3.3 The IE Replication Manager architecture
In normal database processes the replication in databases can be done for complete
databases in the sense the replica could either be used as a backup or for load balancing
purposes. The replication management that comes with the IE prototype proposal is done in a
way to provide a replication for up to the level of single attribute. Also, the replication could be
done from one schema type to another different schema type. Such facility would probably
increase the interoperability functionality supported by the IE. Initially, the IE replication
management process can make use of the two-phase commit that is already supported by
most of the existing communication protocols and operating systems. This process will
change the idea of the replication that is considered as a dump backup for data to a more
sophisticated replication process capable of handling the interoperability of the
heterogeneous distribute databases requirements.

9.3.4 The process
The basic requirement for the replication that should exist prior to the replication process is to
have equivalent pool to the one that need to be replicated. The IE will do such task when
mutual acceptance between the two places exists. The plan is that through the IE it would be
possible to define an equivalent repository regardless of the schema type in use. The IE will
take over the replication management risk by liaising with the different knowledge bases to
make sure that the replication is dune in the light of all the assigned constrains on the
replicated information. As explained in Chapter 8, among the available information in the IE
knowledge base is the different cooperating sites with the exact path that is necessary for the
communication process between the different global cooperating data sources.

9.4 The IE Indexing Unifier Manager

9.4.1 The 1E Indexing Unifier Manager Design
An index is a tree structure consisting of a combination of attribute values and physical
storage address that allows direct access to a row in a table. Indexes can be classified
according to their logical design or physical implementation. The logical classification groups
indexes from an application perspective, while the physical classification is derived from the
way the indexes are stored. The basic index could be a single column index that has only one
column in the index key, or it could be a concatenated index that is created on multiple
columns in a table.

In order to implement the IE a more sophisticated indexing technique to support the different
scenarios that may happen while the cooperation process between the various types
information sources takes place. The first proposed scenario which may happens between
two disparate information sources assuming that both information sources are using a formula
to generate the primary key related to a record object. The formula avoids the generation of
similar keys in both information sources. In this case although the record objects will have
different identifiers they cannot be sorted correctly unless excluding all the other parts than
the sort key from the index identifier. In this regard the IE propose an implementation of a
universal indexing creation and management algorithms. Those algorithms are to facilitate the
interoperation and cooperation processes between the heterogeneous distributed information
sources. Alternatively, as a second scenario, the index file is to contain additional pointer to
the information source only in case the record is not belong to the local information source.

9.4.1 The IE Universal unified indexing architecture & Building Blocks
Basically the IE universal attribute identifier considers four parts accompanied with the
attribute to make out the universal identification reference. Those are the system stamp class
that contains information about the IP address and the location of the information sources, the
system path, the sub system that attribute belongs to it, and the related table where this
attribute is a member of it. Here, the plan is to sort the index file on the attribute object
identifier so that in case an information source that consists of records from disparate

98

GlobalSystemStamp . stampOid,
G lobalSystem Path . systemPathOid,
GlobalShareableSubSystem . subSystem Old,
GlobalTable . tab leOld,
GlobalAttribute . attributeOld

IE UID =

information sources they will be in order. The only obstacle about this technique is when
records are accessed while the site is disconnected, which will give incomplete information.
Figure 9.5 shows the different building blocks of the IE universal record, i.e. object, identifier

Figure 9.5

9.5 Benefits of the IE Supporting Services
All the supporting components are considered as complementary processes. Such
components form the ideal and balanced interoperability atmosphere for the non balanced
heterogeneous and distributed information sources willing to cooperate and exchange
information. The syntactic/semantic data dictionary will provide the meanings of the different
information sources components by which users will be able to use the links provided by this
knowledge base without the need to link to the actual information source components which
maybe not understandable. As explained earlier, the IE history tracking manager will trace the
different information requests and will restart stooped requests from where they have been
suspended. The replication manager is responsible for backup information sources to
anywhere in the cooperation and for the load balancing when so many hits are met in any of
the information providing sites. This has to be sited up by the information source owners.
Furthermore, the IE indexing unifier manager is mainly responsible for reading records and
keeping them under one unified indexing mechanism to guarantee fast retrieval of the record.

99

Chapter 10

The IE Unified Security Manager Design

Exchanging data across the world in a secure manner has become an important requirement
among information owners that are willing to share and exchange their information sources
with others. Information owners want to assure their autonomy on the information they own
while they let others to share their data with them. In this sense, the various constraints
assigned by the information source database management system, as well as, the application
running over the information source has to be fully obeyed by both the local and global users
accessing that information source. This chapter is devoted mainly to discusses the
background of the distributed database security problem and the proposed solution.

In general, applications can either be Telnet based applications or a Client/Server based
applications. The primary function of Telnet is to allow users to log into remote host systems.
Telnet based applications are those applications using the Telnet programs to gain
attachment to the application site where the operation is considered as if the link is local to
the application site. There are many Telnet programmes where each has got its own specific
characteristics and policies. Depending on the Telnet program policies, the best environment
can be created to serve the connectivity to the remote application site. On the other hand,
Client/Server applications are those intelligent applications called front-end systems interact
with back-end server systems that provide services, such as database access, network
management, and centralized file storage. This implies that the user has a computer with its
own processing capability, which runs a program that can handle user interaction and data
presentation. Thus, client-server computing replaces the centralized computing paradigm.

Telnet is the login and terminal emulation program for the TCP/IP networks such as the
Internet [Siyan94]. It was originally developed for ARPANET but is now mainly used in the
Internet sessions. Its primary function is to allow users to log into remote host systems.
Originally, Telnet was a simple terminal programme that sends all user input to the remote
host for processing. Newer versions perform more processing locally, thus providing better
response and reducing the amount of information transferred over the link to the remote host.

Telnet is a client-server process in which the user invokes the Telnet application on the local
system and sets up a link to a Telnet process running on a remote host. The user issues
requests at the keyboard that are passed to the Telnet client running on his/her system.
Telnet then transmits the requests to the Telnet server on the remote host. Through this
process, users can initiate programs on the remote host and run those programs from their
own system as if they where attached directly to the remote host. Most processes run on the
remote host. It receives requests from the user's system and processes them in its
workspace, thus reducing traffic over the wide area links.

For the Telnet users on the information sources applications there is no issue on constraint
enforcement. This is because all the users will be treated equally by the accessed systems as
if they are all local. From the research investigations on the telnet applications, such
technique creates a bottleneck on the information source because basically the application-
hosting server will apply all the processes.

In the client-server computing model, which is the focus of the IE security model, users work
at intelligent computer called front-end systems and interact with back-end server systems
that provide services, such as database access, network management, and centralized file
storage. A computer network provides the communication platform on which many clients can
interact with one or more servers at a time. The interaction between the users' front-end

100

application and the database program at the back-end server is called a client-server
relationship. This implies that the user has a computer with its own processing capability,
which runs a programme that can handle user interaction and data presentation. Thus, client-
server computing replaces the centralized computing paradigm.

In the client-server relationship, processing is split between the client and the server. The
client systems run an application that displays an interface for the user. It formats requests for
network services and displays information or messages it received back from the server. The
server performs back-end processing, such as storing data or performing extracts. Because
the data is close at hand, it performs this processing efficiently. After storing, or performing
some other service on data for a user, the server sends the results back to the client. Network
traffic is reduced because the client only gets requested information, not large blocks of data
to sort through.

In the light of the new security hardware and software equipment, the implementation of
security becomes an easy task. Although, the existing access tools have simplified the
hacking process. This part of the thesis is discussing the security gains in the light of the
proposed IE design which cannot be considered as a security policy or standard. In fact, it is
only dealing with securing the different database elements taking into consideration the
treelike breakdown of the cooperating database systems.

Because of the heterogeneity in both the hardware and the software surrounding the
database systems the security enforcement requirements has increased. Unless the
heterogeneous data sources could be accessed using a unified access methodology
regardless of the database system design it would be very much difficult to deal with the
individual cases. The IE designs' considerations do not only fit information sources with
different schemas and multiple platforms but satisfies the requirements for the similar
distributed database applications with different schema designs.

Ensuring security means preventing, detecting, and deterring the improper disclosure of
information. In database environments, the different applications and users of an organization
refer to either a unique integrated set of data or different types of databases through the
DBMS. In the first case, there will be a single security manager since it is a single type
schema. The existing scenarios for the second case are different security managers
supporting different schema types. In this second situation if already bridges defined between
the different schema types then security rights for the users of the different schema types
have to be defined by each of the security managers of the different schemas. This process
may not be time consuming and may increase the threat on the databases because of the
different policies and standards that may be followed by each of the information sources.

The increasing uses of large multiple access data systems and distributed database systems
increase the risk of unauthorized use. Information security is therefore an important research
area. This includes both access control systems and security services based on cryptographic
machines. Evolution of IT security internationally recognized by research realms as a
strategic activity has to be undertaken in a way to create standards and procedures for the
implementers to follow. Such process will definitely increase the productivity between the
information producers and consumers in a systematic and secure manner.

In order to protect the database, security measures must be taken at several levels. Those
levels can be ranging from the hardware to protocols and coming down until reaching the
databases, which is the main core of this research. Database security management systems
are basically those systems used in the definition of the database security levels, ranging
from user authentication to assigning different access privilege to different users. The
definition of security levels can be defined for either individual users or sites. Also this
subsystem will support profiling techniques so that profiles on local data stores are created
and individual users profiles or sites can be assigned as part of the profile. By this step,
forward planning of system-wide security, especially for the distributed databases that are
created as a result of external factors such as a corporate will help in the elimination of the
problem.

101

Work on secure distributed databases continues in areas such as developing an architecture
capable of supporting both local and global multilevel processing, which is ranges from the
whole database to certain specified columns or even rows. Another research area is security
in heterogeneous multidatabase systems. The extent to which powerful multilevel security will
ever be successfully applied to corporation-wide multidatabase environment is uncertain,
given the many complexities in that area such as the level of the taxonomy of the
multidatabase system as shown in Figurer 4.1, Chapter 4. Also, the widely varying
requirements for data protection are challenging areas and need to be dealt with by creating a
unified high level standard in security management. In addition, many security management
independent islands have been created because of the differences in issuing security
constraints between the different DBMS vendors. A unification process for such taxonomy will
help in many areas as will be explained later in this part [Simon95, Jonscher95].

Interoperating between underling security services may touch many areas such as
authentication, access acquisition, key distribution, certificate management, and audit. For
example, key distribution services may need to communicate with each other, and audit
services may need to transmit audit records between systems.

10.1 Background of the problem
Multilevel security in the relational distributed databases means certain users can access
subset of certain table. Hence, the security can be given on certain rows of the table, certain
columns of the table, or both. Many security services have been designed and implemented
on many different platforms. However, these implementations are often not compatible
[CCITT].

Security is still a major problem failing in current DBMSs. Heterogeneity and distribution make
this open problem even more difficult. A database owner may want to make certain databases
or part of them only accessible by certain users. However, databases should only be
accessed by authorized users [Siberschartz94]. Security in general requires the following
interrelated cornponents secure:

I The intercommunication lines and protocols, (physical, data-link layers)
The intra-communication lines and protocols, (physical, data-link layers)

'2 The network operating system, (application, presentation, session, and
transport layers)

4 The operating system, (application, presentation, and session layers)
'5 The database management system, (application layer)
6 The database management application, (application layer)
7 The data stores, (application layer), which is the main part of discussion

in this research.

Network security can be seen as a collection of services which: maintain the confidentiality
and integrity of the message as well as the network, provide for the authentication of users,
and make sure of non-repudiation by users and the non-denial of services.

Because access to the distributed/shared databases is critical, this access has to be
authenticated in a way to prevent systems from unauthorized access. There can be two types
of authentication exchanges. The first is called a simple authentication by which a very simple
authentication process is applied such as the supply of the user id and password, and the
recipient checks these. The second authentication type is the strong authentication where by
cryptographic techniques is used to protect the exchange of validating information. Usually
this type requires more than one set of validating information exchanges to successfully
complete the authentication process [Prabhu96]. Today, there are number of strong
authentication protocols in use. Examples are Needham-Schroeder protocol [Needham78],
based on the symmetric key encryption; the CCITTX.509 authentication protocol [CCITT],
requires a control repository of information to store the credentials of the principals; and
Kerberos authentication server which was developed in the Athena project [Steiner88] is
probably the most widely used authentication service.

102

RelationelDatabase,
DBMS and Security

Engine

Database,
DBMS and

Security Engine

Databaea,
DBMS and

Security Engine

Unified security engine based on the
databases instadata

Figure 10.1

00 Detabese,
DBMS and

Security Engine

Part of the IE analyzed prototype proposal is considered as an added security on the
information resource. First, unified views from the actual information source will be derived for
the share purposes. Second, additional security assignments could be added to the unified
view in order to increase the actual information resource database management system
security capabilities. Third, if the information resource lacks the security capabilities then the
IE security will takeover the shortages in this area. In the case of warehousing is considered,
the security requirements have some similarities, the autonomy on the information source is
considered as minimal. The invited talk [Bhargava2000, Ting95] has considered the different
security requirements in the data warehousing where this security prototype is considered as
an advanced security in the way dealing with the different information source components
responsible to formalize security requirements. Furthermore, the analyzed prototype looks to
the different distributed information sources willing to cooperate between each other in an
individual manner rather than looking at the information systems as a unified component as in
data warehousing. Although the security in both, data warehousing and information
cooperation, should have high security, the autonomy is minimal or totally doesn't exist in the
data warehousing.

10.2 The proposed unified security system solution
As a solution to the heterogeneity in security management system, the security managers in
the distributed databases should liaise with each other so that propagation of security
constraints is possible between security managers. In this case if the local site knows other
remote sites' security constraints, remote requests may be checked locally before traversing
and being rejected in the remote site. This will save the requester time and minimize the load
on the wide area links.

According to Figure 10.1 the unified security manager will interoperate between the different
security management operations. The unified security manager will liaise with all the different
security managers in the site so that all the databases operate under unified security
manager. This will make the process of the security manager an easier process. Also, the
assignments of local and global users will be an easier process as well. And of course
interoperability of security management means that through a unified security manager it will
be possible to assign access rights on applications, files, and systems. The autonomy in this
situation can be defined as the single management point on different security management
systems where the access to all the data stores should be through this point.

In object-oriented databases, the general issue of mapping object security to database
security in object-oriented databases is not well defined yet [Mars96]. This issue will be better
understood as some implementations of the object security services become available and
become integrated into persistence. The object will be stored in a data store, and the security
will than be provided by the object security service, which will decide which users may invoke
which methods on which objects.

103

Object provides a clean, realistic model of persistent entities with complex behavior found in
most heterogeneous distributed systems. Several architectures, most notably CORBA
[OMG91, Mowbray95] and DOE [0SF92, King93] have been proposed a standard for
distributed object management systems. However, these lack the formal foundation
necessary to verify system security and other critical properties of high assurance systems
[Hale96].

As security advancement the IE metadata system could be configured as shown in Figure
10.2. It could be considered as a three level architecture information provider. A naming layer
can exist between the local IE information object and the global IE information object to
supply the different naming enforcement that would be used by the global users which are
originally linked to the original names supplied by the information owner. The naming links
objects were considered as part of the syntactic/semantic data dictionary and were discussed
in Section 9.1. Now, it is possible to secure the actual database names from being known.
Also, the one-way reading constraint forms another security firewall against intruders. The
implementation of such constraint is considered as a simple task in the light of the rapid
improvement in the security and firewall related equipment.

Figure 10.2

104

Chapter 11

Existing Middleware Solutions Need a
Middleware

The goal of the Interoperation Engine IE is to provide fairly transparent views for the
heterogeneous information sources to enable them to interoperate easily. The IE project is
mainly a development exercise for a set of tools based on policies and standards that
facilitate the interoperation process in a cooperation manner for the heterogeneous
information sources developed based on the structured database schemas. This chapter
presents an overview of the project, describing the various components of the project and the
interrelationship between them taking into consideration the following seven areas:

1. Initiate a web capable browsing facilities for the heterogeneous information
sources willing to cooperate using the metadata of those information sources.

2. Initiate the design for a universal metadata viewing system capable of
interoperating between the heterogeneous information sources in a
manageable manner considered as an additional component in the current
Internet browsers.

3. A filtering and search engine to browse the metadata information in the
Internet browsers.

4. Establishing the necessary linkage to the heterogeneous information sources
using the metadata browser facilities.

5. Apply a new security layer to the information sources owner in the web.
6. Provide a unified way of contact between the information producers and

consumers.
7. Better usage of the processor time by having the required business rules and

the management of the different constraints to be met in the metadata
knowledge base when the request initiated by the information consumer.

The cooperative interoperation in the IE could be best described by the mutually benefit
relationship between number of information sources in terms of exchanging information and
using each other information results in a cooperative manner. To expand the information
samples it is most desirable to get similar information from others and set a cooperative share
with them. The only obstacles behind this scenario if the others information sources either
using different schema type and/or is fully designed different from my local information
source.

A well-known common problem facing many organizations and decision-makers is the
heterogeneity, disparity and multiplicity in the information sources they are willing to get
information from them. Some of those sources are object based and others are relational.
While others are legacy based on hierarchical and network schemas.

In open systems area, several standards for the open systems has been issued such as SQL
Access Group, ANSI/X3H7, OMG ODMG, Microsoft ODBC, IDAPI, and Borland ODAPI whom
are striving to improve the openness of the future database system and its applications. The
trend will be toward designing global applications that are running on the client side system
and at the same time capable of drawing data from variety of servers with standardized data
access protocols.

105

On the other hand, database management systems are mainly consisting of number of roles
built to manage number of components in an organized manner. These components are the
GUI front end, the processes that carry the business roles of the database application, the
memory management to get and put the record components to and from the permanent
storage and lastly the storage and the accompanied management processes. Basically the
DBMS bind these components together. The last two components are mainly the DBMS local
operating system capabilities. The DBMS works here as a custodian to take over the
management required by the memory and the storage.

Most of the application buyers are looking into the application ability side rather than the
database management systems' capability. This is due to the selection of the application
which is driven by the application availability and suitability. This may be true for some cases
and may not lead to discrepancies if their business objectives are not to integrate their
information with other information sources in order to effectively use their IT resources. It is
obvious that today's standards and available products do not meet what the customers are
looking for. Nor it is economical in terms of the requirements when consider the support and
the problem management costs. So again it becomes obvious that the open system's
promises are not yet fully met. Especially in the sense that the current database requirements
are to provide an internet-enabled databases for the sake to interoperate with others
information sources.

End users wanting to interoperate by integrating their desktop tools and applications in a
consistent and managed manner with whatever databases laying in the enterprise in even a
concurrent manner. This is not yet easy because of the different dialects in SQL, gateways,
and the other required middleware solution components. A unification process to the views of
the information sources heterogeneous schemas that are willing to interoperate has to be
considered. Such requirement would add another layer, which to an extent will form a burden,
sense it is considered as an additional dependency on the interoperation while its advantages
are considered important. It would form a unified atmosphere for the heterogeneous
schemas, which would be considered as another layer of security on the information sources.

One of the very well known complexities of the relational model is its viewing feature.
Updating of views is complicated and can be ambiguous. In general, update on a view
defined on a single table without any aggregate functions can be mapped to an update on the
original underling base table. Additionally, for a view involving joins, an update operation may
be mapped to update operations on the underlying base relations in multiple ways. In general,
the topic of updating views is still an active research area that needs to be looked at from an
open elevation.

In an open manner, and from the extensive research that has been conducted in the different
schemas available around the world it is found that the object orientations is nothing other
than an amalgamated picture of all the existing database schemas. It seems that the ways do
analysts and designer thinking has driven the idea of object orientation. This is why it could
easily be proved that any designed schema could be converted to any other schema type. For
example, it is intended to simulate all the schema types using the relational capabilities and
this, of course, prove the visa versa.

As stated in many of Date's papers [Date98a, Date99a, Date99b, Date99c, Date89b] the
considerations that have been made so far for the object-oriented schemas are originally the
cores of the relational schema. In other wards, there is nothing that cannot be handled by the
relational schema if it is according to the initial outcomes of Codd's original papers. Even
though, according to the survey study conducted in the heterogeneous database schemas,
that all the object-oriented based features are applicable by the existing relational schema.
Examples of conversion applicability are reported in [Grimes98, K1as94, Ambler2000, Qian95,
Keller97]. In addition, [Calman94] has surveyed different issues in both the object model and
the relational model and concludes with assuring the capabilities of the relational model in
doing all the proposed object-orientation operations.

106

the management of the different layers may become difficult sense the changes to meet the
different cases need to be done statically to meet the individual cases requirements. The
most ideal and accurate solutions are those taking the information from the actual information
sources rather than from sources created by mediators where at least the information peas
may not up to date.

Open database system means others can use them in an organized manner. The database
would not be considered open if it does not advertise over a popular network such as the
Internet. At the same time the information resource, which is the database, should be fully
controlled by its owner. Also, any later changes in the information sources structure should
not effect the other information consumers having a link with this information sources unless
drops in the information source is applied by the information source owner.

11.2 The IE prototype
The work in the IE is planned towards creating the suitable environment for the
heterogeneous information sources willing to cooperate by exchanging and sharing their
information with each other. As been clarified in the introduction, database management
systems are simply tools managing storage pointers between both the memory and the
storage. The tasks of memory and storage location assignments are totally taken from the
operating system where the DBMSs are working under them. And, sense the DBMS works
under the local operating system, then it should fully synchronize the memory and the storage
addresses assignments with its local operating system.

The main problems of the Universal Object Identifier (UOID) could be considered in the case
of the services are only between objects, while in the case of information sources a different
universal identifier is required. This identifier should take into consideration the different
information sources components so that the record or object is accessed from anywhere
depending on that universal identifier. In this case the generated database view, which is
assumed to be an IE format standard, has to apply on of three cases to stay in the
cooperation. First, the view has either to stay forever while the cooperation takes place.
Second, the key part related to the attribute is a driven from the attribute value so that it can
be regenerated again on the same value when required. Third, to have an additional space in
the original schema of the information source that is updated with the key generated for the
cooperation purposes. Since this proposed universal identifier is directly adhered with the
record object and not related to the storage, rebuilding to the information sources will not be
affected. Also, for the purpose of accessing the object record in the storage there will be
another complementary object created temporarily when rebuild to database is applied having
the object identifiers and the physical storage addresses.

Now, what are the likely effects in case the URL location of the table is added to the indexes
files applied on the database information sources sense again rebuild will change the physical
location of the record? Again, such situation will require another hashing like table plays as a
mediator resource between the logical record object and the physical location of that object.
Such situations will weakness the possibility of having the physical record object address in
the index. Even though careful implementation of such technique will increase the
performance of the information retrieving.

Here we shouldn't mix the memory operations and the storage operations. In case if the
record in the index forms a pointer to a remote record then it should carry the ID of a record in
a table in the remote database/table side having the actual physical memory/storage of that
record. The data structure used to model the various index organizations is the binary tree B-
tree [Dynamic99, Korsh88, Wiederhold88].

The database information systems, whether they are from the legacy or new systems, are
mainly built out of three main components. The first is the repository, which is a standalone
place, where the information is gathered according to certain criteria. The second is the
business rules that are defined by both the data definition phase and within the application
that derives the repository. The third is the process sequence, which is considered as part of
the business rules that is driven by the application and probably by the schema in the data

108

definition. If the repository is object oriented and not a standalone as in the relational case,
hierarchical and network models other than the first and second components are usually
embedded together.

Most of the existing legacy database information sources residing around the world are
mainly designed using the primitive analysis and design methodologies. At this time none of
the analysis and design methodologies are considering information interoperability between
the heterogeneous information sources. This part has been recently defined by the object-
oriented analysis and design methodologies such as the one come with the OMG ODMG
[Buss e94].

The middleware solutions built for the sake of information interoperability will carry some
discrepancies since they are accessing the database sources through the application that
accesses the data source itself by assigning code wrappers. This is because the source
application simply defines all the business rules, as well as, the different attribute constraints.
Of course, different hardware will require different middleware setup with special preparations
related to the operating systems. In the light of the current requirements in the information
interoperability area, the middleware solutions could play a big rule in area of database
connectivity. The rest of the interoperation requirements need to be assessed by a middle
interoperation layer capable of simplifying the mission for both the information producer, as
well as, the information consumer. This area is the subject of this chapter that is an
explanation of its breadth and the likely proposed solution towards a unified interoperability
layer accompanied by a unified interface for such purpose.

Two different groups of users of the IE are assumed. In the first group, users accessing
information sources from different information producers' sites using the IE. The second
group has the same purpose as the first but unifying the information sources with their own
local information source using the unification facilities provided by the IE.

The mechanism for a view, which is the IE prototype basement, is an important discretionary
authorization mechanism in its own rights. For example, if the owner A of a relation R wants
another account B to be able to retrieve only some fields of R, then A can create a view V of
R that includes only those attributes and then grant SELECT on V to B. The same applies to
limiting B to retrieving only certain tuples of R; a view V' can be created by defining the view
by means of a query that selects only those tuples from R that A wants to allow B to access.

11.3 The IE different processes
In this section, Figure 11.3 shows the route map of the different interoperation processes to
be undertaken by the IE. It is assumed that all the different database components object
identifications will depend on the unique machine access card MAC address. This assumption
is only true if the MAC card does not change as long as the provided shareable information
sources by this machine rune. In the case when the access card becomes faulty then the 1E
will be responsible to inform the other distributed information consumers about the
replacement. The plan in this case is the IE will provide an exceptional table to redirect the
sharing information packets to the correct addresses. The smallest database component is
considered as the attribute. The proposed IE universal attribute identification was shown in
Figure 9.5.

Also, the plan is to have all the related database components that are higher than the attribute
to be generated in the time of information delivery. Referring to Figure 11.3 the following
steps will be undertaken for the interoperation and cooperation processes in the 1E:

1. Metadata registration in the local IE knowledge base side.
• Read the metadata definition from within the IE. This facility should take

the different schemas data definition code and be able to scan the code
and update the IE databases with the different definition values.
Afterwards the metadata code be altered or dropped.

• Manually substitute the values to the IE. Such option is usually selected
in case minor part of the information sources would only be substituted to

109

the global. This mode only need to be used when we initially willing to
create the data definition script of the information source using the IE
capabilities. Or it could be used when only minor part of the information
resource is to be defined for the global or local users

2. Selection of the shared parts of the complete information sources from the local
IE side.
• A name to the sharable sub system part is given.
• Define all the related tables to the defined sub system name. The table at

this stage is equivalent to the relation schema in relational model terms;
record type in the network and hierarchical models and class description
in the object oriented model terms.

• The IE system at this stage will automatically pull up all the related
attributes to the tables by which an exclusion to some of them, according
to the information sources owners' requirements, can be done in this
step. The IE will make sure at this stage that the exclude attribute are not
either primary keys or foreign keys they could have links with other
tables. One of the objectives of the IE layer is to build tables to meet the
global information cooperation requirements. It is meant by this that
during the process of the table creation if it is done through the IE layer a
consideration to a tailored tables could be taken while first the metadata
of the table is created and second while the individual records are written
to that repository.

• Additionally, at this stage we could define the permitted local users and
user groups on this shareable subsystem if the access for the local users
is to be controlled by the global IE. In the case of the shareable
subsystem being only for the local users and no cooperation been done
with an equivalent global information sources this step should not be
undertaken.

• Also, at this stage a name for the shareable subsystem has to be defined
prior to transferring the metadata to the global IE knowledge domain so
that the subsystem is known and accessed globally by this name.

3. Transferring the selected information source part from the local IE knowledge
domain to the global IE knowledge domain. At this stage still the information
source owner can define more access restrictions based on the global users and
users profiles over his own data. For each access space an XML script and the
related necessary buffering environment will be created. The XML script will be
based on the relationship between the different classes as discussed in Appendix
A.

4. Normally the transferred metadata information will contain the access rights on
the different information source components at the time it gets transferred.
Additionally, from within the global IE interface an additional security parameters
can be assigned before activating the metadata to the global information
consumers.

5. Activating the shared information sources to be used by the global information
consumers. Only at this stage advertisement about the available information
space will be know for the global users. Also, at this stage the propagation of the
advertisement can also be for a selective users and/or user profiles. This stage
proofs the full autonomy ownership on the information source by the information
owner. Since the information owner will be able to selectively update the
individuals IE knowledge bases by the information space and its description he
can provide them with. In addition, at this stage we can specify the permitted
users and user groups from the global IE knowledge about the global users
having similar area. This step is considered as the cooperation process between
my information source and other similar information sources define the links to
enlarge my information area.

110

Read from the
actual DB

script

Manually
define the

system
components

\
Select shared
infommtion

resource

components

Transfer
shared panto

-I, Global IE
knowledge

base

Figure 11.3

(Start)--/iv Local IF
Management

Setup the
different -0

users aCCOS1

Activate to
the global

Information
consumers

Reassign
access and

security

Reactivate
changes to
the global

information
consumers

-10 if1n.4.

6. A reassignment to the access rights after the last stage can be done and a
reactivation to the modified parts can be propagated again to the information
consumers. Because changes at this stage have taken place at the local site,
other involved information consumers have to accept the changes or otherwise
they won't get the information they ask for. This stage approves the full autonomy
on the information sources to owners of the information source.

Despite there are many middleware providers in the IT market these days, the majority has
not provided the answers to several problems. The status becomes harder when legacy
applications with a legacy code pages comes in light. Conversion of code pages becomes a
major part in today's middleware solutions. In particular when converting characters in
languages such as Arabic, which requires in some cases to convert one character in one side
with two characters in the other side.

The most important issue in middleware solutions is the robustness of the provided solution.
This is in terms of the simplicity of usage, maintainability of the shared information sources
parts, availability of information for the global and, of course, security of the provided
information sources. Here all the considered facilities in the proposed solution have been
fitted. This work is considered to be a complementary to the existing interoperability solutions.

Currently, the IE is considered as a standalone system which is mainly working at the same
level of the DBMS (i.e. under the operating system) where the checking is done using the IEs'
checking procedures. Eventually a further study to the possibility of embedding the IE on the
operating systems kernels is considered. Such a new operating system enables users to
manage the heterogeneous information sources interoperability process will be initiated and
searched.

111

• Browsing the access rights of the available information sources for only
personal account and any account where permission was granted.

Database Administrators facilities:
• Reassignment of the access rights and information sources sizes to their

local information consumers.
• Binding the local information source with the other available global
information sources as a single unified database for a group of consumers by
passing them to pre created profiles to access the various information sources
transparently.

• Make the necessary bindings between the local data sources and global
data sources.

• Distribution and redistribution of the access profiles to the local users.
• Assignment of access rights to the local and global users in his domain.

The main focus point during the design of the IE prototype is the information cooperation
process that involves getting information from many disparate databases with different
schema types. Considerations such as remote updating form and to different schemas are
taken into account in the IE design. The normal process that will happen is that an information
owner who wants to provide access on his/her information to the other users having similar
information will make this information available to his/her local IE which will take the
responsibility of informing the others permitted users.

The information cooperation process will require number of parameters to be activated by the
IE. The following is a list of the prerequisite parameters required for the interoperation:

1. Systems stamp is where the wide area links definition exists. Mainly it is
where the Internet Protocol IP addresses and the domain name systems
names are defined. Sense the IP is the most common protocol in use these
days; it has been used for the communication mechanism between the
distributed IEs.

2. Systems path is the set of parameters where the actual systems' information
is stored. With the systems' stamp information it forms the exact path for the
incoming and outgoing processes.

3. Shareable subsystem is the name of the system which shares information with
other global systems. Each system's stamp and path may have more than
one shareable subsystem at a time.

4. Schemas are the actual tables belong to certain shareable subsystem.

5. Attributes are the number of fields belong to a schema.

6. Constraints are the list of restrictions that should be met prior to any updated
to the actual information sources. Normally constraints are assigned to
attributes within a table. The lists of possible constraints for different
schemas are shown in Figure 8.9.

12.1 System startup
The initial plan for the startup of the IE system with an Internet browser where the IE is
considered as part of the browser supporting the interoperability of the heterogeneous
distributed databases. A startup interface the database administrator can use it to do the
necessary cooperation bindings to users. The administrator also gives access to other global
cooperating users on the local site information sources through the IE. The initial main menu
page is shown in Figure 11.1. Although the initial screen for both accessing the local and
global 1E engines has to be an access authorization screen.

113

A

12.3 Information consumer facilities
The information consumer can either use the producers information sources as it was
provided by the local IE layer or to merge the information sources with his/her own using two
different approaches. Either accumulate the provided information sources with his/her own
information source in case it has similar information or a relationship with that information
source could be established. On the other hand, the full IE system has the following
interfaces:

• Client Interface
• Server DBA Interface
• Local DBA Interface
• Cooperation Data Sources Query Services

The remaining interfaces such as what will appear on the browser were shown in Figure 8.2,
Chapter 8. Also, throughout the explanation of the different sections in this thesis a formal
explanation has been done to the different prototype components.

12.4 Database Administrators facilities
Normally administrators are the highest people in terms of the access rights on and of the
systems in the world. They have the authority in giving other users the rights on certain
systems as they have or even segregates people from accessing certain systems. The same
case is applied to the IE by which they may give partial cooperation implementation
capabilities to certain users where they can build their own cooperation services in between
their own information sources and others information sources. Or they may build the
cooperation profiles by which they can grant usage access to different users and users
groups. Dealing with the different IE user interfaces the following steps shown in Figure 12.3
have to be followed for the different cooperation processes.

11
	

3

6,7,8 1.2IE Global Knowledge

9,10

1I	

IE Local Knowledge

4,5

Local Database
Systems & Users

19

Heterogeneou. database. repositories

	

1/
DB1	 DB2	 DB3	 DB4

Flgure 12.3

1. The local users information is pulled on the local IE knowledge base.
2. The database systems metadata information could be transferred from the local database

systems area to the local IE knowledge base.
3. Define the metadata of the database systems and push to or read by the database

management system. The specific definition of the schema type and the database
management system name is required in this case sense each DBMS have its own
metadata definition criteria.

115

4. In the local IE system the metadata of any database system can be defined and the script
for creating the actual database can be also generated.

5. The definition of the different shareable sub systems are defined in the local IE repository
prior to pasting them to the global users area in the global IE system knowledge base.

6. Originally the local systems users are residing in the local network operating system or
the local database management system. After achieving step number 1, the users may
again be regrouped and passed to the global IE knowledge base prior to attaching them
to shareable sub systems.

7. The shareable sub systems metadata with the different assigned permissions is done at
this stage. This is considered as the green light to the global users to access the local
information sources. From this stage the site DBA can propagate the necessary
information to the distributed IE telling them about the available information space.

8. Any updates to either the users or the shareable sub systems will be done at this stage.
The updates are adding new users, deleting users/groups, change in the access rights on
certain shareable sub systems will be done through the local IE knowledge base and will
be transferred to the global IE area by which it will propagate only the updates to the
global IEs. The proposed handling protocol discussed at section 8.4 will takeover this
process.

9. The IE global knowledge mechanism deals with the local information sources when
queries are submitted to it.

10. In addition, the IE global knowledge base will assign and reassign the different access
rights on information sources additional to the ones come from the local knowledge base.

The remaining of steps are those related to the permitted access between the IE layers and
the physical information sources. As shown in the figure, the various verifications for the IE
information will directly be confirmed from the actual information sources.

116

Reference List

[Abernethy88] C. Abernethy, (1988). "Human—computer interface standards: Origins,
organizations and comment", In Oborne, D.J. (Ed.), international Review of
Ergonomics, 1988.

[Alonso91] R. Alonso, D. Barbara, S. Cohn, "Data Sharing in Large Heterogeneous
Environment", Proceedings Seventh International Conference on Data Engineering,
April 8-12, Kobe, Japan, 1991.

[Ambler2000] S. Ambler, "Mapping Objects To Relational Databases", July 3, 2000,
http://www/AmbySoft.com/mappingObjects.pdf.

[Anderson93] M. Anderson, Y. Dupont, S. Spaccapietra, K. Yetongnon, M. Tresch, H. Ye,
"FEMUS: A Federated Multiligual Database System", "Advanced Database Systems",
"Springer Verlage", 1993.

[Ashir2000] J. Ashir, "Technical Perspective on the Heterogeneous Databases
Interoperability", IEEE Computer Society Press, Proceedings of the 11 th International
Workshop on Database and Expert Systems Applications, DEXA 2000, Greenwich,
London, UK, 6-8 September 2000.

[Bacon93] J. Bacon, "Concurrent Systems", Addison-Wesley, 1993.

[Baker90] K. Baker, 'Transaction Management on Multidatabase Systems", Doctor of
Philosophy thesis, Department of Computing Sciences, University of Alberta,
Edmonton, Alberta, Fall 1990.

[Barbra91] D. Barbra, C. Clifton, "Information Brokers: Sharing knowledge in a
Heterogeneous Distributed System", Proceedings Seventh International Conference
on Data Engineering, April 8-12, Kobe, Japan, 1991.

[Bertino93] E. Bertino, L. Martino, "Object-Oriented Database Systems, Concepts and
Architecture", Addison-Wesley, 1993.

[Bhargava2000] B. Bhargava, "Security in Data Warehousing", Proceedings of Second
International Conference in Data Warehousing and Knowledge Discovery, London,
UK, September 2000, 287-289.

[Black87] U. Black, "Computer networks, protocols, standards, and interfaces", Printice-
Hall International, 1987.

[Booch99] G. Booch, J. Rumbaugh, I. Jacobson, 'The Unified Modeling Language User
Guide", Addison Wesley, 1999.

[Bouguettaya91] A. Bouguettaya, R. King, K. Zhao, "FINDIT: A Server Based Approach to
Finding Information in Large Scale Heterogeneous Databases", First International
Workshop on Interoperability in Multidatabase Systems, Kyoto, Japan, IEEE
Computer Press, April 7-9, 1991.

[Bouguettaya941 A. Bouguettaya, "Large Multidatabases: Beyond Federation and Global
Schema Integration", Proceedings of the Fifth Australian Database Conference,
Christchurch, New Zealand, Global Publications Service, Jan. 1994.

[Bouguettaya95] A. Bouguettaya, S. Milliner, "Co-database approach to database
interoperability", lEICE Transaction of information systems, Vol. E78-D, No. 11,
November 1995.

[Bouguettaya95a] A. Bouguettaya and S. Milliner, "Data Discovery in Large Scale
Heterogeneous and Autonomous Databases", Special Issue on Advances in Digital
Libraries, Eds: N. R. Adam and B. Bhargava, Springer Verlag Lecture Notes in
Computer Science, 1995.

120

[Bouguettaya95b] A. Bouguettaya and S. Milliner, "Co--database Approach to Database
Interoperability", lEICE Transactions on Information and Systems. Vol. E78-D, No.
11, November 1995.

[Bourret99] R. Bourret, "XML and Databases", URL: http://www.informatik.tu-
darmstadt.de/DVS1/staff/bourret/xml/XMLAndDatabases, December 1999.

[Breitbart86] [Yuri et al., 1986] Y. Breitbart, P. Olson, G. Thompson, "Database Integration
in a Distributed Heterogeneous Database System", IEEE Conference in Data
Engineering, pp 301-310, February 1986.

[Bright94] W. Bright, A. Hurson, S. Packzad, "Automated Resolution of Semantic
Heterogeneity in Multi-databases", "ACM Trans. on Database Systems", June 1994.

[Brodie95] M. Brodie, M. Stonebraker, "Migrating Legacy Systems: Gateways, Interfaces &
the incremental approach", Murgan Kufmann Publisher, 1995.

[Browne93] S. Browne, "Communication and Synchronization Issues in Distributed
Multimedia Database Systems", ", "Advanced Database Systems", "Springer
Verlage", 1993.

[Budd91] T. Budd, "An Introduction to Object-Oriented Programming", Addison-Wesley,
1991.

[Burleson94] K. Burleson, "Managing Distributed Databases", John Wiley & Sons Inc.,
1994.

[Busse94] R. Busse, P. Fankhauser, G. Wolfgangklas, "IRO-DB: An object-oriented
approach towards federated and interoperable DBMS", Proceedings of the
International Workshop on Advances in Databases and Information Systems
ADBIS'94, Moscow, Russia, May 1994.

[Busse94a] R. Busse, P. Fankhauser, E. Newhold, "Federated Schemata in ODMG",
Proceeding of the Second International East-West Database Workshop, September
1994, Klagefurt, Austria.

[Calman94] D. Calman, "Moving forward with relational: looking for objects in the relational
model, Chris Data finds they where there all the time", DBMS Interview, October
1994, http://www/dbmsmag.comfint9410.html.

[Cardenas80] A. Cardenas, M. Pirahesh, "Database communication in heterogeneous
database management system network", Information systems, Vol. 5, No. 1, 1980,
pp. 55-97.

[Carey94] M. Carey, L. Haas, P. Schwarz et al., "Towards heterogeneous multimedia
information systems: the garlic approach", In Technical Report, IBM Almaden
Research Center, 1994.

[Castano95] S. Castano, M. Fugini, G. MaheIla, P. Samarati, "Database Security",
Addison Wesley, 1995.

[CCITT] The Directory, Overview of concepts, Model and services, CCITT
Recommendation X500, Blue Book, Vol VII, Fascicle V 11.8, Geneva, Switzerland.

[Chen91] J. Chen, 0. Bukhres, J. Askary, "A Customized Multidatabase Transaction
Management Stratrgy", Database and Expert Systems Applications, 4th International
Cenference, DEXA '93 Prague, Czech Republic, pp. 80-91, September 1991.

[Chen94] J. Chen, Y. Hung, "An Integrated Object-Oriented Analysis and Design Method
Emphasizing Entity/Class Relationship and Operation Finding", Journal of systems
software, Issue 24, 1994, PP 31-47.

[Claude93] F. Claude, K. Roger, "Amalgame: A Tool for Creating Interoperating,
Persistent, Heterogeneous Components", "Advanced Database Systems", "Springer
Verlage", 1993.

[Coad91] P. Coad, E. Yourdon, "Object-Oriented Analysis", Yourdon Press, 1991.

[Coad91] P. Coad, E. Yourdon, "Object-Oriented Design", Yourdon Press, 1991

121

[Codd70] E. Codd, 1970, "A Relational Model for Large Shared Databanks",
Communications of the ACM, 13 (6), 377-390, (June 1970).

[Codd71a] E. Codd, 1971a, "Normalized Data Base Structure: A Brief Tutorial", IBM
Research Report RJ 935

[Codd71b] E. Codd, 1971b, "Further Normalization of the Data Base Relational Model",
IBM Research Report RJ 909

[Codd71c] E. Codd, 1971c, "Data Base Sublanguage Founded on the Relational
Calculus", IBM Research Report RJ 893

[Codd72] E. Codd, 1972, "Relational Completeness of Data Base Sublanguages", IBM
Research Report RJ 987

[Coleman94] D. Coleman, P. Arnold, S. Bodoff, C. DoIlin, H. Gilchrist, F. Hayes, P.
Jeremaes, "Object-Oriented Development, The Fusion Method", Prentice Hall, 1994.

[Computer79] Computer Corporation of America, "A prototype chemical substances
information network", Tech. Report CCA-79-19, Cambridge, Mass., August 21, 1979.

[Cox871 B. Cox, "Object-Oriented Programming", Addison-Wesly, April 1987.

[Date89b] C. Date, "The Birth of the Relational Model - Thirty Years of Relational",
Intelligent Enterprise, Volume 1, Number 1, October 1998.

[Date95] C. Date, "An Introduction to Database Systems", Addisson Wesly Publishing
Company, 6th Edition, 1995.

[Date98a] C. Date, "Thirty Years of Relational: Relational Really is Different", Intelligent
Enterprise, Volume 1, Number 1, October 1998.

[Date99a] C. Date, "Thirty Years of Relational: The First Three Normal Forms", Intelligent
Enterprise, Volume 2, Number 5, March 30, 1999.

[Date99b] C. Date, "Thirty Years of Relational: The First Three Normal Forms, Part 2",
Intelligent Enterprise, Volume 2, Number 6, April 20, 1999.

[Date99c] C. Date, "Thirty Years of Relational: Relational Forever", Intelligent Enterprise,
Volume 2, Number 8, June 1, 1999.

[Daya184] U. Dayal, H. Hwang, "View Definition and Generalization for database
integration in a multi-database system", "IEEE Trans. of Software Engineering", Vol.
SE-10, Nov. 1984.

[Decker92] D. Decker, V. Hereweghen, F. Piessense, "Heterogeneous intradomain
authentication", USENIX Association, September 1992.

[Deen85] S. Deen, R. Amin, et al., "The Architecture of a generalized Distributed Database
System — PRECI*", The Computer Journal, pp 282-290, Vol. 18, No. 3, 1985.

[Dogac99] A. Dogac, M. Ozsu, a Ulusoy, — Current Trends in Data Management
Technology, 1999.

[Dynamic99] Dynamic Information Systems Corporation, "The Art of Indexing", A White
Paper, October 1999.

[Edelstein90] H. Edelstein, "Distributed Database", Data Base Management Systems,
September 1990.

[Elmasri94] R. Elmasri, S. Navathe, "Fundamentals of database systems", "Addison
Wes er, 1994.

[Fowler97] M. Fowler, "Analysis Patterns, Reusable Object Models", Addison Wesley,
1997

[Frank95] T. Frank, "Object-Oriented Technology: PC-Based 00AD Tools", IEEE
COMPUTER, March 1995.

[Garcia941 H. Garcia-Molina, et al., "The TSIMMIS approach to mediation: data model and
languages (extended abstract), In the Technical Report, Stanford University, 1994,

122

[Gligor84] V. Gligor, G. Luckenbaugh, "Interconnecting Heterogeneous Database
Management Systems", IEEE Comuter, January 1984, pp. 33-43.

[Gligor86] V. Gligor, R. Popescu-Zeletin, "Transaction Management in Distributed
Heterogeneous Database Management Systems", Inf. Syst. 1986, 11(4):287-297.

[Grimes98] S. Grimes, "Modeling Object/Relational Databases", DBMS, April 1998

[Grimsom95] J. Grimsom, "Distributed Information Systems", Theory and Practice of
Informatics, 22' d Seminar on Current Trends in Theory and Practice of Informatics,
Milovy, Czech Republic, November/December 1995.

[Hale96] J. Hale, J. Threet, S. Shenoi, "A dual framework for high assurance distributed
object security", New Security Paradigms 96, Lake Arrowhead, CA, September 16-19,
1996.

[Heimbigner85] D. Heimbigner, D. McLeod, "A federated architecture for information
systems", ACM Transaction on Office Information Systems, Vol. 3, No. 3, pp. 253-
278, July 1985.

[Hess96] M. Hess, J. Lorrain, G. McGee, "Multiprotocol networking - a blueprint", "IBM
Systems Journal, Network Technologies and Systems", Volume 34, Number 3,
pp.330 — 346, 1996.

[Holdaway89] K. Holdaway, N. Bevan, "User system interaction standards, Computer
Communications, (April 1989).

[Islam97] M. Islam, H. Selamet, M. Sap, "A dynamic access control with binary key-pair",
Malaysian Journal of Computing Sciences, Vol. 10, Issue 1, pp.36-41, June 1997.

[Jeffery95] K. Jeffery, "Database: introduction to problems", Theory and Practice of
Informatics, 22 Seminar on Current Trends in Theory and Practice of Informatics,
Milovy, Czech Republic, November/December 1995.

[Jonscher95] D. Jonscher, K. Dittrich, "Argus: a configurable access control system for
interoperable environment", Database security IX status and prospects, Proceedings
of the 9th annual IFIP TC11 working conference on database security, August 1995.

[Jung97] I. Jung, J. Lee, S. Moon, "Performance of concurrency control methods in
multidatabase systems", Journal of KISS[B], Software and Applications, Vol 24, Issue
6, pp.618-28, June 1997.

[Kalinichenko90] L. Kalinichenko, "Methods and tools for equivalent data model mapping
construction", "Advances in Database Technology-EDBT '1990".

[Keimbleton81] S. Keimbleton, P. Wang, "Application and protocols in distributed systems:
Architecture and implementation", Lecture notes in computer science, Paul Lampson
and Siegert eds., Vol. 105, Springer Verlag, New Yourk, 1981, pp. 308-370.

[Keller97] W. Keller, "Mapping Objects to Tables - A Pattern Language", Proceedings of
the 1997 European Pattern Languages of Programming Conference, Irsee, Germany,
Siemens Technical Report 120/SW1/FB, 1997

[Kerr92] J. Kerr, "An Introduction to Object-Oriented Programming and Information
Engineering", Data Resources Management, fall 1992.

[King] R. King, M. Novak, "Supporting Information Infrastructure for Distributed,
Heterogeneous Knowledge Discovery", manuscript.

[King93] W. Rosenberry, D. Kenney, G. Fisher, "Understanding DCE", O'Reilly and
Associates, Inc., Sebastpal, California, 1993.

[K1as94] W. Klas, G. Fischer, K. Aberer, "Integrating Relational and Object-Oriented
Database Systems using a Metaclass Concepts", Journal of Systems Integration,
Volume 4, Number 4, Kluwer Academic Publisher, 1994.

[Korsh88] J. Korsh, L Garrett, "Data Structures, Algorithms, and Program Style Using C",
PWS-KENT Publishing Company, Boston, 1988.

123

[Krishnamurthy87] V. Krishnamurthy, Y. Su, et al., "A Distributed Database Architecture for
an Integrated Manufacturing Facility", Second Symp. Knowledge-Based Integrated
Info. Sys. Eng., May 1987.

[Kulkarni94] D. Kulkarni, A. Banerji, D. Cohn, "Operating System Support for Cooperation
in Distributed OODBs", "Distributed Object Management, by M. Tamer Ozsu, U.
Dayal, P. Valduriez", Morgan Kufmann Publishers, 1994.

[Lee97] I. Lee, H. Yeom, J. Lee, "Performance evaluation strategies for global deadlock
resolution in multidatabase systems", Journal of KISS[B], Software Application, Vol.
24, Issue 5, pp. 487-500, May 1997.

[Litwin86] W. Litwin, A. Abdellatif, "Multidatabase Interoperability", IEEE Computer, pp. 10-
18, December 1986.

[Litwin88] W. Litwin, "From database systems to multi-database systems: Why and How",
"In Proceedings of 6 th British National Conference on Databases", July 1988.

[Liu95] L. Liu, C. Pu.,'The distributed interoperable object model and its application to
large-scale interoperable database systems", ACM International Conference on
Information and Knowledge Management (CIKM'95), Baltemore, Maryland, USA,
November 1995.

[Liu96] L. Liu, C. Pu., " An Object-oriented Approach to Interoperable Heterogeneous
Information Sources", Invited Paper in Proceedings of the Seventh International Hong
Kong Computer Society Database Workshop, Hong Kong (May 1996) (Springer
Verlag) pp49-65.

[Luker94] P. Luker, "There's More to 00P Than Syntax", SIGCSE Bulletin, February 1994.

[Macleod93] D. Macleod, D. Fang, S. Ghandeharizadeh, A. Si, 'The design,
implementation, and evaluation of of an object-based sharing mechanism for
federated database systems", In Proceedings of International Conference on Data
Engineering, Vienna Austria, 1993.

[Marks96] D. Marks, P. Sell, B. Thuraisingham, "MOMT: A multilevel object modeling
technique for designing secure database applications", Journal of Object-Oriented
programming, July-August 1996, Vol. 9, No. 4, pp. 22-29.

[Miura95] T. Miura, "Optimizing complex objects requires in a visual data manipulation
language", SEKE '95, 7 th International Conference on Software Engineering and
Knowledge Engineering, pp. 153-7, 1995.

[Monarchi92] D. Monarchi, G. Puhr, "A Research Typology for Object-Oriented Analysis
and Design", Communications of the ACM, September 1992, Volume 35, Number 9.

[Mowbray95] T. Mowbray, R. Zahavi. The Essential CORBA: Systems Integration Using
Distributed Objects. John Wiley, New York, 1995.

[Munakata97] K. Munakata, "Integration of heterogeneous information sources", System
Control and Information, Vol. 40 Issue 12, pp. 512-21, 1997.

[Murphy94] J. Murphy, J. Grimson, 'The Jupiter System: A prototype for Multi-database
InteroperabilitV', 121h National Conference on Databases, BNCOD 12
Guildford, United Kingdom, Proceedings, Springer-Verlag, July 1994

[Murthy] V. Murthy, "Probabilistic Security Protocol for Real-Time Authentication in
Distributed Databases", menu script.

[Muth91] P. Muth, T. Rakow, "Atomic Commitment for Integrated Database Systems",
IEEE, 1991

[Narasimhan97] P. Narasimhan, L. Moser, P. Melliar-Smith, "Exploring the Enternet Inter-
ORB Protocol Interface to Provide CORBA with Fault Tolerance", Proceedings of the
3rd USENIX Conference on Object-Oriented Technologies and Systems COOTS, pp.
81-90, 1997.

[Needham78] R. Needham, R. Schroeder, "Using encryption for authentication in large
network of computers", Comm. ACM. 21, December 1978, pp. 933-999.

124

[OMG91] Object Management Group and X/Open. The common object request broker
Architecture and specification. Technical Report OMG Document No. 91.12.1, Object
Management Group and X/Open, Framingham, Massachusetts, 1991.

[0SF92] Open Systems Foundation, The OSF distributed computing environment.
Technical Report OSF-DCE-PD-1090-4, Open Systems Foundation, Cambridge,
Massachusetts, 1992.

[OSPF99] OSPF and the Internet, URL: http://www.livingston.com/marketing/whitepapersi
ospf_whitepaper.html, Lucent Technology, 1999.

[Ozsu91] M. Ozsu, P. Valduriez, "Principles of Distributed Database Systems", "Prentice-
Hall", 1991.

[Ozsu91] M. Ozsu, P. Valduriez, "Principles of Distributed Database Systems", "Prentice-
Hall", 1991.

[Ozsu93] M. Ozsu, U. Dayal, P. Valduriez, "Distributed Object Management", Morgan
Kaufmann, 1993.

[Ozsu93a] M. Ozsu, "Interoperability and Multi-database Systems", "The Relational
Journal", April/May 1993.

[Papakonstantinou95] Y. Papakonstantinou, H. Garcia-Molina, J. Windom, "Object
Exchange Across Heterogeneous Information Sources", In Proceedings of
International Conference on Data Engineering, Taiwan, March 1995.

[Peters88] L. Peters, "Advanced Structured Analysis and Design", Printice Hall, 1988.

[Pozefsky96] D. Pozefsky, R. Turner, A. K. Edwards, S. Sarkar, J. Mathew, G. Bollella, K.
Tracey, D. Poirier, J. Fetvedt, W. S. Hobgood, W. A. Doeringer, D. Dykeman,
"Multiprotocol Transport Networking: Eliminating application dependencies on
communications protocols", "IBM Systems Journal, Network Technologies and
Systems", Volume 34, Number 3, pp.472 — 500, 1996.

[Prabhu96] M. Prabhu, S. Raghavan, "Security in computer networks and distributed
systems", IEEE Computer Communications, Issue 19, 1996, pp. 379-388.

[Qian95] X. Qian, L. Raschid, "Query Interoperation among Object-Oriented and Relational
Databases", Proceedings of the International Conference on Data Engineering, 1995.

[Raschid94] L. Raschid, "Issues in Supporting Interoperable Query Processing with
Multiple Heterogeneous Information Servers", Workshop on the Information
Technology and systems, International Conference on Information Systems,
December 1994.

[Reinwald96] B. Reinwald, T. Lehman, H. Pirahesh, V. Gottemukkala, "Storing and using
objects in a relational database", IBM Systems Journal, Vol. 35, No. 2, 1996, pp172-
191

[Rumbaugh91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, "Object-
Oriented Modeling and Design", Engwood Cliffs, New Jersey, Printice Hall 1991.

[Rumbaugh99] J. Rumbaugh, I. Jacobson, G. Booch The Unified Modeling Language
Reference Manual", Addison Wesley, 1999.

[Shan93] M. Shan, "Pegasus architecture and design principles", In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data", 1993.

[Sheldon94] T. Sheldon, "LAN Times Encyclopaedia of Networking", Osborne McGraw-
Hill, 1994.

[Sheth90] A. Sheth, J. Larson, "Federated database systems and manageing distributed,
heterogeneous, and autonomous databases", ACM Computing Surveys, Vol. 22, No.
3, pp. 183-226, September 1990.

[Siberschartz94] A. Siberschartz, M. Stonebraker, J. Ulman, "Database Systems:
Achievements and opportunities", Readings in database systems, Murgan Kufmann
Publisher, Sanfrancisco, California, 1994.

125

[Silberschatz97] A. Silberschatz, H. Korth, S. Sudarshan, "Database System Concepts",
McGraw-Hill, 1997.

[Simon95] A. Simon, "Strategic database technology: Management for the year 2000",
Murgan Kaufmann Publishers, San Francisco, California, 1995.

[Siyan94] K. Siyan, "CNE Training Guide, Netware TCP/IP and NFS", New Riders
Publishing, Indianapolis, Indiana, 1994.

[Smith81] J. Smith, "Multibase - Integrating Heterogeneous Distributed Database
Systems", AFIPS Conf. Proc., Vol 50, 1981, pp. 487-499.

[Smith81] J. Smith, P. Bernstein, et al., "Multibase—Integrating Heterogeneous Distributed
Database Systems", Proceedings of AFIPS, pp 287-499, 1981.

[Staniszkis] W. Staniszkis, "Integrating Heterogeneous Databases", "State of the Art
Report on Relational Database", Pergamon press Ltd., Chapter 16, pp 229-287.

[Steiner88] J. Steiner, C. Neuman, J. Schiller, Kerberos, "An authentication service for
open network systems", Project Athena, Technical report, MIT 1988.

[Stewart90] T. Stewart, "SIOIS—Standard interfaces or interface standards", Proceedings
IFIP INTERACT'90 (Cambridge, U.K., 27-31 August), 1990.

[Stonebraker90] M. Stonebraker, A. Rowe, B. Lindsay, J. Gray, M. Carey, M. Brodie, P.
Bernstein, D. Beech, 1990, Third-generation Database System Manifesto", SIGMOD
Record, 19(3), September 1990.

[Stonebraker94] M. Stonebraker, "Distributed database systems", Readings in database
systems, Morgan Kufmann Publisher, pp. 507-514, 1994.

[Subrahamanian94] S. Subrahamanian, "Amalgamating Knowledge Bases", "ACM Trans.
on Database Systems", June 1994.

[Tanenbaum87] A. Tanenbaum, "Operating Systems, design and implementation",
"Printice-Hall", 1987.

[Templeton87] M. Templeton, D. Brill, et al., "Mermaid—A Front-End to Distributed
Heterogeneous Databases", Proceedings of IEEE, pp 695-708, No. 5, May 1987.

[Terplan87] K. Terplan, "Communication networks management", Printice-Hall
International, 1987.

[Ting95] T. Ting, " How secure is secure: Some thoughts on security metrics", Database
security IX status and prospects, Proceedings of the 9th annual IFIP TC11 working
conference on database security, August 1995.

[Tomasic96] A. Tomasic, L. Raschid, P. Valduriez, "Scaling Heterogeneous Databases
and Design of Disco", Proceedings of the International Conference on Distributed
Computer Systems, 1996.

[Verma95] R. Verma, "Unique normal forms and confluence of rewrite systems
Persistence", IJCAI-95, Proceedings of the 14 th International Joint Conference on
Artificial Intelligence, pp. 362-8, Vol. 1, 1995.

[W3C98] W3C Extensible Markup Language (XML) 1.0 Recommendation, REC-xml-
19980210, URL: http://www.w3.org/TR/1998/REC-xml-19980210, 10 February 1998.

[Weinberg92] R. Weinberg, T. Guimaraes, R. Heath, "An Introduction to Object
Orientation", Data Resources Management, Winter 1992.

[Wiederhold88] G. Wiederhold, "File Organization for Database Design", McGRAW-HILL
International Edition, 1988.

[Wiederhold92] G. Wiederhold, "Mediators in the architecture of future information
systems", IEEE Computer Magazine, March 1992.

[Wiederhold93] G. Wiederhold, "Intelligent integration of information", In Proceedings of
ACM/SIGMOD Annual Conference on Management of Data", 1993.

126

Appendix A

The IE UML classes

This appendix consists of two complementary parts. The first is the UML version of the
various interrelated classes. The second is a spreadsheet contains the movement parts from
the local IE knowledge to the global IE knowledge.

Figure A.1: Local lnteroperation Engine classes.
Figure A.2: Global Interoperation Engine classes.
Figure A.3: Local lnteroperation Engine to Global Interoperation Engine data transfers.
Figure A.4: Detailed Local Interoperation Engine classes.
Figure A.5: Local Users and Systems profile classes.
Figure A.6: Detailed Global lnteroperation Engine classes.
Figure A.7: Global Users and Systems profile classes.

128

LocalSystemStamr

#stamgOid : String
+ipAddress : String
+dnsName : String

1..n

0..n

Locallndexes

#index0id : String
+indexName : String
+involvedAttributes [1..1: GlobalAttribull1..1

1..1

AccessType

LocalSystem

LocalSystemPath
#localSystemOid : String
-localSystemName : String
-belongingTables[1.1: LocalTable

.n itsvstemPathOid : String 1 ..1
in

-belongingShareableSystemProfiles [1..1: LocalShareableSubSystemProfi?—
String+systemVolume : -systemHostPath : LocalSystemPath

+systemPath : String -belongingUsersProfiles 	 LocalUserProfile
+belongingHosIld : Global SystemStamp -systemAddress : LocalSystemStamp
+hostedSystems [1..1: GlobalShareableSubSysten -dictionaryMeanings	 LocalDictionary

+getRegisteredLocalUsers()

LocalAttributeType

#attributeTvgeOid : String

1 ..1

LocalAttribute

1 ..n

+attnbuteType : String
+defaultAttributeLength : Intege*

1..1

#attributeOid : String
+attributeName : String
+o-oAttributeType : LocalTable
+attributeType : GlobalAttributeType
+attributeLength : Integer
+belongingSystemProfiles [1..] : GlobalShareableSubSystemProfi
+belongingTable : LocalTable
+defaultValue : String
-dictionaryMenings [1..1: LocalDictionary

1..

e

1 ..1

LocalAttributeConstraints

#constraintOld : String
-constraintName : String
-constraintDescriplion : String
-relatedAttnbutes [1..1 : GlobalAttribute
-accessType : AccessType
-rangeFrom : Stnng
-rangeTo : String
-accessedBylndividualUsers [1..1: GlobalUser
-notAccessedBylndividualUsers [1.1 : GlobalUser
-accessed ByUserProfiles [1..1: GlobalUserProfile
-notAccessedByUserProfiles 111: GlobalUserProfil

Figure A.4 (Part 1)

132

LocalShareableSubSystem

#subSvstemOid String
+subSystemName : String
+belongignSysternAddress : Global SystemStan--)
+joiningTables [11: LocalTable
+relatedAttributes 11.1 : GlobalAttribute

1..1

1..n

Loca lObjectOriented Methods

A

LocalObjectOrientec
LocalRelational

#supportedSchema LocalTable
#attributeReference • LocalAttribut

#unioueOid : String
+uniqueConstraintName : String
+uniqueAttribute : GlobalAttribute 0..n

LocalUn iqueConstra int

#tableOid : String
+tableName : String
+belongingSystem : GlobalShareableSubSystem
	+tableRelatedAttributes [1.1: GlobalAttribute
+accessingSystemProfile [1.1: GlobalShareableSubSystemProfi
-dictionaryMenings [1.1 : LocalDictionary

LocalTable

1..1

Su bSystemConstraints

#subSvstemConstraintOid 	 String
-constraintName : String
-constraintDescription : String
-related SubSystems [1.1: GlobalShareableSubSyste n
-accessType : AccessType
-accessedBylndividualUsers [10.1: GlobalUser
-notAccessedBylndividualUsers [1..1: GlobalUser
-accessedByUserProfiles [1..1 : GlobalUserProfile
notAccessedByUserProfiles [1..1: GlobalUserProfile

1..1

LocalOrder

#OrderOid : String
-Order : {ASCE, DESC}

LocalHierarchical -orderBy [1.1: Globaktribute

e
LocalHierarchyLinks

#hierarchyLinkOid : String
-belongingRecord : LocalTable
-typeRootOf : LocalShareableSubSysten
-parent : GlobalTable
-ehildNumbe : Integer
-pointerName : String
-pointerTo :LocalTable

LocalHierarchicalKey

iikeyOKI : String
-belongingRecord : LocalTabl;
-keyField : LocalAttribute

LocalForignKeyConstraint

#forig nKevOid • String
+fodgnKeyConstraintName : String
+forignKeyDefault : String
+forignKey : GlobalAttribute
+referenceTable : GlobalSchema
+referenceAttribute : GlobalAttribute
+onDelete : {SET DEFAULT, CASCADE, NULL:
+onUpdate : {SET DEFAULT, CASCADE, NULL}

Figure A.4 (Part 2)

133

GlobalAttributeType

#attributeTyneOid : String
+attributeType : String
+defaultAttributeLength : Intege

1 ..n

GlobalPrimaryKey

#primaryKeyOid : String
0..1

-primaryKeyAtrributes [1..1 : GlobalAttributa

ikonstraintOid : String
-constraintName : String
-constraintDescription : String
•latedAttributes [1.1 : GlobalAttribute
-accessType : AccessType
-rangeFrom : String
-rangeTo : String
-accessedBylndividualUsers [1..] : GlobalUser
-notAccessedBylndiyidualUsers [1.1 : GlobalUser
-accessedByUserProfiles [1.1 : GlobalUserProfile
-notAccessedByUserProfiles 11..1 : GlobalUserProfil:

1..1

AccessType

Global SystemStamp

1 ..n

GlobalSystem Path

#systemPathOid : String
#stampOid : String	 	 +systemVolume : String

+systemPath : String
+belongingHostld : Global SystemStamp
+hostedSystems [1.1 : GlobalShareableSubSystern

+ipAddress : String
+drisName : String

1..1 1..1

GlobalAftributeConstraints

GlobalAttribute

#attributeOid : String
+attributeName : String
+o-oAttributeType : GlobalTable
+attributeType : GlobalAttributeType
+attributeLength : Integer
	+belongingSystemProfiles [1..1 : GlobalShareableSubSystemProfil
thelongingTable : GlobalTable
+defaultValue : String

0..n

GlobalRelationallndexes

#index0id : String
+indexName : String
+inyolvedAttributes [1..1 : GlobalAttribute

0 ..n

GlobalRelationalUniqueConstrain-.

#unioueOid String
+uniqueConstraintName : String
+uniqueAttribute : GlobalAttribute

Figure A.6 (Part 1)

135

GlobalHierarchyLinks

GlobalNehvorkGlobalRelational
#hierarchyLinkOid : String
-belcngingRecord : GlobalTable
-typeRootOf : GlobalShareableSubSysten
-pare
-chil
-poirterName
-poirterTo

nt : GlobalTable
Number : Integer

: String
: GlobalTable

1.1 1..1 1 ..1

1..n
	 	

1..n

GlobalShareableSubSystem

1..1 SubSystemConstraints

1 ..1

#subSvstemConstraintOid : String
-constraintName : String
-constraintDescription : String
relatedSubSystems [1..1 : GlobalShareableSubSystem

-accessType : AccessType
-accessedBylndividualUsers [1..1 : GlobalUser
-notAccessedBylndividualUsers [1..1 : GlobalUser
-accessedByUserProfiles [1..1 : GlobalUserProfile
-notAccessedByUserProfiles [1.1 : GlobalUserProfile

#subSvstemOid : String
+subSystemName : String
+belongignSystemAddress : Global SystemStam
+joiningSchemas [1..1 : GlobalSchema
+relatedAttributes [1..1 : GlobalAttribute

n

1..1

1..n
	 GlobalObjectOrientec

	
GlobalObjectOrientedMethods

GlobalTable

#tableOid • String
-+tableName : String

1..1 +belongingSystem : GlobalShareableSubSystem GlobalHierarchica GlobalHierarchicalOrder

+tableRelatedAttributes [1..1 : GlobalAttribute
+accessingSystemProfile [1..1 : GlobalShareableSubSystemProfi rderOid : String

-Order : {ASCE, DESC}
-orderBy [1..1 : GlobalAttribute

GlobalHierarchicalKey

GlobalRelatIonalForignKeyConstraint
#keyOid : String
-belongingRecord : GlobalTabl

#forignKevOid • String GlobalNetworkSet -keyField	 GlobalAttribute
+forignKeyConstraintName : String
+forignKeyDefault : String #setOid : String
+forignKey : GlobalAttribute -setName : String
+referenceTable : GlobalTable -ownerRecord	 GlobalTable
+referenceAttribute : GlobalAttribute -orderls : (DEFINED KEYS, DEFAULT}
+onDelete : (SET DEFAULT, CASCADE, NULL) -memberRecord : GlobalTable GlobalNetworkNoDuplication
+onUpdate : (SET DEFAULT, CASCADE, NULL} -insertion : (AUTOMATIC, MANUAL)

-retitionls : (OPTIONAL, MANDATORY, FIXL.4 #kevOid • String
-keySort : (ASCENDING, DESCENDING} -belongingTable : GlobalTable
-involvedKeys [1..1 : GlobalAttribute -involvedKeys [1..1 : GlobalAttribute
-setSelectionls : (By application, Structural
-ownerAttribute : GlobalAttribute
-memberAttribute : GlobalAttribute
+CheckInvolvedSortKeys0

Figure A.6 (Part 2)

136

User

#userOid : String
-userEncriptedPassWord : String
-userBelongingHosts [1..1 : SystemStamp
-belongingUserProfiles [1.1 : UserProfile
-belongingSystemsProfiles [1.1: ShareableSubSystemProfile
-belongingSystems [1..1 : ShareableSubSystem

+getSpecificSiteUsersO1 ..n

ShareableSubSystemProfile

rofileOid : String
-profilePath : SystemPath
-belongingSubSystems [1..1 : ShareableSubSystem

1..n	 1..1

1..n

AccessProfile

ItaccessProfileOid : String
-accessProfileName : String
-profileUsers [t.1 : UserProfile
-profileSystems [1..] : ShareableSubSystemProfile

Use rProfi le

#userProfileOid : String
-userProfileName : String
-belongingUsers [1..1 : User

Figure A.8

138

The following pages spreadsheet shows the transmitted data from the local Interoperation
Engine to the global lnteroperation Engine knowledgebase.

139

Appendix B

The	 Heterogeneous	 Communication
Protocols Layer

Abstract
The ways in which people communicate are unstopping techniques and far-reaching changes
since Bell's invention of the telephone in 1876. Today, there is a huge array of new
telecommunication technologies, new facilities and services, and new communication options
containing voice, data, text, image, and real-time video. In the field of computer
communications, a protocol is a procedure executed by two cooperating processes in order to
attain a meaningful exchange of information. Of course, if the case is heterogeneous
communication protocols than there should exist some sort of translation mechanism, to
make the process of talking between such heterogeneous protocols a meaningful operation.
This part of the work discuss issues related to communication protocols and heterogeneity of
them, and propose and design a method fits with all the requirements of a heterogeneous
databases in a heterogeneous environments.

B.1 Introduction
In order for two computers to talk to each other, they first need to notify each other that they
are able to communicate and they can understand each other. Second, once they
communicate, they must provide a method, which keeps both devices aware of the ongoing
transmissions.

Protocols are collection of, or a set of rules defined in between two parts to guarantee some
level of mutual understanding when both needs to talk to each other. Communication
protocols comprise three main areas: 1) the method in which data is represented and coded;
2) the method in which codes are transmitted and received, and; 3) non-standard information
exchanges by which two devices establish control, detect failures or errors, and initiate
corrective action. Those three areas mainly govern interoperability of communication
protocols. Whenever different protocols are able to talk and understand each other, than it
can be said, that there is communication protocols interoperability [Ozsu91].

lnteroperability of data exchange is not only transferring data across networks, but it is also
transforming of true-time voice and video frames over the communication lines. This type of
data requires high bandwidth, as well as, fast media machines. Although security (accuracy)
of the transferred data is an important issue, It will be discussed in a subsequent chapter.

The Internet, which is the largest network in the world, has been considered as the largest
example in using multi communication protocols. The Internet overall the world is divided into
domains, or autonomous systems. A domain is a collection of hosts and routers that use the
same routing protocol and are administrated by a single authority. The autonomous system is
also divided into another sub-areas. This technique is introduced to put a boundary on the
explosion of network updates.

Protocols running overall the world can be categorized, in terms of exchanging data, into
three types. The first is the exchange happens within a single segment or network and does
not required routing capabilities. The second types are those considered as interior protocols
running within the autonomous system. Those are used to carry packets between routers fall
in the same domain or area. The third types are the exterior routing protocols, which are
mainly running in between autonomous systems. They provide a way for two neighboring

144

routers located at edges of their respective domains to exchange messages and information.
Also with reference to framing, protocols may be subdivided into three principal groups.
These are the character-oriented protocols, the byte oriented protocols, and the bit oriented
protocols [Browne93].

B.2 Carrier services approaches
Carriers are companies providing telephone and data communication services in local
geographic areas or between local geographic areas. They form the business unit of the
national and international telecommunication network. Carriers owns and operate facilities
such as switching or data communication connections, maintenance equipment, and other
transmission facilities that provide communication pathways using either guided medians
such as copper wires and fiber-optic cables or unguided median such as radio-waves. So
carriers can be either local exchanges or long distance carriers.

Services for carrying packets in LAN-to-LAN, either from point to a single point, or from point
to multiple points can be categorized in four different types. The transformation of data can be
either analog or digital used by circuit switching hardware. The first type is preferred when
occasional traffic between two points is required, while the second is preferred for periodic
connections between numbers of different points. The third category of switching services is
the dedicated line, which provide a permanent connection between two points on a leased,
month-to-month bases, normally with an initial setup charge. Lines are available in speed
ranging from 56 Kbits/sec to 45 Mbits/sec they are suitable for handling constant traffic
between two points. The last category, which is the most flexible technique, is the packet
switching services. This category provides transformation of data in varying amounts. They
provide simultaneous connections to many points and bandwidth on demand. The next
section explains each of the previous categories concentrating on the design of each, and the
possibility of merging these technologies for the purpose of gaining complete carrier services
interoperability [Sheldon94].

Carrier services can be considered as an airplane. Whenever airplane can flight from point to
point in minimal time, then it will be the best to the passenger, who is the user of the facility.
Also, the number of passengers that can be carried at one time is another important factor,
reflecting the reliability of the service. Most of the passengers requesting that service will
reach the other point at the best and minimal time.

When generally considering such protocols used for handling data through communication
lines of distributed networks, it is really thinking of huge amount of policies and roles where
each of those has certain amount of limitations. Performance of communication protocols is
dependent on the quality of the carrier services they are working under them. The faster
technology the carrier service can offer with security facilities plus scaleable bandwidth offers
the better carrying service and transfer can be reliable. For example, fast packet switching
services currently used such as asynchronous transfer mode (ATM) and frame relay (FR)
provide unique services that can scale up as user requirements grow. ATM is shown to have
special significance both for today's multi protocol networks and tomorrow's multimedia
networks.

Carrier services can be categorized to number of different services such as the traditional
switched analogy lines, circuit switched services, dedicated digital services, and the new
promising technology, which is the packet switching services. All of these services are
suppose to cooperate and be compatible with each other to achieve the interoperability of
communication protocols. The protocol of high throughput and bandwidth in the
heterogeneous communication protocols scenario will be degraded by low services. In that
the high bandwidth protocols should accommodate the low bandwidth protocols when
communication is required between them [Hess96].

Carrier services have been gradually improved since the first analog carrying services
invented. These days, carries can offer very fast technologies with support to very heavy load
of data transfer rates. These new technologies are called packet switching services. A packet
switching networks are mesh topologies of interconnections provided by carrier services

145

through which packets travel from source to destination, where every packet is routed through
the network as a self-contained entity. As an example, the X.25 is a standard, and often
revised protocol that has been a workhorse packet switching service since 1976. It is suitable
for light loads and mainly used for mainframe systems. It is not suitable for LAN-to-LAN traffic
because it is slow and requires a large portion of the bandwidth to handle error checking. This
was important with the low-quality analog telephone lines, but is not needed today. Frame
relay comes after the X.25 and considered as enhancement for it. It is relatively error free and
does not require the extensive error checking applied by the first. Frame relay is an excellent
choice for any to any topologies. Frame relay does not have the capabilities to transmit and
support many types of traffic such as voice, data, real-time video, CD-quality audio and
imaging. In that cell switching networks, namely Asynchronous Transfer Mode, provide
unique services that can scale up as user requirements grow. This technology has the
potential to revolutionize the way computer networks are built. It is viable for both local and
wide area networks. High speed implementations of the ATM which ranging from 155
MbiVsec to 622 Mbit/sec make the technology to be the first to be used in the world wide
interoperability of databases of any type [Terplan87].

These days the Internet is working towards running real multimedia applications. Multimedia
database systems would most likely interact with higher-level protocols. To satisfy bandwidth
requirements, delay, bit error requirements, and data streams carrying multimedia information
will need to be sent over flows having performance guarantees. Also multimedia facilities
need abstractions hide the complexities of resource allocation, network access control, and
session management from the application level. Future multimedia will require very fast
carrying service such as the ATM technology.

ATM is a broadband fast transport technology, based on fixed length cells expected be widely
used for carrying multimedia traffic. ATM is capable of handling wide area networks as well as
local area networks. Unlike other transport technologies such as frame relay and LAN
systems in which packets can vary in size, all cells in ATM are the same size. In that it is very
easy to predict the time the packets can transmit from one side to another side in the network
by using this technology. The reason behind this is that, variable length packets can cause
traffic delays at switches; in the same way cars must wait for long tracks to make turns at
busy intersections [Browne93].

B.3 The communication protocols
Each layer in the Open System lnterconnectivity OSI model has got number of specific
protocols handling all the issues of the layer itself, as well as the communication of that layer
with the upper and lower adjacent layers. The OSI model, which is the international open
system standard, has defined number of roles to be followed by vendors to guarantee mutual
interaction between different vendors' products. The OSI seven layers are the application,
presentation, session, transport, network, data-link, and physical layer. That layer is
discussed individually in the next section. In terms of function they are grouped into three
categories. They are the application-level network service users, the transport services, and
the network services.

Application-level network service users encompass the application, presentation, and session
layers, and are called the application protocols. They define the actual physical components
such as connectors and cable and how data is exchanged between systems. The type of
network interface and the access method are also defined here.

The transport services, which are called the transport protocols, are only working in the
transport layer. They provide connection-oriented data-delivery services across networks.
Basically, transport protocols provide end-to-end data exchanges in which systems maintain a
session or connection with each other for the reliable sequenced exchange of data.

The network services, which are called network protocols, are working in the last three layers.
Those protocols provide link services for communicating systems. They handle things like
addressing and routing information, error checking, and re-transmission requests. They also
provide the procedures for accessing a network as specified by the particular network in use

146

such as Ethernet, token ring, and so on. Communication protocols are mainly affected by the
transport services, and the network services layers, since this is the place where one
application applies for transmission to another application located away from the first one.

Communication protocols have been developed for the purpose to gain many advantages for
the transmitted data. The most known tangible advantages are: keeping some sort of
standardization for the sender and receiver parts in the network; making sure the received
piece of data departing save and correct; assuring data will be sent to the correct destination,
and the most recent protocols insuring the piece of data selects the best and minimal path
during its journey to the distention over the network [Black87].

B.4 Communication protocol layers
As been defined earlier, interconnectivity between systems has been defined in number of
roles to govern the process of such data exchange. The main reason behind defining roles is
to make the delivered product overall the world to be interoperable as much as possible. The
Open System Interconnection (OSI) model is a standard defined by the International
Organization for Standardization (ISO). It defines a layered architecture that categorizes and
defines protocols for communication between end systems. During the communication
session, each process running in each of the layers between the computers will communicate
with one another. The following paragraphs give full details about the functions each of the
seven layers handles, as well as, the points of communications among those seven layers.

The application layer acts as the window for the application process to access the OSI
environment. It represents the services that directly support users and application tasks. This
layer will put a definition in the packet define the type of operation that is required to be sent
to the other site. There are many protocols defined by the OSI standard such as virtual
terminal, file transfer, distributed transaction processing, message handling system, and
directory services. So all the applications require networking features reside at this layer and
access underlying communication protocols. The node address of the source user added to
the data frame.

The presentation layer considered as part of the operating system, and the application the
user run in the source workstation. In this layer information is formatted either for display or
print. This layer relieves the application entities from being concerned with data
representation to provide syntax independent while transferring data such as encoding data in
a standard way, compress data to reduce the number of bits that have to be transmitted, and
encrypt data for privacy and authentication.

The session layer coordinates the exchange of information in between systems by using
conversational techniques. In that some applications may require a way of knowing where to
restart transmission of data when connection is temporarily lost, or may require a periodic
process to indicate the end of one data-set and the start of a new one. So this layer is the one
responsible to enable two applications to talk to each other. It will establish sessions of the
connectivity type between sites and synchronize between end user tasks by placing
checkpoints in the data stream. When failure happens then there will be restart point, and
finally the dialog control will take care that speaks, when, for how long, and so on.

The transport layer is the one responsible to ensure that data units are delivered error-free, in
sequence, with no losses or duplications. This layer relives the higher layer protocols from
any concern with the transportation of data between them. The type and complexity of the
work done by this layer is dependent on the type of service it can get from the network layer
next to it. This layer can provide connection oriented or connection-less services. In the first
type, which is used for long transmissions, a circuit is established through which packet flow
to the destination. In this arrangement, packets arrive in order and don't require a full address
or other information because the circuit guarantees their delivery to the required destination.
For the second type, the session does not establish circuits or provide reliable data delivery.
Packets are fully addressed and sent out over the network. Each packet can conceivably
follow a different path and even arrive out of order. The transport layer protocols at the

147

As the above figure explain, whenever the communication protocol layer can combine
between different route protocol suits as an interior protocols within the local network,
different routing control protocols as exterior protocols in between autonomous systems, and
different carrier services as for the interior and exterior packets delivery services, then this will
lead to full communication protocol interoperability. Of course, full communication
interoperability should keep the level of security into packets to its maximum as it is provided
if a single communication protocol is used. Part of the layer knowledge base will be
responsible of taking new protocols in the service and switch packets between different
communication protocols. Communication protocols conversion will only fail if both sides of
the connection do not get any knowledge about the other side communication protocols. In
the case if both site IEs got the knowledge of switching communication protocol then the less
critical site will handle the conversion and send the packet ready to the other site. If both sites
got the same critical degree defined in its local IE then the IE in each of the sites will calculate
the degree of busy time for each of the sites and will decide where the packet conversion will
take place.

B.6 The design of the communication protocol layer
The basic responsibilities for communication protocols are the control of the physical devices
within their domain and the control of the information flow within, through, and between
devices. One of the most important goals in developing an enterprise system is to reduce the
number of protocols in use, from say four or five to at most two or to develop a system that
can learn and accept old and new protocols. Also, it is assumed impractical to have a single
protocol to be used for wide and local area networks until such protocol is developed and
used and be universally accepted. So, switching between different communication protocols
will make interoperation between different systems an easy task.

In each site the IE will have a knowledge base capable of taking any packet and open it after
doing all the necessary checking to make sure no errors in the transmitted packet, then covert
the content of the packet in the destination database. The IE will support an increasing variety
of applications, each with different requirements for security, integrity, bandwidth, response
time, and dependability of services. IEs in all the sites will liaise with other sites to decide
where to convert a packet if both sides' communication protocols are different from each
other. Loosing no facilities provided by the communication protocol is one of the most
important objectives of the layer. Now the packet conversion process is the core process of
the communication protocol layer. This will be done by converting packets to accommodate
working according to the roles assigned by different communication protocols with keeping
the checking parameters, algorithms and any other factors of security to the level assigned by
the original communication protocol.

Three possible scenarios can be defined for communication protocols in the wide area
networks. The first is two networks using similar internal communication protocol with a
different middle communication protocol. The second scenario is the same communication
protocol used by both the local and wide area networks. The last scenario, which is the most
complicated, is to have three different communication protocols used by the two local area
networks and the wide area link. The following figure explains all the three possible scenarios.

Figure B.2

149

YesIs local CP
convertable to

remote

Cheek MI
relined deta

and start
convert

	 No

Activate
I/HDML

I/HCPS-L

Both sites use
sam• CP

eS___11

Y
Normal

connection

I

r..
• remote C

convertable to
local

Yes

Packets
cermet be
converted

Pockets MN be
converted in
the remote

sit•

11
[END]

0

No Both sites can
convert CP

Check %hien
site Is more

crilkel et that
time

Convert hi
leas critical

site
CP = Communication Protocol

In the previous figure, the first two scenarios have no impact on the design of the IE.
However, the last scenario has to be treated so that interoperation between different protocols
takes place. The communication protocol layer is the part of the 1E, which will be responsible
to switch between different communication protocols in a heterogeneous database
environment. The following figure explains the overall process that will be handled by the
communication protocol layer. If more details of the contents of the communication protocol
layer knowledge base then an expansion to the three-dimensional boxes at the bottom of that
figure should be included. At present these details are beyond the purpose of this part of the
work. Such design will involve a very close study for as many communication protocols as
possible to come up with common parameters for the knowledge base that will be responsible
to resolve such conflicts.

Figure B.3

One of the most important tasks the IE handling makes use of all the multi protocol converters
either those are hardware devices or software based converters attached with the networks.
IEs will be able to learn about other sites' communication protocols they are dealing with
them. Such process will minimize the need for feeding the necessary parameters to the
communication protocol layer knowledge base in a site. Also, if any of the sites feeds the
required parameters to their communication protocol layers then this will let other IEs know
about it. Such process will prevent duplication in efforts for converting packet to other
protocols. Also this will prevent the knowledge base related to the communication protocol
layer from being amplified.

The three-dimensional components defined in the previous figure B.1 needs to be looked
after to include many parameters for the communication protocol's interoperation process.
These parameters can be used as a definition for the flow control to prevent overflows and
lost packets, acknowledgment of handled packets, sequencing of packets to insure correct

150

organization of them when arrive in the other place, check-summing mechanism to insure
integrity of sent packets and retransmission process to ensure that corrupted packets will be
sent again.

B.7 Background from the literature survey
As the number of the installed communications protocols increases, the complexities of
managing the network and the operational costs also increase. Further, the interactions
between the different protocols increase the complexity of performance tuning, bandwidth
allocation, resource contention, and other network considerations.

The Multi protocol Transport Networking MPTN architecture is a general solution that breaks
the binding between the application and the communications protocol, enabling users to
reduce the number of installed protocols within a network. The MPTN gateway mainly solves
two major problems. The first separates the application and the application support from the
communications protocol. This separation will enable application running in different protocols
to run over other protocols without any changes. The second is that MPTN concatenates
networks running different protocols so that they act as a single network.

There are many multi protocol techniques that could be used as partial alternatives to the
MPTN solutions. Some of these solutions are optimized to particular environments, some are
simpler to roll out but more complex to manage, and others are more expensive. Some other
solutions may be used to solve network connectivity problem that MPTN is not designed to
solve, such as the communication between unlike applications. The following paragraphs
explain the advantages and the disadvantages of the most will-known techniques used by the
multi protocol techniques. Those are encapsulation, multi protocol routers, application
gateways, and middleware.

Encapsulation is a general and widely used technique. It is mainly used when a packet is to
cross from one network to another network using similar communication protocol and the
middle network is different, as the situation in the first scenario of figure B.2. The primary
advantage of such technique is simplicity. The application protocol can be wrapped in the
transport protocol, and the transport protocol is unaware of the contents of the encapsulated
message. At the destination the wrap can be taken off, and the application protocol that is left
can be interpreted by the application, which is also unaware that a different protocol was used
to transport the packet from one node to another. On the other hand, the disadvantages of
encapsulation is that it may spawn unnecessary control traffic unless filtering is implemented
and if such technique is built into the encapsulation, it must be done uniquely for each
transport, which may involve some complex administration. This process will increase costs
because intelligent filtering requires a deep understanding of the encapsulated traffic. Also,
encapsulation requires complete execution of both protocol stacks which means that both
networks must be managed separately and both networks must be configured completely.

Multi protocol routers are hardware boxes providing routing services for various protocols and
additionally enable transmission of data for one or more communications protocols over a
backbone network running a different protocol. This is mainly done through either an
encapsulation technique or protocol translation for each pair of protocols in the router. Such
technique is a convenient and efficient designed toward the routing function. Also, those can
support existing application without changes and can be incorporated in a production
environment without any disruption of ongoing operations. But because of the limited
interoperability between different vendors this will give such technique a limitation. In such
situation a router satisfies the to convert packet as in the second scenario of figure 2 and not
the third scenario on the same figure.

Application gateways are application-specific solutions that connect two or more networks
and translates data and messages between applications performing the same general
function. Such application is the same as the one converting the email used by certain system
to be readable on an email used by another system. Such technique got some disadvantages
such as each application gateway must be tailored specifically for the pair of application. Also
writing an application gateway from scratch requires full knowledge of both applications with

151

all error conditions to be taken into consideration. In addition such technique exist for a very
limited applications overall the world.

Middleware solutions are those categories hiding the underlying network and its
communication protocols from applications. Those include a specific product that can use
various transport layer protocols. To use middleware, applications must be written to use the
specific product as defined by the middleware vendor. So using middleware may involve
changing the application to use the middleware, which is critical for applications that have
been used without change for quite a long time [Pozefsky96].

MPTN tends to solve many of the problems discussed in the last multi protocol solutions that
have been discussed. Specifically, MPTN tends to solve problem created by the third
scenario presented at figure B.2.

B.8 Conclusions
The communication protocol layer is a structure for discussing multi protocol distributed
computing solutions. The main functionality this layer will offer to the heterogeneous
distributed databases' users is interoperation regardless of the communication protocol that is
used by each of the interoperating sites. This alternative has strengths and weaknesses that
can be magnified or reduced by any given situation. A typical network today will have a
variety of protocols and often a variety of multi protocol solutions. The solution that the
communication protocol layer proposes in this report is a purely software conversion between
different protocols. Of the most important weaknesses that may be encountered by such
converters is speed of conversion as well as the speed of encrypting and decrypting the
packets. As it has been stated in a previous paragraph, a complete protocol converter is a
huge task that will require a very deep study to the different communication protocols in use
today. Such work by it self is a stand-alone research needs huge effort, which is above the
scope of this research.

152

Appendix C

Analysis & Design Methodology for the IE

Abstract
Analysis is the study of a problem, prior to taking some action. It means the process of
extracting the needs of a system, what the system must do to satisfy the client, and not how
the system will be implemented. The study of analysis comes as the result of software
expansions and complexity. The problem of software expansions and complexity makes
researchers and practitioners revise the problem-definition phase to add structure to the
entire process to manage and control software development. Many practitioners came up with
ideas and methodologies in analysis, which have been defined as the process of breaking
down the problems with the aim to simplify them for the coding step. The most popular are
those given by Yourdon and DeMarco in the structured systems analysis and design
methodologies, while Fusion, OMT/Rumbaugh, Booch, CRC, and Objectory are the most
successful object-oriented approaches.

As it has been said, "Necessity is the mother of invention", analysis and design
methodologies are aimed at helping to simplify the way people think about problems. In that
object-oriented analysis and design methodologies complement the process of the previous
analysis and design methodologies. They are consisting of mixture of the best steps applied
in the previous analysis and design techniques. It is then said, objects better represent the
world as people view it, rather than abstract the process to simplify the flow of data.

The aims of this part of the thesis is to discuss issues in the analysis and design
methodologies, and recommend the approach that will be used for the analysis and design of
the IE "Interoperable Engine" [Ashir2000]. Also the second aim is to discuss issues, which
have already made benefits from object-oriented systems such as object-oriented languages
and object-oriented operating systems.

C.1 Introduction
During the 1980's, hardware technology advanced considerably, which resulted in greater
efficiencies and lower prices. By contrast, the software development process during the same
period has been improved at a rate barely discernible. This situation has created a gap
between the two technologies, leaving software designers unable to follow the speed and
power of available hardware platforms. However, the development of object-oriented systems
could place software development at the start of decreasing the gap in between the two
technologies.

Systems analysis and design methodologies where introduced as the result of software
expansion and complexity at the same time. During the analysis phase the problem is broken
down into entities and relationship between these entities. The problem of software expansion
and complexity makes it necessary for researchers and practitioners to revise the problem-
definition phase to add structure to the entire process to manage and control software
development.

The object-oriented analysis and design methodologies have evolved from the structured
systems analysis and design. Yourdon, who is the inventor of structured systems analysis
and design, describes object-oriented analysis and design as an extension for the structured
analysis and design methodologies.

153

Object-Oriented software development, including object-oriented analysis, object-oriented
design, and object-oriented programming, is a promising approach to developing software
systems in order to reduce costs and increase flexibility in general during analysis and design
phases by allowing reusability, extendibility, maintainability, and programming in large
[Luker94]. Although alone it will not eliminate all the analysis problems (and hard work and
dedication are still needed to produce the best and most efficient software possible) it is the
most promising. Many software-engineering researchers have proposed an object-oriented
approach to software design, because they see that this approach generally imitates reality
better than traditional data flow or state transition design approaches. By this approach, which
is the same in all the analysis and design approaches, the problem is broken down into
entities and communications among these entities. The entities then conceptualized in a
hierarchical manner to use the properties of inheritance. In many ways the analysis is the
design in object-oriented analysis, once the problem is analyzed. Object-Oriented analysis
technique involves modeling the process as seen by those who work with the system. This
makes the object analysis process easier and straightforward than other techniques. Also
there is another reason behind the success of object-oriented technique, which is the
combination of the data description and operations performed on that data into one entity,
which traditional analysis techniques provide separately. This enable objects to capture more
information of greater importance about the process being modeled than virtually all other
techniques [Coad91].

This part of the thesis proposes an analysis and design technique for the IE and in the light of
the study discusses systems that benefit from the object-orientated techniques such as
object-oriented operating systems, and object-oriented languages [Ashir2000].

C.2 Analysis and design methodologies
Analysis is the process of investigating how a particular business system currently operates,
modeling the system and determining the essential characteristics of potential automated
solutions. This involves often observing complex processes, interviewing people involved in
the process and laying out the process as a data flow, state transition, or other pertinent
modeling methods.

The main goal of the analysis phase is to build a problem model - that is, to create a
description of just what exactly is needed. These may take the form of interviews,
specifications as to level of performance [Yourdon931.

In this part a discussion of the structured analysis and design methodology and three of the
object-oriented methodologies will be presented, with a mutual comparison.

C.2.1 Structured Analysis/Structured Design methodology
In the present time most of the analysis techniques in use are those based on data flow
diagrams (DFDs). Here a discussion of the structured analysis/structured design (SA/SD),
which is considered as one of the representations of the data flow approaches, will be given.
Yourdon, Constantine, DeMarco, Page-Jones, and others have written about SA/SC. Ward
and Mellor have added real-time extensions to the SA/SC. SA/SD is pervasive, applicable to
many problems, and well documented.

SA/SD supports three orthogonal views of the system: object, dynamic, and functional
models. It stresses functional decomposition. In that a system is viewed primarily as providing
one or more functions to the end user.

SA/SD includes a variety of notations for formally specifying software. During the analysis
phase, data flow diagrams (DFDs), processes specifications, a data dictionary, state transition
diagrams, and entity relationship diagrams are used logically to describe the system.

DFDs are the focus of SA/SD methodology and they are model the information of data as it is
flows through the system. DFDs where first used in the software-engineering field as a
notation for studying systems design issues. In turn, the notation has been borrowed from
earlier papers on graph theory, and it continues to be used as a convenient notation by

154

software engineers concerned with direct implementation of models of user requirements.
DFDs components are process specification, minispecs, data flow specification, data stores,
and behavioral state transition diagrams and event flow specifications [Rumbaugh911.

Process specification describes the type, number of instances and activation mechanisms for
any type of process, and there is only one process specification for each process.
Furthermore; process specification has got some components such as the name of the
process, the meaning of it, the type of it (i.e. a control process, a data process, or a process
group), persistence of the process and some others not necessarily fixed for the definition of
all the processes.

Minispecs are provided to give a regress specification for each data process within the
system. They are also used to specify control processes in certain circumstances. Minispecs
must be precise, so that they can be easily converted to an understandable testable code, so
that subject-matter specialist can understand them. The specification of the minispec should
state the rolls that relate the outputs to the inputs. They also allow both external and internal
specifications. External specifications are used to define the effect of the process, testing, and
formal proof of correctness. On the other hand internal specifications are used to describe
how the process will be built.

Data flow, which connects the output of a process to the input of another process, can be
defined as a pipeline along which information of known composition is passed. Each data flow
appearing in the DFD has its own specification. This type of specification is used to specify
data flows and their components. Each data flow has a unique name that is used to specify it.
This entry identifies the data flow being identified. No component of a data flow may have the
same name as any other data flow or component of a data flow. Each data flow has a
meaning, which gives the significance of the data item to the system. Every data flow has its
own structure. The data flow structure shows whether the data flow value is an element,
group, dialogue pair, or multiple. If the structure is group a composition is defined. The
composition gives the contents of the data flow and the structure of one occurrence of the
data flow. The composition of a data group is defined using the inclusion, selection, iteration,
and optionally constructs. It is usually written out using a standard syntax for these constructs.
This is described under each data composition structure. Data flow specification has much
more components explaining the flow very deeply, preparing it for the final design and
implementation, which is not part of this report.

Data stores are defined as the temporary holders of information for later use and they are not
intended to be permanent. They cannot change the data they are holding, and what goes in is
exactly what comes out. However, when a process accesses data contained in a database, it
may access a subset, such as data elements that are part of a larger set of data elements.
Data stores have some rules governing the entrance and retrieving of data such as: (1) one or
more elements in a data store may be accessed; (2) data stores do not change any of the
data left in their care; (3) data that enters a data store must eventually leave that data store;
and (4) the accessing mechanism such as key is not depicted or documented. The data store
specification defines which entities and relationships are included in the store. It is used to
allow the crosschecking between a DFD and an ERD 'Entity Relationship Diagram'. The DFD
shows stored information using a named store. This store contains information relating to one
or more entities and/or relationships. The data store specification defines exactly which
entities and relationships this store icon represents.

The behavioral State Transition Diagram (bSTD) highlights the modes of behavior of a system
or portion of a system, what causes the system to change the modes of behavior, and actions
that must be carried out to cause this change. The diagram also used to define the effects of
events and conditions on the behavior of the system. bSTD has got some components such
as action which carries operations such as begin, disable, enable, initials, signal, and trigger
start. The other components are the name of bSTD, clock functions to determine the time,
and other components such as comments, conditions, and connectors for the purpose of
reducing graph complexity.

155

The last component of the DFD is the event flow specification. An event flow specification
states the meaning of the flow and declares any other event flows that may be included in the
flow. Event flows have some specifications like the name, which is a unique label for the
event flow, the meaning that describes the purpose of the event flow, the structure, the
persistence, and other event flows included if the structure type was multiple i.e. a grouping of
event flows [Yourdon93].

The term data dictionary had developed a dual meaning. Among Database Management
Systems vendors, the term refers to the catalogue of data items and their properties that the
DBMS must manipulate during the run. This catalogue is oriented for the help of the DBMS, in
that it holds the physical characteristics of data such as fields, data type, and the size of the
fields, and not the meaning of them. On the other hand, data dictionaries of the analysis
phase meet only the needs of this phase. Those needs include the definition of what data
names mean, what other data items they are composed of, what the company policy is
regarding that data, where each data item comes from, and where it goes to [Yourdon83].

On the other hand ER diagrams provide precisely what is needed to represent information
relationships. They give an effective means of capturing the clusters or aggregates of
information and the relationships these have to each other. The ER diagram, which is part of
the DFD, shows the function of the system, showing the existence of one or more groups of
stored data, but deliberately says very little about the details of the data. ER diagrams consist
of two major components: object types and relationships. Object types are shown as a
rectangular box and they represents a collection, or set of objects from the real world whose
members play a role in the system that can be identified uniquely and can be described by
one or more attributes. Relationships, shown as a diamond-shaped box on the diagram, are
represented as a set of connections between the object types connected by arrows to the
relationship [Peters881.

Subsequently, when the user implementation model has been completed, the job of system
analysis is officially over. Everything exceeded this point talks about the design and
programming and implementation and testing matters. The only work that has to be taken by
the analyst tracks the design work to make sure that a full understanding of the designed
system works its way to the target.

In the design phase, details are added to the analysis models and the data flow diagrams are
converted into structure chart descriptions of programming language code. Structured design
addresses low-level details, as example, data flow diagram processes are grouped into tasks
and allocated to operating system processes and CPUs. Data flow diagram processes are
converted into programming functions, and a structure chart created to show the procedure
call tree [Rumbaugh91].

C.2.2 Objet Oriented Anal ysis & Design methodologies
Endless demand for better software development methodology that reduce both overall
systems development and maintenance has led to the acceptance of object-oriented
analysis and design methodologies recently. As an overall process, object-orientation
tends to use the normal human thinking in expressing problems. Also, the methodology is
considered as a new toolkit that can be added to the traditional approaches (such as
dataf low, process flow, and state transition diagrams); and it is not in place to replace
those traditional approaches. In recent days most client/server application development
tools are emphases object-oriented features, because it is found to be very effective in
business problems.

The boundary between object-oriented analysis and object-oriented design is not clearly
defined in the literature. Some processes used by one author during analysis may be included
in another author's design technique. Some authors said that object-oriented design could be
considered as a superset of the object-oriented analysis phase. They define the object-
oriented analysis as the one model the problem domain by identifying a set of semantic
objects that interact and behave according to systems requirements. On the other hand, they
define object-oriented design, which is suppose to be language independent to, as the part

156

models the solution domain which includes the semantic classes and other classes defining
(interfaces, applications base utilities, etc.) identified during the design process.

Many course syllabi and textbooks subscribe to the notation that object-orientation requires
nothing more than a change in language. But it is considered as a true paradigm shift in
software engineering. It requires a complete change of worldview [Luker94].

The most important issue to figure in object-oriented analysis and design is the identification
of classes, attributes, and methods or it is also called behavior. Relationships between
classes are also part of the identification process.

There are three categories of object-oriented analysis and design methodologies that can be
figured from the existing methodologies: 1) process only, 2) representation only and 3)
process and representation. The first is the procedural methods supporting object-oriented
analysis or design and not including any object-oriented analysis and design diagrams or
notations. The second refers to graphical notations or diagrams for depicting the output of
object-oriented analysis and design and focus on visually representing a design, and not on
how to derive a particular design. The third is encompasses both processes for performing
object-oriented analysis and design and representations for specifying the results. Next, at
this comparison of three object-oriented analysis and design methodologies only category
three will be considered [Monarchi92].

The next section is considered as a comparison of three analysis and design methodologies.
Those are the Object-Oriented Analysis/Object-Oriented Design/Coad and Yourdon, Object-
Oriented Modeling Technique/Rumbaugh, and the Fusion/Coleman. Those three analysis and
design methodologies addresses more issues than other methodologies does. They are
considered of the top used methodologies these days [Monarch192].

C.2.2.1 Object-Oriented Analysis/Object-Oriented Design by Coad & Yourdon
Goad and Yourdon mention some key motivations in favor of 00A/000 instead of us'ng
traditional analysis and design methodologies. These benefits can be summarized in the
following points:

• Object-Orientation tackle wider domain of problems.
• It improves abilities of analysts during work in the problem domain.
• Internal consistency is increased from the start of analysis till

programming phase.
• Clearly define commonality between classes and objects.
• Object-Orientation specification is flexible when change is required.
• Reusability of code is high and flexible in Object-Orientation.
• It provides strong foundation for analysis, design and programming

phases.

Code and Yourdon mention that 00A/00D, which is considered as an extension to the
structured analysis and design methodology mentioned above, reduces the problem
complexity and the system's responsibility within it. They stated also that no major difference
between analysis and design phases, and no transition between them is required. They also
stated that no waterfall model has to be followed, and that still different skills and strateges
needed for analysts and designers. Their object-oriented approach consists of classes,
objects, inheritance, and communication messages [Coad91].

The 00A consists of five major activities which are not necessary comes sequent al. Those
activities are finding classes and objects, identifying structures, identifying subjects, defining
attributes, and defining services. According to those activites the 00A consists of five layers.
On the other hand object-oriented design added four other components to the analysis part,
and those are also not necessary comes in sequence. They are human interaction, problem
domain, task management, and data management [Coad91].

In this approach reuse is one of the main issues, and it is behind why it is an important po rit
to check previous 00A results in the same and similar problem domains. Here analysis and

157

design processes is achieved by following two activities where each consists of number of
sub-activities and those are the object-oriented analysis and the object-oriented design
[Coad91].

For achieving the first part, which is the analysis, it is important to achieve six sub-activities,
and again regardless of the order. They are: Identifying class and objects, where the whole
problem domain will be studied; Identifying structures, where kinds of structures such as
(specialization, generalization, whole-part structures, and multiple structures) are identified;
Identifying subjects, where achieved by promoting the uppermost class in each structure
upwards to a subject, and searching for minimal interdependencies and minimal interactions
between class and objects in different subjects; Identifying attributes, where many cases such
as attributes with non-applicable value, class and objects with only one attribute, attribute with
repeating values, many to many instance connection and many other cases equivalent to
those are identified; Identifying services, where general services and messages connections
are identified to the objects; and Prepare documentation, is considered as the last step in
00A, and it simply puts all the previous documentation together [Coad91].

The second part is the design part, and it consists of four sub-activities. Those are; Designing
the problem domain component, and as the analysis part recommended at the start, this part
is also recommend searching for previous design and classes that can be reused. Also this
part is concerned with grouping classes, naming common set of services, some time
changing problem domain to improve performance, isolating some low-level components in a
separate class for simplicity purposes. The second designs the human interaction component,
which is a kind of classification for the users according to the skill level, organizational level,
and membership in different groups. After that existing human interaction systems are studied
and detailed interaction is designed. To chick if the previous work meet the requirements then
prototype is built, and finally after the detailed interaction is found to serve the needs, the
human interaction class is designed; the third sub-activity designs the task management
component [Coad911.

C.2.2.2 Object-Oriented Modeling & Design/Rumbaugh
This methodology state that the main difference between the traditional approach in software
development and the object-oriented approach is the fact that the object-oriented approach is
not based on functional decomposition but on describing the real objects that play a role in
the real world. Systems can be best understood by studying their static structure, followed by
focusing on the changeable i.e. dynamic changes of the structure. Aspects of a system
concerned with time and changes are captured in dynamic models. Models are abstractions
built to understand a problem before implementing a solution, which is the same as the
flowchart in the SA/SD methodology, which is a preliminary explanation of the problem. All
abstractions are subsets of reality selected for a particular purpose. The object modeling
technique (OMT) uses three kinds of models to describe a system. Those are object model,
dynamic model, and functional model.

An object model or static model, describes the objects in the system and their relationships.
The object model is represented graphically with object diagrams containing object classes.
Classes are arranged into hierarchies sharing common structure and behavior and are
associated with other classes. Classes define the attribute values carried by each object
instance and the operations, which each object performs or undergoes. Additional constructs
for modeling associations include link attributes, role, qualifier, and aggregation. Also
propagation or triggering is another technique offered by the object model, in that it is the
automatic application of an operation to a network of objects when the operation is applied to
some starting object [Rumbaugh91].

Object modeling offers inheritance as a powerful new technique. Inheritance has two different
but complementary aspects. Those are extension, which means that a subclass may add new
features to his super class, and restriction, which means that a subclass may, contains
inherited features from the super class.

An added powerful tool for implementing complex systems called metadata, which is data that
describe other data. Many real-world applications have metadata facility such as those in the

158

DBMS database table definition for storing information. Object classes are metadata, since
they describe objects. Also, the candidate key, which is a term commonly, used within the
database community can be defined within the associations and this can be a one or multiple
key for each association. Furthermore a technique such as explicit constraints among objects,
links, and attributes are some times needed to express application semantics. The notation
for a constraint is a comment in braces near the constrained entity; a doted line can be added
to bind constrained entities.

The dynamic model describes the interactions among objects and those aspects of a system
concerned with time and the sequencing of operations in the system. The dynamic model is
represented graphically with static diagrams, where each of them showing the state and event
sequences permitted in a system for one class of objects. Dynamic modeling deals with flow
of control, interactions and sequencing of operations in a system of concurrently active
objects. The major dynamic modeling concepts are events, and states. Events are those
things that happens at a point in a time and it has no duration such as flight departs from one
place. An event is simply an occurrence that is fast compared to the granularity of the time
scale of a given abstraction. Events are grouped in one class, by giving each one a name to
indicate common structure and behavior although each one is a unique occurrence. An event
conveys information from one object to another, and those conveyed data values are the
event attributes. The state is an abstraction of the attribute values and links of an object. Sets
of values are grouped together into a state according to properties that affect the gross
behavior of the object. A state has duration; it occupies an interval of time and it is often
associated with a continuous activity, such as the ringing of a telephone, or an activity that
takes time to complete, such as flying from point to point. States and events can both be
expanded into nested conditional state diagrams to show greater detail. They can both be
organized as inherited hierarchy [Rumbaugh91].

The functional model is the last modeling tool and the one that describes the d ta
transformations of the system. Specifically the functional model is the one describing
computation within the system. The functional model specifies °what happens", which s the
step after knowing when it happens by. , which is described by the dynamic model, and "what
is happens to-, which is described by the object model. Functional model show how output
values in a computation are derived from input values, regardless of the order in which the
values are computed. The functional model consists of multiple data flow diagrams. It is also
includes constraints among values within an object model. The relation of the functional
model to the other two is that, the functional model specifies the meaning of the operations n
the object model and the actions in the dynamic model, as well as any constraints in the
object model. The functional model is considered as the main model for non-interactive
programs, such as compilers, which have a trivial, dynamic model, and their purpose is I

compute a function. It consists of multiple data flow diagrams, which are graphs showing th
flow of operations and the functional relationship of the values computed by the system„
including input values, output values, and internal data stores. Data flow dagrams are
consSting of processes that transform data, data flows that move data, actor objects that
produce and consume data, and data store objects that store data passively [Rumbaugh91j.

Some times decisOns may take place within the data flow diagrams such as Boolean, which
is either true or false values are given in this case. Decision affects whether one or more
functions can be performed rather than passing values to other functions. Those are part of
the dynamic model, although they don't have input values from the decision funcron. ft is
sometimes useful to include them in the functional model as a doted line from the process
produeng the Boolean value to the process being controlled, as an example the password
verification.

All models, object, dynamic, and functional, involve the same concepts, as data, sequenc ng,
and operations, but each of them focuses on a particular aspect and leaves the other aspect
non-interpreted. Al three of them are necessary for the fulll understanding of the problem,
although the balance of importance among them varies according to the kind of apprcation.
The three models come ether in the meth • is implementation, which involve data, control,
and operations. The three models relate to each other by the following scenario,

III Al

159

"To the functional model: The object model shows the structure of the actors, data stores, and
flows in the functional model. The dynamic model shows the sequence in which processes
are performed.

To the object model: The functional model shows the operations on the classes and the
arrangements of each operation. It therefore shows the supplier-client relationship among
classes. The dynamic model shows the states of each object and the operations that are
performed as it receives events and changed state.

To the dynamic model: The functional model shows the definitions of the leaf actions and
activities that are undefined with the dynamic model. The object model shows what changes
state and undergoes operations [Rumbaugh91]."

Last part discussed the OMT concepts, specifically the concepts and notation for the object,
dynamic, and functional models. Here a discussion of the process for devising the object
modeling technique will be presented. The object modeling technique consists of three
phases: the analysis, the system design, and the object design.

The analysis is concerned with understanding and modeling the application and the domain
within which operates. It will use the real world model consists of the object, dynamic, and
functional models. The analysis model service several purposes: It clarifies the requirements,
it provides a basis for agreement between the software requester and the software developer,
and it becomes the framework for the later design and implementation. The analysis process
can be defined as the problem statement preliminary description. This description is
generated from the requests of users, developers, and managers and those are known as
requesters. By using the problem statement description, the preliminary model building is
done with the support of users interviews, domain knowledge, and supposes the real word
experience. The building of the preliminary models will be consisting of object models,
dynamic models, and functional models. All the three sub models are not equally important in
every problem. Almost all problems have useful object models derived from real word entities.
Problems concerning interactions and timing, such as user interfaces and process control
have important dynamic models. Problems containing significant computation, such as
compilers and engineering calculations have important functional models. Analysis is not a
mechanical process, in that the analyst must contribute with the requesters, or previous
analysis knowledge. Analysis has not had a precise sequence, in that it is almost start
defining the large problems as a bottom-up process. Now after obtaining an initial description
of the problem, the analysis process can be summarized in the following four steps:

1. Building an object model, which identifies object classes, defining a
data dictionary describing classes, attributes, and associations,
adding associations between classes, adding attributes for objects
and links, organize classes by using the inheritance, and grouping
classes into models. Object model can be defined as the object
model diagram plus the data dictionary.

2. Develop a dynamic model from scenario of typical interaction
sequences preparation, identifying events between objects, prepare
an event flow diagram for the system, develop a state diagram for
each class that has important dynamic behavior, and checking for
consistency and completeness of events shared among the state
diagram. So the dynamic model is the state diagram plus the global
event flow diagram.

3. Constructing a functional model from the input and output values
identifications using data flow diagrams as needed to show
functional dependencies, describing what each function doing,
identifying constraints, and specifying optimization criteria. The
functional model is the data flow diagrams plus the constraints.

4. This step is not more than verifying, iterating, and refining the
pervious three models. Verification is the checking of classes,
associations, attributes, and operations consistency and

160

completeness. The analysis document can be defined as problem
statement, plus the object model, plus the dynamic model, plus the
functional model.

The system design is driven by relevance to the computer implementation, so that it is
understandable as to encode it to the machine. This is in contrast to the analysis phase which
is suppose to be a meaningful information from the real world and to be understood by the
requester. The overall architecture of the system is determined at this phase, and by using
the object model as a guide the system is organized into subsystems. It is the phase of how
the system will be done, and it will start from high level, than it will increasingly go to detailed
levels. Breaking down the system into subsystem give the chance to a group of developers to
work down the system, which means better system than a one designer work. In brief, at this
phase the system designer must make the following eight decisions:

1. Breaking out the system into organized subsystems, in that each
subsystem encompasses aspects of the system that share some
common property such as similar functionality, the same physical
location, or executing on the same kind of hardware.

2. Concurrency identification can be done in a single processor. For
example, two subsystems are inherently concurrent; they need not
defined as separated hardware, in that they can both be processed at
one time by a single processor. This is the purpose hardware interrupts,
operating systems, and tasking mechanism is to simulate logical
concurrency in a uniprocessor [Bacon93, Jung97].

3. Deciding how the hardware will handle the software subsystems does
allocating subsystems to processors and tasks. Decisions about the
number of hardware processors are done at this stage, and the necessity
of fast reaction from the processor side is decided as well at this stage.

4. Choosing an approach for the management of the data stores, in that
data store for subsystem is chosen to give some sort of permanence for
the application data.

5. Handle access to global physical and logical resources, and determine a
mechanism to access them. Global resources include; processors, table
drivers, disk spaces, etc.

6. Choosing software control implementation; in that software system has
two kinds of software controls: external control, and internal control.
External control is the flow of externally visible events among the objects
in the system. Objects generate internal control operations as part of the
implementation algorithm. Their response patterns are predictable. Most
internal operations can therefore be thought of as procedure calls, in
which the caller issues a request and waits for the response. Other
software control implementations are available as well, such as role-
based systems, logic programming systems, and other forms of non-
procedural programs. Hear the control style is replaced by declarative
specification with implicit evaluation rules, possibly non-deterministic or
highly convoluted.

7. Handling boundary conditions, which must be considered by the system
des-gner such as initialization, termination, and failure.

8. Setting trade-off priorities is an important matter. The system designer
must set priorities accoming to the trade-off during the rest of design. He
is often required to choose among des'rable but incompatible goals. The
designer at this stage must decide which goals are of highest priority and
work them out.

Several kinds of systems are frequent* encountered for which standard
architectural frameworks exist. These includes two kinds of functional

161

transformations: batch computation and continuous transformation; three kinds
of time-dependent systems: interactive interface, dynamic simulation, and real-
time; and a database system. Each framework has got its own steps, or
proposed steps to be followed. Most application systems are usually a hybrid of
several forms, possibly one for each major subsystem. Other kinds of
architecture are possible. System design can be described as the structure of
basic architecture for the system as well as high-level strategy decisions.

The object design is a detailed description of the analysis phase. It is
considered as a shift from application domain concepts towered computer
concepts. It is mainly depending on the objects discovered during the analysis
phase. The object designer at this phase has to choose among different ways
to implement them, so that they act at their best situation from the execution
time, memory, and costs point of views. Object oriented design is a preliminary
process of refinement or adding detail. In brief during object design the
designer must perform the following eight steps:

1. Combining the three models to obtain operations on classes and this
is considered as the start of the physical organization of the program.

2. Design algorithms to implement operations to minimize cost of the
whole system.

3. Optimize access paths to data, where the designer is suppose to
strike an appropriate balance between efficiency and clarity.

4. Implementation of control, where in that state-event interactions that
has been presented in the dynamic model, can be implemented using
one of three different styles of control: Use of the location within the
program to preserve the control state, explicit state machine
representation, or concurrent tasks.

5. Adjustment of inheritance, where the definition of classes can often be
adjusted to increase the amount of inheritance.

6. Design the implementation of associations, where the designer will
analyze the traversal of associations, and implement each association
as a distinct object or by adding object-valued attributes to one or both
classes in the association.

7. The exact representation of the objects must be chosen. At some
point, user defined objects must be implemented in terms of primitive
objects or data types supplied by the programming language. Some
classes can be combined.

8. Physical packaging, where the programs are made of discrete
physical units that can be edited, compiled, imported, or otherwise
manipulated. Information hiding is a primary goal of packaging to
insure that future changes effects few modules. Modules should be
coherent and organized about a common theme.

All those decisions in the final should be properly documented for simplicity reasons. Simply
object design is a detailed object model, plus detailed dynamic model, plus detailed functional
model.

Recently OMT/Rambaugh and Booch are joining their forces at Rational Software Corp., with
the goal of unifying their approaches into an industry-standard, open methodology [Frank95].
The following is the process of steps in Booch:

• Identify the objects and classes that form part of the system.
• Construct the interface for classes, which identifies the semantics.
• Find relationships between the classes. This may cause new

interfaces to be discovered, so apply the previous step again.

162

operations. The purpose in which this is done enforces a protocol in any agent that uses or
communicates with the system. Consequently system interfaces have to be designed rather
than discovered. Designing the interface requires technical decisions concerning the amount
of communication traffic and response times. For those parts of the interface that
communicates with human users, their needs must be considered as well.

A model called the system object model is a refinement of the object model, is concerned with
showing the system boundary. In that a class or relationship that lies outside the boundary is
not needed to carry out the functionality of the system.

The third step in the analysis phase is the development of the interface model. This model
comprises a lifecycle model and an operation model. The order is not necessary, while it is
only recommended to start with developing the life-cycle model first, because the lifecycle can
be an aid to developing the operation model schemata.

The aim of the lifecycle is to generalize the scenarios. Life-cycle expressions can express
repetition, alternation, optionally, as well as concatenation. The process for forming the life-
cycle model will come as generalizing the scenarios to form named life-cycle expressions,
then combine the life-cycle expressions to form the life-cycle model.

On the other hand the operation model defines the semantics of each system operation in the
system interface. The preconditions and post-conditions for each process will be defined in
the system. In that as long as the precondition of the process is true, then the post condition
or the output has to response as the stated results. This kind of job has to be done by the
analyst to satisfy the needs of the customer.

Each process within the system is defined as a separate schema. The schema contains the
operation name and the description of this operation as the heading. Another five elements
for the schema has to be defined as, the Reads; which will contain the input elements, the
Changes; is the changed items within the schema, the Sends; is the sent data, the Assumes
and Results; are preconditions and post-conditions consequently.

The process of developing a schema can be summarized as the following:

1. Develop the Assumes and Results clauses.

• Describe each aspect of the result as a separate sub-
clause of Results.

• Use the life-cycle model to find the events that have to be
output in Results.

• Check that Result does not allow unwanted values.

• Add relevant system object model invariant to Assumes
and Results.

• Ensure Assumes and Results are satisfactory.

• Update data dictionary entries for system operations and
events.

2. Extract Sends, Reads, and changes clauses from the Results and
Assumes.

The final step in the development phase checks the analysis models. It is unpredictable to
know the accuracy of the analysis phase and how errors free it is. The designer will probably
not worry if few trivial errors occur. However it will be waist of time and money in the next
stages.

Two aspects of checking are recommended for the analysis models. They should be
complete and consistent. The model is complete when it captures all the meaningful
abstractions in the domain. So, completeness at this stage means the one against

164

Lifecycle model

-----------'--------.Events system operations

System object model

Relationships classes attributes invariant

Operation model

requirements, and that no outstanding issues still with the customer. This kind of checking will
make sure that all possible scenarios are covered by the life cycle, a schema defines all
system operations, all static information is captured by the system object model plus any
other related information. The model is consistent when there is no overlapping in between
the analysis models. This will check that all classes, relationships, and attributes mentioned in
the operation model appears in the system object model, and that all other concepts such as
predicates are defined in the dictionary. The other check element is to make sure that the
boundaries of the system object model is consistent with the system interface given by the life
cycle model. Also all the system operations in the life cycle model have a schema, and finally
all identifiers in all models have entries in the data dictionary. The following figure C.2 shows
the whole checking process.

System Boundary

Figure C.2

At the design stage in Fusion, the purpose of it is to define how functionality the system is
implemented from the previously defined system object model, which describes the classes in
the system and the semantic relationships that must hold between them. The output of the
design is a collection of interactive objects that realize the final operation model of the
analysis phase. During this phase of the method four models are developed.

The first is the object interaction graphs, which defines the sequences of messages that occur
between collections of objects to realize a particular operation. The system operations at this
stage are taken from the operation model, which get the behavior of the operations and build
up the object messaging structures that realize the abstract definition of behavior. The object
interaction graphs are represented as boxes linked by arrows. The boxes are the design
objects, and the arrows are the message passing. The main box is the one that got an arrow
that does not come from any other box. The other boxes are called the collaborators.
Traversing at this stage is a straightforward process.

The main components of the object interaction graphs are the objects. They can be defined
as a single object, which is a solid box has the object name and the class name, or they can
be defined as a collection of objects in a class, which is a dashed box with same content of
the previous type. The objects in a collection may change over time.

The connection between objects identified as directed arrows from sender to receiver. Those
are realized as a function or method call. Messages can be passed to single object class or a
collection of objects in a class, or visa versa. Numbers to insure full control can sequence
messages between objects. A definition to a new object can be defined by entering the word
new before the object name. Next develop the object interaction graphs. Graphs are built for
each system operation. They specify how the required system functionality identified during
analysis and implemented by the objects in the system. Four steps are involved in the
definition of the object interaction graphs. First, identifies the definition and implementation
objects with each other. Second, implement the role for each object in computation by
identifying controller and collaborators, which collaborate with the controller to implement the
system operation. Then decide on the messages between objects. And finally, record how the
identified objects interact on an object interaction graphs. Refinement of the object graphs is
done in the final to check that each of the classes in the system object model is represented

165

in at least one object interaction graph. Also, the functional effect of each object interaction
graph satisfies the specification of its system operation given in the operation model.

Second step in the design stage defines a visibility graph for each of the classes. These show
how the object-oriented system is structured to enable object communication. They are
constructed during three steps. The first inspects all the object interaction graphs. Each
message on an object interaction graph implies that a visibility reference is needed from the
client class to the object server. Second is to decide on the kind of visibility reference required
taking into account lifetime of reference, visibility of target object, lifetime of target object, and
mutability of it. Finally draw a visibility graph for each design object class. Then for each
relation in the system object model check that there is a path of visibility for the corresponding
classes on the visibility graphs, and that exclusive target objects are not referenced by more
than one class and that shared targets are referenced by more than one class.

Next step the design phase is class descriptions. At this stage an extraction to the system
object model, object interaction graphs, and visibility graphs is made to build class
descriptions for the system operations. Each class description will record methods and
parameters from the object interaction graph, data attributes from both the system interaction
model and the data dictionary, object attributes from the visibility graph for the class, and
inheritance information from the inheritance graph respectively. Checking at this stage is the
process of making sure that all methods from object interaction graph, all data attributes from
the system object model, all visibility references, and all inherited super-classes are recorded
at this pint.

The fourth stage in the design process is to build the inheritance structures by looking at the
classes to identify commonalties and abstractions. As in OMT this process identifies super-
class and its subclasses. The process at this stage will look for generalizations and
specialization from the object model, common methods from object interaction graphs and
class descriptions, and common visibility from the visibility graphs.

The final step at this stage will require updates to the class descriptions with the new
inheritance information to the previously defined system object model, object interaction
graphs, visibility graphs, and class description. Finally, the implementation process is done in
three stages: (1) coding, (2) performance monitoring, and (3) review to the coded system as
subparts to monitor the overall performance.

C.2.3 Comparison of object-oriented methodologies
Object-orientation facilitates systems development by allowing systems developers to reuse
past solutions. Through inheritance, objects can be reapplied in new development efforts. It
also decreases the cost of applications maintenance. Its inheritance and encapsulation
features help systems evolve gracefully. Because programmers can comfortably remove
obsolete solutions of code and data designs, and maintenance is almost as easy as creating
new object.

Organizations that can master object-orientation techniques can gain the productivity benefits
that come with extensive systems modularity and program reusability. However, these
organizations must have a development approach that uses the strengths of object-
orientation.

During the past years object-orientation practitioners mention several advantages for this
technology. Some of the most important are greater systems productivity in general or
programming in the large, and higher reusability which increases productivity and quality of
systems, maintainability and simplicity of it, and give an opportunity for better system design.

The reusability process is measured by the quality and quantity of the usability of the pre-
tested pre-developed software components. This is of course will effect productivity and
overall system quality. The use of existing, pre-developed, pre-tested, and documented
objects requires less effort, low level testing and less custom documentation. Efficiency is
improved because much of the expensive and error-prone development work is eliminated.
Instead reuse promotes rapid prototyping, which is considered important in efficient software

166

development. Reuse is promoted by object orientation in two basic ways. First, the inherited
features allow new classes of objects to use structures and methods developed for other
classes. Second, incorporation of object libraries and catalogues for new systems can be
either directly or with incremental modification [Weinberg921.

The maintainability in object-orientation is measured by the easy in step-wise bases, and the
time taken for maintaining any part of a system built using the object-orientation technology.
Also object-oriented systems are easier to maintain than its traditional counterparts because
they can facilitate system maintenance through their inherent modularity and structure, and
through from their natural insulation of object from each other. The modularity and structure
inherent in object-orientation provide greater data integrity. This is also because each object
operates on its own internal data through its own methods. Because objects are insulated
from each other, maintenance of software pieces is greatly simplified, and changing in any
part of the system such as the data structure, introduction of new data types, etc. is
transparent to their user [Weinberg92].

As an overall, the object-oriented approach provides increased modeling flexibility and
expressive power enabling of complex software development. It is also emphasizing the
design phase of the systems development, helping to reveal problems early in the design
process. In general object-oriented analysis and design has got several facilities over the
traditional analysis and design methodologies. It integrate the analysis and design phases
based on entity and class relationships, stabilize the development process, provide the
specific procedure to identify attributes and operations, provide the formal textual document,
and clearly describe the behavior of a system and classes [Chen94].

Both the object-orientated methodologies and traditional methodologies have much in
common and use similar modeling constructs and support the three orthogonal views of a
system which are, the information, time, and function diameters. The difference between them
is primarily a matter of style and emphasis. In the structured analysis/structured design
approach the most important dimension comes the functional, then comes the dynamic, and
finally comes the object model. In contrast, the object-orientation use the object model as the
most important, then comes the dynamic, and then comes the functional. The following table
compares the three previously discussed object-oriented analysis and design approaches:

Booch Coad and Yourdon Rumbaugh

1. 00A PROCESS

Semantic classes

Attributes •
Behavior

Generalization

Aggregation

Other

Placement of Classes

Placement of Attributes

Placement of Behavior •
Table 1

Dynamic behavior

2. OOD PROCESS

Interface classes

Application classes

Base/utility classes

Optimization of classes

3. REPRESENTATIONS

167

LocalSystern

DEXA 2000 Proceedings

aff

Figure 4

3.2 Exchanging information between participating
IEs

The local IE information system contains a definition of a
complete local systems. A further definition for the
shareable parts of the local systems are defined as routes
and only these parts are transmitted to the global 1E
information system. In each of the cooperating sites the
global IE information system link the local shareable
subsystems with the other global cooperating databases.
Any alteration in the global shareable space is mainly done
locally in the local 1E information system and then
migrated to the global 1E information system. This
stipulation is for the purpose to make the global 1E
information system maximum reliable and to make sure no
long intervention is to occurs in the cooperation
responsible subsystems. The initial partial local TE
information system UML based classes are shown at
appendix A figure A.1 [3, 131. Accordingly, figure A.2
shows the global IE information system.

The shareable data sources profiling system is where
database profiles are created and accessed by the local
application programs. Basically it links information about
data sources from both the local and global 1E information
systems.

Although, the design of the IE in its preliminary stages,
this will involve assigning an information handling
strategy between the cooperating data sources by which the
exchange of the updates for the necessary metadata
between the information sources can be done. The strategy
should guaranty the maximum reliability and minimum
intervention to the interoperation services.

4. Description of Participating Components in
the EE

The actual building infrastructure of the 1E is assumed to
be the Internet by which nobody owns the backbone.
Figure 3 has shown the overall architecture of the different
IE components and how they are liked together. As shown

0-7695-0680-1/00 $10.00 © 2000 IEEE

in the figure, the main components are the Interoperation
Engine layer, the heterogeneous databases repositories and
the metadata proxy server.

Subsequently the IE local knowledge consist of three
interrelated components of which each plays an important
rule in the success of the interoperation mission of the
distributed heterogeneous databases. The three interrelated
components are (1) users and shared systems profiling, (2)
heterogeneous schema management, and (3) cooperating
schemas profiling. Those are explained graphically at
appendix A figure A.1.

4.1 User and shared systems profiling

The IE system supports two type of users. These are the
ordinary information consumer and the 1E administrator.
The one who will mostly benefit from the 1E is the
ordinary information consumer. The administrator is the
person who will create users profiles, systems profiles and
access profiles. User profiles are the grouping of the local
and global users according to local site policies. Systems
profiles are the same as user profiles but on the local and
global systems. Access profiles are the link between a user
profile and systems profiles. The following example
explains the profiling technique in the 1E system including
user management Figure 5 shows the relationship between
the class diagrams for both the local and global profiling
management subsystems. Details of the participating
components shown at appendix A figures.

Figure 5

745

Appendix E

Published Papers

DEXA 2000 Proceedings

multicasts the updated information only when a change has
taken place.

We propose a middle engine, which can act as an added-on
facility on the Internet browsers, responsible for binding
only these heterogeneous distributed data sources of
interest. This middle engine will not require the set of
related applications to agree on one global view. Our
approach is based on the information availability and
information demand. It will also depend on the information

111 Global nowledge

advertisement technique for the purpose of advertising an
available information source. The infrastructure will also
form the foundation for all the supporting areas in the
distributed databases to take place towards the supporting
of heterogeneity. The following Figure 3 is explaining the
proposed steps to be undertaken for registering the
metadata, advertising about the shareable parts of the local
information sources and delivering the information parts to
the distributed information consumers.

Security Aianagment
Repiication Management

History Tracking Afenagetnent
Transaction Managonient

IERmaceLOnowledge
Local Database

Systems & Users

Single site heterogeneous databases
repositories

Dial
	

Dia2
	

DB3
	

DB4
Relational
	

Niererchical
	

Network
	

Object-Oriented

Figure 3

744

Further, figure 4 presents the connectivity between the
underlying system components and the functional
relationship in the IE in a detailed and concrete fashion.
The user can have his own domain where he can create his
own data sources access profiles by which he can access
them in his own applications. Also, as another option he
can rely on the profiles created by his local DBA. In that
the DBA in any site is the link between the local
information consumers and the global information
producers.

3.1 Querying for information

0-7695-0680-1/00 $10.00 @ 2000 IEEE

Both local users and the local DBA for gaining certain
information can submit queries to the local IE. The local
data dictionary is the main part where all the submitted
local queries are processed. When a query is submitted, the
user is given the available information space that answers
the query and the existing data sources access profiles by
which he can use in his application or query code. There
are some other cases by which some information owners
may advertise about the availability of certain information
in their sites without giving access to any global
information consumer until a request is received asking for
such access. Information owners may give access to global
information consumers based on, for example, the further
mutual benefits they may gain or for any other security
purposes.

81	 82

R2	 •nnnnnnnn319. R3RI

DBI	 DB2	 DB3

r31371 r)718

DEXA 2000 Proceedings

Initially users and user profiles are defined locally in the
local profiling management subsystem for all users of a
single site. Only those whom will share global data sources
are copied in the global profiling management subsystem.
The local administrator in each site is able to access the
global profiling management subsystem to assign global
users to local system profiles. Also, he is the one who
creates the cooperating schemas profiles to be used by the
database application programmers, which is thoroughly
discussed further in section 4.3. In the above breakdown
shown at figure 4 the 1E is intending to send only the
shareable parts of the information sources to the global
information consumers. Access permissions of the global
users on the local information sources will be checked two
times. The first in the query originator 1E and the second in
the target IE and the synchronization and accuracy of the
applied information will be checked prior to the query
submission. Queries or requests are only passes if and only
if information in both sites the same.

Having dedicated information for the local site and other
for global sites will increase security and reliability of

information. In that, local site will have a total information
about the existing information systems. However, only the
part of the information sources suppose to be shared with
the global users are copied in the global profiling
management subsystem.

As indicated earlier, profiling simply means grouping.
Profiling is one of the proposed facilities to be provided by
the LE. The main purpose of profiling is to make the work
more controllable, manageable and traceable. The IE is
mainly supporting three types of profiling techniques: user
profiles, cooperating system profiles, and access profiles.
User profiles are simply grouping users into groups
according to different policies such as they have similar
access on certain systems or maybe according to user's
original site. Cooperating systems profiles are the parts
users will get access on them. In that, each site may have
many systems by which each system has number of
subsystems forming the possible accesses in a local
database system. Each group is known as a route in the 1E.
The following figure 6 explains how single site schemas
will looks like.

Local IE systems and the routes supported by each system
Figure 6

As shown in figure 6 the local site is mainly supporting
two systems (will be called as S. for system and the system
number) where each is having number of routes to be
accessed by the global users R. Further, DB I may consists
of number of tables (ti, t2, t3, t.). Tables also will
consist of number of attributes (a 1 , a2, a3, ..., an). System 1
as shown supports three routes.

SI: (RI, Ri, R,1)

Ss: (Ri, Rz).

The following is the definition of the routes in each of the
two systems.

%AI: (DB1, DB2, DB3)
S1.R2: (DB2)
S1.R3: (DB2, DB5)

0-7695-0680-1/00 $10.00 0 2000 IEEE

S2.R1: (DB I, DB4, DB5, DB6)
S2.R2: (DB3, DB6, DB9),

On the other hand the local site have got four users profiles
as the following.

UPI:	 U2, Us, U4)
UP3: (U1,113, U79 U9)
UP3: (U10, U 11, U12)
UP,: (Um, U7o, U9g)

Also, the local site has decided to establish the following
system profiles (SPs) on the two defined systems from the
defined routes according to private information policies.

(51.1/2, Si. R2)

746

Profile nsune: ABC system seism's's profile

Local schema name: DBI
Operation: Union
Involved sdiemas: SI, S3, S4, 57, S8, S9, S20, S34, 599

Local schema name: DPa
Operation: Relationship
Involved schemas: S199, 5333, S1I4, S237, S548

Local schema name: DB3
Operation: Intessecdon
Involved schemas: S101, S301, S401, S701, S801, S902

DEXA 2000 Proceedings

SiSP2: (Spill, Sr. R3)
S1SP3: (S1.R2, Si. 113)

S2.SPI: (S2.R1)
S2.SP2: Mato S2. R2)

Once system profiles and user profiles are defined this will
make connecting users with systems an easy task. The
following is the connection of user profiles to system
profiles, which is called access profile AP..

APi: UPI can access Si.SPI, S1.SP2
AP2: UP2 can access Si.SPI, S2.SP2

Here, any additional system profile that will be added later
to the user profile will be added to the list related to that
user profile.

Until now the consideration is that users are permitted
access on the full schemas defined as DEIN. In some cases
the database owner may need to specify the grants a step
forward by giving access to certain attributes within some
schemas. In this case he should specify routes contains
certain schemas and attributes. These will be defined in the
global shareable subsystem in each local IE and fired to the
global LE side when required. Our past example of figure
6, SI is mainly supporting three different routs, which
appears in the global IE as different systems entities. If we
recall S 1 .111 : (DB1, D132, DB3) and assume that DB1 has
three attributes (A1, A2 and A3), DB2 has four attributes
(A1 , A2, A3 and A4), and DB3 has again four attributes.
Here we still can define more than one route on the same
three databases showing each time different attributes to be
supported by each route. In this case the subsequent details
which will appear in the route definition are the attributes
supported by each route. The following is the definition of
the routes in each of the two routes of Si.

Si.Ri : (DB1[A3], DB2[A3,	 DB3[A3, A4])
S1.R4: (DB1[A2], DB2[A2,A3, A4], DB31112, A41)

4.2 Heterogeneous schema management

As indicated earlier, the local administrator is the one who
make the data sources ready to application programmers
by creating the required application profiles and attach
them to the user profiles as access profiles. In this case
application programmers access system profiles in their
applications rather than directly accessing the original data
source. This step has got many facilities of which the
application programmers does not need to change in the
application source code when new data sources added into
the cooperation process. The following few paragraphs are
explaining in an example how the distributed
heterogeneous information sources are managed. Also,
explain how application programmers should deal with the
profiles of the LE in their applications.

0-7695-0680-1/00 $10.00 © 2000 IEEE

The cooperating data sources are either contains similar or
dissimilar information. If they contain similar information
then the possibility operations between them is unification,
intersection or difference between the records. In the case
if they dissimilar the only possible operation between them
is relationship through some common field in both that can
be considered as a primary and foreign keys.

As indicated earlier, the cooperating information sources
will be managed through the global schema profiling
subsystems. It will be responsible to apply the three
operations in between the master information sources with
the other distributed information sources. The three
operations are unification, intersection and difference.
Figure 7 shows preliminary contents of the global schema
profile.

Figure 7

As figure 7 shows, if the case is relationship as the
operation applied on DB2, there will be two different
possibilities. The first, if the relationship is to be applied
with a single remote schema than this is considered as a
normal case. The second, which is the abnormal, if the
relationship is with multiple remote schemas than this will
require apply an operation on the cooperating information
sources to get them as a single information source prior to
setting up the relationship linkage.

The proposal is the application program not directly
reading from the remote data sources. Rather, it is done
through the global schemas profile facilities provided by
the local 1E, which is mainly liaising with all the related
global schemas in a manageable, expandable, adjustable
and dynamic manner. From the operating systems side
there will be some extended requirements to make the
cooperating information sources linked together, as well
as, synchronize with each other. This task is purely related
to the operating systems sense they will be responsible to
share memory and open files between the operating system
processes, protect pages of memory that has the
cooperating information sources records and linking the
distributed cooperating information sources memory pages
together considering the sorting constraints.

The main advantage of this approach is the creation of the
cooperation atmosphere between the different information
sources is done in an incremental manner. Additionally,
this cooperation process will not involve changing in the
already compiled and tested source. In that, the user will

747

Sub System Schema n
......... Information & Access

Rights

Schema n,
Attribute 1.

Access Right

Schema n,
Attribute 2,	 - •

Access Right

Schema n.
Attribute y,

Access Right

I Sub System Schema 1
information & Access

Rights

/
I Sub System Schema 2

Information & Access
Rights

•..
•.

DEXA 2000 Proceedings

system. Those are S2, S3 and S4 respectively. Assume
again S2 database 1 has four attributes (Al, A2, A3 and
A4), S3 database 1 has again four attributes (Al, A2, A3
and A4) and S4 database 1 has five attributes (Al, A2, A3,
A4 and A5). The definition step of the equivalent global
attributes to our local attribute as the following.

Local A1 = S2 DBIA1, S-3•DBIA21 S4.D131.A4
Local A2 S1.DBIA29 S3.1)/32•A49 S4.DBI.A1
Local Ay = S2.1)132.A4, S3.1,132.A3, S*DBI.A3

There are tow possibilities when liking the cooperating
data sources with the local application. The first is when
local application accesses a local database as in the above
example where local database cooperates with global
systems S2, S3 and S4. The second if the local application
doesn't have any local database and will directly access
remote global databases where in this case the local
attributes will be considered as the local application
parameters.

5. Metadata Handling Protocol in the
Distributed lEs

The Extensible Markup Language 3CML [16, 17] will have
much input to the interoperation process. In that, the XML
has added a powerful transport mechanism to the rapid
database interoperation requirements. Sense the different
information handling mechanism between the different
interoperating information sources can use this language as
a method for putting structured data on a text stream. The

transmission of information should depend on the policies
that are assigned by the proposed interoperation engine lE
when applying the different database operations.

Handling protocol of exchanging the metadata within the
cooperating database systems is considered as a strategy
task by which all the cooperating sites have to agree on
certain handling methodology. This section does not form
any comparison to any international standard rather than
considering a methodology that fits the different
requirements of the heterogeneous database
interoperability. We understand that the functional
programming languages may contribute in the design of
such protocol, but at the time being this is beyond the
scope of this paper. For the sake of this paper, we are
proposing a protocol that we see it will fit the initial
requirements defined by the IE prototype. The protocol,
which is XML based [16, 17], is assumed to deal with the
shareable database systems metadata and all the related
information for the purpose of exchanging this information
for all the cooperating IE sites. Sense every schema type
has got its own definition procedure with different
constraint assignments it would be difficult to provide a
unified protocol to handle all the schemas. As a first
attempt we are planning to tackle the general protocol
shape in this section. As a further step we are planning to
extend this protocol to make it as unified as possible to
handle any schema type requirements. The following
figure 9 explains the basic required information to be
processed by the proposed protocol.

Shareable System
Stamp Information

Shareable System
Path Information

I	 Sub System
Information & Access

Rights

Figure 9

Based on the above figure, if we consider the relational
schema shareable system defined at figure A.2, the global
1E, than we will need to define different components to
cover the whole schema design.

6. Conclusion

0-7695-0680-1/00 $10.00 0 2000 IEEE

In this paper, we presented an architecture by which a
distributed and heterogeneous information sources can
cooperate together in an interoperation atmosphere to share
information taking into consideration the current advances
in the Internet facilities. More specifically, we describe a
mechanism that enables information producers and
consumers to have a common pool by which they know
each other and the information space provided for each.

749

DEXA 2000 Proceedings

750

This mechanism accomplishes the goals without any effect
on the autonomy of the participating information sources.
The plan also is to conduct more research in refining this
architecture. We have implemented some parts of the
prototype and working to implement the prototype as a
whole to validate the design ideas presented in this paper.

In this paper, we address several issues for sharing
information in a cooperative manner across autonomous
distributed heterogeneous information sources. Historically
known that the more there is sharing, the less autonomous
databases are. For instance, the use of schema integration
increases data sharing dramatically while bringing
database autonomy to nonexistence. In contrast the above-
described prototype designed to increase cooperation
between the distributed heterogeneous databases without
dimensioning database autonomy. Our approach provides a
mechanism that enables database application users to be
informed about the available information space they can
gain from the globe information producers. It also enables
them to share information with other information holders
in a transparent, expandable and autonomous manner. The
design of our prototype is done in a way to contribute with
a metadata capable web proxy servers so that they become
heterogeneous databases accessible web browsers.

References
[1] Ralph Busse, Peter Fanlchauser, Gerald Huck,

Wolfgangldas, "IRO-DB : An object-oriented
approach towards federated and interoperable
DBMS", Proceedings of the International
Workshop on Advances in Databases and
Information Systems ADBIS'94, Moscow,
Russia, May 1994.

[2] Ralph Busse, Peter Fanldiauser, Erich J. Newhold,
"Federated Schemata in ODMG", Proceeding of
the Second International East-West Database
Workshop, September 1994, Klagefurt, Austria.

[3] Grady Booch, James Rumbaug,h, Ivar Jacobson, "The
Unified Modeling Language User Guide",
Addison Wesley, 1999.

[4] K. Burleson, "Managing Distributed Databases", John
Wiley & Sons Inc., 1994.

[5] A. Cardenas, M.H. Pirahesh, "Database communication
in heterogeneous database management system
network", Information systems, Vol. 5, No. 1,
1980, pp. 55-97.

[6] &man Dogac, M. Tamer Ozsu, Ozgur Ulusoy,
"Current Trends in Data Management
Technology", ISBN 1-878289-51-9, 1999.

[7] Leonid A. Kalinichenlco, "Methods and tools for
equivalent data model mapping construction",
Advances in Database Technology-EDBT '90.

[8] Dinesh C. Kulkarni, Arindam Banerji, David L. Cohn,
"Operating System Support for Cooperation in

0-7695-0680-1/00 $10.00 (g) 2000 IEEE

Distributed OODBs", "Distributed Object
Management, by M. Tamer Ozsu, U. Dayal, P.
Valduriez", Morgan Kufmann Publishers, 1994.

[9] Ling Liu, Calton Pu., "An Object-oriented Approach
to Interoperable Heterogeneous Information
Sources", Invited Paper in Proceedings of the
Seventh International Hong Kong Computer
Society Database Workshop, Hong Kong (May
1996) (Springer Verlag) pp49-65.

[10] Meta Data Coalition Open Information Model Version
1.1 Proposal, URL:
http://www.mdcinfo.com/01M/MDCOIM11.ht
ml, August 1999.

[11] John Murphy, Jane Grimson, "The Jupiter System: A
prototype for Multi-database Interoperability",
12th British National Conference on Databases,
BNCOD 12 Guildford, United Kingdom, July
1994 Proceedings, Springer-Verlag.

[12] OSPF and the Internet, URL:
http://www.livingston.com/inarketing/whitepape
rs/ ospf_whitepaper.html, Lucent Technology,
1999.

[13] James Rumbaugh, Ivar Jacobson, Grady Booch, "The
Unified Modeling Language Reference Manual",
Addison Wesley, 1999.

[14] Alan It Simon, "Strategic database technology:
Management for the year 2000", Murgan
Kaufmann Publishers, San Francisco,
California, 1995.

[15] Anthony Tomasic, Louiqa Raschid, Patrick
Valduriez, "Scaling Heterogeneous Databases
and Design of Disco", Proceedings of the
International Conference on Distributed
Computer Systems, 1996.

[16] Ronald Bourret, "XML and Databases", URL:
http://www.inforniatik.tu-
dannstadt.de/DVS1/staffibourrethcinl/XMLAnd
Databases, December 1999.

[17] W3C Extensible Markup Language (XML) 1.0
Recommendation, REC-xml-19980210, URL:
http://www.w3.org/TR/1998fREC-xml-
19980210, 10 February 1998.

Iii

Ts

:44

7.4

Ii 4.9

.161.

0

6.1
0
0

0

1.1

1
tat_

A

1

3

	DX229430_1_0001.tif
	DX229430_1_0003.tif
	DX229430_1_0005.tif
	DX229430_1_0007.tif
	DX229430_1_0009.tif
	DX229430_1_0011.tif
	DX229430_1_0013.tif
	DX229430_1_0015.tif
	DX229430_1_0017.tif
	DX229430_1_0019.tif
	DX229430_1_0021.tif
	DX229430_1_0023.tif
	DX229430_1_0025.tif
	DX229430_1_0027.tif
	DX229430_1_0029.tif
	DX229430_1_0031.tif
	DX229430_1_0033.tif
	DX229430_1_0035.tif
	DX229430_1_0037.tif
	DX229430_1_0039.tif
	DX229430_1_0041.tif
	DX229430_1_0043.tif
	DX229430_1_0045.tif
	DX229430_1_0047.tif
	DX229430_1_0049.tif
	DX229430_1_0051.tif
	DX229430_1_0053.tif
	DX229430_1_0055.tif
	DX229430_1_0057.tif
	DX229430_1_0059.tif
	DX229430_1_0061.tif
	DX229430_1_0063.tif
	DX229430_1_0065.tif
	DX229430_1_0067.tif
	DX229430_1_0069.tif
	DX229430_1_0071.tif
	DX229430_1_0073.tif
	DX229430_1_0075.tif
	DX229430_1_0077.tif
	DX229430_1_0079.tif
	DX229430_1_0081.tif
	DX229430_1_0083.tif
	DX229430_1_0085.tif
	DX229430_1_0087.tif
	DX229430_1_0089.tif
	DX229430_1_0091.tif
	DX229430_1_0093.tif
	DX229430_1_0095.tif
	DX229430_1_0097.tif
	DX229430_1_0099.tif
	DX229430_1_0101.tif
	DX229430_1_0103.tif
	DX229430_1_0105.tif
	DX229430_1_0107.tif
	DX229430_1_0109.tif
	DX229430_1_0111.tif
	DX229430_1_0113.tif
	DX229430_1_0115.tif
	DX229430_1_0117.tif
	DX229430_1_0119.tif
	DX229430_1_0121.tif
	DX229430_1_0123.tif
	DX229430_1_0125.tif
	DX229430_1_0127.tif
	DX229430_1_0129.tif
	DX229430_1_0131.tif
	DX229430_1_0133.tif
	DX229430_1_0135.tif
	DX229430_1_0137.tif
	DX229430_1_0139.tif
	DX229430_1_0141.tif
	DX229430_1_0143.tif
	DX229430_1_0145.tif
	DX229430_1_0147.tif
	DX229430_1_0149.tif
	DX229430_1_0151.tif
	DX229430_1_0153.tif
	DX229430_1_0155.tif
	DX229430_1_0157.tif
	DX229430_1_0159.tif
	DX229430_1_0161.tif
	DX229430_1_0163.tif
	DX229430_1_0165.tif
	DX229430_1_0167.tif
	DX229430_1_0169.tif
	DX229430_1_0171.tif
	DX229430_1_0173.tif
	DX229430_1_0175.tif
	DX229430_1_0177.tif
	DX229430_1_0179.tif
	DX229430_1_0181.tif
	DX229430_1_0183.tif
	DX229430_1_0185.tif
	DX229430_1_0187.tif
	DX229430_1_0189.tif
	DX229430_1_0191.tif
	DX229430_1_0193.tif
	DX229430_1_0195.tif
	DX229430_1_0197.tif
	DX229430_1_0199.tif
	DX229430_1_0201.tif
	DX229430_1_0203.tif
	DX229430_1_0205.tif
	DX229430_1_0207.tif
	DX229430_1_0209.tif
	DX229430_1_0211.tif
	DX229430_1_0213.tif
	DX229430_1_0215.tif
	DX229430_1_0217.tif
	DX229430_1_0219.tif
	DX229430_1_0221.tif
	DX229430_1_0223.tif
	DX229430_1_0225.tif
	DX229430_1_0227.tif
	DX229430_1_0229.tif
	DX229430_1_0231.tif
	DX229430_1_0233.tif
	DX229430_1_0235.tif
	DX229430_1_0237.tif
	DX229430_1_0239.tif
	DX229430_1_0241.tif
	DX229430_1_0243.tif
	DX229430_1_0245.tif
	DX229430_1_0247.tif
	DX229430_1_0249.tif
	DX229430_1_0251.tif
	DX229430_1_0253.tif
	DX229430_1_0255.tif
	DX229430_1_0257.tif
	DX229430_1_0259.tif
	DX229430_1_0261.tif
	DX229430_1_0263.tif
	DX229430_1_0265.tif
	DX229430_1_0267.tif
	DX229430_1_0269.tif
	DX229430_1_0271.tif
	DX229430_1_0273.tif
	DX229430_1_0275.tif
	DX229430_1_0277.tif
	DX229430_1_0279.tif
	DX229430_1_0281.tif
	DX229430_1_0283.tif
	DX229430_1_0285.tif
	DX229430_1_0287.tif
	DX229430_1_0289.tif
	DX229430_1_0291.tif
	DX229430_1_0293.tif
	DX229430_1_0295.tif
	DX229430_1_0297.tif
	DX229430_1_0299.tif
	DX229430_1_0301.tif
	DX229430_1_0303.tif
	DX229430_1_0305.tif
	DX229430_1_0307.tif
	DX229430_1_0309.tif
	DX229430_1_0311.tif
	DX229430_1_0313.tif
	DX229430_1_0315.tif
	DX229430_1_0317.tif
	DX229430_1_0319.tif
	DX229430_1_0321.tif
	DX229430_1_0323.tif
	DX229430_1_0325.tif
	DX229430_1_0327.tif
	DX229430_1_0329.tif
	DX229430_1_0331.tif
	DX229430_1_0333.tif
	DX229430_1_0335.tif
	DX229430_1_0337.tif
	DX229430_1_0339.tif
	DX229430_1_0341.tif
	DX229430_1_0343.tif
	DX229430_1_0345.tif
	DX229430_1_0347.tif
	DX229430_1_0349.tif
	DX229430_1_0351.tif
	DX229430_1_0353.tif
	DX229430_1_0355.tif
	DX229430_1_0357.tif
	DX229430_1_0359.tif
	DX229430_1_0361.tif
	DX229430_1_0363.tif
	DX229430_1_0365.tif
	DX229430_1_0367.tif
	DX229430_1_0369.tif

