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Abstract

Performance of an ultrasonic cross-correlation flow measurement instrument
may be significantly affected by turbulence at the location of the ultrasonic
sensors. In this paper, a new method of generating Synthetic Turbulence is
presented, to provide an effective tool for creating a variety of turbulent fields,
which can be used to model and analyze instrument performance under differ-
ent flow conditions. In the proposed method, a turbulent field is presented as
a Fourier time-series in each point in space. Turbulence structures are defined
by a spatial distribution of phase functions for each harmonic. Principles of
designing a phase function to achieve the desirable distribution of turbulence
scales, and two-point correlations, are outlined by considering the example of
Uniform Isotropic Turbulence. One application of this method, presented in
this work, is the mathematical modeling of ultrasonic cross-correlation flow
measurement. Results predicted by the proposed mathematical model show
good agreement with experimental data.
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1. Introduction

Ultrasonic cross-correlation flow measurement instrumentation may be
significantly affected by turbulence characteristics at the location of the sen-
sors. Demand for reducing flow measurement uncertainty, creates and main-
tains interest in evaluation of the effect of turbulence on flow meter perfor-
mance [1, 2, 3, 4, 5]. A synthesized, turbulent-like field, called Synthetic
Turbulence, can be used to model and analyze flow measurement instrument
performance under different conditions. Methods of generating Synthetic
Turbulence have been used for the last three decades, mainly to provide inlet
boundary conditions for Direct Numerical Simulation (DNS) and for Large
Eddy Simulation (LES). The main requirement in such an application is to
reduce the transitional area affected by the boundary conditions. Detailed
discussions of this problem are presented in [6, 7, 8, 9, 10, 11, 12, 13]. Dif-
ferent Synthetic Turbulence models have also been developed for a number
of specific applications, such as development of sub-grid turbulence models
for LES [14], and for many others.

The objective of the present work, is to develop a method of generating
a variety of turbulent fields for modeling the turbulence effect on flow mea-
surement instruments. In this application, the dimensions of the flow domain
of interest are small. It is defined by the size of the flow sensor, which usu-
ally is much smaller than the size of the domain where flow characteristics
are formed. Often, it is the same order of magnitude of the spatial scale of
turbulence, or smaller.

The most common method of generating synthetic turbulence is the spec-
tral method, where the turbulence is presented as a Fourier series of temporal
and spatial harmonics with random factors [11, 12, 13]. Another approach,
the superposition method, is based on creating a family of functions repre-
sentative of a turbulent structure, and superimposing such functions onto
the same domain, creating a turbulent field [6, 7]. An extension of this
approach, is the fractal method used to describe small scale turbulence for
sub-grid models in LES [14]. The filtering method is another approach where
desirable spatial structures are obtained by applying specially designed filters
to a random digital distribution [11].

The method presented in this paper can be classified as a combination of
the spectral and superposition methods. It is based on the presentation of a
turbulent field as a Fourier series of time harmonics, where the amplitude and
phase at each harmonic is a function of spatial variables. In contrast to exist-



ing methods, the phase functions are not necessary linear, but are designed
to obtain the desirable turbulent field. Examples of generating a turbulent
velocity field in a pipe with desired behavior of two-point correlations are
presented. Results are compared with experimental data.

An application of the presented modeling method, is the mathematical
modeling of ultrasonic cross-correlation flow measurement. The principal of
cross-correlation flow measurement is as follows: propagation of the turbu-
lence field along the pipe is detected by ultrasonic beams transmitted through
the flow medium, and these received ultrasonic signals are used to derive flow
characteristics.

The principles of operation of a cross-correlation flow meter were first
described in [16] mainly for multi-phase flows. The first attempts to develop
a mathematical model of this instrument were made using the concept of a
tracer [17, 18] without consideration of the specific mechanism of the effect
of the tracer on the ultrasonic beam. The first analysis of the effect of
turbulent flow on an ultrasonic beam in a cross-correlation flow measurement
for a single phase flow was presented in [19], where a direct relation between
perturbations of the phase of the ultrasonic wave, and the turbulent velocity,
was obtained. This relation was used to develop a simple semi-empirical
model of cross-correlation flow measurement in developed pipe flow. A more
comprehensive model for a single phase flow was developed [20, 21], using the
same relation between the phase of the ultrasonic beam and the turbulent
velocity. Turbulence characteristics required by the model were obtained by
solving the Reynolds Equations using the k-e¢ turbulence model, and using
the approximation of isotropic uniform turbulence.

The mathematical model presented in this paper deals directly with the
turbulent velocity field, and does not use the approximation of isotropic
uniform turbulence. Results predicted by the mathematical modeling were
compared with experimental data obtained in the Utah Water Research Lab-
oratory in Utah State University, using the ultrasonic non-intrusive cross-
correlation flow meter CROSSFLOW, developed by AMAG Inc, Canada

(www.amag-inc.com).



An installation of the CROSSFLOW meter on a feedwater pipe of a nu-
clear power plant is shown in Fig. 1 (top left image). The CROSSFLOW
high temperature ultrasonic transducer is shown in Fig. 1 (top right image).
Two signals, representing turbulent perturbation of upstream (A, yellow)
and downstream (B, red) ultrasonic beams, are shown in Fig. 1 (bottom
left plot). The cross-correlation function of these signals is shown in Fig. 1
(bottom right plot).
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Figure 1: Installation of cross-correlation flow meter on feed-water line of nuclear power
plant (top left). High temperature ultrasonic transducer (top right). Two signals repre-
senting perturbation of upstream (A) and downstream (B) ultrasonic waves by turbulence
(bottom left). Cross-correlation function of the upstream and downstream signals (bottom
right). (Courtesy of Advanced Measurement & Analysis Group Inc.)



2. General Form of the Turbulent Field

Considering turbulent flow in the Cartesian coordinate system (x,y, 2)
within finite time interval T', a turbulent velocity component v, or distribu-
tion of any other turbulence parameter, can be presented as a Fourier series
in the following form:

M
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where w; = 2nf;, f; = j/T, subscript j is the harmonic number, A; and
¢; are harmonic amplitude and harmonic phase respectively, and ¢ is time.
Coordinates z,y, z are defined in a flow domain with characteristic size D.

It is assumed that time interval T is sufficiently large to allow for accu-
rate representation of the turbulence by Fourier series (1), and the number
of harmonics (M) is high enough to include the desired highest turbulence
frequencies.

Functions A;(x,y, z) are defined by the turbulence power spectrum, which
is a statistical characteristic of turbulence, and typically has spatial scale of
the order of the size of the flow domain D. The spatial structure of an
instantaneous distribution of turbulence parameter v(x,y, z) at a given time
is more complicated. It is characterized by a range of scales, from large
scale of order of D, to smallest scale much smaller than D, such as the
Kolmogorov’s scale [22]. In equation (1) this structure is defined by spatial
distributions of phase 6;(z,y, z).

Methods of measurement of the turbulence spectrum are well developed,
and usually sufficient information about functions A;(z,y, z) is available.
Further discussion is mainly concerned with the other parameters in (1).

For simplicity, it is assumed further in the paper that time-average ve-
locity has only one non-zero velocity component, in the z direction, and its
scale U is significantly higher than the turbulence velocity scale u. This as-
sumption allows for using certain relations between time and space scales,
such as the Taylor Approximation [15].

2.1. Time T and the total number of harmonics M

The selection of parameters T' and M from (1) depends on the considered
problem. However, some general relations between turbulence characteristics
and the parameters from (1) can be obtained.



Representation of turbulence in (1) is based on the assumption that ran-
dom dependence of a turbulent parameter on time can be approximated by
periodical function with period 7. Such an approximation is valid if T is
significantly higher than the time scale of the turbulence, defined by the size
of the flow domain D and velocity scale U.

D
T — 2
>> (2)

It is convenient to introduce length scale L , associated with the time T,
and parameter N as a ratio of the scale L to D , as follows:

L
L=UT, ==N 3
) D ( )
From (2) and (3), it follows that N >> 1.
For a given harmonic j, a spatial longitudinal scale of turbulence, A;,
can be defined by the harmonic frequency and velocity, using the Taylor
Approximation [15].

U
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From (1) and (3), it follows that
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Spatial tangential scale A;;, in the direction perpendicular to the main
flow, is defined by the variation of cos[d;(x,y, z)]. If the total variation of
6,(z,y, 2) on a distance D in tangential direction, Afj,, is of order 27n,

AG,, ~ 2mn(j) (6)
then the spatial scales of the turbulence structure are estimated as:
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From (5) and (7) the ratio of the longitudinal and tangential scales is:
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Therefore, the desired relation between longitudinal and tangential scales
can be achieved by selecting an appropriate function n(j) when designing
0i(z,y,2).

From (8) it also follows that for a given ratio between the longitudinal
and tangential scales, the increment of n by one unit corresponds to the
increment of 7 by N units.

Aj ~ NAn 9)

Estimation (9) shows that small variation in n, and correspondingly small
variation in spatial scales, corresponds to a significant number of terms in
(1). This result is applicable to both the longitudinal and tangential scales
if A\, is expressed as a fraction of D

D
n(j)

From (10), one can conclude that parameter N characterizes the ability
of series (1) to approximate the desirable spatial turbulence structures which
provide a valid statistical representation of the real turbulent field. This is
further discussed in the next section in relation to the two-point correlation.

The total number of terms M in (1) depends on what is the smallest
spatial scale A,;, or what is the highest turbulence frequency f,;, that is
required to be present in the modeling. If A\, is presented as a fraction of D
as Ay = D/m, the maximum number of terms in (1) is

M = Nm (11)

Aj ~ (10)

2.2. Two-Point Correlation and phase function 0;(x,y, z)

An important statistical characteristic of a turbulent flow is a correlation
between turbulence parameters in two points in space gy = (xo, Yo, 20) and
o1 = po+ Ap, where Apg = (Ax, Ay, Az).

The two-point correlation R(py, Ag, T) is defined as follows:

T
R, 87,7) = [ o el + A7t + 1)
0

If a turbulent field is described by (1), the two-point correlation has the
following form:

S Ao 1 _ _
R(po, AP, T) = 5 > A2 coslw;T + 0;(70 + Ap) — 0;(50)] (12)

j=1



From (12), the maximum contribution to the magnitude of R(py, Ap, T)
from each harmonic, corresponds to the following relation between 7 and Ap:

w;T + Aej (ﬁo, Aﬁ) =0 (13)

Relations (13) can be used to obtain qualitative properties of the spatial
behavior of phases 6;(p) for a typical turbulent flow.

In the two following sections, the spatial behavior of §;(p) is considered
along the main flow direction, and in the direction perpendicular to the main
flow.

2.2.1. Two Point Correlation in the Longitudinal Direction

In order to describe the spatial dependence of the phase of the j-th har-
monic, the phase change 6;(p) along the flow direction z with scale A;., has
to be estimated as follows:

Ab;(z0, Az) ~ Az iﬂ

(14)

WK

From (14), (13) and (4), it follows that each harmonic has a maximum
contribution to the two-point correlation at the same magnitude of 7 for all
harmonics:

Az
~ — 15

If (14) is satisfied not approximately, but exactly, then (15) is also satisfied
exactly. In this case, the two-point correlation has maximum at time delay
7, defined by (15), and the magnitude of this maximum does not decay
with increasing distance Az . Such flow corresponds to a frozen turbulence
approximation, in which spatial turbulence structures are moving along the
main flow direction with constant velocity U.

In a realistic description of turbulence, as follows from Kolmogorov’s es-
timations [22], the time of life of a turbulent structure is shorter for smaller
scales. This property of turbulent flow results in a decay of the magnitude
of the maximum of the two-point correlation, as distance between the points
increases.

The above fundamental property of turbulence, combined with equation
(14), introduces an apparent paradox, which can be illustrated using the
example of isotropic uniform turbulence. In such a model of turbulence, the



two-point correlation function depends only on distance between two points,
and does not depend on the position of these two points in space. This
requirement can be satisfied only if dependence of phase ¢; on z is linear.
Note that any non-liner relation will result in dependence of Af#; on position
in space. It means that equation (14) has to be satisfied not as a qualitative
relation but exactly. That leads to the only possible turbulent field, namely
frozen turbulence with a two-point correlation function that does not decay.
A resolution to this apparent conflict is given as follows.

Relation (9) shows that if parameter N is a statistically significant num-
ber, then equations (1) and (12) have a significant number of terms (of order
N), associated with approximately the same magnitude of the turbulence
scale, A\; ~ D/n(j). Therefore, if phase 6;(z) depends on a random factor 7,
for each harmonic, equation (14) does not result in the same magnitude of 7
for each harmonic. At the same time, the turbulence structures described by
N consecutive terms may have spatial scale \; ~ D/n(j), which satisfy (14)
statistically. Therefore, a different rate of decay of the two-point correla-
tion for different scales can be achieved by introducing a random component
6,;(z) in the phase function 6;(z), such that the random effect is increasing
on a shorter distance for smaller scales (higher wave number). For example,
it can be achieved if the random component of ;(z) is described using the
random factor r; as follows:

2T

Ab,i (20, Az) ~ 1Az
Ajz

(16)

Relation (16) is presented to qualitatively illustrate the effect of a random
factor on the behavior of the two-point correlation function. The specific
dependence of 6;(z) on r; can be selected to obtained the desirable shape of
the two-point correlation, depending on the considered problem.

2.2.2. Tangential Two-Point Correlation

Phase change along the direction of the vector Ap can be estimated as

follows:
2T

803 ) ~ 18711 (17)

JT
Some properties of functions 0;(py, Ap) can be obtained by considering
isotropic uniform turbulence, as was done in the previous section. For this



model of turbulence, the two-point correlation depends only on the distance
between points and does not depend on the position and orientation of the
points in space. To satisfy this condition for each term in (12), the difference
Ab;(po, Ap) between two points separated by distance ||Ap]| has to depend
only on ||Ap]| regardless of orientation of vector Ap. However, such behavior
cannot be achieved in any differentiable function 6(x, y, z), because the phase
change is equal to zero, AG(Ax, Ay, Az) = 0, along the line perpendicular to
the gradient of §(z,y, z). A resolution to this apparent paradox is the same
as was discussed in Section 2.2.1. Independence of the two-point correlation
from gy and from orientation of Ap can be achieved statistically over a signif-
icant number of terms (of order N ) in (12) by introducing a random factor
r;, as was qualitatively illustrated in (16).

The maximum of the correlation function for a given Ap in the direction
perpendicular to the main flow typically corresponds to 7 = 0, and the
magnitude of the value at 7 = 0 decays as the distance between two points,
Ap, increases. From (13) condition 7 = 0 results in the following condition
for the phase:

20,70, A) = 0 (18)

This condition must also be satisfied statistically over a large number of
terms in (12), which correspond to approximately the same turbulence scale.
3. Specific Form of the Phase Equation and Simulations of Turbu-

lent Velocity Fields

The phase function for each harmonic is assigned as follows:

0;(x,y) = roj + n(g)mrj\/(x —ra;)? + (y —ry;)? + €

(19)
T < |roj| < —m; 0.25 <|r;] <1; € <O0;

Parameter n(j) defines the tangential spatial turbulence scale associated
with harmonics j, as was introduced in (7). ro; and r; are random factors.
The factor ry; is defined by a uniform distribution between —7 and 7. The
factor r; is defined by a uniform probability distribution between 1 and —1,
but not including interval between 0.25 and —0.25, to avoid occurrences of
very large tangential spatial scales.

Coordinates (x,y) are normalized to a pipe diameter and have magni-
tude between —0.5 to 0.5 with pipe center at (x = 0,y = 0). Expres-
sion (19) generates the spatial distribution of each harmonic in the shape of

10



an oscillating function with central symmetry at a randomly selected point
(@ = Taj,y = 1y5).

In the case that the randomly selected point (x = r,j,y = 1y;) is within
the flow domain, a singularity exists at this location, as the phase for har-
monic 7 will not be a smooth function over the spacial domain of the flow.
In order to remove this singularity, the term e is included in (19). If point
(x = 1y, y = 1y;) is assigned outside of the flow domain, restrictions must
exist that define how far from the flow domain, and how close to the flow
domain, the point can be assigned.

An example of level lines of five phase functions for j = 1...5 is shown
in Fig. 2.

Phase for first 5 harmonics (rad)
0.5 ‘

0.25

0.0

-0.25

distance from center, normalized to diameter

-05 — S
~05 -0.25 0.0 0.25 05

distance from center, normalized to diameter

Figure 2: Level lines of phase functions for j equal from 1 to 5.

11



In further examples, function n(j) is selected as follows:

n(j) = k <% + 2.5) (20)

Parameter k is a constant introduced to control the relation between the
longitudinal and tangential turbulence scales, as was estimated in (8). Fur-
ther examples are provided for a pipe flow with the following flow conditions
and modeling parameters:

Pipe diameter D = 304.8mm
Cross-section average flow velocity U=5m/s

Time duration T =4s

Minimum longitudinal turbulence scale A, = D/32 = 9.5mm
Length scale L=UT =24dm
Parameter N=L/D ~ 187
Number of harmonics M =~ L/, = 2520
Maximum frequency fu = U/ Ay ~ 630Hz

The amplitudes A;(z,y) are obtained from measurement of the corre-
sponding pipe flow. Specifically, cross-correlation flow measurement returns
the function ¢(t), which is an integral of instantaneous turbulent velocity
component Vi(x,y,t), as follows:

o(t) ~ / Vi = 0,9, t)dy (21)

The spectrum of function ¢(t) is used to obtain the amplitudes A;(x,y)
for flow simulation. A more detail discussion of function ¢(¢) is presented in
Section 4.

Measurement of the spectrum, used in the modeling, was conducted over
a long time interval, much longer than modeling interval T' = 4s. Therefore,
amplitudes A; in the modeling did not include any random factor. Con-
sequently, random variations between turbulent fields obtained in different
modeling runs were expected to be smaller than in the real flow. For sim-
plicity, it was also assumed that amplitudes A; are not changing along the
pipe cross section.

Each simulation run corresponds to 4 seconds of turbulent flow over a
given pipe cross-section. Similarly to a real turbulent flow, each run results

12



in a unique turbulent field defined by a unique set of phase functions, due
to the presence of random parameters. How well statistical characteristics of
the turbulent field are represented in a single run, depends on the number
N. As follows from (9), and as was discussed in Sections 2.2.1 and 2.2.2,
the higher the number N, the higher the number of harmonics are available
to describe spatial turbulence structure in a certain range of the turbulence
spectrum, or in a certain range of spatial scales. In the present example,
the range of longitudinal scales from A, ~ 1D to A\; ~ 0.9D corresponds to
the harmonic number range j from 1 to approximately 50. Thus, there are
approximately 50 terms available in equation (1) to describe this portion of
the turbulence structures. To illustrate this, Fig. 3 presents an example of
level-lines of 50 phase functions from j = 1 to j = 50, superimposed on each
other.

Phase for 50 harmonics (rad)

0.5

0.0

-0.25

distance from center, normalized to diameter

~0.5 -0.25 0.0 0.25 0.5
distance from center, normalized to diameter

Figure 3: Level-lines of 50 phase functions, corresponding to harmonics numbers from
7 =1to j=>50.
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Figure 4 presents simulated phase at the center of the pipe, for each
harmonic from 7 = 1 to 5 = 2520, for three different modeling runs, each
with different values of constant & from equation (20), k = 1 (Blue), k = 2
(Red) and k = 4 (Black).

Phase at center vs Harmonic number
150 ‘ ‘ ‘

Three simulations: blue — k=1, red - k=2, black — k=4

100 1

Phase at center of pipe (rad)

-100 b

_150 Il Il Il Il Il
0 500 1000 1500 2000 2500
Harmonic number

Figure 4: Phase at the center of the pipe, for each harmonic, for three different modeling
runs with £ = 1 (Blue), &k = 2 (Red) and k = 4 (Black).

Fig. 4 shows that the range of the phase values, at the center of the pipe,
increases with increase of harmonics number. The rate of the increase can be
controlled by parameter k. However, variation of the phase change between
two consecutive harmonics can be significant. Similar results can be shown
for locations other than the center of the pipe. The lower frequency structures
will have higher spacial correlation, in the tangential direction, than higher
frequency structures. The rate of decrease of spacial correlation increases as
k increases. As a result of these properties, the selection of a k value, allows
one to control the tangential spacial scales of simulated turbulent structures.

Level-lines of the velocity field in the (z,t) plane are shown in Fig. 5
for k = 2 (top plot) and £k = 4 (bottom plot). Level-lines in the (x,y)
plane at t = constant for the same simulations are shown in Fig. 6, for
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the same k values respectively. Fig. 5 and Fig. 6 illustrate how the ratio
between longitudinal and tangential scales, and the tangential scale itself,
can be controlled by parameter k.
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Figure 5: Velocity level-lines in (x,t) plane for k = 2 (top) and k = 4 (bottom)
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Radial turbulent velocity at cross section (m/s), k=2
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Figure 6: Velocity level-lines in (z,y) plane at ¢ = const, for k = 2 (top) and k = 4
(bottom).

An example of the two-point correlation function described by (12), is
shown in Fig. 7. In this example pop = (0,0,0)" and Ap = (0,Ay,0)".
Fig. 7 shows results for simulation runs with & = 2 (top plot) and k£ = 4
(bottom plot). Both the top and bottom plots in Fig. 7 shows a family
of ten curves corresponding to different distances Ay, where y-values are
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normalized to pipe diameter, and y = 0 corresponds to the center of the
pipe. The top curve in both plots corresponds to Ay = 0.01. The remaining
nine curves correspond to Ay = 0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4, and
0.45, respectively. For greater Ay, the corresponding correlation curve has
a lower peak, and for large enough Ay there is no peak at all. The rate at
which the peak drops with increasing Ay, will be greater for larger values of
k.

The dependence of the value of the two-point correlation at 7 = 0, on
distance Ag = (0,Ay,0)" along the pipe radius is shown in Fig. 8, for
k = 2 and kK = 4. Behavior of the two-point correlation is consistent with
illustrations in Fig. 5, Fig. 6, and Fig. 7. The value of the correlation at
7 = 0 reduces over shorter distances, for higher values of parameter k, which
correspond to a flow with smaller turbulence scales.

It should be noted, that the simulations presented in Fig. 7 and Fig. 8
correspond to the same user specified simulation parameters, but are not the
exact same simulation. Therefore, since the simulation has random compo-
nents, Fig. 7 and Fig. 8 present results with the same qualitative character-
istics, and similar quantitative characteristics, but not identical quantitative
characteristics.

Fig. 9 shows experimental data presented by Taylor [23] on a 73mm
diameter pipe at a long distance from the pipe inlet. Experimental data can
be reproduced via mathematical simulation by adjusting parameter k. Good
agreement between modeling and experimental results shown in Fig. 9 is
obtained with simulation using k£ = 5.

In general, results presented in Figs. 5 through 9 show that ratio between
the longitudinal and tangential turbulence scales, and behavior of the two-
point correlation, can be effectively controlled by parameter k.
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Pointwise correlation of central point with 10 other points along pipe diameter, k=2
T T T T T T T T T

1.0

0.8

0.6

cross correlation (units arbitrary)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
time (s)

Pointwise correlation of central point with 10 other points along pipe diameter, k=4
i i i i

cross correlation (units arbitrary)

-01  -008 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
time (s)

Figure 7: Dependence of two-point correlation (12) on 7, k, and Ay. One point is

located at the center of the pipe; the other points are located along the y-axis with
Ay = 0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4, and 0.45. k =2 (top), k = 4 (bottom).
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Central value of pointwise correlations of central point with other points along pipe diameter

T T T T
i — i

0.8

0.6

0.4

cross correlation (units arbitrary)

0.2

0.0

1 1 1
0 0.1 0.2 0.3 0.4 0.5

distance from center, normalized to diameter

Figure 8: Distribution of two-point correlation function (12) at 7 = 0 along y axis when one
point is fixed at the center of the pipe. The two curves represent two different simulation
runs, with £ = 2 (red) and k = 4 (black).

Central value of pointwise correlations of central point with other points along pipe radius
T T T T
14

0.8

I o
IS o

cross correlation (units arbitrary)
o
N

0.0

0 0.1 0.2 0.3 0.4 0.5
distance from center, normalized to diameter

Figure 9: Comparison of simulated and experimental two-point correlation functions at

7 = 0 along y axis when one point is fixed at the center of the pipe. Solid line - simulation
at k =5, Stars - experimental data from Taylor [23].
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4. Application of the Modeling Method to Mathematical Simula-
tion of Cross-Correlation Flow Measurement

The synthetic turbulence model described above was used for mathe-
matical simulation of cross-correlation flow measurement. Results of the
simulations were compared with experimental data. Principles of the cross-
correlation flow measurement method, along with the results of mathematical
simulation and experimental data are discussed in the following sections.

4.1. Cross-Correlation Flow Measurement Technology

The ultrasonic cross-correlation flow rate measurement method has been
known for a long time [16], but it became more popular in recent decades
due to advancement of modern computers [17, 18, 19, 20, 21].

In the most simple realization of the ultrasonic cross-correlation flow me-
ter, two ultrasonic waves, separated by a known axial distance, are trans-
mitted through the flow along pipe diameter (see Fig. 10). Each wave is
modulated by turbulent structures which are naturally present in the flow.
Phase delay of the ultrasonic wave is modulated by the turbulence velocity
component along direction of propagation of the ultrasonic waves according
to the following equation [19, 20, 21]:

D

o) =25 [ vic.oac (22)

In the integral (22) fy is frequency of the ultrasonic wave, which has

a magnitude of order 1MHz, significantly higher than turbulent spectrum

frequencies, ¢ is the speed of sound, V; is the turbulence velocity compo-

nent along the direction of wave propagation, and ( is the spatial variable

of integration along the direction of wave propagation. If signal ¢(t) is ob-

tained at two different cross-sections of the pipe, z = Z; and z = Zj, the

cross-correlation function of signals ¢(Z;,t) and ¢(Zs,t) can be calculated as
follows, where T is the time duration of the signals:

R(r) — /0 (21, 8)6(Zo, t + )t (23)

If the distance between the two ultrasonic beams, | = Zy; — Z;, is short
enough, then the signals ¢(Z,t) and ¢(Zs,t) maintain similarity to each
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other. In this case, function R(7) has a pronounced maximum at 7 = 7*
(See Fig. 1, bottom right plot). The measured flow velocity V,, is defined as:

V= — (24)

7—*
The meaning of V,,, can be better understood from the following consider-
ations. Function R(7) can be presented as a double integral of the two-point

correlation functions by substituting (22) into (23), and changing the order
of integration (see Fig. 10) [20, 21]:

R(r) = [ i Ro(C, €, 7)dCde

25
RO(C?&aT) = fOTV;f(ZbC?t)V;f(ZQ?gvt+7—)dt ( )

Function Ry((, &, 7) is a correlation of turbulent velocity component V; in
two points located along direction of propagation of ultrasonic waves at two
pipe cross-sections z = Z1; y = ¢ and z = Zy; y = £ . From (25) it follows
that velocity V,, defined by (24), is a weighted average of velocities defined
by the positions of the maximums of the two-point correlations Ry ((, &, 7).
Therefore, under the presence of a time-averaged velocity gradient in a pipe
flow, V,,, is usually not equal to the cross-section average axial flow velocity U.
In cross-correlation flow measurement, the flow rate is calculated as follows:

Q= (JA% = CAV, (26)

In equation (26), @ is volumetric flow rate, A is pipe cross-section area,
[ is spacing between the upstream and downstream ultrasonic beams, 7% is
the position of the maximum of the cross-correlation function, and V,, is the
measured velocity as it was defined in relation (24). Hydraulic factor C' is
defined as a ratio of the cross-section average flow velocity U to the measured
velocity V,,.
U

=1 (27)

Since V,, is a measure of the average transport velocity of turbulent struc-
tures, the hydraulic factor C is a measure of the ratio between the cross-
section average flow velocity and the average transport velocity of turbulent
structures. Determining the value of the hydraulic factor for different flow
conditions, and for different design parameters of the flow meter, is the most
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Figure 10: Schematics of cross-correlation flow measurement. Function Ro((,§,7) is a
two-point correlation of velocity V; taken between the points (z,y) = (¢, Z1) and (x,y) =

(57 Z2)

important and challenging tasks in cross-correlation flow measurement. The
model described in this paper can be used to investigate the sensitivity of
the hydraulic factor to different flow conditions, and to predict the hydraulic
factor for a specified flow condition.
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4.2. Mathematical Simulation for Cross-Correlation Flow Measurement

Mathematical simulation of cross-correlation flow measurement can be
used to investigate the effect of different flow conditions and flow meter design
parameters, on hydraulic factor C.

Another objective of the simulation can be to predict low meter behavior
at a specific flow conditions. Other than the obvious practical interest, such
simulation is an important step in evaluation of the mathematical simulation
itself, by comparing simulated results with experimental results. For this
application, an important requirement is for the simulated flow conditions
to be representative of those present at the flow meter location during the
experiment. The design of the cross-correlation flow meter used in the ex-
periments described in this section, allows for the recording of signal ¢(t)
defined in (22). Statistical characteristics of this signal can be used to deter-
mine input parameters for the simulation of the inlet turbulent velocity field,
ensuring that the remaining simulation is based on the same flow condition
as the experiment.

To compare simulation results with laboratory experiment results, the
simulation was conducted at different distances downstream of a 90-degree
elbow with two different spacing values between ultrasonic beams: [ = 1D
and [ = 3D, where D is the pipe diameter. These spacing values were
chosen, because a typical installation of a cross-correlation flow meter places
the upstream and downstream ultrasonic beams at a distance ranging from
1D to 3D. Analysis of instrument and model performance for spacing values
smaller than 1D and greater than 3D is a subject of future work. Results
of the simulation were compared with test data. The simulation consisted of
the following steps:

e Numerical simulation of the time-averaged velocity profiles at different
distances downstream of the 90-degree elbow, for a given pipe diameter
D and cross-section area average flow velocity U, using the k-e model
and an ANSYS CFD package.

e Generation of the inlet turbulent velocity field at a given pipe cross-
section z = Z; (see Fig. 10) using the method of turbulence field
generation described in this paper, and statistical characteristics of the
power spectrum of signal ¢(t) from (22) as input for the simulation.
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e Calculation of the turbulence velocity field in cross-section z = Z, (see
Fig. 10) using the local Taylor approximation [15, 20, 21].

e Calculation of the measured flow velocity V;,, using equations (22-24),
and calculation of the hydraulic factor C' = U/V,,.

In order to ensure that the simulated turbulence velocity fields were rep-
resentative of the flow conditions present during laboratory testing, the spec-
trum of signal ¢(t) from (22) was recorded during the laboratory test. For
each flow condition, an ensemble of such power spectra were collected and
averaged to remove random noise, revealing the turbulence spectra repre-
sentative of that particular flow condition. The averaged spectra were used
as input for the simulation to calculate amplitudes of the harmonics in (1).
It was assumed that the turbulence spectrum is constant across the pipe
cross-section area, except for a small area near the pipe wall.

4.3. Laboratory Test Set-Up

Comparison of the hydraulic factor values predicted by the simulation
and observed in a laboratory test, was conducted using two sets of data: one
set obtained in the Utah Water Research Laboratory (UWRL), and the other
set obtained in the AMAG flow laboratory in Canada.

In a laboratory test, the volumetric flow rate in a pipe is measured by a
reference laboratory instrument, and the cross-section average flow velocity
U can be calculated. Installation of a cross-correlation flow meter on the
same pipe provides measured velocity V,,,, and consequently the value of the
hydraulic factor C' = U/V,,, can be obtained.

In the UWRL facility, water flows through a test section from a natural
lake, located approximately 10 meters above the laboratorys altitude, and
can be directed into a high capacity weight-tank, as is illustrated in Fig. 11.
Time duration of the each test-run was approximately 30 minutes. During
this time-interval, weigh-tank measurements were taken every 5 minutes, and
average flow rate over the duration of the test-run was calculated. Accuracy
of the weigh-tank flow measurement was 0.15%. Transducers of the ultrasonic
cross-correlation flow meter were located at different distances downstream
of a 90-degree elbow on a 12-inch plastic pipe. Spacing between ultrasonic
beams in all UWRL tests was [ = 1D.
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Figure 11: Schematics of the test setup. The test section consists of a 12-inch plastic pipe,
with carbon steel 90-degree elbow and flow conditioner.

The second set of data was obtained in the AMAG flow laboratory where
flow measurements were conducted with two different spacing values between
ultrasonic beams, [ = 1D and [ = 3D, on a 4-inch plastic pipe, at different
locations downstream of the 90-degre elbow. Accuracy of the reference flow
measurement instrument was 0.4%. The purpose of this test was to measure
the dependence of the hydraulic factor on spacing between ultrasonic beams,
and compare this measured spacing dependence to the spacing dependence
predicted by the mathematical simulation.
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4.4. Comparison of the Mathematical Stmulation with Laboratory Test Re-
sults

Hydraulic factor C', predicted by the mathematical simulation and mea-
sured in the UWRL test, is shown in Fig. 12. One can see that the predicted
change in C value, over a distance from 20 to 50 pipe diameters downstream
from the 90-degree elbow, is slightly higher than the measured change in
C value. However, the difference between measured and simulated values
of C at each point is small, and within the uncertainty of the measurement,
which includes accuracy of the weigh-tank and other uncertainty components
associated with the ultrasonic flow meter.

Comparison of the simulated and measured values of C' at different dis-
tances downstream of a 90-degree elbow with different spacing values between
ultrasonic beams, [ = 1D and [ = 3D, is shown in Fig. 13. Experimental
data presented in Fig. 13 were obtained at the AMAG flow laboratory.

Results presented in Fig. 13 for spacing [ = 1D (blue dots and blue tri-
angles) are consistent with the results obtained in UWRL (Fig. 12). The
simulated change of the C' value over a distance from 20 to 50 pipe diameters
from the elbow is slightly higher than the measured value, and the differ-
ence between predicted and measured values of C' at each point is within
uncertainty of the test which includes the accuracy of the reference flow in-
strument, and other uncertainty components associated with the ultrasonic
flow meter used in the tests. Maximum difference, approximately 1%, is
observed on the distance of 50D from the elbow.

Data presented in Fig. 13 on the effect of spacing between ultrasonic
beams, [, on the hydraulic factor C'; show that a change of spacing from
[ = 1D (blue) to I = 3D (red), results in reduction of both the measured
(circles) and predicted (triangles) value of C. However, the simulation shows
a slightly smaller effect than what is shown in the test result. Comparing
the most upstream measurement location along the test section to the most
downstream measurement location along the test section, the predicted value
of C shows a change of approximately 2%-3%, and the measured value of C'
shows a change of approximately 3%-4%.

Fig. 13 also shows that the difference between predicted and measured
values of C' for [ = 3D is higher than for [ = 1D. A possible explanation for
this observation, is that the simulated transformation of the turbulence field
between the two ultrasonic beams is described by the Taylor approximation
[15, 20, 21], the accuracy of which reduces with increase of spacing [.
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Figure 12: Measured and predicted dependence of ratio U/V;, on distance from upstream
90-degree elbow. Diamonds - mathematical modeling, Squares - laboratory test
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Figure 13: Measured and predicted dependence of ratio U/V,,, on normalized distance from
upstream elbow L/D, for two different spacing values between ultrasonic beams. Blue -
1D spacing, Red - 3D spacing, Triangles - mathematical model, Circles - laboratory test
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5. Conclusions

The new method of generating synthetic turbulence fields, for prediction
of ultrasonic cross-correlation flow meter performance under different flow
conditions, is presented. The process of selection of the turbulence model
parameters for generating desirable spatial characteristics of turbulence, such
as distribution of the longitudinal and tangential turbulent scales and distri-
bution of the two-point correlation, is outlined.

The application of the proposed method to turbulent pipe flow, demon-
strates good prediction of the two-point correlation and its decay with in-
crease of distance. The simulated behavior of the cross-correlation flow meter
demonstrated good prediction of flow meter behavior under different flow con-
ditions and for different distances between the ultrasonic beams of the flow
meter. This model allows for real turbulence characteristics to be reproduced
by appropriately selecting values of control parameters.

It is expected that the proposed turbulence modeling method will be used
as a simulation tool for validation and improvement of cross-correlation flow
measurement technology. The method can also be used for evaluation of the
effect of turbulence on other flow instrumentation.
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