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The principles of aerodynamic modeling in the extended flight envelope, which is character-

ized by the development of separated flow, are outlined and illustrated for a generic transport

airplane. The importance of different test techniques for generating wind tunnel data and

the procedure for blending the obtained experimental data for aerodynamic modeling are dis-

cussed. Complementary use of computational fluid dynamics simulations reveals a substantial

effect of the Reynolds number on the intensity of aerodynamic autorotation, which is later

reflected in the aerodynamic model. Validation criteria for an extended envelope aerodynamic

model are discussed, and the important role of professional test pilots with post-stall flying

experience in tuning aerodynamic model parameters is emphasized. The paper presents an

approach to aerodynamic modeling that was implemented in the project Simulation of Upset

Recovery in Aviation (2009–2012), funded by the EuropeanUnion under the seventh framework

programme. The developed post-stall aerodynamic model of a generic airliner configuration

for a wide range of angles of attack, sideslip, and angular rate was successfully validated by a

number of professional test pilots on hexapod and centrifuge-based flight simulator platforms.

Nomenclature

Re = Reynolds number

V,Ω = linear and angular velocity vectors

V , α, β = flight speed, angle of attack, and sideslip angle

p, q, r = angular rates in body axes OXY Z
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pw, qw, rw = angular rates in wind axes OXwYwZw

Ûα, Ûβ = time derivatives of angle of attack and sideslip

Ω = (pw,0,0)′ = rotational velocity vector in rotary balance tests

ω = pwb/2V = nondimensional wind-axis roll rate

k = 2π f c/V = reduced frequency of oscillations in pitch

L, M , N = aerodynamic moment components in body-fixed frame OXY Z

Cl , Cm, Cn = rolling, pitching and yawing aerodynamic moment coefficients,

L = Cl(ρV2/2)Sb, M = Cm(ρV2/2)Sc, N = Cn(ρV2/2)Sb

CN = aerodynamic normal force coefficient

ρ = air density

S = wing area

b = wing span

c = mean aerodynamic chord

δe, δa, δr = elevator, aileron and rudder deflections

g = gravity acceleration

I. Introduction
According to worldwide commercial airplane statistics, loss of control in flight (LOC-I) is currently a major cause of

flight accidents and consequent fatalities [1]. In recent years, the problem of LOC-I has been addressed from different

perspectives, ranging from the use of flight simulators to teach pilots how to deal with stall and upset recovery to the

development of integrated automated systems for preventing LOC-I accidents [2, 3]. The rules governing training for

commercial pilots may change in the near future with the introduction of mandatory training for upset prevention and

recovery. With this aim in mind, there is a need for enhanced flight simulators, first with regard to airplane aerodynamic

models (specifically envelope extension to stall and post-stall conditions) and second with regard to upgraded simulator

motion drive algorithms to remove limitations on simulation of airplane upsets [4].

Aerodynamic models need to be able to simulate the “g-break” phenomenon, as well as post-stall lateral-directional

departures due to asymmetric development of flow separation on the airplane wing [5]. The “g-break” phenomenon is a

sudden decrease of the vertical load factor following significant reduction in the aerodynamic lift coefficient provoked

by symmetric flow separation over the wing. The phenomenon of wing autorotation is the result of the development of

asymmetric flow separation over the wing, which is induced by angular rotation around velocity vector V. The task

of aerodynamic modeling requires the availability of suitable aerodynamic data and an appropriate structure of the

aerodynamic model. Current efforts in aerodynamic modeling for transport airplanes in the extended flight envelope
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[6–14] largely rely on previously established modeling principles for combat aircraft [15–18]. The latter have generally

been based on the use of wind tunnel data from static, forced oscillation, and rotary balance tests [15–17], free-spin

tests in vertical wind tunnels [9, 15], and large-scale free-flight model tests [19]. With some modifications, the same

methodology can be applied to transport airplanes.

It is known that the maximum lift coefficient and the associated angle of attack observed in wind tunnel tests at

Re = (0.5–1.0) × 106 differ significantly from those taking place in real flight when Re = (20–50) × 106 [19, 20]. One

can expect that the aerodynamic autorotation effect due to asymmetric flow separation from both sides of the wing

also depends on the Reynolds number. The latter factor provokes lateral-directional departures, adequate prediction of

which is important for realistic simulation of the post-stall dynamics of an airplane. With the objective of aerodynamic

modeling in the extended flight envelope, this paper pays particular attention to the computational fluid dynamics (CFD)

prediction of stall aerodynamic characteristics for the NASA transport airplane configuration Common Research Model

(CRM) [21, 22] using the ENFLOW CFD code, developed and validated at the Netherlands Aerospace Centre (NLR)

[23, 24]. An important objective was the evaluation of the Reynolds number effect on the intensity of aerodynamic

autorotation.

Post-stall aerodynamics is strongly affected by the previous history of motion of the airplane. The effect of

unsteadiness of the motion is in some ways similar to that of the Reynolds number, for example, the increase

in the maximum lift coefficient is proportional to the rate of change of the angle of attack Ûα [20]. To capture

unsteady aerodynamic effects due to delays in the development of flow separation a number of phenomenological

modeling methods have been proposed [10, 11, 25–27]. Phenomenological modeling describes empirical relationships

between aerodynamic coefficients and motion parameters of the airplane. This requires appropriate formulation of the

aerodynamic model structure, which does not directly follow from basic scientific principles, but describes the observed

phenomenon reasonably well. For example, the importance of such phenomenological aerodynamic modeling in the

stall region is discussed in [28] in terms of accuracy of the local stability characteristics in equilibrium flight conditions.

A nonlinear unsteady aerodynamic modeling approach is beyond the scope of this paper, however the reader can find

examples of phenomenological aerodynamic models identified using test data from wind tunnels and CFD simulation

results in [11, 25, 28, 29].

Flight simulation models exploit wind tunnel data obtained using different rigs for static, forced oscillation, and

rotary balance tests, but such data should be properly blended to preserve their consistency in free flight conditions.

The blending procedures for a simulation with six degrees of freedom proposed in [18] were evaluated for a transport

airplane [9]. The proposed procedures are accurate in developed spins, when rotation vector of the airplane Ω is

approximately directed along velocity vector V, but lose fidelity in the airplane motions typical for post-stall asymmetric

departures. Likewise approximate departure criteria that have been effectively used for combat aircraft [15] lose their

fidelity for transport airplane configurations.
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This paper presents aerodynamic modeling principles implemented in the Simulation of Upset Recovery in Aviation

(SUPRA) project, funded by the 7th Framework Programme of the European Commission, Aeronautics & Transport

(Aircraft Safety) [30]. The developed aerodynamic model for a generic transport airplane with two under-wing engines

and a conventional tail provides representative behaviors in the extended flight envelope with inclusion of stall and

post-stall conditions.

The backbone of the aerodynamic model includes experimental wind tunnel data obtained at the Central Aerohydro-

dynamic Institute (TsAGI), Russia, for a typical modern transport aircraft configuration with a conventional tail [31].

The aerodynamic data were obtained in low-speed and transonic wind tunnels using different experimental facilities and

test techniques. Complementary aerodynamic data were generated in CFD simulations with the objective of evaluating

the effect of Reynolds number on stall aerodynamics for inclusion into the flight simulation model. The positive results

of a piloted assessment of the SUPRA flight simulation model are presented in [32, 33].

II. Principles of Aerodynamic Modeling
Analysis of upset-related flight accidents shows that upset events may evolve from situations allowing safe recovery

to critically dangerous and unrecoverable ones [34]. Flight safety boundaries for angle of attack, speed, or g-limit may

be reached and exceeded. LOC-I and stall-related departures are possible in different phases of flight at high altitude,

take-off, and landing. In piloted simulations, the aerodynamic models should adequately reflect the specific features

of major nonlinear aerodynamic phenomena at high angles of attack. They should also be representative in the sense

that pilots can be exposed to various scenarios associated with aircraft instability and loss of control due to stall and

asymmetric flow separation.

(a) (b)

Fig. 1 a) Forced oscillation rig in the TsAGI T-102 low-speed wind tunnel. b) Free-spin tests in the vertical
wind tunnel T-105.
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Fig. 2 Static wind tunnel data for a) normal force and b) pitchingmoment coefficients (Re = 0.6×106,M = 0.2).

A. Aerodynamic Phenomena in Extended Envelope and Wind Tunnel Test Data

Various aerodynamic phenomena associated with flow separation at high angles of attack are concealed under the

term “aerodynamic stall.” In the post-stall region, an airplane encounters a so-called g-break effect due to an abrupt loss

of lift force, and therefore simulation of this phenomenon is important for pilot training.

Among other stall-related events, there is a tendency for the onset of asymmetric rolling and yawing moments due to

asymmetric flow separation, which may appear even before the maximum lift point at zero sideslip and zero rotation

rate is reached. This asymmetry may be due to the high sensitivity of separated flow to imperfections in wing geometry

and to contamination on the wing. Asymmetric aerodynamic moments are normally included in aerodynamic models,

but there is a lack of understanding in modeling this phenomenon.

Significant changes in the dependences of aerodynamic loads compared with the static case are observed in the stall

region owing to rapid changes in angle of attack or sideslip. Such dynamic stalls generate aerodynamic responses in the

form of hysteresis loops, which reveal dependences on previous motion. In the case of intensive control inputs and

under the action of wind gusts, an adequate modeling of stall aerodynamics in the post-stall region is essential.

Aerodynamic autorotation is another important stall-related phenomenon, caused by the action of pro-spin

aerodynamic moments arising in conical motions around the velocity vector. Under post-stall conditions, these pro-spin

rolling and yawing moments intensify the airplane’s lateral-direction departure. A representative simulation of this
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(a) (b)

Fig. 3 Forced oscillation wind tunnel data for normal force and pitching moment coefficients (Re = 0.6 × 106,
M = 0.2).
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Fig. 4 Rotary balance wind tunnel data for yawing moment coefficient: dashed lines, experiment; solid lines,
polynomial approximation (Re = 0.6 × 106, M = 0.15).
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instability is very important for positive pilot training in different phases of flight. Significant deterioration in the

lateral-directional static aerodynamic derivatives in the stall region lead to adverse changes in airplane stability and

controllability characteristics. High-frequency aeroelastic vibrations of the airframe due to excitation from periodic

local zones of separated flow, called aerodynamic buffeting, appear in flight as a natural warning factor of the approach

to stall, and therefore should be also simulated for realistic upset prevention and recovery training of pilots.

For illustrative purposes, Figs. 2– 4 show airplane models tested in wind tunnels TsAGI along with some examples

of aerodynamic dependencies typical for the stall region. The forced oscillation rig with an airliner model in the T-102

low-speed wind tunnel is shown in Fig. 1a and free-spin tests with a dynamically scaled model in the T-105 vertical

wind tunnel in Fig. 1b.

The dependences of the normal force and pitching moment coefficients are presented in Fig. 2 for the full airliner

configuration, the body–wing–tail (BWT), along with the body–wing (BW), body–tail (BT), and body-only (B)

configurations under test conditions with Re = 0.6 × 106 and M = 0.2. The normal force is generated mainly on the

wing, while the pitching moment is generated mainly on the tail. For the BW configuration, the normal force ceases to

increase at α = 12◦ owing to aerodynamic stall on the wing, but increases again from α = 20◦ onward. In the same

range of angle of attack α = 12◦–20◦, the slope of the pitching moment for the BW configuration changes sign from

positive to negative, and this coincides with a negative damping effect (positive values of the pitching moment derivative

Cmq in Fig. 3a).

The rotary balance rig maintains rotation of an airplane model along the airflow velocity vector at given constant

values of the angle of attack (α), sideslip (β), and nondimensional rotation rate (ω). The distributed flow conditions

in such steady conical motion are kept constant, so the rotary balance can be treated as a generalized type of static

tests. Typical rotary balance data obtained in the TsAGI vertical wind tunnel under conditions Re = 0.6 × 106 and

M = 0.15 are shown for the yawing moment coefficient Cn(α, β,ω) by dashed lines in Fig. 4. The dependence on

angle of attack for different sideslip angles at ω = −0.12 is shown in Fig. 4a, and the dependence on sideslip angle for

different non-dimensional rotation rates ω at α = 30◦ is shown in Fig. 4b. There is a directional instability Cnβ < 0 in

the angle-of-attack range α = 30◦–50◦ (Fig. 4a).

The dependences of the yawing moment coefficient on rotary balance setting parameters α, β,ω, shown in Fig. 4,

are nonlinear and not very smooth. The latter may be a consequence of big intervals in test parameters, unsteadiness

of separated flow and rig vibrations (y-axis scales are removed due to the proprietary nature of data). Wind tunnel

tests data are usually used in the form of multidimensional lookup tables. To generate aerodynamic dependencies

as functions of motion variables the lookup tables are interpolated using piecewise-linear or smooth spline methods.

An approximation of rotary balance data by a low-order polynomial function is used in the next section for blending

purposes. For example, wind tunnel data shown by dashed lines in Fig. 4) are approximated by the polynomial function

of third order with curves shown as solid lines. The approximation curves give reasonably accurate trends in nonlinear

7



variations of the yawing moment coefficient vs motion parameters α, β,ω.

Fig. 3a shows the in-phase and out-of-phase aerodynamic derivatives for the pitching moment coefficient, Cmα

and Cmq , respectively. In the stall region α = 12◦–20◦, the out-of-phase aerodynamic derivative Cmq becomes

positive, indicating the onset of dynamic instability in the pitching motion. The peak instability correlates with the

increased negative slope in the in-phase aerodynamic derivative Cmα (compare with the Cm(α) dependence for the BW

configuration in Fig. 2). The variations in the normal force and pitching moment coefficients when an airplane transits

through the stalled region with rapid variation of the angle of attack obtained in the forced oscillation (f.o.) tests are

shown in Fig. 3b in comparison with static dependencies. In such large amplitude oscillations the use of in-phase and

out-of-phase aerodynamic derivatives to predict aerodynamic responses may lose fidelity.

B. Blending Wind Tunnel Aerodynamic Data

The accuracy of six-degree-of-freedom (6-DOF) simulation depends on how data from different tests in a wind

tunnel are incorporated into the aerodynamic model. The static, forced oscillation, and rotary balance tests are conducted

with different setting conditions, and this should be taken in account when blending data from these tests.

Methods for blending of rotary balance and forced oscillation test data, proposed in [18] for fighter configurations,

were evaluated in [9] for a transport airplane configuration. They give good predictions of the parameters of steady

developed spins, when the airplane rotation is dominant along the velocity vector V, but fail for the transitional dynamics

typical of post-stall lateral-directional departures and agitated oscillatory spins.

In an equilibrium, flight aerodynamic responses due to disturbed motion in pitch, roll, and yaw are commonly

described as increments towards the aerodynamic loads measured in static wind tunnel tests. These increments

are introduced in the form of linear terms, with the unsteady and rotary aerodynamic derivatives being determined

experimentally in small-amplitude forced oscillation tests. The following equations for the aerodynamic coefficients

include nonlinear dependences on angle of attack, sideslip, and control surface deflections, obtained from static wind

tunnel tests, and incremental linear contributions defined by unsteady aerodynamic derivatives:

Cl = Cst
l (α, β, δa, δr ) + Cf.o.

lp

pb
2V
+ Cf.o.

lr

rb
2V

,

Cm = Cst
m(α, β, δe) + Cf.o.

mq

qc
V
,

Cn = Cst
n (α, β, δa, δr ) + Cf.o.

np

pb
2V
+ Cf.o.

nr

rb
2V

.

(1)

Here the forced oscillation (f.o.) aerodynamic derivatives Cf.o.
i j

(i = l,m,n; j = p,q,r) accumulate an aggregated effect

from simultaneous variation of p,q,r and Ûα, Ûβ owing to the following kinematic coupling in rotation around a fixed
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point:

Ûα = q − (p cosα + r cosα) tan β,

Ûβ = −p sinα + r cosα.
(2)

The aggregates of rotary and unsteady aerodynamic derivatives can be calculated using the following equations:

Cf.o.
ip
= Cip + Ci Ûβ

sinα −
2c
b

Ci Ûα cosα tan β,

Cf.o.
ir
= Cir − Ci Ûβ

cosα −
2c
b

Ci Ûα sinα tan β,

Cf.o.
iq
= Ciq + Ci Ûα , i = l,m,n.

(3)

In post-stall asymmetric departures and developed spin modes, the motion of an airplane can be described as a

perturbed conical rotation about linear velocity vector V. The intensity of conical rotation and its perturbations can be

defined by projections of the angular velocity vector Ω in the wind-axis reference frame, pw, qw, and rw (Fig. 5):������������
pw

qw

rw

������������
=



cosα cos β sin β sinα cos β

− cosα sin β cos β − sinα sin β

− sinα 0 cosα



������������
p

q

r

������������
, (4)

where p, q, and r are respectively the roll, pitch, and yaw rates in the body-axis reference frame. In pure conical rotation,

Fig. 5 Body-axis and wind-axis reference frames.

the wind-axis angular rates in pitch and yaw projections disappear (qw = rw = 0), while pw can be identified with the
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nondimensional rate of conical rotation ω, which is used as a parameter in the rotary balance tests. It is natural to treat

the rates qw and rw as perturbation parameters for pure conical rotation, and they should be substantially smaller than

the conical rotation rate: |qw/pw | � 1, |rw/pw | � 1. From Eqs. (2) and (4) there follows a direct connection between

these angular rates and the intensity of changes in the angle of attack and sideslip: Ûα = qw/cos β and Ûβ = rw.

For conical-like rotations, the aerodynamic coefficients can be represented in a similar manner to Eqs. (1), but

with static test data replaced by rotary balance (r.b.) test data with incremental aerodynamic responses, which are now

proportional to qw and rw:

Cl = Cr.b.
l (α, β,ω, δa, δr ) + Clqw

qwc
V
+ Clrw

rwb
2V

,

Cm = Cr.b.
m (α, β,ω, δe) + Cmqw

qwc
V
+ Cmrw

rwb
2V

,

Cn = Cr.b.
n (α, β,ω, δa, δr ) + Cnqw

qwc
V
+ Cnrw

rwb
2V

.

(5)

where aerodynamic derivatives Ci j
(i = l,m,n; j = pw,qw,rw) correspond to conditions of conical motion and therefore

depend on the nondimensional rotation rate ω.

The nonlinear rotary balance terms in Eqs. (5) are well approximated by third- or fifth-order polynomial functions

with respect to the sideslip angle β and the nondimensional rotation rate ω (see Fig. 4):

Cr.b.
i (α, β,ω) = Ci0(α) + Cr.b.

iβ
(α)β + Cr.b.

iω
(α)ω

+ Ci
ω2 (α)ω

2 + Ciβω (α)βω + Ci
β2 (α)β

2

+ Ci
ω3 (α)ω

3 + Ci
β2ω
(α)β2ω + Ci

βω2 (α)βω
2 + Ci

β3 (α)β
3, i = l,m,n.

(6)

At small β and ω, the following relations between the forced oscillation and rotary balance aerodynamic derivatives can

be established:
Cipw
(α) = Cr.b.

iω
(α) = Cf.o.

ip
(α) cosα + Cf.o.

ir
(α) sinα, i = l,n,

Cirw
(α) = −Cf.o.

ip
(α) sinα + Cf.o.

ir
(α) cosα, i = l,n,

Cmqw
(α) = Cf.o.

mq
(α), Cr.b.

mpw
= Cr.b.

lqw
= Cr.b.

nqw
= 0.

(7)

According to Eqs. (6) and (7), the rotary balance unsteady aerodynamic derivatives can be estimated and used in Eqs. (5)

with data from rotary balance tests. Such a blending fits well for post-stall lateral-directional departures, but may

fail to correctly predict dynamic stability in agitated spins, because of differences in flow conditions. Note that the

unsteady aerodynamic derivatives are obtained in the forced oscillation tests without the steady conical rotation typical

of spin motion. Additional experimental capabilities are required for improvement of unsteady aerodynamic modeling.
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For example, the oscillatory coning technique [35] provides more appropriate testing conditions for extraction of the

unsteady aerodynamic derivatives Ciqw
and Cirw

in Eqs. (7). A wind tunnel 5-DOF dynamic rig [36] allowing execution

of free lateral-directional departures can be used for identification of aerodynamic characteristics under unsteady stall

conditions.

III. Complementary Use of CFD Simulations
CFD simulations were used for validation of experimental data in the stall region with the particular objective of

extrapolating data to high-Reynolds-number conditions [13, 14]. Static and dynamic tests in wind tunnels are normally

conducted at relatively low Reynolds numbers (Re ≈ 1 × 106), with CFD methods allowing predictions of aerodynamic

loads at the higher Reynolds numbers (Re = 50 × 106 in this paper) typical of real flight conditions. CFD methods

using numerical procedures specially tuned for separated flow conditions can be used for prototyping wind tunnel tests

typical of static conditions and forced oscillation tests as presented in [11, 29]. This section presents CFD simulations

of aerodynamic loads during rotary balance tests, which are of great importance for satisfactory aerodynamic modeling

in the extended flight envelope.

A. CFD Computational Framework

For evaluation of the wing autorotation effect, a body–wing configuration of the NASA CRM geometry [21, 22],

typical of many modern transport airplanes, was considered. Both the coarse and medium grids used in this study,

containing 5.1 or 10.2 million grid cells, respectively, were obtained from [21, 37]. To allow efficient parallel processing

on the high-performance cluster computing facility at NLR, the grid was divided into 156 blocks, allowing an almost

perfectly balanced parallel computation using 160 cores with 80 MPI domains. The unified grid was designed for

Re = 5 × 106. To provide sufficient resolution of the turbulent boundary layer with y+ values on the surface close to

unity, a special procedure was applied to redistribute the original grid within the boundary layer. This procedure allowed

flow simulations with much higher Reynolds numbers up to 50 × 106.

The NLR’s CFD code ENFLOW used in this study has, since its inception [23], been continuously developed

in-house to incorporate new capabilities ranging from Reynolds-averaged Navier–Stokes (RANS) with increasing

fidelity of the turbulence model, to unsteady RANS (URANS), to hybrid RANS/large-eddy simulation (LES) and LES.

The ENFLOW solution algorithm can be found in [24]. The ENFLOW steady-state numerical solution for the NASA

CRM drag polar agrees well with available experimental results: it is well within the CFD and wind-tunnel spreads,

and is absolutely not an outlier. A flow model based on the URANS equations was used in this paper throughout the

simulations, along with Menter’s shear stress transport (SST) turbulence model [38].

A conical roll motion around the incoming free-stream velocity vector was considered as a representative case

for simulation of post-stall departure. This type of motion is identical to that in the rotary balance tests, but a CFD
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simulation is free from wind tunnel interference effects and can be applied at high Reynolds numbers. The conical

motion is characterized by constant kinematic parameters, angle of attack α, sideslip β, and rotation rate ω, ensuring

steady conditions for local flow incidences. In the CFD model, the conical roll-motion is modeled by rotating the

computational grid, where the free-stream velocity vector is used as the axis of rotation, and the moment reference point

as the center of rotation.

Before a fully fledged campaign for generation of aerodynamic data, a validation study was performed to determine

the most appropriate balance between spatial resolution and required computing resources. A second-order implicit

scheme with dual time-stepping is used to simulate the roll-motion. A non-dimensional time step size of 0.2 was

chosen to allow 10 samples per period. It was immediately clear that time-accurate simulations on the fine grid were

practically not feasible. The medium grid alleviates the situation but still requires tremendous computational resources.

An investigation was therefore performed to find out whether using a less expensive coarse grid was justifiable. Three

cases were evaluated: (a) steady-state simulation on the coarse grid, (b) time-accurate simulation on the coarse grid,

and (c) time-accurate simulation on the medium grid. At low angles of attack with attached flow conditions, all three

approaches gave identical results. In regimes with flow separation, the steady-state solution procedure, although having

modest computational requirements, was not able to reach convergence. The force and moment coefficients were

approximated through a reasonable averaging of the fluctuating coefficients. The time-accurate simulation required

more computational time and allowed meaningful convergence to nearly steady flow solutions.

For the CRM wing–body configuration in conical motion at M = 0.4, Re = 5 × 106, and ω = 0.1, three sample

dependences of the pitching and rolling moment coefficients Cm and Cl versus angle of attack in the range 2◦ < α < 16◦

were simulated using different grids and computational methods (Fig. 6). Comparative analysis of these results, revealing

differences in the distributions of flow separation, led to the conclusion that the medium grid with time-accurate

simulation was the best setting for further computational testing.

The final computational procedure for flow simulation for each set of α, β,ω was conducted independently in parallel

and in two stages, and started from a free stream as the initial flow. In the first stage, a grid sequencing procedure was

followed, using a steady-state simulation involving three grid levels. For a roll motion in the wind axis, the steady-state

solution procedure was based on the steady-state RANS equations formulated in the rotating body-axis reference frame.

In the second stage, the computational procedure was switched to a time-accurate simulation. After 320

nondimensional physical time steps of τ = 0.2, the transient process had decayed sufficiently, and the force and

moment aerodynamic coefficients could be extracted by averaging over an appropriate number of periods of oscillation.

Figure 7 shows the simulation processes on the medium grid for the normal force and rolling moment coefficients at

α = 14◦, ω = 0.1 and at α = 40◦, ω = 0.1.

The processes converge to periodic solutions exhibiting high-frequency oscillations with small amplitude, which

are more pronounced at α = 40◦. It should be noted that in several cases engineering judgement was needed in order
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to obtain acceptable numerical figures within the available resources. This situation is reflected in Fig. 7 where the

roll-motion coefficient had not yet fully converged.

The eCFD framework, using an e-mail interface, allowed planning and execution of the required numerical

simulations at De Montfort University, UK, benefiting from the high-end CFD software and hardware infrastructure at

NLR [39]. The large number of flow simulations required for the aerodynamic model in the extended flight envelope

were performed in parallel. For example, one unsteady flow simulation took about 3 hours and 45 minutes. The shared

computing facility at NLR allowed a production capacity of 18 simulations per day.
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Fig. 6 Effects of grid and solution procedure on aerodynamic moment coefficients at M = 0.4, Re = 5 × 106,
and ω = 0.1 for a CRM body–wing configuration.
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generating aerodynamic data in the post-stall region: M = 0.2, Re = 32.6 × 106, ω = 0.1, and α = 14◦ and 40◦.

B. CFD of Rotary Balance Testing

CFD simulations were conducted at M = 0.2 and two different Reynolds numbers Re = 1.0 × 106 and 32.6 × 106

for the CRM body–wing configuration on a grid of points for angle of attack α and nondimensional conical roll rate ω
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Fig. 8 CFD simulation results for normal force and pitching moment coefficients for CRM body–wing config-
uration in conical motion: a, b) at Re = 32.6 × 106; c, d) Re = 1.0 × 106.

at zero sideslip β = 0. This allowed the production of dependences of the force and moment coefficients in the stall

region similar to those obtained in the wind tunnel rotary balance tests.

The normal force CN (α,ω) and pitching moment Cm(α,ω) coefficients generated in CFD simulations are presented

in Fig. 8. These dependences at Re = 1.0 × 106 and 32.6 × 106 are qualitatively similar, but there are some important

quantitative differences, especially in the stall region. For example, CN (0,0) = 0.152 and CNmax (11◦,0) = 0.971 at

Re = 1.0 × 106, while CN (0,0) = 0.191 and CNmax (13◦,0) = 1.17 at Re = 32.6 × 106. At high Reynolds number, the

maximum value of the normal force coefficient is increased (∆CLmax ≈ 0.19), is shifted to a higher angle of attack

(∆αmax ≈ 2◦), and is followed by a steeper drop in magnitude. Similar quantitative changes occur in the pitching moment

14



coefficient. For example, Cm(0,0) = −0.046 and Cmmax (13◦,0) = 0.15 at Re = 1.0 × 106, while Cm(0,0) = −0.0781 and

Cmmax (14.5◦,0) = 0.149 at Re = 32.6 × 106. At high Reynolds number, there is a steeper drop in the pitching moment

coefficient above α = 14.5◦, potentially leading to an increase in the peak of negative damping at high Reynolds number

in comparison with the wind tunnel test data obtained at low Reynolds number (see the range α = 14◦–18◦ in Fig. 3a).

Flow visualizations for symmetric conditions at Re = 32.6 × 106,M = 0.2 are shown in Fig. 9. The surface limiting

streamlines with a skin-friction pattern in the background for a number of angles of attack α = 12◦,14◦,16◦,30◦, at

β = ω = 0, are shown in Fig. 9a. Areas with relatively low skin friction indicate regions with flow separation. At

α = 12◦, the streamlines show that the flow is attached to the wing, but at higher angles of attack the streamlines

indicate flow separation with a pattern changing with increasing angle of attack. The distribution of Mach number at

α = 12◦,ω = 0 (attached flow) and at α = 14◦,ω = 0 (separated flow) in the cross-section of the mean aerodynamic

chord on the starboard wing is shown in Fig. 9b. Two circulatory regions of opposite rotation on both wing sides appear

at α = 14◦, revealing the existence of two vortical flow separations from the upper wing surface. With increasing angle

of attack, these circulatory regions approach the fuselage and disappear. The spatial evolution and topology of these

vortices require further investigation.

The effect of conical rotation in the stall region is illustrated in Fig. 10. On the left-hand image in Fig. 10a, the

limiting streamlines clearly show separated flow over the wing surface at α = 12◦ and zero rotation. The starboard-down

roll motion inducing a higher local angle of attack on the starboard side is consistent with the greater extent of the

flow separation region on that side and the attached flow on the port side of the wing. Figure 10b shows the pressure

coefficient and Mach number contours at the location of the mean aerodynamic chord for the port side with attached

flow and the starboard side with separated flow. These asymmetric flow conditions during starboard-down conical

rotation generate pro-spin aerodynamic moments, leading to autorotation instability.

The predicted aerodynamic moment coefficients Cl(α,ω) and Cn(α,ω) are presented in Fig. 11. At low angles

α < 10◦, the rolling and yawing moment derivatives are negative, Clω < 0 and Cnω < 0, and this contributes to the

lateral-directional stability. In the stall region, there is a strong nonlinear dependence on the conical non-dimensional

rotation rate ω. At low rotation rates ω < 0.1, in the range 12◦ < α < 20◦, the rolling and yawing moment derivatives

change sign and become positive, Clω > 0 and Cnω > 0 (solid lines in Fig. 11). However, with increasing rotation

rate ω > 0.1, the slopes of the curves change back to negative values, Clω < 0 and Cnω < 0, and cross the zero levels,

Cl = 0 or Cn = 0, at some values of ω.

The rolling moment derivative Clω for the CRM body–wing configuration obtained in CFD simulations is shown

in Fig. 12a. The intensity of aerodynamic autorotation (Clω) increases with increasing Reynolds number. The peak

negative damping at Re = 32.6 × 106 is delayed by 2◦ in angle of attack and is doubled in magnitude in comparison

with the corresponding dependence for Re = 1.0 × 106. The aerodynamic derivatives Clω and Cnω in conical motion

can be evaluated from the wind tunnel rotary balance or forced oscillation tests. Figure 12b shows the rolling moment
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(a)

(b)

Fig. 9 Flow visualization. a) Surface limiting streamlines with skin-friction pattern in the background for
α = 12◦, 14◦, 16◦, 30◦ at ω = 0. b) Mach number distribution at the location of the mean aerodynamic chord
on the starboard wing at α = 12◦, ω = 0 and α = 14◦, ω = 0.

derivative Clω (solid line) calculated with the first of Eqs. (7), using the aerodynamic derivatives Cf.o.
lp

and Cf.o.
lr

(dashed

lines) obtained for the SUPRA configuration in the wind tunnel forced oscillation tests with Re = 0.6× 106. Under these
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(a)

(b)

Fig. 10 Flow visualization. a) Surface limiting streamlines with skin-friction pattern in the background for
α = 14◦, ω = 0 and α = 14◦, ω = 0.1. b) Pressure and Mach number distributions at the location of the mean
aerodynamic chord at α = 14◦, ω = 0.1 on the port and starboard sides.

conditions, all three dependences Clω , Cf.o.
lp

, and Cf.o.
lr

clearly show that the level of damping in conical rotation drops to

zero at α = 14◦, and there is no autorotation effect in the whole post-stall region. This means that the intensity of the

aerodynamic autorotation observed in wind tunnel tests at low Reynolds numbers may be significantly undervalued or
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Fig. 11 CFD simulation results for rolling and yawingmoment coefficients of theCRMbody–wing configuration
in conical motion at Re = 32.6 × 106 and M = 0.2.

totally missed in comparison with the level of aerodynamic autorotation in real flight conditions.

The presented results of the CFD simulations demonstrate a significant level of aerodynamic autorotation in the

stall region at low and high Reynolds numbers, and therefore a proper account of this effect is of great importance for

aerodynamic modeling. A similar observation regarding the relation between wind tunnel forced oscillation test data

and CFD predictions was reported in [11] for the aerodynamic derivative Cf.o.
lp

of the generic transport model (GTM)

configuration.
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Fig. 12 a) Rolling moment derivative Clω obtained from CFD simulations at Re = 1 × 106 and 32.6 × 106. b)
Rolling moment derivative Clω obtained from wind tunnel forced oscillation results at Re = 0.6 × 106.
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IV. Tuning and Validation of Aerodynamic Model
Upset prevention and recovery training (UPRT) on modern flight simulators is one of the measures aimed at

reduction of LOC-I. An important requirement in this regard is to avoid negative transfer of training, which could

actually jeopardize rather than increase flight safety. This condition impose particular requirements on validation of the

aerodynamic model in the extended flight envelope, where aircraft behavior can appear very unusual for untrained pilots.

There are well-developed and widely accepted objective and subjective validation tests for aerodynamic models

under normal flight conditions. In contrast, the validation of aircraft post-stall dynamics faces fundamental difficulties

connected with the variety of types of motion involved, such as “g-break”, longitudinal self-sustained pitching oscillations

and lateral-directional departures which are not precisely repeatable. Under stall conditions, an airplane can find itself

in different critical flight regimes, and minor changes in control inputs can trigger a transition from one regime to

another. Objective tests are limited owing to the hazardous nature of flight testing in the extended flight envelope.

Subjective validation is possible, but this needs feedback from experienced pilots familiar with airplane post-stall

dynamics. Meanwhile, the flight simulator constraints in motion cuing and visualization systems should not interfere

with pilots’ ratings for the flight simulation model itself.

Some methods of aerodynamic model tuning and validation in the extended flight envelope such as parametrised

intensity of aerodynamic autorotation and post-stall gyration, adjustment of spin motion characteristics and in the end

subjective validation of the post-stall dynamics by experienced pilots are discussed here.

A. Approximate Departure Criterion

Two approximate criteria are widely recognized for evaluation of combat aircraft susceptibility to loss of control

and lateral-directional stability at high angles of attack [15]. They are based on the lateral control departure parameter

(LCDP) and the quantity Cnβdyn , defined as

LCDP = Cnβ − Clβ

(
Cnδa

Clδa

)
,

Cnβdyn = Cnβ cosα −
(

Iz
Ix

)
Clβ sinα.

(8)

The criteria
LCDP < 0,

Cnβdyn < 0
(9)

then indicate reverse controllability in roll and aperiodic instability in directional motion, respectively. These criteria

applied to the SUPRA model show a tendency to instability at angles of attack in the range α = 28◦–50◦, which is

more appropriate for spin regimes, but show no signs of instability in the range α = 10◦–25◦ typical of stall conditions
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(Fig. 13a). There is an obvious need for an additional criterion, reflecting the contribution of aerodynamic autorotation.

Such a criterion, derived from the linearized lateral-directional equations with eliminated spiral mode, is provided by

the quantity [40]

σω = CnβClω − ClβCnω , (10)

where the aerodynamic derivatives Clβ and Cnβ are obtained from the wind tunnel static tests, while Clω and Cnω are

obtained from the rotary balance tests. Positive values, σω > 0, indicate the onset of aperiodic “conical” instability

produced by aerodynamic autorotation. The dependence σω(α), calculated using aerodynamic derivatives obtained in

wind tunnels at Re = 0.6 × 106, does not indicate instability in the stall region, although its absolute magnitude drops

significantly (see the solid line in Fig. 13b).
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Fig. 13 Approximate departure criteria and tuning parameter kt shaping σω(α) dependence.

20



−25 −20 −15 −10 −5 0 5
−40

−30

−20

−10

0

10

20

30

40

Elevator deflection [deg]

R
o

ll 
ra

te
 [

d
e

g
/s

]

Incipient spin

Incipient spin

Post−stall
gyration

Post−stall
gyration

0.05

0.10

0.05

0.10

C
l0

=0.15C
l0

nom

Fig. 14 Post-stall gyration and roll rate in incipient spin at kt = 0.4.

The analysis of Reynolds number sensitivities from CFD simulations discussed in the previous section indicates

significant levels of instability in the stall region (10◦ < α < 24◦). These variations offer some latitude for introducing a

number of tuning parameters into the aerodynamic model within this range. For example, Fig. 13b shows a smooth

transformation of the function σω(α) as the introduced tuning parameter kt changes in the range [0,1]. The intensity of

“conical” instability and the width of the autorotation zone gradually increase as the tuning parameter increases from

kt = 0.2 to kt = 1. The maximum “conical” instability is reached at the level of aerodynamic autorotation, predicted in

CFD simulations at Re = 32.6 × 106 (see the previous section).

B. Post-Stall Gyration

The post-stall gyration, the intensity of which is proportional to the level of instability σω > 0, initially saturates in

the “incipient spin” (where the aerodynamic and inertia moments are in balance) and further transits to a fully developed

spin (where aerodynamic and gravity forces come into balance) [15]. The equilibrium roll rates of the incipient spin in

the post-stall region as function of elevator deflection for different levels of aerodynamic asymmetry in roll are shown

in Fig. 14. These dependences were obtained by numerical continuation, considering the reduced system of motion

equations with state vector x = (α, β, p,q,r)′ [40]. The solid lines represent stable equilibrium solutions and the dashed

lines unstable equilibrium solutions. When Cl0 = 0, post-stall gyrations to the right and to the left from the central

unstable equilibria are mirror-symmetric and equally probable. A very small level of aerodynamic asymmetry in roll
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makes departure to one side more probable. The maximum roll rate in the incipient spin is mostly defined by nonlinear

dependences of the rolling and yawing aerodynamic moments on angular velocity ω (see Fig. 11). The characteristics

of the predicted incipient spins were used for preliminary selection of the parameter kt , which was later tuned and

validated in the subsequent piloted simulations.

C. Free Spin Tests

In the case of unsuccessful upset prevention and recovery action, an airplane can transit to a fully developed spin

regime characterized by high angles of attack with rotation around the vertical axis [40]. Such flight conditions,

with moderate longitudinal accelerations due to centrifugal force, can be realistically reproduced on modern hexapod

flight simulators, although they are not included as a mandatory part of pilot training. Given this option, the SUPRA

aerodynamic model has been validated for predicting the motion of a dynamically scaled free-spinning model tested in

the TsAGI vertical wind tunnel.

Fig. 15 shows variations of parameters of motion: yaw angle ψ(t), angle of attack α(t), and sideslip β(t) in the

developed agitated spin regime. The dashed and solid lines represent experimental and simulated results, respectively.

The angular rates p(t), q(t), r(t) are numerically simulated, while control settings δe(t), δa(t), δr (t) were predefined and

used in both the experiment and the computer simulation. There is a good agreement between the experimental and

predicted time histories for the yaw angle ψ, between experimental and simulated values of the angle of attack, and also

there is a similarity in characteristics of the recovery process from spin, namely the termination of rotation in ψ and

reduction in the angle of attack α. The angle of attack, sideslip, and roll rate are quite oscillatory, with amplitudes

αs = 7◦, βs = 12◦, and ps = 1.5 rad/s. To capture the closeness in these processes is quite difficult, because the model

is thrown into the wind tunnel flow manually and there is no information about initial conditions of motion. Better

prediction of the agitated spin modes will need correction of the aerodynamic derivatives Ciqw
and Cirw

(i = l,m,n), for

example, by means of dependence on the nondimensional rotation rate ω.

D. Piloted Simulation

The final validation of the SUPRA aerodynamic model was made in a piloted simulation with participation of a

number of experienced test and airliner pilots on three flight simulators: the centrifuge-based flight simulator Desdemona

at the Netherlands Organisation for applied scientific research (TNO) and two hexapod flight simulators, GRACE at

NLR and PSPK-102 at TsAGI. Feedback from the pilots on the representativeness of the airplane stall dynamics helped

to tune the free parameters of the SUPRA aerodynamic model to improve its fidelity. It was stressed by several pilots

that the aircraft behavior in the stall region (especially in large roll-off maneuvers) was a key innovation not present in

current simulation models. The SUPRA aerodynamic model was judged to be representative for a generic transport

aircraft both inside and outside the normal flight envelope and to be suitable for training applications. The detailed
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Fig. 15 Free-spin tests in the TsAGI T-105 vertical wind tunnel: experimental versus simulated results.

procedures, criteria adopted, and results obtained in the conducted validation through the piloted simulation of the

SUPRA aerodynamic model are presented in [32, 33].

As an example, Fig. 16 shows the time histories and four phase portraits for the parameters of motion and control

inputs from piloted simulations. These illustrate the lateral-directional departure from straight and level flight, and the

development of airplane upset (θ = −27◦, φ = 98◦), followed by successful upset recovery. A visualization of the flight

trajectory with airplane markers showing its orientation in 5 s intervals is presented in Fig. 17. The substantial loss of

altitude ∆H ≈ −600m during upset and recovery shows that such events under low-altitude flight conditions may be

critically dangerous, and pilot training should be more focused on upset prevention scenarios.
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flight.
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Fig. 17 Trajectory and airplane orientation during asymmetric departure and recovery.

V. Conclusions
The presented aerodynamic modeling principles for post-stall flight simulation of a generic transport airplane, which

were implemented in the SUPRA aerodynamic model for an extended envelope, rely on

• consistent use of wind tunnel static, forced oscillation, and rotary balance test data and a blending procedure based

on wind-axis angular rates;

• complementary CFD simulations for rotary balance type of motion under stall and post-stall conditions at high

Reynolds number Re = 32.6 × 106;

• the introduction of tunable parameters in the aerodynamic model for correction of wind tunnel data in the stall and

post-stall regions;

• extensive validation of the aerodynamic model in piloted simulations by professional test and airliner pilots on

hexapod and centrifuge-based flight simulator platforms.

The SUPRA aerodynamic model was rated by pilots to be representative for a generic transport aircraft both inside

and outside the normal flight envelope and to be suitable for training applications.
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